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ABSTRACT   

The history of conceptions of light is among the most exciting scientific adventures. It was Fresnel's theoretical work that 

made it possible to establish the most solid theoretical basis of wave optics. Two centuries ago, his approach was 

validated by the observation of a counter-intuitive bright spot appearing at the center of the geometric shadow of an 

illuminated opaque circular object. This phenomenon has remained known as the Arago spot. We propose here to further 

extend the spatial/temporal analogy that exists between diffraction and dispersion by revisiting the Arago spot formation 

in the time domain through the temporal dispersive evolution of light after being briefly stopped by an obstacle. The 

analytical treatment that is possible for linear propagation as well as the experiments based on telecom optical fibers and 

fast optoelectronics confirm that we observe the emergence of light where it was initially absent. As the power increases 

and Kerr nonlinearity affects the propagation, the Arago spot intensity is affected by the sign of the dispersion. 
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1. INTRODUCTION  

The history of conceptions of light is among the most exciting scientific adventures. Debates on the corpuscular or wave 

nature of light was thus a subject of crucial importance for several centuries, until its dual nature was fully understood. If 

Young's experiments led to significant progress in understanding the wave behavior of light, it was Fresnel's work that 

made it possible to establish the most solid theoretical basis of wave optics [1]. The discussions at the French ‘Académie 

des Sciences’ held two centuries ago remained particularly famous concerning the experiment that validated Fresnel's 

approach: according to Fresnel’s diffraction theory a counter-intuitive bright spot should appear at the center of the 

geometric shadow of an illuminated opaque circular object [2]. This phenomenon has remained known as the Arago or 

Poisson’s spot, named after the members of the jury that discussed the results. Since then, Fresnel’s wave theory has 

been widely accepted to describe wave propagation in space and time. Indeed, dispersion and one-dimensional 

diffraction are linked by a similar mathematical formalism, so that a powerful analogy exists between the temporal and 

spatial propagation of waves [3-5]. Temporal analogues of common optical systems have been proposed such as lenses 

[6], diffraction gratings [7], two-waves interferometric devices [8]… This opens up a whole range of new possibilities 

for ultrafast photonics. 

We propose here to further extend the spatial/temporal analogy by revisiting the Arago spot formation in the time 

domain through the temporal evolution of light after being briefly stopped by an obstacle. We first recall the 1D 

diffraction/dispersion duality and the modelling of the temporal propagation of light in a linear optical waveguide. In the 

linear regime of propagation, we show that an analytical treatment confirms that a time domain Arago experiment is 

relevant. We then present the experiment based on optical fibers and fast optoelectronics. In the final part, we extend our 

discussion to the impact of Kerr non-linearity. 
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2. ARAGO SPOT FORMATION IN THE LINEAR REGIME 

2.1 The 1D Arago spot and the space/time duality 

Before discussing our experiments, let us first recall the basis of the analogy between the spatial evolution of light 

affected by diffraction and the temporal changes experienced by light when dispersion is involved. We consider the 

simple case where a monochromatic plane wave with wavelength  and an amplitude ailluminates an opaque strip with 

a width 2 l  and an infinite length. In this 1D transverse problem that is illustrated on Fig. 1(b), the longitudinal evolution 

of light a(x,z) in the scalar approximation is ruled by the following differential equation :  
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with x and z being the transverse and longitudinal coordinates respectively and k0 = 2/ the wavenumber. The two 

edges of the opaque strip diffract the light leading to the progressive emergence of a bright spot at the center of the wire 

shadow, as experimentally reported with simple experiments [9-11]. Note that this spot is less intense and spatially 

broader that in the historic Arago experiment conducted in the space domain and using a 2D opaque perfectly circular 

screen (Fig. 1(a)). 

The goal of the present paper is to study the temporal equivalent of a 1D Arago experiment. We therefore consider a 

fully-coherent continuous wave where light has been switched off for a duration 2 T0 as illustrated in Fig. 1(c1). This 

temporal waveform then propagates in a dispersive single mode waveguide (with 2 being the group velocity dispersion), 

typically an optical fiber experiencing an evolution of its slowly varying envelope governed in absence of nonlinearity 

by the following equation [12]: 
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Dispersion leads to the alteration of the temporal profile (Fig. 1(c2), blue curve): the edges of the waveform have been 

smoothened, strong oscillations have appeared and a light intensity increase has emerged at the dark pulse center where 

initially no light was present. This last feature being the temporal counterpart of the Arago spot in this 1D experiment. 

