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Abstract 
The paper revisits the way transient trapping is introduced in the literature based on the 
Sofronis and McMeeking model [1] of hydrogen transport. It is shown that the direct use of 
the improved formulation made by Krom et al. [2] for transient trapping may lead to non-
physical results of hydrogen concentration in case of an insulated system. The use of  
McNabb and Foster trapping kinetic equation is more relevant, and its ability to model both 
trap creation and kinetic trapping is investigated on a Small Scale Yielding configuration for 
the sake of comparison with a reference case from the literature. A parametric study is 
conducted, exhibiting differences with literature, and emphasizes on the significant effect of 
trapping kinetics on the hydrogen distribution. 
keywords: Hydrogen trapping, Crack tip plasticity, Diffusion, Finite elements, Abaqus 

1 Introduction 
Structures operating in a hydrogenic environment must be carefully designed to prevent early 
failures by hydrogen embrittlement. This phenomenon results from complex interactions 
between hydrogen and the material [3]: hydrogen atoms penetrate and diffuse into the 
material crystal lattice, interact with microstructural defects (acting as traps) and affect the 
material properties and the conditions of fracture [4]. Hydrogen transport properties depend 
on the evolution of traps density. Such evolution is encountered in many applications 
involving plastic deformation or plasma exposed surfaces [5,6]. Considering hydrogen 
transport in elastic-plastic material, the finite element approach of initial boundary values 
problems is widely based on the transport equations proposed by Krom et al. [2], following 
the pioneering work of Sofronis and McMeeking [1].  
In these approaches, the hydrogen concentration is the result of hydrogen diffusion through 
interstitial lattice sites and hydrogen trapping by the material defects (dislocations induced by 
plastic straining). A relationship between the evolution of mobile and trapped 
concentrations	has been proposed by McNabb and Foster [7], using a first order kinetic 
reaction to describe the trapping process [8]. Following Oriani [9], an expression of the 
trapped hydrogen concentration as function of the mobile hydrogen concentration can be 
obtained at equilibrium. This assumption is reasonable when trapping is very fast compared to 
the characteristic times of the other processes involved and was used in [1] to obtain the 
hydrogen transport equation. This model was applied to a Small Scale Yielding (SSY) 
configuration, which became a benchmark test case for further theoretical and numerical 
studies on hydrogen diffusion and trapping [1,2,10-17]. 
Krom et al. [2] pointed out the need to improve the Sofronis and McMeeking transport model 
for trap creation as it did not insure a correct hydrogen balance in the case of an insulated 
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system. To account for the trap creation due to plastic strain, they proposed to add an 
additional term to the transport equation called “strain rate factor”. The effect of that extra 
term was analyzed on the same SSY configuration to underline the consequences on hydrogen 
repartition ahead of a crack tip under a mode I loading. This modified equation has been used 
in various papers based on finite element computations to describe hydrogen transport in 
mechanically loaded structures using both isotropic and crystal plasticity (see, [18-21]). 
Later, Kanayama et al. [16] investigated the effect of  transient trapping compared to Oriani’s 
equilibrium on the hydrogen repartition in this SSY configuration, using the ADVENTURE 
finite element software [22]. They assumed that the McNabb and Foster equation could be 
used in conjunction with the “strain rate factor” in the context of trap creation. Their 
conclusions pointed out that Oriani’s assumption is not suitable for fast loadings. They 
showed important differences with the Krom et al.’s results, and suggested the potential 
interest of transient trapping for HELP model. 
Recently, another implementation of the McNabb and Foster equation, in the commercial 
Finite Element software Abaqus© based on User Subroutines [23], has been proposed [24], in 
order to solve various coupled mechanical-diffusion and transient trapping problems. Such an 
implementation is indeed challenging: in Abaqus©, it is needed, for the sake of global 
convergence, that the User Subroutines provide to the software the temporal evolution of 
several partial derivatives (see [15] for details). These partial derivatives have been evaluated 
by Benannoune et al. [24] using an approximation of the solution of the McNabb and Foster 
differential equation (see below equation (3)). This approach was used to solve initial 
boundary values problems involving transient hydrogen trapping processes, either without 
trap creation (e.g., on Thermal Desorption Spectroscopy spectrums), or for more complex 
problems, in which hydrogen diffusion, and transient trapping have been coupled with 
evolving (thermo)mechanical fields [25-28].  
The present study aims at extending the work of Krom et al. [2] to transient trapping by 
improving the formulation proposed by Kanayama et al.. Oriani’s assumption and the strain 
rate factor correction, are replaced by the original McNabb and Foster relationship, as it is 
done in several studies related to plasma-surface interactions (see, e.g., [29-31]).  
First the main hydrogen transport equations are described. Then the issues induced by the 
Kanayama et al. approach are pointed out, in the case of an insulated body under a uniform 
mechanical load. A reformulation of the used equations is then proposed and, for the sake of 
comparison with previous work, a parametric study on the SSY test case used by Krom et al. 
is conducted for bcc iron. Only trapping by dislocations is considered here but the approach 
could be adapted to other kind of traps.  
All computations have been made using Abaqus Software and User Subroutines (details can 
be found in [24,32,33]). 

