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We report on a refined macroscopic model for slightly compressible gas slip-flow in porous
media developed by upscaling the pore-scale boundary value problem. The macroscopic
model is validated by comparisons with an analytic solution on a 2D ordered model
structure and with direct numerical simulations on random microscale structures. The
symmetry properties of the apparent slip-corrected permeability tensor in the macroscale
momentum equation are analyzed. Slip-correction at the macroscopic scale is more accu-
rately described if an expansion in the Knudsen number, beyond the first order considered
so far, is employed at the closure level. Corrective terms beyond the first order are a sig-
nature of the curvature of solid-fluid interfaces at the pore-scale that is incompletely
captured by the classical first order correction at the macro-scale. With this expansion,
the apparent slip-corrected permeability is shown to be the sum of the classical intrinsic
permeability tensor and tensorial slip-corrections at the successive orders of the Knudsen
number. All the tensorial effective coefficients can be determined from intrinsic coupled,
but easy-to-solve, closure problems. It is further shown that the complete form of the slip
boundary condition at the microscale must be considered and an important general fea-
ture of this slip-condition at the different orders in the Knudsen number is highlighted. It
justifies the importance of slip-flow correction terms beyond the first order in the Knud-
sen number in the macroscopic model and sheds more light on the physics of slip-flow
in the general case, especially for large porosity values. Nevertheless, this new non-linear
dependence of the apparent permeability with the Knudsen number should be further
verified experimentally.

1. Introduction

The interest for studying slightly compressible gas slip-flow in channels of characteristic
dimension comparable to the gas mean free path at the pressure and temperature under
consideration is tremendous for many applications that encompass gas flow in microchan-
nels and nanofluidic systems (Porodnov et al. 1974; Harley et al. 1995; Karniadakis et al.
2005; Cai et al. 2007), characterization of low permeable porous materials (Lasseux et al.
2011; Jannot & Lasseux 2012; Profice et al. 2012) involved in processes ranging from gas
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production (Darabi et al. 2012), gas or nuclear waste storage, filtration and separation
(Chmielewski & Goren 1972), composite manufacturing (Zhang et al. 2009), among many
others. Consequently, a great deal of interest may also be focused on the prediction and
estimation of the coefficients governing the physics of gas transport at the macroscale.
The emergence of powerful imaging methods together with the increase of computational
capabilities make this prediction from direct numerical simulation, based upon images
performed on a Representative Elementary Volume (REV) of the porous structure at the
microscale, a realistic and promising approach to avoid sophisticated experiments (Ghad-
dar 1995; Nakashima & Watanabe 2002; deSocio & Marino 2006; Prodanović et al. 2007).

To progress towards this goal, our purpose is to carefully derive an accurate macro-
scopic model for gas flow in homogeneous porous media in the slip regime. The existing
model obtained so far in this context (Skjetne & Auriault 1999; Lasseux et al. 2014) is
inaccurate. In fact, we show that the existing macroscopic slip correction filters out some
important pore-scale topological information related to the curvature of solid-fluid inter-
faces, which can be of significant impact in some circumstances at the macroscopic level.
The model derived in this work avoids such a simplification and yields a macro-scale
model together with associated closures that are easy-to-solve boundary value problems
defined at the microscale on a REV, which provide the required macroscopic coefficients.

The development proposed hereafter is organized as follows. The problem statement
is presented first in section 2 together with the main steps of the upscaling leading
to the non-closed macroscopic form. The procedure to close the macroscopic momentum
equation is reported in sections 3.1 and 3.2 providing the closure problem that defines the
apparent slip-corrected permeability, Ks, the non-intrinsic effective coefficient appearing
in the macroscopic model. Validation of the upscaled model is presented in section 3.3.
Solutions obtained from Direct Numerical Simulations (DNS) of incompressible slip-flow
performed on random 2D structures are used in the predictive macroscopic averaged
model to identify Ks that is further compared to the solution of the closure problem. In
addition, the analytic estimation of Ks is compared to the values obtained from numerical
solutions of the closure over a periodic unit cell of the structure. In both cases, Ks depends
nonlinearly on the Knudsen number at the macroscale, Kn, based on the characteristic
length-scale within the fluid-phase, a behavior that can not be predicted from porous
media slip-flow models reported so far (Skjetne & Auriault 1999; Lasseux et al. 2014).

In order to elucidate the nonlinearity and to obtain a macroscale model involving
coefficients that are intrinsic to the micro-structure, an expansion in Kn is provided
in section 4. Effective coefficients in this model correspond to the intrinsic permeability
tensor at the zeroeth order and to slip-correction tensors at the successive higher orders
in Kn, all of them being obtained from the solution of coupled closure problems. This is
detailed in section 4.1. The existing Darcy-Klinkenberg model extensively used for gas
slip flow in porous media, corresponds to the expansion up to the first order, together
with an ideal gas law. In section 4.2, it is shown that a more accurate description of the
macroscopic behavior, capturing the nonlinearity in Kn previously observed, requires
higher order terms of the expansion. These terms are an explicit signature of the solid-
fluid interface curvature that is not present in the first-order term. This is assessed in
section 4.3, where important features of the slip boundary condition with respect to the
successive orders of the expansion are reported, shedding more light on the physics of
slip-flow far beyond the application to porous media. Symmetry properties of the tensor
Ks are investigated in Appendix A. Conclusions are drawn in section 5.
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Figure 1: Averaging domain and characteristic lengths of the system.Figure 1. Averaging domain and characteristic lengths of the system.

2. Problem statement and upscaling

The starting point of the analysis is the initial boundary value problem at the pore
scale with characteristic length `β (see Fig.1) describing the isothermal, Newtonian and
slightly compressible flow of a barotropic fluid β occupying the sub-domain Vβ inside an
averaging domain V of radius r0.

We recall the problem statement as

∂ρβ
∂t

+∇ · (ρβvβ) = 0 in Vβ (2.1a)

0 = −∇pβ + µβ∇2vβ in Vβ (2.1b)

ρβ = F (pβ) in Vβ (2.1c)

B.C.1 vβ = −ξλβ (I− nn) ·
(
n ·
(
∇vβ +∇vTβ

))
at Aβσ (2.1d)

B.C. 2 vβ = f (t) at Aβe (2.1e)

I.C. ρβ = ρβ,0 when t = 0 (2.1f )

In these equations, ρβ , vβ and pβ are the density (of initial value ρβ,0), velocity and
pressure in the β-phase obeying the state equation (2.1c), µβ is the dynamic viscosity,
taken as a constant, λβ is the mean free path, ξ is a parameter related to the tangential
momentum accommodation coefficient, σv, given by ξ = 2−σv

σv
(Agrawal & Prabhu 2008;

Selden et al. 2009). In practice, ξ ranges from roughly 1.3 to 1.7 (Suetin et al. 1973;
Arkilic et al. 2001; Perrier et al. 2011). The unit normal vector at the solid-fluid interface
Aβσ, directed from the β- to the solid σ-phase, is denoted by n while Aβe represents the
entrances and exits surfaces of the β-phase at the boundaries of the averaging domain
on which the fluid velocity is f (t). The first order slip boundary condition expressed in
Eq. (2.1d) and originally derived by Navier and Maxwell (Maxwell 1879), includes the
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complete strain rate
(
∇vβ +∇vTβ

)
. The ∇vTβ term plays an important role in general

(Einzel et al. 1990; Panzer et al. 1992; Lockerby et al. 2004; Barber et al. 2004; Lasseux
et al. 2014), although it has been often omitted for porous media flow (Skjetne & Auriault
1999; Pavan & Chastanet 2011). More physical insight will be provided into this boundary
condition in section 4.2 below.

