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Asymptotic Expansion for Shockwave Boundary Layer Interaction

We present here a brief asymptotic expansion for the equations governing shockwaveboundary layer interaction, aimed at a cursory understanding of their underlying nature.

Preliminaries

Consider a wedge of angle θ with the horizontal. Let the horizontal be positive to the right, such that θ is positive counterclockwise. We start by considering the shock front formed at the start of the wedge under steady horizontal supersonic flow inlet conditions at standard room temperature. We state the ideal gas law for air:

P = ρRT (1.1)
where P is the pressure, ρ the density, T the temperature and R the gas constant for the fluid under consideration, and the speed of sound, c, is defined by:

c = γ P ρ (1.2)
where γ is the ratio of specific heats. We define our Cartesian coordinate system as that which vertical is along the shock front which makes an β with the horizontal. We not that β takes a value as such that further away from the wedge, the shock front is further downstream.

Flow Properties across Shockwave

Let the inlet velocity be V 1 , giving the components of velocity, u and v, normal and tangential to the shock front respectively, as:

u 1 = V 1 sinβ (2.1) v 1 = V 1 cosβ (2.2)
Past the shock front, the flow is deflected over the wedge, such that the components of the velocity past the shockwave is V 2 are:

u 2 = V 2 sin(β -θ) (2.3) v 2 = V 2 cos(β -θ) (2.4)
We now restate the traditional relations for variables across the oblique shock front derived using an infinitesimal across the surface of the shock front, the steady-state conservation of mass, that of momentum and energy. We note that this derivation assumes an isentropic, irrotational flow. For density ρ, temperature T, pressure P, specific heat c P , we have:

ρ 1 u 1 = ρ 1 V 1 sinβ = ρ 2 u 2 = ρ 2 V 2 sin(β -θ) (2.5) P 1 + ρ 1 u 2 1 = P 2 + ρ 2 u 2 2 (2.6) ρ 1 u 1 v 1 = ρ 2 u 2 v 2 (2.7) c P T 1 + 1 2 V 2 1 = c P T 2 + 1 2 V 2 2 (2.8)
The ideal gas law yields:

P 1 ρ 1 T 1 = P 2 ρ 2 T 2 (2.9)
Combining the conservation of mass and the conservation of momentum tangentially along the shock front, we get:

v 1 = v 2 (2.10)
By definition of Mach number M, speed of sound, and ideal gas law we have:

M 1 = V 2 1 ρ 1 γP 1 (2.11)
and

M 2 = V 2 2 ρ 2 γP 2 (2.12)
Using the adequate trigonometric identities, it is possible to arrive at:

tanθ = 2cotβ (M 2 1 sin 2 (β -1) 2 + (γ + cos2β M 2 1 )
(2.13)

We are now able to arrive at the equations relating the variables on both sides of the shock:

M 2 2 sin 2 (β -θ) = 2 + (γ -1) M 2 1 sin 2 β 2γM 2 1 sin 2 β -(γ -1)
(2.14)

T 2 T 1 = 1 + 2(γ -1)(M 2 1 sin 2 β -1)(γM 2 1 sin 2 β + 1) (γ + 1) 2 M 2 1 sin 2 β
(2.15)

P 2 P 1 = 1 + 2γ(M 2 1 sin 2 β -1) 1 + γ (2.16) ρ 1 ρ 2 = T 1 T 2 P 2 P 1
(2.17)

Boundary Layer

We now concern ourselves with the boundary layer forming near the wedge. We use a Cartesian system which horizontal is aligned with the wedge. We have V (x, y) → 0 as y → 0 due to the no-slip and no flow-through at the wedge, and V (x, y) → V 2 , P (x, y) → P 2 and ρ (x, y) → ρ 2 as y → xtan(βθ) . We revert back to the unsimplified equations governing the flow, in which t represents time, τ shear stress, e internal energy and κ thermal diffusion coefficient. 