2 Hydrogen transport and trapping evolution 

2.1 Hydrogen transport equation 

The hydrogen concentration in the bulk 𝐶 is assumed to be the sum of the diffusive hydrogen 
concentration 𝐶! and of the trapped hydrogen concentration 𝐶". Only one kind of trap is 
considered, i.e., dislocation core, which is saturable and reversible. The hydrogen 
concentrations are related to the number of sites: 𝐶! = 𝜃!𝑁!, where 𝜃! is the occupancy of the 
lattice sites and 𝑁! the number of lattice sites per unit volume, and 𝐶" = 𝜃"𝑁", where 𝜃"  is 
the occupancy of the lattice sites and 𝑁"  the number of lattice sites per unit volume.  



Considering the effect of a hydrostatic stress on the chemical potential of the hydrogen in the 
lattice sites, the hydrogen flux is [1] 

 𝝋 = −𝐷!𝜵𝐶! − 𝐷!𝐶!
𝑉#
𝑅𝑇𝜵𝑃# (1) 

where 𝑃# = −∑σ$$/3 is the hydrostatic pressure, 𝑉# the partial molar volume of hydrogen, 
𝐷! the hydrogen diffusion coefficient, 𝑇 the absolute temperature and 𝑅 the universal gas 
constant. From mass conservation, the changing rate of the total hydrogen concentration 𝐶 
inside an arbitrary volume is equivalent to the flux through its external surface, leading to 

 𝜕𝐶!
𝜕𝑡 +

𝜕𝐶"
𝜕𝑡 = 𝜵. 6𝐷!𝜵𝐶! + 𝐷!𝐶!

𝑉#
𝑅𝑇𝜵𝑃#7

 (2) 

The main differences in the different approaches that can be found in the literature are related 
to the formulation of 𝜕𝐶"/𝜕𝑡. The various expressions of this rate encountered in the 
literature are presented and discussed below. 

2.2 Expressions of the trapped hydrogen concentration rate 

McNabb and Foster [7] assumed the trapping process can be summarized by the following 
chemical reaction [34] 

 𝐶! + 𝑁"∗ ⇋ 𝐶" + 𝑁!∗ (3) 
where 𝑁"∗ and 𝑁!∗ are respectively the free trapping sites and the free lattice sites densities 
(𝑁" = 𝐶" + 𝑁"∗). Assuming a first order chemical reaction, this leads to 

 
𝜕𝐶"
𝜕𝑡 =

𝑘
𝑁!
	𝐶!𝑁"∗ −

𝑝
𝑁!
𝐶"𝑁!∗ (4) 

where 𝑘/𝑁! and 𝑝/𝑁! are the forward and reverse reaction rates constants. If 𝑁! ≫ 𝐶! (i.e., 
𝑁! ≈ 𝑁!∗, or	𝜃! ≪ 1, which is a common approximation in the context of plasticity) equation 
(4) can be simplified as following 

 
𝜕𝐶"
𝜕𝑡 =

𝑘
𝑁!
𝐶!(𝑁" − 𝐶") − 𝑝𝐶" (5) 

Moreover, McNabb and Foster [7] assumed a constant trap density 𝑁", so that equation (5) 
naturally implies 

 𝜕𝜃"
𝜕𝑡 = 𝑘𝜃!(1 − 𝜃") − 𝑝𝜃" (6) 

The steady state solution of equation (6), as proposed by Oriani [9], is written as  

 𝐾"𝜃! =
𝜃"