While writing the initial boundary value problem given by Eqs. (2.1), a set of con-
straints were assumed that can be listed as

ρβ
∆ρβ

vβ t
∗
ρ

`β (1 + ξKn)

Lρ
`β
� 1 (2.2)

ρβ
∆ρβ

1

1 + ξKn

(
Lρ
`β

)2

� 1 (2.3)

ρβ(1 + ξKn)`2β
µβt∗v

� 1 (2.4)

The first two constraints are required to neglect viscous terms related to compressible
effects in the momentum equation whereas the last one is necessary to neglect the tem-
poral acceleration; in both cases the comparisons are made with respect to the viscous
diffusion term. In addition, to neglect the convective acceleration term, we require

Re =
ρβ`βvβ
µβ

� 1 (2.5)

In the above constraints, which are easily met in practice and were thoroughly discussed
in a recent article (Lasseux et al. 2014), vβ represents the order of magnitude of vβ
whereas Lρ and t∗ρ are the characteristic length- and time-scales over which ρβ experiences

significant variations ∆ρβ , Kn =
λβ
`β

is the Knudsen number, which is assumed to remain

smaller than about 0.1 to 0.4, characterizing the slip-flow regime in straight channels
(Harley et al. 1995; Maurer et al. 2003). The left hand side in the relationship (2.4) is
nothing else than the frequency parameter of the flow with t∗v being the characteristic
time over which vβ experiences significant variations and Re in (2.5) is the Reynolds
number of the flow.

Upscaling the problem given by Eqs. (2.1) can be performed with the aid of the volume
averaging method (Whitaker 1999) for which the intrinsic and superficial averages of any
physical variable ψβ are defined as

〈ψβ〉β =
1

Vβ

∫
Vβ

ψβdV (2.6)

〈ψβ〉 = ε〈ψβ〉β =
1

V

∫
Vβ

ψβdV (2.7)

ε denoting the porosity of the medium. The development of the averaged equations makes
use of the averaging theorem (or Leibnitz rule) (Howes & Whitaker 1985) given by

〈∇ψβ〉 = ∇〈ψβ〉+
1

V

∫
Aβσ

nψβdA (2.8)
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along with the Reynolds theorem (Truesdell & Toupin 1960) and the classical decompo-
sition (Gray 1975)

ψβ = 〈ψβ〉β + ψ̃β (2.9)

With this decomposition, it must be noted that 〈ψβ〉β has a typical length-scale of vari-

ation L (see Fig.1), while ψ̃β varies at the scale `β . The upscaling is subject to the scale

hierarchy defined by `β � r0 � L, which can be used to prove that
〈
〈ψβ〉β

〉β
= 〈ψβ〉β

and consequently that 〈ψ̃β〉β = 0 (Whitaker 1999). When the procedure is applied to the
initial boundary value problem in Eqs. (2.1), the following averaged mass, momentum
and state equations are obtained (Lasseux et al. 2014)

∂ 〈ρβ〉β
∂t

+∇ ·
(
〈ρβ〉β〈vβ〉β

)
= 0 (2.10)

0 = −∇〈pβ〉β + µβ∇2〈vβ〉β +
1

Vβ

∫
Aβσ

n· (−Ip̃β + µβ∇ṽβ) dA (2.11)

〈ρβ〉β = F
(
〈pβ〉β

)
(2.12)

To arrive at this form, the assumption of a slightly compressible flow, that is expressed
through the constraint

ρ̃β � 〈ρβ〉β (2.13)

was employed, along with the homogeneity of the medium that allows treating ε as a
constant.

The macroscale momentum equation (2.11) is not closed as it involves pressure and
velocity deviations that are essentially varying at the pore-scale. Therefore, one needs
to derive and solve the associated closure problem that is written in terms of p̃β and ṽβ
over a periodic unit cell representative of the macroscopic region as (Lasseux et al. 2014)

∇ · ṽβ = 0 in Vβ (2.14a)

0 = −∇p̃β + µβ∇2ṽβ −
1

Vβ

∫
Aβσ

n· (−Ip̃β + µβ∇ṽβ) dA in Vβ (2.14b)

ṽβ + ξλβ (I− nn) ·
(
n ·
(
∇ṽβ +∇ṽTβ

))
= −〈vβ〉β at Aβσ (2.14c)

〈p̃β〉β = 0 (2.14d)

Periodicity ṽβ (r + li) = ṽβ (r) ,

p̃β (r + li) = p̃β (r) , i = 1, 2, 3
(2.14e)

This problem simply results from the subtraction of the averaged equations from their
initial counterparts expressed in Eqs (2.1). In Eq. (2.14c), λβ represents the mean free

path at the average density, which defines the macro-scale Knudsen number, Kn =
λβ
`β
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that will be used throughout this work. This definition of the Knudsen number is the
most physically relevant as it reflects the wall effect occurring in the Knudsen layer (of
thickness roughly given by the mean free path) relative to the size of the channel where
the flow is taking place. Upon assuming molecular collisions between hard spheres and
considering the slightly compressible hypothesis, λβ can be expressed as (Cowling 1950)

λβ =
M√

2πNA 〈ρβ〉β δ2
(2.15)

Here, NA is the Avogadro’s number, M the molar mass of the gas and δ the gas particle
diameter, πδ2 being the effective collision section.

While Eq. (2.14d) is necessary to define a well-posed problem, the analog for the

velocity deviation 〈ṽβ〉β = 0 is not, although this last relationship will be employed
later. Equations (2.14) are subject to the slightly compressible flow hypothesis expressed
in Eq. (2.13) and to the constraint of scale hierarchy `β � L similar to that employed in
homogenization (Skjetne & Auriault 1999).

At this point, a closure procedure relating deviations to average quantities in the bound-
ary value problem (2.14) is required in order to derive a closed macroscopic model. This
is carried out in the next section, where a Darcy-like average momentum equation is
obtained in which the apparent slip-corrected permeability, Ks, is determined from the
associated closure problem.

3. Closure and macroscopic model

A procedure to close the averaged momentum equation (2.11) from the deviations
equations (2.14) was proposed and validated earlier, yielding a macroscopic model at
O
(
ξKn

)
, which involves the intrinsic permeability tensor K and a slip-flow correction

tensor S (Lasseux et al. 2014). Both tensors are obtained from the solution of intrinsic
closure problems that are coupled through a ‘slip-like’ boundary condition. Whereas
the closure problem for K can be written in a ‘Stokes-like’ form, S derived from an
integro-differential closure. In terms of solution strategy and physical interpretation, this
represents a real difficulty that is removed in the development presented below.

3.1. Closure problem

A convenient closure is now derived by noticing that the boundary value problem for
the deviations (2.14) at the pore scale is made non-homogeneous due to the macroscopic
source term 〈vβ〉β in the right hand side (rhs) of the boundary condition (2.14c). Since
this problem is incompressible in nature, λβ can be regarded as a parameter and does not

represent a source for p̃β and ṽβ despite its dependence on 〈ρβ〉β . Due to the linearity of
the problem, the solution can be sought as a linear combination of the source, namely

ṽβ = C · 〈vβ〉β (3.1)

p̃β = µβc · 〈vβ〉β (3.2)

Any additive constant in the representations of ṽβ and p̃β can be shown to be unim-
portant in the final macroscopic model, just as for the upscaling of the classical incom-
pressible Stokes flow with no slip (Whitaker 1999). Using these representations in the
closure equations (2.14), while treating 〈vβ〉β as a constant due to the contrast of scale
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between `β and L, yields the following closure problem in terms of the closure variables
C and c

∇ · C = 0 in Vβ (3.3a)

0 = −∇c +∇2C− 1

Vβ

∫
Aβσ

n· (−Ic +∇C) dA in Vβ (3.3b)

C + ξλβ (I− nn) ·
(
n ·
(
∇C + (∇C)

T1
))

= −I at Aβσ (3.3c)

〈c〉β = 0 (3.3d)

Periodicity C (r + li) = C (r) ,

c (r + li) = c (r) , i = 1, 2, 3
(3.3e)

In Eq. (3.3c), the superscript T1 designates the transpose of a third order tensor that
permutes the two first indices †. Note that Eq. (3.3d) follows from Eq. (2.14d) along with
the pressure representation in Eq. (3.2) and is required for Eqs. (3.3) to form a well-posed
problem.