The space-time duality readily appears in the mathematical structure of equations (1) and (2) that can be written as: 
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where  is a normalized propagation distance  = z / LD where LD is defined by LD = -T0
2/2 (for dispersion, note that 

with this convention LD is negative for normally dispersive fibers and positive for anomalous dispersion) or LD = k0 l2 

(for diffraction).  is the normalized time  = t/T0 (dispersion) or the normalized transverse coordinate  = x/l  

(diffraction).  = aais the field a normalized with respect to the amplitude of the initial plane wave. As a first rough 

approximation, we can consider that the pattern created by the opaque temporal zone is the result of the superposition of 

the patterns created by a semi-infinite edges located at  = ±  Indeed, the field E diffracted by a single initial sharp 

edge centered at  = 0 is given by: 

  ( ) 0.5 ( ) 0.5 ( )E u C u i S u      (4) 

where u =  / (1/2and C and S are the Fresnel’s integrals. This semi-infinite screen (grey dashed line in Fig. 1(c2)) 

brings some qualitative insight to understand the softening of the edges as well as the nature of the strong fluctuations 

that develop on each side of the edge in the blue curve. However, the addition of the temporal intensity profiles created 

by each intensity jump (black line in Fig. 1(c1)) cannot account for the development of the central spot that is the result 

of a constructive interference process: given the symmetry of our problem, the patterns created by each edge are in phase 

at the center of the waveform, leading to an increase by a factor 2 of the intensity profile. 

 



 

 
 

 

 

 

 

Figure 1. (a) Illustration of the Arago spot resulting from the diffraction of a circular opaque screen when illuminated by a 

monochromatic wave. (b) Illustration of the longitudinal evolution of the diffraction pattern induced of an opaque strip of 

width 2l. (c) Evolution of the temporal intensity profile of a hole of light. The initial profile (c1) is affected by dispersion. 

The resulting pattern (c2, blue line) is compared with the shape of diffraction by a semi-infinite screen (grey dotted line) and 

with the superposition of the intensity pattern resulting from the two edges (solid black line).  

 

 

2.2 Analytical results 

The field diffracted by the opaque 1D screen can be fully analytically expressed by means of Fresnel integrals: 
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The results are illustrated in the time domain on Fig. 2. Details of the intensity profile for three different propagation 

distances are provided on panel (a). Whereas the amplitude of the ripple observed on the top level of the wave does not 

evolve much with propagation distance, the temporal position of the maximum of the oscillations tend to move away 

from the center of the waveform. Those trends are consistent with the diffraction pattern of a straight edge (dash line in 

Fig. 2(b1)) and we can note that the maximum value of the oscillation is obtained for  =  ±(1 + 2.12 1/2) with a value 

of 1.37 expected in this case [13]. We can notice the continuous increase of the central spot with increasing propagation 

distance, as analytically predicted by : 
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with Z = (-1/2. The intensity at the center of the waveform therefore continuously increases with the propagation 

distance z and tends asymptotically to a value equals to the intensity outside of shadow. Equation (6) also confirms 

analytically that 
2

,0 ( )S Z  is twice the intensity that may result from the incoherent addition of the intensity linked to 

each abrupt edge. We complement this study by plotting the temporal phase profile of the diffracted field (panels (b2)). 

Similarly to the diffraction of a straight edge [13], a significant phase difference exists between the central part and the 

plateau. This phase difference tends to decrease asymptotically towards 0. 

 

 



 

 
 

 

 

 

 

Figure 2. (a) Temporal intensity profiles at three propagation distances  = .2, .4 and .6. Results are compared with the initial 

intensity profile (red curve). (b) Longitudinal evolution of the temporal intensity and phase profiles (b1 and b2, 

respectively). The black dashed line is the analytical prediction of the first maximum of the pattern for a single edge 

diffraction.  