1 − 𝜃"
 (7) 

where 𝐾"  is the equilibrium constant for equation (6), so that 𝐾" = 𝑒&∆(!/*" with ∆𝐸" the 
trap binding energy with respect to the lattice site, 𝑅 the universal gas constant and 𝑇 the 
absolute temperature. 𝐾" is linked to the rate constants by 𝐾" = 𝑘/𝑝 .  
At equilibrium, equation (7) therefore gives an explicit relation between 𝜃" and 𝜃!. Assuming 
that 𝑁" only depends on the equivalent plastic stain 𝜀+̅ [2], the evolution of the trapped 
hydrogen concentration can be written  as 



in which 𝜕𝜃"/𝜕𝑡 is computed from equation (7). The last term of equation (8), the “strain rate 
factor”, was added to the initial approach [1] due to the lack of hydrogen balance pointed out 
when considering an insulated, uniformly  stressed body (see section 3 below). 
To account for transient trapping, Kanayama et al. [16] used the expression of 𝜕𝜃"/𝜕𝑡 given 
by equation (6), leading to 

𝜕𝐶"
𝜕𝑡 = 𝑁"

𝜕𝜃"
𝜕𝑡 + 𝜃"

𝑑𝑁"
𝑑𝑡 = 𝑁"[𝑘𝜃!(1 − 𝜃") − 𝑝𝜃"] + 𝜃"

𝑑𝑁"
𝑑𝜀+̅

𝜀+̇̅ (9) 

Kanayama et al. showed that this formulation produces drastically different hydrogen 
distribution when compared to the use of Oriani’s equilibrium theory, particularly when the 
loading time is significantly small (or the strain rate is high). Their approach has been used in 
several recent works [16,24-28]. 
However, the assumption of a constant trap density in equation (6) appears to be problematic 
considering the evolution of trap density with plastic strain used in equation (8). The current 
study therefore proposes to directly use equation (5) in the transport equation (2) to account 
for transient trapping in finite element simulations of diffusion problems. As a consequence, 
the “strain rate factor” is no longer needed and the hydrogen transport equation reads 

𝜕𝐶!
𝜕𝑡 + 𝑘𝜃!N𝑁"(𝜀+̅) − 𝐶"O − 𝑝𝐶" = 𝜵. 6𝐷!𝜵𝐶! + 𝐷!𝐶!

𝑉#
𝑅𝑇𝜵𝑃#7 (10) 

In the next section, the relevance of this new formulation is first analyzed in the case of an 
insulated, uniformly-stressed body, following [2].  
A comparison with literature results obtained on the SSY benchmark test case [1,2] is then 
conducted.  
The influence of the trapping kinetic is then focused on by conducting a parametric study on 
the reaction rate constants 𝑝 and 𝑘, with 𝑘/𝑝=𝐾" set as a constant (linked to the dislocation 
binding energy, for the sake of comparison). This allows going through any trapping 
configuration, from an almost purely diffusive process (with a very slow trapping, when 
𝑝®0+ s-1) to instantaneous trapping (consistent with the Oriani’s assumption, when  
𝑝®+¥ s-1). 

3 Diffusive and trapped hydrogen concentration in the case of an 
insulated, uniformly-stressed body  

3.1 Modeling assumptions 

The configuration and assumptions used by Krom et al. (justifying the “(plastic) strain rate 
factor” [2]) are used in this section. The objective is to compare the results obtained with 
equations (8), (9) and (10). 
A bar made of a-iron is considered. It is assumed to be insulated (i.e., no hydrogen normal 
flux on the outer bar surfaces). At 𝑡 = 0, 𝐶! = 𝐶, and 𝐶" = 0, with 𝐶,=2.08´1021 m-3 [1]. 
This bar is mechanically loaded with a constant displacement rate (set equal to 0.01 mm/s-1), 
leading to plastic strain increase, and thus, dislocation-related trap creation. As each field is 
uniform in the bar, the diffusive hydrogen flux is zero everywhere (𝝋 =0) and the total 
hydrogen concentration is therefore constant (𝐶! + 𝐶" = 𝐶,).  

𝜕𝐶"
𝜕𝑡 = 𝑁"

𝜕𝜃"
𝜕𝑡 + 𝜃"

𝑑𝑁"
𝑑𝑡 = 𝑁"

𝜃"(1 − 𝜃")
𝜃!