At this point, a simple transformation, similar to that employed while upscaling the
incompressible creeping flow with no slip leading to Darcy’s law, can be used to obtain
a pure differential form of this closure (Barrère et al. 1992; Whitaker 1999). Letting

K−1s = −ε−1 1

Vβ

∫
Aβσ

n· (−Ic +∇C) dA (3.4)

defining D and d as

D = ε−1 (C + I) ·Ks (3.5)

d = ε−1c ·Ks (3.6)

and returning to Eqs. (3.3) yields the following local closure problem

∇ ·D = 0 in Vβ (3.7a)

0 = −∇d +∇2D + I in Vβ (3.7b)

D = −ξλβ (I− nn) ·
(
n ·
(
∇D + (∇D)

T1
))

at Aβσ (3.7c)

〈d〉β = 0 (3.7d)

〈D〉 = Ks (3.7e)

† In the reference (Lasseux et al. 2014) (see Eq. (83c)), we simply used the superscript T for
this transpose and this was ambiguous.
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Periodicity D (r + li) = D (r) ,

d (r + li) = d (r) , i = 1, 2, 3
(3.7f )

From this tractable form having the structure of an incompressible Stokes problem with
a slip boundary condition, Ks can be computed from a simple average on D as indicated
in Eq. (3.7e). This last equation is not required in the solution procedure but is used as a
direct consequence of the definition of D in Eq. (3.5) together with the intrinsic average

of the velocity decomposition in Eq. (3.1), which yields 〈C〉β = 0. Although local, the
closure (3.7) is non-intrinsic due to the presence of ξλβ in the boundary condition of Eq.
(3.7c) and we shall come back to this in section 4.

3.2. Closed macroscopic model

When the representation of the deviations given in Eqs. (3.1) and (3.2) are reported
in the unclosed from of the averaged momentum equation (2.11), one readily obtains a
Darcy-like macroscopic law

0 = −∇〈pβ〉β − µβK−1s · 〈vβ〉+ µβε
−1∇2〈vβ〉 (3.8)

which, along with Eqs. (2.10) and (2.12) forms the closed averaged model for the slightly
compressible slip-flow considered in this work. In equation (3.8), Ks, defined in Eq. (3.7e),
is identified as the apparent slip-corrected permeability.

The last term in the rhs of Eq. (3.8) is referred to as the Brinkman correction. An
order of magnitude analysis can be used to show that this macro-scale viscous diffusion
term has a negligible contribution in the bulk of the porous medium. Indeed, as can be
inferred from the boundary condition in Eq. (2.14c)

ṽβ = O

( 〈vβ〉β
1 + ξKn

)
(3.9)

where 〈vβ〉β represents the leading order of 〈vβ〉β . This shows that

C = O
((

1 + ξKn
)−1)

(3.10)

and consequently, from the definition of Ks in Eq. (3.4), the order of magnitude of the
Darcy term in Eq. (3.8) can be estimated as

µβK
−1
s · 〈vβ〉 = O

(
µβε

−2`−1β
(
1 + ξKn

)−1
av〈vβ〉β

)
(3.11)

In this estimate, av =
Aβσ
V represents the interfacial area per unit volume of the medium

that is expected to scale as `−1β . Similarly, the order of magnitude of the Brinkman term
can be estimated to be

µβε
−1∇2〈vβ〉 = O

(
µβL

−2〈vβ〉β
)

(3.12)

which, when compared to Eq. (3.11), clearly indicates that the Brinkman term is com-
pletely negligible in the context of slip-flow, i.e. when ξKn . 0.1. The macroscopic model
can hence be written, to within an approximation O (`β/L), as

∂ 〈ρβ〉β
∂t

+∇ ·
(
〈ρβ〉β〈vβ〉β

)
= 0 (3.13a)
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Figure 2. Unit cell for the square lattice of cylinders of circular cross section.

0 = −∇〈pβ〉β − µβK−1s · 〈vβ〉 (3.13b)

〈ρβ〉β = F
(
〈pβ〉β

)
(3.13c)

It must be noted that the apparent slip-corrected permeability, Ks, in the Darcy-like
form of the macroscopic momentum equation (3.13b) is non-intrinsic as it lumps together
topological properties, intrinsic to the microstructure of the medium, and slip effects that
depend on the slip-length ξλβ . Moreover, a detailed analysis, provided in Appendix A,
indicates that, unlike the intrinsic permeability that is the fundamental coefficient in
the classical Darcy’s law when no slip occurs, Ks is not symmetric in the general case.
Quasi-symmetry is observed under the constraint

ξKn� O (ε) (3.14)

that is also detailed and illustrated in Appendix A, completing a previous analysis of this
property (Skjetne & Auriault 1999). An important consequence is that the full charac-
terization of the tensor Ks from a measurement point of view is significantly simplified
when the constraint in (3.14) is satisfied.

In section 3.3 below, the validity of the macroscopic model and of the associated closure
problem (3.7) yielding Ks is verified by comparison with analytic solutions in a simple
configuration and with direct numerical simulations on a more complex medium.

3.3. Validation

The finite element solver Comsol Multiphysics 4.4 was used to carry out the numerical
solutions of both the pore-scale equations (2.1) and the closure problem (3.7). Meshing
tests were carried out to reach convergence and led to use nearly 13,000 domain mesh
elements with more than 500 boundary elements. This mesh was built by adding a bound-
ary layer at the solid-fluid interface with a stretching factor of 1.2. As a first validation,
a simple structure made of a periodic square pattern of parallel circular cylinders was
considered, as represented in Fig. 2.

The slip-flow orthogonal to the cylinders axes is such that Ks = ksI, where ks can be
computed from the solution of the projection of the closure problem either on ex or ey.
Due to the unit cell symmetry, the projection leads to a boundary value problem equiva-
lent to the initial incompressible pore-scale problem when symmetry on the velocity and
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Figure 3. Dimensionless closure variable fields computed on the unit cell of Figure 2. ε = 0.8.
a) Dxx/`

2, ξλ
∗
β = 10−4. b) Dxx/`

2, ξλ
∗
β = 0.1. c) dx/`, ξλ

∗
β = 10−4. d) dx/`, ξλ

∗
β = 0.1.

Dirichlet boundary conditions on the pressure are applied on faces respectively parallel
and orthogonal to the mean flow direction. Taking the projection of the closure problem
(3.7) on ex, the equivalence is obvious when D ·ex and d ·ex are respectively identified as

µvβ
‖∇〈pβ〉β‖

and
p̃β

‖∇〈pβ〉β‖
in the incompressible version of the pore-scale flow problem (2.1).

The validation of the macroscopic model through a comparison of ks obtained either
from the closure problem solution or from a DNS of the initial boundary value problem
is hence trivial in that case. Nevertheless, further validation can be made by comparing
numerical results on ks with analytic predictions obtained on a Chang’s unit cell (Chai
et al. 2011; Lasseux et al. 2014) which has been shown to be a reliable estimate for the
periodic structure under consideration.

The closure problem was solved on the unit cell of Figure 2 for ε = 0.8. Examples of
the dimensionless xx component of D and x component of d are reported in Figure 3 for
two values of the cell Knudsen number ξλ

∗
β = ξλβ/`. Note that ξλ

∗
β = ξKn`∗β = ξKn

`β
` .

The closure fields represented in Figures 3a and 3b are, in fact, the x components of the

velocity field made dimensionless by
`2‖∇〈pβ〉β‖

µβ
whereas the closure fields in Figures 3c

and 3d are the pressure deviation fields made dimensionless by ` ‖ ∇ 〈pβ〉β ‖.
Numerical results on k∗s = ks/`

2 are reported in Figure 4a versus ξλ
∗
β = ξλβ/`, for

ε = 0.8. As discussed elsewhere (Lasseux et al. 2014), a Chang’s unit cell, composed of the
solid cylinder immersed in a circular fluid shell, may be used, along with a zero vorticity
boundary condition at the outer edge, to derive an approximate analytic solution. For
this relatively large value of the porosity, it is given by

k∗s =
1

8π
(

1 + 2ξλ
∗
β

√
π
φ

) (− lnφ− 3

2
+ 2φ− φ2

2
+2ξλ

∗
β

√
π

φ

(
− lnφ− 1

2
+
φ2

2

))
(3.15)

where φ = 1− ε.
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Figure 4. Dimensionless apparent slip-corrected permeability k∗s = ks
`2

for the unit cell of Figure

2, ε = 0.8, k∗ = k
`2
' 0.01938, k being the intrinsic permeability. a) k∗s versus ξλ

∗
β = ξλβ/`.