 

2.3 Experimental setup 

The experimental setup is sketched in Fig. 3 and relies on devices that are commercially available and used in 

the telecommunication industry. A laser at 1550 nm emits a highly-coherent continuous wave. The initial 

temporal profile is obtained thanks to a Lithium Niobate intensity modulator operated at its point of maximum 

transmission and driven by an electrical pulse generator that delivers super-Gaussian pulses at a repetition rate 

of 2.5 GHz. The corresponding optical intensity profile is plotted on Fig. 3(b1) (blue solid line) and can be 

well fitted by an inverted second-order super-Gaussian pulse with a full-width at half duration of 40 ps, which 

is reasonably close from the ideal step edges (red solid line). The initial optical spectrum recorded on a high 

resolution optical spectrum analyzer confirms the high level of symmetry of the pulse which is close to the 

Fourier limit and the high degree of coherence of the signal. 

 

Figure 3. (a) Experimental setup. CW : continuous wave, IM : intensity modulator, EPG : Electrical Pattern Generator, , 

OSA : Optical Spectrum Analyzer.   (b) Temporal intensity profile obtained after modulation. The experimental results 

recorded with the complex spectrum analyzer (blue circles) are compared with a fit with a second-order super-Gaussian 

waveform (blue solid line). The red line is the ideal inverted rectangular function.  (c) Optical spectrum of the initial signal. 



 

 
 

 

 

 

The linear propagation experiment takes place in a set of optical single mode fibers with anomalous dispersion, i.e. smf-

28 fibers with a dispersion 2 = -20 ps2/km. Using various spools with length between 0.5 and 5 km, we were able to 

record the longitudinal evolution of the field from 2.5 km of propagation up to 15 km. The detection of the output pulse 

properties is ensured by a complex optical spectrum analyzer that enables us to get access both to the spectral intensity 

and phase profiles as well as their temporal counterparts.  

 

 

2.4 Experimental results 

Details of three intensity profiles are provided on Fig. 4 for three propagation distances (4, 8 and 12km). They are 

qualitatively in line with the analytical predictions reported in Fig. 2(a): the dispersive propagation is marked by the 

emergence of oscillations on each edge and a central Arago spot progressively grows. 

 

 

Figure 4. Experimental temporal intensity profiles at three propagation distances (4, 6 and 8 km) corresponding to = .2, .4 

and .6 (solid black lines, doted grey lines and mixed grey lines respectively).  

 

 

 

 

Figure 5. (a) Longitudinal evolution of temporal intensity and phase profiles (panels a and b, respectively). Experimental 

results (panels 1) are compared with simulations taking into account a second-order super-Gaussian pulse as an initial 

condition (panels 2). 



 

 
 

 

 

 

A more systematic study made every 500 m and presented in Fig. 5(a1-b1) enables us to reconstruct the experimental 

longitudinal evolution of the temporal intensity and phase profiles that are found in qualitative agreement with the 

theoretical predictions presented in Fig. 2(b). As propagation distance increases, the oscillations move away from the 

central part but their amplitude does not evolve significantly. On the contrary, the amplitude of the Arago central spot 

continuously increases. Some deviations can however be noticed for the initial stage of propagation where ideal 

conditions lead to the emergence of numerous oscillations is the central part. When taking into account the exact initial 

temporal intensity profiles and when using numerical simulations to solve Eq. (2)  (panels 2 of Fig. 5), the agreement 

regarding the temporal patterns obtained experimentally and numerically becomes quantitative.  

 

3. ARAGO SPOT FORMATION IN THE NONLINEAR REGIME 

3.1 Principle 

Contrary to the usual diffraction in free space, propagation in a waveguide can also involve nonlinear effects. Indeed, the 

temporal evolution of a waveform in an optical fiber is affected by Kerr nonlinearity that can be taken into account 

through an additional term accounting for self-phase modulation in Eq. (2), leading to the well-known nonlinear 

Schrödinger equation (NLSE) [12]: 
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with  being the nonlinear coefficient of the fiber. This equation is solved using numerical simulations based on the split-

step Fourier method. The resulting nonlinear dynamics is, as we will see, highly impacted by the regime of dispersion so 

that studies considering both the normal and anomalous dispersions are required. 