𝜕𝜃!
𝜕𝑡 + 𝜃"

𝑑𝑁"
𝑑𝜀+̅

𝜀+̇̅ (8) 



The elastic-plastic behavior is described by 

 𝜀 = Q

𝜎
𝐸 	𝑖𝑓	𝜀 ≤

𝜎-
𝐸

𝜎-
𝐸 6

𝜎
𝜎-
7
.
	𝑖𝑓	𝜀 ≥

𝜎-
𝐸
	
 (11) 

where 𝐸 is the Young modulus and 𝜎- the yield stress. The evolution of the trap density with 
the plastic strain is expressed by [1,35] (𝑁" in m-3) 

 log𝑁" = 23.26 − 2.33𝑒&/./12" (12) 
𝑝 is set to 0.001 s-1, and 𝑘 = 𝐾" × 𝑝. The used parameters are enlisted in Table 1. 

Table 1. Parameters for α-iron at room temperature (from [1,2]). 

𝐷! (m2/s) 𝑉# (m3) 𝑁! (m-3) ∆𝐸" (kJ) 𝐸 (GPa) 𝜈 𝜎- (MPa) n 

1.27´10-8 2´10-6 5.1´1029  60 207 0.3 250 5 

3.2 Results 

The comparison of the evolution of the diffuse and trapped hydrogen concentrations with 
plastic strain when using equations (8) or (9) is presented on Figure 1.  
When equation (8) is used (dashed lines), the simulation reproduces the results of Krom et 
al. [2]: when the plastic strain increases, traps are created modifying the balance between 𝐶! 
and 𝐶" to the advantage of the latter. At higher values of plastic strain (𝜀+̅ > 0.04), there is 
almost no mobile particles left in the sample. 

 
Figure 1. Effect of the use of equation (9) –Kanayama et al. [16], full lines- on the evolution of hydrogen 

concentrations with plastic strain, compared with the Krom et al. results [2] based on equation (8) –Krom et al. 
[2], dashed lines-. 

Compared with the case of instantaneous trapping based on equation (8), the use of 
equation (9) leads to significantly lower 𝐶" values for low plastic strains, which is not 
surprising. But what is evident on Figure 1 is that 𝐶! becomes negative after a few percents 
plastic strain, which is not physical, while 𝐶" becomes greater than 𝐶,. This is explained as 
follow. 
In the present configuration, as the total hydrogen concentration remains constant, 
equation (9) leads to 



 
𝜕𝐶!
𝜕𝑡 = −𝑁"[𝑘𝜃!(1 − 𝜃") − 𝑝𝜃"] − 𝜃"

𝑑𝑁"
𝑑𝜀+̅

𝜀+̇̅ (13) 

In equation (13), 𝜀+̇̅ > 0 (due to the loading configuration), inducing an increase of the trap 
density (𝑑𝑁"/𝑑𝜀+̅ > 0). This increase favors hydrogen trapping over detrapping, i.e.	𝑘𝜃!(1 −
𝜃") − 𝑝𝜃" > 0. As a consequence, 𝜕𝐶!/𝜕𝑡 < 0 when plastic strain increase, leading, at some 
point, to negative 𝐶! values. It is worth underlining that, in previous works based on equation 
(9) [16,24-28], no negative 𝐶! values have been detected, mainly because total hydrogen 
concentration was not constant with time.  

 
Figure 2. Effect of the use of equation (10) on the concentration evolution with plastic strain.  

On the contrary, when using equation (10), consistent evolutions of the hydrogen 
concentrations are obtained as it can be seen on Figure 2: 𝐶! and 𝐶"  are bounded by 0 and 𝐶, 
and their variations remain physically consistent. As a consequence Equation (10) appears  
more relevant to describe hydrogen transient transport than equation (9) and is considered in 
the next sections, focusing on the effect of transient trapping on the hydrogen concentration 
evolution in the reference SSY configuration. 

4 Application and parametric study 

4.1 SSY configuration 

The considered SSY geometry of the reference configurations [1,2] is presented on Figure 3. 
The main features are described below. 



 
Figure 3. Geometrical configuration and boundary conditions of the SSY problem. 