Comparison between the computed values obtained from the solution of the closure problem

(Eqs. (3.7)) and the analytic prediction from Eq. (3.15). b)
k∗s
k∗ versus ξKn =

ξλ
∗
β

`∗
β

, `∗β being the

dimensionless distance between parallel plates that would exhibit the same intrinsic permeability,

i.e. `∗β = 2
√

3k∗
ε

.

The agreement of the prediction from Eq. (3.15) with our numerical results is excellent
as shown in Figure 4. The relative error on k∗s , taking the computed value as the reference,

is less than 0.4% over the interval 10−4 6 ξλ
∗
β 6 0.13. Within this range of ξλ

∗
β , ξKn

remains smaller than ∼ 0.23 when `∗β =
`β
` is estimated from the slit aperture of the

equivalent bundle of regularly spaced parallel plates given by `∗β = 2
√

3k∗

ε , k∗ = k
`2 being

the dimensionless intrinsic permeability, i.e. the permeability without slip. As clearly

indicated in Figure 4b, representing
k∗s
k∗ versus ξKn, k∗s exhibits a non linear dependence

on the Knudsen number even though the flow is expected to remain in the slip regime
at the microscale. This important remark will be analyzed in more detail in section 4.2.

An additional validation is now investigated in the case of a more complex 2D structure
featuring no special symmetry properties and for which no analytic solution is available.
In that case, validation of both the upscaling procedure and macroscopic model can be
achieved through the comparison of DNS of the pore-scale flow problem (Eqs. (2.1)) with
the numerical solution of the closure problem (Eqs. (3.7)).

The structure at scale L for DNS is obtained by duplicating n times, in the direction of
the applied macroscopic pressure gradient, a periodic unit cell of size ` made of randomly
placed cylinders of circular cross sections with randomly chosen radii within a prescribed
interval [rmin, rmax] according to a log-normal distribution. Placement of cylinders cen-
ters is constrained to ensure periodicity on the x and y directions and is repeated until
a target porosity is achieved, while controlling cylinders overlapping.

Two random unit cells, of porosity ε = 0.375 and ε = 0.804, were generated using
respectively rmin = 0.023`, rmax = 0.062` and rmin = 0.016`, rmax = 0.031`. They
were used to compute the xx dimensionless component, k∗sxx = ksxx

`2 , of the apparent
slip-corrected permeability tensor from the closure problem solution. Additionally, DNS
were performed on structures at scale L obtained from these generic unit cells with n, the
number of unit cell replicas, ranging from 3 to 9. Constant pressures were prescribed at
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Figure 5. Slip-flow DNS on 2D packs of cylinders. a) Large scale structures obtained from pe-
riodic replicas along ex of random unit cells. Velocity maps in the x direction are superimposed.
b) Random unit cells of respective porosity ε = 0.375 and ε = 0.804 used to generate large scale
structures along with x-velocity maps. c) Pressure profiles at the left edge of the central unit
cells.

the entrance (x = 0) and exit (x = L) of the structure while periodic boundary conditions
were applied in the y direction. Superficial and intrinsic averages of vβ · ex and pβ were
performed on the central unit cell (n+1)/2 to compute k∗sxx. Computations were carried

out for 10−4 6 ξλ
∗
β 6 10−2.

The DNS procedure is illustrated in Figure 5 where we have represented an example
of the two L-scale structures, along with the two generic unit cells on which maps of
vβ · ex were superimposed. In this figure, we have also reported the pressure profiles
computed on the left vertical edge of the central unit cell. The evident non-uniformity
of pβ explains why DNS can not be carried out on a single unit cell with predefined
entrance/exit constant Dirichlet boundary conditions on the pressure.

As shown in table 1 and in Figure 6a, results on k∗sxx obtained from DNS and the
closure problem solution are in excellent agreement since the relative error is less than
1.3% and decreases when n increases, confirming the validity of the macroscopic model
and associated closure.

In figure 6b, a clear non-linear dependence of k∗sxx on ξKn, mostly pronounced for
the largest value of the porosity, is again highlighted for the two unit cells of Figure 5b,
although ξKn remains smaller than about 0.23, a range typical of the slip-flow regime
as justified by some measurements for even larger Knudsen numbers in straight channels
(Harley et al. 1995). This confirms the behavior reported above for the regular square
pattern of cylinders.

At this point it is worth mentioning that, in the seminal work of Klinkenberg (1941), the
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n
ξλ
∗
β = 10−4 ξλ

∗
β = 10−2

ε = 0.375 ε = 0.804 ε = 0.375 ε = 0.804
k∗sxx × 10−6 Error % k∗sxx × 10−4 Error % k∗sxx × 10−5 Error % k∗sxx × 10−4 Error %

3 2.711 1.25 1.647 0.56 1.043 1.07 2.542 0.54
5 2.695 0.62 1.642 0.29 1.035 0.33 2.536 0.32
7 2.685 0.26 1.640 0.17 1.028 0.40 2.535 0.27
9 2.678 0.02 1.639 0.06 1.029 0.24 2.534 0.25

Table 1. Comparison of the predictions of k∗sxx from DNS with those from volume averaging. n
is the number of unit cell replicas. k∗sxx values are those obtained from DNS taking the average
at the (n+ 1)/2 unit cell. The error percent is computed relative to the DNS predictions.
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Volume averaging
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ξKn

k∗sxx
k∗xx

ε = 0.804

ε = 0.375

a) b)

1

Figure 6. a) Comparison of computed values of k∗sxx obtained from DNS and volume averaging

for the two unit cells of Figure 5b). b) Dependence of
k∗sxx
k∗xx

on ξKn = ξλ
∗
β
`
`β

=
ξλ

∗
β

`∗
β

for ξKn . 0.2.

ξKn is estimated from the dimensionless distance between plane parallel plates, `∗β = 2
√

3k∗
ε

,

that would lead to the same intrinsic permeability k∗ = k∗xx. k∗xx ' 2.44 × 10−6 (ε = 0.375);
k∗xx ' 1.60× 10−4 (ε = 0.804).

linear dependence of the apparent permeability with the Knudsen number was regarded
as an approximation resulting from a representation of the porous medium as a system of
straight capillaries. As a matter of fact, Klinkenberg (1941) noticed some non-linearities
in his experimental results with the same tendency as the one observed here. However,
the porous media that he considered were relatively tight with intrinsic permeabilities
that could go as low as 2.4 mDarcy. As a consequence, the porosity is expected to be
quite small and this may explain why the observed non-linearity remained not too drastic
in his experimental results. As shown in figure 6b), our predictions indicate that the non
linearity decreases as porosity decreases and becomes almost insignificant for a porosity
of 0.25, which is in a qualitative agreement with Klinkenberg’s results.

Before considering in more detail the above mentioned non-linearity, the impact of an
incomplete version of the slip boundary condition, in which the∇vTβ term is omitted, shall
be illustrated. When such an incomplete boundary condition is employed, the analytic
form of the apparent slip-corrected permeability of the periodic square pattern of parallel
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Figure 7. Relative error on the slip-correction while using an incomplete slip boundary condition
(i.e. omitting the ∇vTβ term). a) Unit cell of Figure 2. The error is computed from the analytic
expressions (3.15) and (3.16). b) Random pack of parallel cylinders (see Fig. 5b)), ε = 0.804. The
error is computed from the closure problem solutions using complete and incomplete boundary
conditions at Aβσ.

circular cylinders, for a sufficiently large porosity (ε & 0.55), is given by

k∗s =
1

8π
(

1 + 2ξλ
∗
β

√
π
φ

) (− lnφ− 3

2
+ 2φ− φ2

2

+ξλ
∗
β

√
π

φ

(
− lnφ+

1

2
− 2φ+

3φ2

2

)) (3.16)

instead of Eq. (3.15) above, with again φ = 1− ε. This last expression underestimates k∗s
obtained from Eq. (3.15). The two slip flow corrections can be extracted from Eqs. (3.15)

and (3.16) as
k∗s
k∗ − 1, where k∗ = 1

8π

(
− lnφ− 3

2 + 2φ− φ2

2

)
is again the dimensionless

intrinsic permeability and the relative error between the two, taking the former as the

reference, is given by −2 lnφ−3+4φ−φ2

4(1−2φ+φ2) . This relative % error, independent of ξKn, is

represented versus the porosity in Figure 7a showing an increasingly significant error
with ε, as it can reach about 62% for ε = 0.9.