∂ρ
τ xx = 2µ ∂u ∂x + µ v - 2 3 µ ∂u ∂x + ∂v ∂y (3.5) τ yy = 2µ ∂v ∂y + (µ v - 2 3 µ)( ∂u ∂x + ∂v ∂y ) (3.6) τ xy = µ( ∂u ∂x + ∂v ∂y ) (3.7)
Employing steady-state, noting that the flow past the shockwave ideally adjusts itself to be parallel with the wedge, and assuming constant µ , µ v and κ , we have: We note that P only appears in the third equation.

u ∂ρ ∂x + ρ ∂u ∂x = 0 (3.8) ∂ρ ∂x u 2 + ρu ∂u ∂x + ρu ∂u ∂x + ∂P ∂x = µ v + 4 3 µ ∂ 2 u ∂x 2 + µ( ∂ 2 u ∂xy ) (3.9) ∂P ∂y = µ( ∂ 2 u ∂x 2 ) + (µ v - 2 3 µ)( ∂ 2 u ∂xy ) (3.

Asymptotic Solution

Expansion

Define a new y = y ε such that ε ≪ 1 such that y → -∞ when it approaches 0 and +∞ when it approaches the boundary layer height δ. We then have

u = u 0 + εu 1 + ε 2 u 2 + ε 3 u 3 + . . . (4.1)
and

ρ = ρ 0 + ερ 1 + ε 2 ρ 2 + ε 3 ρ 3 + . . . (4.2)
where it is understood that the series terms are dependent on x and y. Replace these expressions into the first two equations:

u 0 + εu 1 + ε 2 u 2 + ε 3 u 3 + . . . ρ 0 x + ερ 1 x + ε 2 ρ 2 x + ε 3 ρ 3 x + . . . + u 0x + εu 1x + ε 2 u 2x + ε 3 u 3x + . . . ρ 0 + ερ 1 + ε 2 ρ 2 + ε 3 ρ 3 + . . . = 0 (4.3) u 0 ρ 0 x + u 0x ρ 0 + ε u 0 ρ 1 x + u 1 ρ 0 x + u 0x ρ 1 + u 1x ρ 0 +ε 2 u 0 ρ 2 x + u 2 ρ 0 x + u 1 ρ 1 x + u 1x ρ 1 + u 0x ρ 2 + u 02 ρ 0 +ε 3 u 0 ρ 3 x + u 3 ρ 0 x + u 1 ρ 2 x + u 2 ρ 1 x + ρ 0 u 3x + ρ 3 u 0x + ρ 1 u x + ρ 2 u 1x + • • • = 0 (4.4) M i=0 ε i 2 i j=1 (u j-1 ρ i-j+1 x + u j-1 x ρ i-j+1 ) = 0 (4.5)
By the method of matched asymptotic expansions we have for ∀i ∈ [0, ∞[inO(ε i ):

2 i j=1 (u j-1 ρ i-j+1 x + u j-1 x ρ i-j+1 ) = 0 (4.6) ρ 0 + ερ 1 + ε 2 ρ 2 + ε 3 ρ 3 + . . . u 0 + εu 1 + ε 2 u 2 + ε 3 u 3 + . . . u 0xy + εu 1xy + ε 2 u 2xy + ε 3 u 3xy + . . . +µ( u 0xxx + εu 1xxx + ε 2 u 2xxx + ε 3 u 3xxx + . . .
-2 u 0xxy + εu 1xxy + ε 2 u 2xxy + ε 3 u 3xxy + . . .

u 0xyy + εu 1xyy + ε 2 u 2xyy + ε 3 u 3xyy + . . . ) = 0 (4.7)