From the experimental point of view (see Fig. 6), we have inserted an erbium doped fiber amplifier and two types of 

fibers have been compared: (1) a SMF-28 fiber (identical to the previously used fiber, with a nonlinear coefficient  = 1.1 

W-1.km-1) with a length of 10 km and (2) a dispersion shifted fiber with a normal dispersion of -19 ps2/km, a nonlinear 

coefficient of 2 W-1.km-1 and a length of 10.5 km. The two fibers therefore exhibit a rather similar level of integrated 

dispersion ( 200 ps2 in absolute value). In order to prevent the deleterious consequences of Brillouin backscattering, we 

have inserted a phase modulator. Given the additional phase modulation used to prevent Brillouin scattering, it was not 

possible to take advantage of the complex spectrum analyzer. Therefore, in order to record the temporal intensity 

profiles, we used a photodiode with a high bandwidth (70 GHz) connected to a high-speed sampling oscilloscope with an 

electrical bandwidth exceeding 50 GHz. Other Brillouin mitigation schemes such as the use of a set of discrete optical 

isolators could alleviate this strong restriction [14]. 

 

 

Figure 6. Experimental setup. CW : continuous wave, PM : phase modulator, IM : intensity modulator, EPG : Electrical 

Pattern Generator, EDFA : Erbium Doped Fiber Amplifier, PD : Photodiode, ESO : Electrical Sampling Oscilloscope. 



 

 
 

 

 

 

3.2 Results 

The output intensity profiles obtained after propagation in 10-km long fibers with normal or anomalous dispersion are 

plotted for three levels of input power in Fig. 7(a). For the focusing nonlinearity case (Kerr nonlinearity with anomalous 

dispersion, panel a1), an increasing input power leads to the progressive development of the lateral oscillations. Such 

changes in the upper part of the signal have been the subject of recent discussions and can be interpreted in terms of 

solitons over finite background such as Akhmediev or Peregrine breathers [15]. We also observe a decrease of the central 

Arago spot when increasing the input power. The opposite behavior is observed for normally dispersive fibers: the 

central spot is increased whereas the lateral oscillations are lowered (see panel (a2)). The central Arago spot intensity 

tends to become larger with increasing power. Ultimately, for higher propagation distances or power, the gap tends to be 

filled and dark solitonic structures may emerge as it has been shown in the study of undular bores [14, 16]. A more 

systematic study of the output pattern according to the input power is reported on Fig. 7(b) and confirms those trends, 

showing that the evolution of the Arago central spot is monotonic with power. The experimental results (panel b1) are in 

excellent agreement with the results provided by the numerical integration of NLSE (panel b2). 
 

 

Figure 7. (a) Experimental temporal intensity profiles at different input powers at a fixed propagation distance. The result of 

linear propagation (red curves) are compared with the temporal profile obtained for input average powers of 50, 100 and 150 

mW (solid black lines, dotted grey lines and dashed grey lines respectively). Measurements performed in the anomalous (a1) 

and normal (a2) regime of dispersions. (b) Evolution of the temporal intensity profile according to the initial input average 

power and according to the regime of dispersion. Experimental results (b1) are compared with numerical simulations (b2). 

4. CONCLUSION 

In conclusion, we have investigated theoretically, numerically and experimentally the emergence of a bright spot in the 

initial shadow of a fully-coherent temporal signal [17]. The studied case is the 1D temporal counterpart of the Arago spot 

formation that was firstly demonstrated by Fresnel to support his wave theory and acclaimed by Arago in 1817. We have 

showed that the spot progressively grows with the propagation distance whereas a phase difference exists between the 

spot center and the surrounding light. As the power increases, the Arago spot intensity is affected by the sign of the 

dispersion. We finally assess experimentally the existence of the Arago spot formation in the time domain using optical 

fibers and fast optoelectronics. The longitudinal evolution of a temporal hole of light having sharp edges is studied in a 

standard smf-28 fiber. The resulting temporal intensity and phase profiles are found in excellent agreement with the 

analytical or numerical predictions. The experimental results also confirm the influence of the Kerr nonlinearity: a 

focusing nonlinearity (Kerr effect and anomalous dispersion) tends to decrease the intensity of the spot with increasing 

power. Moreover, the amplitude of the oscillations that emerge on each side of the shadow increases and the oscillations 

become more and more abrupt. Opposite trends are observed in a normally dispersive medium where the nonlinearity 

increases the intensity of the spot.  
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