When the ∇vTβ term is omitted in the pore-scale slip boundary condition, the closure

problem (Eqs. (3.7)) is unchanged, except the term ∇DT that is no longer present in
Eq. (3.7c). This form of the closure was solved on the unit cell of the random pack
of parallel cylinders (see Fig. 5b) for ε = 0.804, yielding k∗sxx that turns out to be
larger than that obtained with the complete boundary condition. The slip correction

can again be estimated from
k∗sxx
k∗ − 1 computed with and without the complete shear

rate in the boundary condition and the relative error can be formed taking the former
as the reference. This % error, represented versus ξKn in Figure 7b, remains small at
exceedingly small values of the Knudsen number (about 7% for ξKn ' 0.04), but strongly
increases with ξKn as it reaches roughly 26% for ξKn ' 0.2. This clearly evidences that
the complete strain rate must be kept in the expression of the slip at the solid boundary.
More insight on the impact of the form of the boundary condition and on the non-linear
behavior mentioned above will be provided in section 4, following a reformulation of the
closure problem.
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4. Reformulation and effective intrinsic coefficients

In the macroscopic model developed above, both viscous and slip effects are lumped
together in the apparent slip-corrected permeability Ks that is determined by a non-
intrinsic closure problem. To isolate the Knudsen contribution to the flow at the macro-
scopic scale and to identify intrinsic macroscopic coefficients, the closure problem in Eqs.
(3.7) needs to be further developed.

4.1. Expansion in ξKn

The development is carried out on the dimensionless form of the closure given by the
starred dimensionless quantities d∗ = d/`β , D∗ = D/`2β , ∇∗ = `β∇ as

∇∗ ·D∗ = 0 in Vβ (4.1a)

0 = −∇∗d∗ +∇∗2D∗ + I in Vβ (4.1b)

D∗ = −ξKn (I− nn) ·
(
n ·
(
∇∗D∗ + (∇∗D∗)T1

))
at Aβσ (4.1c)

〈d∗〉β = 0 (4.1d)

〈D∗〉 = Ks`
−2
β (4.1e)

Periodicity D∗ (r∗ + l∗i ) = D∗ (r∗) ,

d∗ (r∗ + l∗i ) = d∗ (r∗) , i = 1, 2, 3
(4.1f )

Since ξKn remains smaller than unity in the context of slip-flow, d∗ and D∗ can be
developed up to the mth order in Maclaurin series expansions that we shall write as

d∗ = d∗0 +
m∑
j=1

(
ξKn

)j
e∗j +Rdm (4.2)

and

D∗ = D∗0 +

m∑
j=1

(
ξKn

)j
E∗j +RDm (4.3)

where Rdm and RDm are the residuals at the mth order. When these expansions are
introduced back into Eqs. (4.1), the closure problem can be split in a series of closures
that ensue from the identification at the successive orders in ξKn. Returning to the
dimensional form, the closure problem at the 0th order takes the form

0th order :

∇ ·D0 = 0 in Vβ (4.4a)

0 = −∇d0 +∇2D0 + I in Vβ (4.4b)

D0 = 0 at Aβσ (4.4c)
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〈d0〉β = 0 (4.4d)

Periodicity D0 (r + li) = D0 (r) ,

d0 (r + li) = d0 (r) , i = 1, 2, 3
(4.4e)

This closure problem exactly corresponds to that defining the intrinsic permeability,
K, while carrying out the upscaling of the incompressible Stokes problem without slip
(Whitaker 1999; Barrère et al. 1992), and this means that

〈D0〉 = K (4.5)

Taking this relationship into account, along with the expansion of Eq. (4.3) and the
definition of Ks in Eq. (3.7e), allows writing, at the mth order

Ks ' K ·

I +

m∑
j=1

(
ξλβ

)j
Sj

 (4.6)

Here Sj (j = 1, · · · ,m) is the macroscopic coefficient obtained from the closure problem
at the jth order given, in its dimensional form, by
jth order (j = 1, · · · ,m):

∇ ·Dj = 0 in Vβ (4.7a)

0 = −∇dj +∇2Dj in Vβ (4.7b)

Dj = − (I− nn) ·
(
n ·
(
∇Dj−1 + (∇Dj−1)

T1
))

at Aβσ (4.7c)

〈dj〉β = 0 (4.7d)

〈Dj〉 = K · Sj (4.7e)

Periodicity Dj (r + li) = Dj (r) ,

dj (r + li) = dj (r) , i = 1, 2, 3
(4.7f )

In this jth order problem, dj and Dj represent the closure variables defined from their
analog, ej = `βe∗j and Ej = `2βE

∗
j (j = 1, · · · ,m), after applying the rescaling

dj = ej/ (`β)
j

(4.8)

Dj = Ej/ (`β)
j

(4.9)

As a consequence, the macroscopic model at the mth order in ξKn takes the form

ε
∂ 〈ρβ〉β
∂t

+∇ ·
(
〈ρβ〉β〈vβ〉

)
= 0 (4.10a)
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〈vβ〉 ' −
1

µβ
K ·

I +

m∑
j=1

(
ξλβ

)j
Sj

 · ∇ 〈pβ〉β (4.10b)

〈ρβ〉β = F
(
〈pβ〉β

)
(4.10c)

in which
(
ξλβ

)j
Sj is the macroscopic jth order slip-flow correction. The tensors K and

Sj are respectively given by Eqs. (4.5) and (4.7e) once the closure problems of Eqs. (4.4)
and (4.7) are solved. All these macroscopic coefficients are intrinsic as they derive from
boundary value problems that only depend on the microstructure of the medium. At
the first order, the macroscopic model is formally identical to that previously derived
(Lasseux et al. 2014), and generalizes the classical Darcy-Klinkenberg form (Klinkenberg
1941) when the gas is ideal. However, it must be noted that the form of the first or-

der correction can be more complex than the dependence on 1/ 〈pβ〉β predicted by the
classical Klinkenberg correction if a different state law is to be considered.

One must be clear that the expansion carried out in ξKn at the closure level is an
alternative representation of the original closure problem given by Eqs. (3.7) that is
basically local, and this is quite a different approach from the one followed by Skjetne
& Auriault (1999) that requires an additional constraint on the Knudsen number. The
approach, in this last reference, potentially allows to take into account non local effects
that could play a role while studying gas slip momentum transport near macroscopic
boundaries.

Under the form of Eq. (4.10b), the macroscopic momentum equation clearly indicates
that the apparent slip-corrected permeability, up to the first order, remains linear in
ξKn. As a consequence, the non linear behavior observed in Figures 4b and 6b can only
be captured by higher order terms in the macroscopic model, and this is a major result of
the present development. In this perspective, a more thorough analysis of the macroscopic
slip-flow correction, beyond the first order, is proposed in section 4.2.

4.2. Effective coefficients

All the closure problems providing the tensors K and Sj have an incompressible Stokes
structure, the latter being coupled to each other and to the 0th order problem through the
slip-like boundary condition, which makes them non-homogeneous. Therefore, a unique
numerical procedure can be used to determine all the macroscopic coefficients in a simple
manner.

The same computational tool as the one employed for the determination of the apparent
slip-corrected permeability, Ks, (see sections 3.1 and 3.3), was used to solve the closure
problems (4.4) and (4.7) up to m = 3 on the model structure represented by the unit cell
of Figure 2 and ε ranging from 0.25 to 0.8. Due to the symmetries in this particular case,
all the macroscopic coefficients are spherical tensors (K = kI, Sj = sjI), thus requiring
the solution of the projection of the corresponding closure problems on ex (or ey) only.
Fields of the xx component of the tensors D0, D1, D2 and of the x components of the
vectors d0, d1, d2 are reported in their dimensionless forms in Figure 8.

In Figure 9a, we have represented k∗ = k
`2 versus ε, which shows an excellent agreement

with our previous results (Lasseux et al. 2014) as well as with predictions available in the
literature in the range of small (Bruschke & Advani 1993) and large (Kuwabara 1959)
porosities.