𝛿, is set to 10 µm, 𝐿 to 150 mm. 
Symmetry boundary conditions on the crack path are imposed for both the diffusive and 
mechanical fields. Displacements are imposed on the outer boundary. They are known from 
the elastic solution, which is controlled by the mode I stress intensity factor 𝐾3, with [36] 

 
⎩
⎨

⎧𝑢4 =
(1 + 𝜈)𝐾3

𝐸
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𝑟
2𝜋
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𝜃
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𝜃
27
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(1 + 𝜈)𝐾3

𝐸
f
𝑟
2𝜋

sin
𝜃
2 6
𝜅 + 1 − 2 cos5

𝜃
27

 (14) 

with 𝜅 = 3 − 4𝜈. 𝑟 and 𝜃 are the polar coordinates of the current point. Each simulation is 
controlled by the rate 𝐾̇3 = 𝐾3/𝑇, for a mechanical loading up to the prescribed 𝐾3 value for a 
given loading duration 𝑇. 𝐶! = 𝐶, is imposed on the crack surfaces and the outer boundary. 
At 𝑡 = 0, there is no mechanical loading; 𝐶! is set to 𝐶, in the sample, while 𝐶"(𝑡 = 0) is 
computed using the Oriani’s relationship (equation (7)), considering the trap density 𝑁"(𝜀+̅ =
0). 
Parameters given in section 3.1 are used thereafter, unless specified. 
The reference case is taken from [2], with 𝐾3 = 89.2	MP𝑎√𝑚 and 𝑇=130 s (leading to 𝐾̇3 =
0.68	MP𝑎√𝑚/s for 𝑡 ∈ [0, 𝑇]). For 𝑡 ∈ [𝑇, 1419	ℎ], the mechanical loading remains constant 
(𝐾̇3 = 0	MP𝑎√𝑚/s). The 𝑝 value is set to 0.001 s-1 (𝑘 = 𝐾" × 𝑝): it has been checked that 
these reaction rate constants values allows to get an instantaneous trapping in the reference 
case (see Figure 5a or Figure 6 below). 
The modeling assumptions are first validated on the reference case.  
Then, a parametric study on the time 𝑇 is conducted, and compared with the results obtained 
by Krom et al., to point out the differences resulting from the transient trapping assumption. 
Following [2], two boundary conditions on the crack are considered: insulated or 𝐶! = 𝐶,.  
In the last section, the influence of the reaction rate constants (𝑘, 𝑝) on the results is 
investigated for two 𝑇 values. 

4.2 Comparison with the reference case 

For the sake of comparison, the stress triaxality variation with the distance ahead of the crack 
tip is plotted on Figure 4. The distance from the crack tip 𝑟 is normalized by 𝑏, which is the 
crack opening displacement, and 𝑏/𝑏, 	= 	4.7. It can be observed that the mechanical fields 
are in a very good agreement with the one from Krom at al., i.e., a little bit lower than the 



Sofronis and McMeeking ones. It is pointed out in [2] that such a difference can be due to 
differences in the mechanical behavior formulation, based on Kirchhoff stresses in the 
Sofronis and McMeeking study, whereas Cauchy stresses are used in [2] and in the present 
study. 

 
Figure 4. Comparison of the stress triaxialities σ#/σ$, where σ# = ∑σ%%/3, at the end of the mechanical loading 
(t = T=130 s) in the front of the crack tip (θ = 0) as computed by Sofronis and McMeeking [1], Krom et al. [2] 

and in the present study. 

Diffusive hydrogen repartition along the crack path (𝜃 = 0) is plotted on Figure 5a. 
 

 
  (a) (b) 

Figure 5. (a) 𝐶& evolution along the crack path (𝜃 = 0) at the end of the mechanical loading (𝑇=130 s) and at the 
end of the simulation (1419 h) as computed by Sofronis and McMeeking [1], Krom et al. [2], using Kanayama’s 
approach [16], and in the present study. (b) Comparaison of the differences induced by the Sofronis and 
McMeeking and Kanayama et al. approaches on the 𝐶& values along the crack path (the reference being the 
Krom et al. results: ∆𝐶& = 𝐶& − 𝐶&'()*	,-	./.). 

As seen on Figure 4 and on Figure 5a, equation (10) allows to get a very good reproduction of 
the results from Krom et al. based on equation (8), as soon as (i) the reaction rate constants 
values are consistent with an instantaneous trapping and (ii) the same kind of trap is 
considered (𝑘 = 𝐾" × 𝑝, with 𝐾" = 𝑒&∆(!/*"). 
Figure 5a also shows the differences at 𝑡 = 𝑇 =130 s with the results obtained by Sofronis 
and McMeeking, which overestimate the 𝐶! repartition; as explained by Krom et al., this is 
because trap creation is not accounted for. Using Kanayama et al. approach, 𝐶! repartition is 



underestimated, as illustrated on Figure 5b; in this case, it can be argued that the trap creation 
is accounted for twice (in the McNabb and Foster equation, and in the strain rate factor).  
It is worth noting that this latter 𝐶! repartition is not the one shown in [16] (black dashed line 
in Figure 5a) for it corresponds to another trapping equilibrium condition: in [16] Kanayama 
et al. have used 𝑘=1.49´109 s-1 and 𝑝 = 0	s&7, i.e., 𝑘 ≠ 𝐾" × 𝑝. Therefore their results cannot 
be directly compared with [5,6]. 

4.3 Influence of the loading time 

Two boundary conditions are investigated, differing by the 𝐶! value on the crack (respectively 
𝐶! = 𝐶, and insulated). Several loading times 𝑇 have been considered, following [2]: 1.3 s, 
3.25 s, 6.5 s, 13 s and 130 s for the 𝐶! = 𝐶, boundary condition, and 1.3 s,13 s, 26 s, 130 s, 
1300 s and 1300000 s for the insulated configuration. 
The evolutions of the normalized 𝐶! repartition at the end of the mechanical loading (𝑡 = 𝑇) 
along the crack path are plotted on Figure 6 for the first boundary condition (𝐶! = 𝐶,), and on 
Figure 7 for the condition of insulation. 

 
Figure 6. Comparison of the normalized diffusive hydrogen concentration along the crack path at the end of the 

mechanical loading for several 𝑇 values. 𝑇=130 s corresponds to the reference configuration. For the sake of 
comparison, results obtained by [2] have been also plotted (dashed line). Unless specified, the curves are plotted 

at 𝑡 = 𝑇. 

The impact of a transient trapping model on 𝐶! distribution appears to be more salient when 
the loading time 𝑇 decreases, i.e., when the trapping process is out of equilibrium (reached for 
a loading time 𝑇 larger than 130 s).  
Upon the assumption of instantaneous trapping, trap creation acts as a “sink” for 𝐶!, and 
therefore its decrease is less and less compensated by the diffusion process when 𝑇 decreases.  
The above results illustrate the competition between the mechanical loading characteristic 
time and the trapping one. When the loading time is significantly longer than the trapping 
time the instantaneous trapping assumption is relevant.  



 
  (a) (b) 

Figure 7. (a) Evolution of the normalized diffusive hydrogen concentration along the crack path at the end of the 
mechancial loading for several 𝑇 values and (b) value of 𝐶&/𝐶1 at the insulated crack tip. Values computed by 

Krom are plotted the the sake of comparison (dashed lines). 

The same tendencies can be observed when considering the insulated crack configuration 
(Figure 7a), in which differences between the Krom et al. approach and the present study 
appear also important. From the superposition of the curves for 𝑇 ≥130 s, it is confirmed that 
𝑝=0.001 s-1 is high enough to get an instantaneous trapping process; this is not the case for 
lower 𝑇 values, as in Figure 6.  
For 𝑇 ≥130 s, the increase of 𝐶! with 𝑇 at the crack tip indicates hydrogen supply from the 
outer surfaces (Figure 7b). 
For both configurations, the impact of a transient trapping approach appears to be more 
important when the loading time decreases, i.e, when the trapping process can not reach its 
steady state. In other words, if the chosen reaction rate constants lead to an instantaneous 
trapping for 𝑇 ≥130 s, for lower 𝑇 values, this is no longer the case, echoing Kayanama’s 
conclusion on the Oriani’s domain of validity adapted to “long” loading times.  
Obviously, the value of 𝑇 at which the trapping could be considered as instantaneous depends 
on the chosen values for the reaction rate constants. This point is focused on thereafter, for 
𝑇=130 and 1.3 s and several (𝑘, 𝑝) values. 

4.4 Influence of the reaction rate constants 

To analyze in more detail the influence of the transient trapping, the influence of the trapping 
kinetics is focused on; as in the previous sections, only the 𝑝 parameter is set as a variable for 
the reference configuration, 𝐾" = 𝑒&∆(!/*" being kept constant and 𝑘 set to 𝐾" × 𝑝.  
The evolution of 𝐶! and 𝐶" along the crack path at the end of the mechanical loading (𝑡 = 𝑇) 
is plotted on Figure 8 and Figure 9, for 𝑇=130 s and 1.3 s, respectively. 