Dimensionless slip-flow corrective terms, k∗s∗j = k∗(`)jsj are represented versus ε in

Figure 9b for j = 1 to 3. In this figure, we have also reported the O
(
ξKn

)
slip-flow
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Figure 9. Dimensionless effective coefficients for slip-flow versus ε. Unit cell of Fig. 2. a)
Intrinsic permeability. b) Slip-flow corrective terms k∗s∗j for j = 1 to 3. Note that s∗2 is negative.

corrective term k∗s∗ appearing in the classical macroscopic model as the one reported
earlier (Lasseux et al. 2014). A perfect agreement with the first order term of the present
model can be observed, showing the equivalence of the two approaches restricted to the
first order in ξKn. Higher order terms in the present model are such that sj is positive
when j is odd and negative otherwise.

As can be inferred from the non-linear dependence of ks on the Knudsen number
reported above, the first order macroscopic slip-correction might become relatively inac-
curate in some circumstances. This is highlighted in Figure 10 where we have reported
the apparent slip-corrected permeability, k∗s , versus ξKn for ε = 0.25, 0.4, 0.6 and 0.8.,
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Figure 10. Comparison of the dimensionless apparent slip-corrected permeability, k∗s = ks/`
2,

computed from the solution of the closure problem (3.7), on the one hand, and estimated at the
1st, 2nd and 3rd orders with Eq. (4.6) and the solutions of expanded closure problems (4.4) and
(4.7), on the other hand. Periodic model structure of Figure 2. a) ε = 0.25. b) ε = 0.4. c) ε = 0.6.

d) ε = 0.8. Kn is the macro-scale Knudsen number based on the fluid-phase characteristic

length-scale: ξKn = ξ
λβ
`β

.

keeping ξKn smaller than ∼ 0.19 so that slip-flow is expected to remain physically rele-
vant. The apparent slip-corrected permeability was computed from the closure problem
(3.7), on the one hand, and from Eq. (4.6) (i.e. from the solutions of problems (4.4) and
(4.7)) for m up to 3, on the other hand. Figure 10 shows that the inaccuracy of the clas-
sical first order approximation increases with ξKn and becomes much more significant
while increasing ε.

For a more quantitative picture of the above, the relative error on the slip correction in

ks at the jth order, given by

∣∣∣∣∣ ksk −1− m∑
j=1

(ξλβ)
j
sj

∣∣∣∣∣
ks
k −1

=

∣∣∣∣∣k∗s−k∗
(
1+

m∑
j=1

(ξλ∗
β)
j
s∗j

)∣∣∣∣∣
k∗s−k∗

, is reported, up

to the third order, versus ξKn in Figure 11, for the four values of ε. When ks is estimated
at the first order, the relative error on the slip correction is ∼ 3.7% for ε = 0.25 and
ξKn ∼ 0.19 but reaches ∼ 20.3% for ε = 0.6 and ξKn ∼ 0.1. The estimation of the slip
correction is significantly improved while taking into account the second order term, or



20 D. Lasseux, F. J. Valdés Parada, M. L. Porter

0.05 0.1 0.15 0.2
0

1

2

3

4

ξKn

S
li
p
C
or
r.

E
rr
.
(%

)

1st order

2nd order

3rd order

0 0.02 0.04 0.06 0.08 0.1 0.12
0

2

4

6

8

10

ξKn

S
li
p
C
or
r.

E
rr
.
(%

)

1st order

2nd order

3rd order

a) b)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

5

10

15

20

ξKn

S
li
p
C
or
r.

E
rr
.
(%

)

1st order

2nd order

3rd order

0 0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

ξKn

S
li
p
C
or
r.

E
rr
.
(%

)
1st order

2nd order

3rd order

c) d)

1

Figure 11. Relative error on the slip flow correction in ks estimated at the 1st, 2nd and 3rd

orders taking the slip correction extracted from ks computed from the solution of the closure
problem (3.7) as the reference (see complete expression in the text). Periodic model structure
of Figure 2. a) ε = 0.25. b) ε = 0.4. c) ε = 0.6. d) ε = 0.8.

further the third order term. In fact, for m = 3 and the structure under consideration,
the relative error on the slip correction falls down to approximately 0.6% for ε = 0.25
and ξKn ∼ 0.19 or 1.7% for ε = 0.6 and ξKn ∼ 0.1. This is clearly illustrated in Figure
11. If a different Knudsen number, say Knσ, based on the characteristic size, `σ, of the
solid-phase is used instead of Kn, one would observe that the non-linearity appears for
ξKnσ =

`β
`σ
ξKn ' 0.02, a value smaller than, or, when ε is large, almost equal to ξKn,

as
`β
`σ

takes the values 1.98 × 10−2, 1.49 × 10−1, 4.21 × 10−1 and 1.07 for ε = 0.25, 0.4,
0.6 and 0.8 respectively.

One must however be clear about the physical meaning of the macroscopic slip-
correction terms for j > 2 obtained from the development leading to Eq. (4.10b). In fact,
it must be kept in mind that the pore-scale physical model from which the macroscale
balance equations derive, involves a slip-boundary condition and a momentum equation
that are both first-order accurate in ξKn. As a consequence, the macroscopic slip correc-
tion terms beyond the first order in ξKn account for the contribution of microstructural
effects, i.e. the signature of pore topology on the averaged slip effect that can significantly
depend upon local constrictions, enlargements and curvature of pore walls through the
strain rate at Aβσ. One can note, in particular, that the macroscopic model and associ-
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ated closures provide an exact macroscopic solution in the case of slip-flow in a bundle
of straight capillary tubes or slits made of plane parallel plates. Indeed, this solution
exactly corresponds to that obtained by averaging the pore-scale flow solution. In this
situation with no curvature at the pore-scale in the direction of the flow, which is 1D,
the macroscopic slip-correction remains at the first order that is exactly obtained from
the closure problem (4.7) for j = 1, all the higher-order closure problems yielding Dj = 0
(j > 2). To be more precise, specific general properties of the slip boundary condition
and the consequences on the closure problems are highlighted in the following section.

Before moving on, it is important to mention that some results obtained from a nu-
merical solution of an approximate version of the Boltzmann equations (i.e. Bhatnagar
Gross and Krook (BGK) model)†, under a linearized approach, predict a linear depen-
dence of the apparent permeability with the Knudsen number over the whole range of
ξKn investigated here for ε = 0.8. The contrast with the present results would suggest
that the range of application of the slip flow model should be drastically reduced as the
porosity increases. This result is however difficult to justify physically. Moreover, the
linear dependence of k∗s with the Knudsen number resulting from this linearized BGK
approach seems to hold for Knudsen number values up to about 0.5 fitting the predic-
tions of Chang’s unit cell solution that is however expanded at the first order in the
limit of ξKn� 1; such a surprising behavior remains unclear. Some possible sources for
explaining this linear behavior are the use of a linearized BGK model, along with the
numerical method used to solve it.

The above remarks should not be considered as a definitive argument to accept a non-
linear dependence of the apparent permeability with the Knudsen number. In this regard,
the finding of this behavior should motivate the performance of slightly-compressible
rarefied gas flow experiments in highly permeable porous media.

4.3. Some important features of the slip boundary condition

An incomplete slip-boundary condition, in which the ∇vTβ term has been dropped, has
often been used for porous media flow (Skjetne & Auriault 1999; Pavan & Chastanet
2011), and we have shown, in accordance with some previous references (Panzer et al.
1992; Lockerby et al. 2004; Barber et al. 2004), that this physically unjustified form can
lead to a significant error in some circumstances (see section 3.3). Together with the
non-linear dependence of the slip correction on ξKn, this suggests a close attention to
the slip-like boundary condition of Eq. (4.7c) in the jth-order closure problem.