 
 (a) (b) 

Figure 8. Evolution of the normalized (a) diffusive and (trapped) concentration along the crack path for the 
reference at 𝑡 = 𝑇=130 s for different value of 𝑝 (while keeping 𝐾2 constant), in s-1. ‘No trapping’ corresponds 

to 𝑝=0 s-1. 

It can be seen that all 𝐶! curves spread between the two extreme configurations, i.e., 
instantaneous trapping (Krom et al. approach, corresponding to high 𝑝 values – here, greater 
to 0.001 s-1), and trapping-free (for low 𝑝 values – here, lower to 0.000001 s-1). The 𝐶! values 
increase with a decreasing 𝑝, while the 𝐶" ones decrease. As seen on Figure 8b, if 𝐶! 
repartition is consistent with a trapping-free approach for 𝑝 ≤0.000001 s-1, this is not the case 
for the 𝐶" repartition, which exhibits a slight increase near the crack tip. Close to the crack 
tip, the 𝑝 value has no influence on the diffusive hydrogen concentration distribution due to 
the boundary condition on 𝐶!. 

 
 (a) (b) 

Figure 9. Evolution of the normalized (a) diffusive and (trapped) concentration along the crack path for the 
reference case at 𝑡 = 𝑇=1.3 s for different value of 𝑝 (while keeping 𝐾2 constant), in s-1. ‘No trapping’ 

corresponds to 𝑝=0 s-1. 

For 𝑇=1.3 s, the previous conclusions are still valid, provided adapted 𝑝 values: 𝑝 ≥1 s-1 
corresponds to an instantaneous trapping, and is 𝑝 ≤0.0001 s-1 to a trapping-free diffusion. 
On Figure 10 are plotted the evolution of the total hydrogen along the crack path for different 
values of 𝑝, for t=𝑇=130 and 1.3 s. 



 
 (a) (b) 

Figure 10. Evolution of the normalized total hydorgen concentration 𝐶-)- = 𝐶& + 𝐶2 for (a) 𝑡 = 𝑇=130 s and (b) 
𝑡 = 𝑇=1.3 s for different value of 𝑝 (while keeping 𝐾2 constant), in s-1. ‘No trapping’ corresponds to 𝑝=0 s-1. 

At the crack tip, differences with the results from Krom et al. are here very important. For 𝑡 =
𝑇=130 s, instantaneous trapping assumption leads to an upper bound value for 𝐶898. For 𝑡 =
𝑇=1.3 s, the 𝐶898 repartition evolution with p is more complex. The depletion at 𝑟/𝑏 ≈ 1	 is 
connected to that of 𝐶!(see Figure 9a), denoting the “sinking” due to trap creation which 
increases when p decreases and is maximum for instantaneous trapping.  
Such a depletion is not seen at 𝑇=130 s, for diffusion characteristic time is sufficient to 
compensate “sinking” by trapping. 

Conclusion 
In this study, different formulations of a hydrogen transport model assisted by mechanical 
fields are compared for a reference SSY configuration, focusing on the more relevant 
introduction of transient trapping in the equations of the literature used for solving initial 
boundary values problems by finite element simulations. 
Due to the assumption of instantaneous trapping under Oriani equilibrium, the hydrogen 
transport equation proposed by Krom et al. [2], whose improved formulation of the previous 
model of Sofronis and McMeecking [1] by the introduction of a “strain rate factor” in case of 
trap creation, appears to be non suitable to simultaneously account for trap density variation 
and transient trapping, as non-physical hydrogen concentrations values can be obtained in a 
specific test configuration. Alternatively, numerical simulations based on the reformulation of 
the equations from the original McNabb and Foster kinetic trapping equation, describing a 
first order chemical reaction including implicitly trap creation show, in this case, consistent 
results and demonstrate that this approach is more relevant. 
The numerical simulations of the reference SSY configuration conducted with this new 
formulation show that accounting for a transient trapping phenomenon can lead to significant 
differences in diffusive and trapped hydrogen concentrations values ahead of a crack tip, 
depending on the competition between trap creation -i.e., here, plasticity-, and trapping. The 
numerical sensitivity analysis has also estimated for the considered trap binding energy the 
range of the reaction rate constants values consistent with the Oriani’s domain of validity.  
More generally, the present work shows the importance of checking the relevance of transient 
trapping as this could have a great influence on the prediction of the models of embrittlement 
and crack propagation triggered or assisted by hydrogen.  
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