The analysis starts with an alternative expression of the second term in the rhs of Eq.
(4.7c) given by

(I− nn) ·
(
n · (∇Dj−1)

T1
)

= (I− nn) · ∇ (n ·Dj−1)

− (I− nn) · (∇n ·Dj−1) at Aβσ

(4.11)

For all j, n · Dj−1 = 0 at Aβσ since Dj−1 is either 0 (j = 1) or purely tangential to
Aβσ at this interface (j > 2). Consequently, ∇ (n ·Dj−1) is purely normal to Aβσ and
this allows rewriting Eq. (4.11) as

(I− nn) ·
(
n · (∇Dj−1)

T1
)

= −∇sn ·Dj−1 at Aβσ (4.12)

where ∇s denotes the surface differentiation operator defined by ∇s ≡ (I− nn) · ∇.
For j = 1, this result can be further simplified due to the no-slip boundary condition

† These results were provided by an anonymous reviewer and are available from the authors.
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on D0 (see Eq. (4.4c)) leading to

(I− nn) ·
(
n · (∇D0)

T1
)

= 0 at Aβσ (4.13)

and this proves that the ∇vTβ term in the slip boundary condition does not play any

role up to the first order of the expansion in ξKn at the closure level. At higher orders,
Eq. (4.12) can not be further simplified and indicates that the contribution of (I− nn) ·(
n · (∇Dj−1)

T1
)

depends on ∇sn that is related to the curvature of Aβσ. In 2D, for

instance, it can be easily demonstrated (see Appendix B) that ∇sn = −κ (I− nn) where

κ = −∇s · n is exactly the curvature of Aβσ. This clearly shows that the (∇Dj−1)
T1

term does play a role in the slip-like boundary condition (4.7c) of the closure problem at
the jth order, j > 2, in the general case. Its contribution vanishes only in some special
geometrical situations where the flow is 1D and the curvature of Aβσ is zero in the flow
direction. This last remark applies to the boundary condition of Eq. (2.1d) at the pore-
scale and justifies why the incomplete form of the slip boundary condition can be used
in the case of straight tubes, slits or channels that have been extensively used for the
study of Knudsen effects in the slip regime (Lauga & Cossu 2005; Fishman & Hetsroni
2005; Shen et al. 2007).

The analysis is pursued with an alternative expression of the first term in the rhs of
Eq. (4.7c), which can be written as

(I− nn) · (n · ∇Dj−1) = ∇s · (nDj−1) + κDj−1 at Aβσ (4.14)

This finally allows to express the slip-like boundary condition in Eq. (4.7c) for the jth-
order closure problem as

Dj = −∇s · (nDj−1) + (∇sn− κI) ·Dj−1 at Aβσ (4.15)

In 2D, this last expression takes the form Dj = −∇s · (nDj−1) − 2κDj−1. For j = 1, it
simplifies to

D1 = − (I− nn) · (n · ∇D0) = −∇s · (nD0) at Aβσ (4.16)

Equations (4.15) and (4.16) show that the slip-like boundary condition in the jth-
order closure problem contains an explicit dependence upon the curvature of Aβσ that
is however filtered out at the first order in ξKn. This explains why the classical first-
order macroscopic slip-flow model remains inaccurate for systems presenting a significant
curvature of the solid-fluid interface. For the periodic square pattern of circular cylinders,
it clearly justifies why the error on the slip-correction, when restricted to the first-order,

increases with the porosity, as curvature scales as (1− ε)−1/2 in that case. This also
justifies the necessity of taking into account higher order terms in the macroscopic model
as in Eq. (4.10b).

Finally, it must be noted that the analysis carried out in this section may be straight-
forwardly applied to an expansion in the Knudsen number performed on the original
initial boundary value problem given in Eqs. (2.1). In that way, the slip boundary condi-
tion properties at the successive orders in Kn may be generalized far beyond the strict
context of porous media flow, i.e. for any situation allowing such an expansion in Kn.
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5. Conclusion

Macroscopic modeling of slightly compressible gas slip-flow in homogeneous porous
media was thoroughly revisited and several important results were highlighted.

Under a specified set of constraints, the macroscopic model was shown to have a Darcy-
like form in which the apparent non-intrinsic slip-corrected permeability tensor is given
by a non-intrinsic closure problem having the structure of an incompressible Stokes flow
problem with a slip-like boundary condition. The validity of the macroscopic model and
associated closure was verified through comparisons with analytic solutions and DNS
on model porous structures. The apparent slip-corrected permeability was shown to be
a non-symmetric tensor in the general case, whereas a sufficient condition for quasi-
symmetry to occur was derived. A non-linear dependence of the apparent slip-corrected
permeability upon the averaged Knudsen number was evidenced that can become increas-
ingly significant while increasing the porosity and the Knudsen number on the model
structure under concern.

A reformulation of the macroscopic model and closure was derived using an expansion
of the closure variables in the Knudsen number. This reformulation identifies the viscous
and slip contributions that are, otherwise, lumped together in the apparent slip-corrected
permeability. To the 0th order, the macroscopic model corresponds to the classical flow
problem without slip, the associated macroscopic coefficient being the intrinsic permeabil-
ity tensor. The successive higher order terms in the macroscopic model are characterized
by intrinsic slip-flow correction tensors that are all determined by easy-to-solve intrinsic
closure problems that have basically the same Stokes structure and are coupled to each
others and to the 0th order closure problem through their slip-like boundary condition.
The first-order correction was found to be in excellent agreement with a previous existing
and validated model (Lasseux et al. 2014). Higher-order corrections account for the non-
linear behavior of the apparent slip-corrected permeability versus the Knudsen number
observed previously. Correction beyond the first order must be understood as a signature
of pure geometrical effects of the microstructure, through the strain rate at the solid-fluid
interface involved in the microscale slip boundary condition which is sensitive to local
interface curvatures. Within a simple model structure, at large values of the porosity,
errors up to 45% on the slip-correction were found when restricted to an estimation at
the first order.

The closure problem providing the first order slip-correction was shown to be insensitive
to an incomplete slip-flow boundary condition where the ∇vTβ term is omitted and that
has been often abusively used in the statement of the pore-scale physical problem as
reported in many references (Skjetne & Auriault 1999; Pavan & Chastanet 2011). This
result does not hold for higher-order slip-correction terms. Moreover, it was shown that
the explicit dependence of the slip-like boundary condition on the curvature of the solid-
fluid interfaces is filtered out at the closure level when the model is restricted to a
first-order approximation, explaining the inaccuracy of the existing model reported in
the literature and justifying the importance of higher-order slip-correction terms. This
is an important general feature of the slip boundary condition, that applies beyond the
context of porous media flow, providing a new physical insight into slip-flow.

Supplementary work is needed for a further comparison of the present investigation
with experimental data in particular for highly porous structures.
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Appendix A.

In this appendix, the symmetry properties of the apparent slip-corrected permeability
tensor, Ks, in the Darcy-like form of the macroscopic momentum equation (3.13b), are
analyzed. This apparent permeability is explicitly given by the closure problem (3.7)

∇ ·D = 0 in Vβ (A 1a)

0 = −∇d +∇2D + I in Vβ (A 1b)

D = −ξλβ (I− nn) ·
(
n ·
(
∇D + (∇D)

T1
))

at Aβσ (A 1c)

〈d〉β = 0 (A 1d)

〈D〉 = Ks (A 1e)

Periodicity D (r + li) = D (r) ,

d (r + li) = d (r) , i = 1, 2, 3
(A 1f )

The analysis starts with a pre-multiplication of Eq. (A 1b) by DT and when the super-
ficial average of the result is formed, one obtains

0 = −〈DT · ∇d〉+ 〈DT · ∇2D〉+ KTs (A 2)

The first term in the rhs of the above equation can be equivalently expressed as

〈DT · ∇d〉 = 〈∇ · (Dd)〉 − 〈(∇ ·D) d〉 (A 3)

and, since D is a divergence-free tensor as stated in Eq. (A 1a), this is equivalent to

〈DT · ∇d〉 = 〈∇ · (Dd)〉 (A 4)

Making use of the averaging theorem (see Eq. (2.8)) in its divergence form, one obtains

〈DT · ∇d〉 = ∇ · 〈Dd〉+
1

V

∫
Aβσ

n ·Dd dA (A 5)

Because D and d are periodic
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∇ · 〈Dd〉 = 0 (A 6)

and, since D has no normal component at Aβσ as indicated by the boundary condition
in Eq. (A 1c),

n ·D = 0 at Aβσ (A 7)

From Eq. (A 5), it follows that

〈DT · ∇d〉 = 0 (A 8)

Returning to equation (A 2), we hence have

0 = 〈DT · ∇2D〉+ KTs (A 9)

The first term in the rhs of this last relationship can be rewritten as

〈DT · ∇2D〉 = 〈∇2
(
DT
)
·D〉T (A 10)

in which we have used the trivial property
(
∇2D

)T
= ∇2

(
DT
)

. Equation (A 10) can

be arranged according to the fact that, for any two second order tensors A and B,
∇2A ·B = ∇ · (∇A ·B)− (∇A)

T1
: (∇B)

T1
and, when A is identified to DT and B to

D, this yields

〈DT · ∇2D〉 = 〈∇ ·
(
∇
(
DT
)
·D
)
〉T − 〈(∇DT )T1 : (∇D)T1〉T (A 11)

In the above expressions, we have used the superscript T1 to designate the transpose
of a third order tensor that permutes the two first indices and we adopted the classical
nested convention for double dot product. The last equation can be equivalently written
as

〈DT · ∇2D〉 = 〈∇ ·
(
∇
(
DT
)
·D
)
〉T − 〈(∇D)T3 : ∇D〉T (A 12)

where the superscript T3 denotes the transpose of a third order tensor that permutes
the first and third indices. When this result is inserted back into Eq. (A 9), we have

0 = 〈∇ ·
(
∇
(
DT
)
·D
)
〉 − 〈(∇D)T3 : ∇D〉+ Ks (A 13)

The attention is now focused on the first term in the rhs of the last relationship, which,
upon use of the averaging theorem, can be equivalently written as

〈∇ ·
(
∇
(
DT
)
·D
)
〉 = ∇ · 〈∇

(
DT
)
·D〉+

1

V

∫
Aβσ

n · ∇
(
DT
)
·D dA (A 14)

Since D is periodic, ∇
(
DT
)

is also periodic and hence

∇ · 〈∇
(
DT
)
·D〉 = 0 (A 15)

so that
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〈∇ ·
(
∇
(
DT
)
·D
)
〉 =

1

V

∫
Aβσ

n · ∇
(
DT
)
·D dA (A 16)

We can now make use of the general identity

u · ∇A ·B = (∇A)
T1

: (uB)
T1

(A 17)

valid for any two second order tensors A and B and any vector u, and when A is identified
to DT , B to D and u to n, this provides an alternative form of the interfacial integral
term in the rhs of Eq. (A 16). When replaced in Eq. (A 13), the apparent slip-corrected
permeability, Ks, can finally be recast into the following expression

Ks = 〈(∇D)T3 : ∇D〉 − 1

V

∫
Aβσ

(∇D)
T3

: (nD) dA (A 18)

While the tensor 〈(∇D)T3 : ∇D〉 in this expression can be easily shown to be sym-
metric, the tensor represented in the area average term is not symmetric in the general
case, except if the interface Aβσ has specific symmetry properties. This is the case, for
example, of an ordered porous structure for which the solid σ-phase exhibits symmetries
about the three planes parallel to the edges of the periodic unit cell and passing through
its centroid. In such circumstances, the off-diagonal terms of Ks are all zero. The expres-
sion of Ks in Eq. (A 18) shows that this tensor is generally not symmetric (Skjetne &
Auriault 1999).

The investigation can be further pursued by examining the condition under which Ks
is close to a symmetric tensor. A sufficient condition is when the non-symmetric part in
Eq. (A 18) remains small compared to the symmetric part and this can be expressed in
terms of the orders of magnitude of these two respective terms as

O

 1

V

∫
Aβσ

(∇D)
T3

: (nD) dA

� O
(
〈(∇D)T3 : ∇D〉

)
(A 19)

By making use of the boundary condition in Eq. (A 1c), the above constraint can be
expressed as

O

ξλβ 1

V

∫
Aβσ

(
n (I− nn) ·

(
n ·
(
∇D + (∇D)

T1
)))

: (∇D)
T3

dA


� O

(
〈(∇D)T3 : ∇D〉

)
(A 20)

The order of magnitude of the area average can be estimated to be

ξλβ
1

V

∫
Aβσ

(
n (I− nn) ·

(
n ·
(
∇D + (∇D)

T1
)))

: (∇D)
T3

dA = ξλβO

(
av
D2

`2β

)
(A 21)

where D denotes the leading order of the components of D. Similarly, the symmetric part
can be estimated according to
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Figure 12. Unit cell for the computation of the full apparent slip-corrected permeability
tensor. ε ' 0.515, a∗v ' 11.935.

〈(∇D)T3 : ∇D〉 = O

(
ε
D2

`2β

)
(A 22)

These two estimates allow us to formulate the constraint (A 20) as

ξλβ � O

(
ε

av

)
(A 23)

If av is thought to vary as `−1β as is often accepted (Whitaker 1999), one would be left
with

ξKn� O (ε) (A 24)

as a sufficient condition for Ks to remain quasi symmetric. It should be noted that this
is consistent with the fact that, when no slip occurs, corresponding to Kn ' 0, Ks = K,
which is a symmetric tensor as predicted by Eq. (A 18) when ξλβ = 0, i.e. when D = 0
at Aβσ.

A short illustration of the symmetry properties can be provided from direct computa-
tion of Ks over a unit cell that does not possess any particular geometrical symmetry as
the one represented in Figure 12 for which ε ' 0.515 and a∗v = av` ' 11.935. The appar-
ent slip-corrected permeability was determined from the solution of the closure problem
of Eqs. (A 1) above and for a cell Knudsen number, ξλ

∗
β = ξλβ/` , ranging from 10−4 to

1.
Results on the components of K∗s = Ks/`2, reported in table 2, clearly show that

the contrast between the off-diagonal terms of K∗s remains small when the constraint

expressed in (A 23), ξλ
∗
β � O

(
ε
a∗v
' 0.043

)
, is satisfied and becomes very significant

otherwise.

Appendix B.

The objective of this appendix is to demonstrate that, in the 2D case and with the
notations used throughout the paper,

∇sn = −κ (I− nn) (B 1)

where κ = −∇s · n is the curvature of Aβσ and ∇s the surface differentiation operator
defined by ∇s ≡ (I− nn) · ∇.

We shall start by noticing that, since n is a unit vector, n ·n = 1 and hence ∇ (n · n) =
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ξλ
∗
β k∗sxx k∗syx k∗sxy k∗syy 2

|k∗syx−k∗sxy|
(k∗syx+k∗sxy)

(%)

1.00 10−4 1.26 10−4 5.87 10−6 5.80 10−6 9.28 10−5 1.15
0.01 2.13 10−4 6.87 10−6 9.09 10−6 1.59 10−4 27.80
0.10 4.95 10−4 6.91 10−6 1.57 10−5 3.40 10−4 78.00
1.00 7.24 10−4 5.82 10−6 1.87 10−5 4.62 10−4 105.00

Table 2. Components of the dimensionless apparent slip-corrected permeability tensor for the
unit cell of Figure 12 and four values of ξλ

∗
β . The contrast between k∗syx and k∗sxy is estimated

in the last column.

0, which leads to the straightforward relationship

∇n · n = 0 (B 2)

When this result is employed in the expression of the product (I− nn) · ∇n, along with
the fact that n is a unit vector, one ends up with

∇sn = (I− nn)∇ · n (B 3)

in the specific 2D case.
Let us now consider the expression of the curvature in the general case (2D or 3D) and

write ∇s · n from its definition as

∇s · n = ((I− nn) · ∇) · n = ∇ · n− (nn · ∇) · n (B 4)

The last term in the rhs of Eq. (B 4) can be explicitly re-written as

((nn · ∇) · n)ij = ninj
∂ni
∂xj

= nj (∇n)ji ni (B 5)

where we have implicitly used Einstein notation, and this means that

(nn · ∇) · n = n · ∇n · n (B 6)

However, due to Eq. (B 2), the last result simplifies to

(nn · ∇) · n = 0 (B 7)

Coming back to Eq. (B 4), it follows that

∇s · n = ∇ · n = −κ (B 8)

which leads to the expected relationship expressed in Eq. (B 1), valid in 2D, when the
result of Eq. (B 3) is taken into account.
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