ρ 0 u 0 u 0xy + µ u 0xxx -2u 0xxy -u 0xyy +ε ρ 1 u 0 u 0xy + ρ 0 u 1 u 0xy + ρ 0 u 0 u 1xy + µ u 1xxx -2u 1xxy -u 1xyy +ε 2 ρ 0 u 0 u 2xy + ρ 0 u 2 u 0xy + ρ 2 u 0 u 0xy + ρ 0 u 1 u 1xy + ρ 1 u 0 u 1xy + ρ 1 u 1 u 0xy +µ u 2xxx -2u 2xxy -u 2xyy +ε 3 (ρ 0 u 0 u 3xy + ρ 0 u 3 u 0xy + ρ 3 u 0 u 0xy + ρ 0 u 2 u 1xy + ρ 2 u 0 u 1xy + ρ 1 u 2 u 0xy +ρ 2 u 1 u 0xy + ρ 0 u 1 u 2xy + ρ 1 u 0 u 2xy + ρ 1 u 1 u 1xy ) +µ u 3xxx -2u 3xxy -u 3xyy + • • • = 0 (4.8) M i=0 ε i µ u i xxx -2u i xxy -u i xyy + M i ρ l u m u nxy = 0 (4.9)
where M is the sum of ρ l u m u nxy terms for all combinations of positive integers l,m and n forming a complete partition of i. The explicit definition of which is left as a practice for mathematicians exuberant about number theory.

We note that M i depends on terms up to i th terms of ρ and u.

µ u i xxx -2u i xxy -u i xyy + M i ρ l u m u nxy = 0 (4.10) (4.11) 4.2. u 0 & ρ 0
Except for i = 0, the above partial differential equations are linear since we are able to determine the solution of each i th order recursively. We now move our focus to the 0 th order. A similar expansion would allow us to solve for P once we have determined u and ρ. u 0 ρ 0 x + u 0x ρ 0 = 0 (4.12)

ρ 0 u 0 u 0xy + µ u 0xxx -2u 0xxy -u 0xyy = 0 (4.13)
Rearranging the equations yields: In what follows, the subscript 2 for flow properties refers to conditions past the shock calculated earlier.

u 0x u 0 = - ρ 0 x ρ 0 = f (x, y) (4.14) ρ 0 = - µ u 0xxx -2u 0xxy -u 0xyy u 0 u 0xy (4.15) ∂u 0 u 0 = f (x, y) ∂x (4.16) ln (u 0 ) = F (x, y) + C 1 (y) (4.17) u 0 = e F(x,y)+C 1 (y) (4.18) u 0 x = (F (x, y) + C 1 (y)) e F(x,y)+C 1 (y)-1 F x (x, y) = u 0 (F (x, y) + C 1 (y)) e F x (
F (y) + C 1 (y) → ln(V 2 ) for y → +∞ ln (ρ 0 ) = -F (y) + C 2 (y) (4.23)
ρ 0 = e -F(y)+C 2 (y) (4.24)

-F (y) + C 2 (y) → ln(ρ 2 ) for y → +∞ u 0 ρ 0 = e C 1 (y)+C 2 (y) (4.25) u 0 could be modelled as u 0 = e ln(V 2 ) +(1-e -y ) = V 2 e 1-e -y (4.26)

and ρ 0 as ρ 0 = e ln(ρ 2 ) +(1-e -y ) = ρ 2 e 1-e -y (4.27)

We now move to the second equation:

ρ 0 u 0 u 0xy + µ u 0xxx -2u 0xxy -u 0xyy = 0 (4.28)
It is thus reduced to:

0 = 0 (4.29) (4.30) 4.3. u 1 & ρ 1
We now move to the first order equations:

u 0 ρ 1 x + u 1 ρ 0 x + u 0x ρ 1 + u 1x ρ 0 = 0 (4.31)
ρ 1 u 0 u 0xy + ρ 0 u 1 u 0xy + ρ 0 u 0 u 1xy + µ u 1xxx -2u 1xxy -u 1xyy = 0 (4.32)

After accounting for the fact u 0 = u 0 (y) and ρ 0 = ρ 0 (y), they are reduced to:

W. Itani u 0 ρ 1 x + u 1x ρ 0 = 0 (4.33) ρ 0 u 0 u 1xy + µ u 1xxx -2u 1xxy -u 1xyy = 0 (4.34)
Starting with the first equation:

ρ 1 = ρ 0 u 0 (u 1 ) + C 3 (y) (4.35)
We note that this is akin to scaling the u 1 solution by the previous order solution, and combining it linearly with another solution to construct ρ 1 . For the purpose, of demonstration, we could argue that we could, for the domain of significance for the first-order terms, treat this as a linear second order ODE, such that: 

ρ 0 u 0 u 1y + µ u 1xx -2u 1xy -u 1yy = C 4 (y) (4.36) u 1 (x, y) = r (x) o (y) (4.37) ρ 0 u 0 r (x) o y (y) + µ o (y) r xx (x) -2r x (x) o y (y) -r (x) o yy (y) = C 4 (y) (4.38) Let u 1 (x, y) = e -x 1 µ ρ 0 u 0 cos(ρ 0 u 0 ) (4.39) r (x) = e -x (4.40) r x (x) = -e -x ( 

Discussion

Without solving for u 1 and ρ 1 properly, we see that an oscillatory solution might arise.

From the zeroth order solution, we note that the boundary layer thickness is nearly uniform depending only on the inlet flow conditions. We note that it is possible to construct a model such that the first order solution carries the leading term for the boundary layer growth as well as the origin of the boundary layer instability down the stream. Further development of the method might allow for assessing the limitations of neglecting the interactions between the boundary layer and the shock along the wedge.

F

  (x, y) = e -C 1 (y) = F(y) u 0 → 0 for y → -∞ and u 0 → V 2 for y → +∞ and F (y) + C 1 (y) → -∞fory → 0

  4.41) r xx (x) = e -x (4.42) Replacing the expression for r(x) and its derivatives into (81) we get: e -x ρ 0 u 0 o y (y) + µ o (y) -2o y (y) -o yy (y) = C 4 (y) (4.43) This leads to: -ρ 0 u 0 o y (y) + µ o (y) + 2o y (y) -o yy (y

  ) = C 5 e R + y + C 6 e R -y (4.49)

  ρue xy + ρ y ue x + ρu y e x + u y P x + uP xy + P y u x + Pu xy ρuu xy + µ(u xxx -2u xxy -u xyy ) = 0 (3.26) ρ 2 u xy + κρ xy + κρ yy P = -ρ 3 ue xy + uρ 2 ρ y uu x + ρu y u x + ρuu xy

								uρ x + ρu x = 0	(3.12)
				ρuu x + P x = µ v +	4 3	µ u xx + µu xy	(3.13) (3.27)
			P y = µu xx + µ v -+κρ µu xxxx + µ v -2 3 µ u xxxy + µu xxxyy + µ v -2 3 µ u xy	2 3	µ u xxyyy	(3.14)
	ρue x + uP x + Pu x = µ v +	4 3	µ uu xx +	κ ρ	P xx -	κP ρ 2 ρ x + µuu xy +	κ ρ	P yy -	kP ρ 2 ρ y	(3.15)
	We now derive the last three equations respectively to introduce mixed derivatives in
	the pressure term:								
			ρ y uu x + ρu y u x + ρuu xy + P xy -µ v +	4 3	µ u xxy -µu xyy = 0	(3.16)
					P yx = µu xxx + µ v -	2 3	µ u xyx	(3.17)
	= (µ v +	4 3	µ)u y u xx + (µ v +	4 3	µ)uu xxy +	κ ρ	P xxy -	κ ρ 2 P xx ρ y -	κP ρ 2 ρ xy -	κP y ρ 2 ρ x + 2	κP ρ 3 ρ y ρ x
		+µu y u xy + µuu xyy +		κ ρ	P yyy -	κ ρ 2 P yy ρ y -	κP ρ 2 ρ yy -	κP y ρ 2 ρ y + 2	κP ρ 3 ρ y ρ y
												(3.18)
	We drop higher powers and multiples of derivatives again, and replace derivatives of P
	with adequate expressions:								
	ρuu xy + µu xxx + µ v -	2 3	µ u xyx -µ v +	2 3	µ u xxy -2µu xxy -µu xyy = 0	(3.19)
					P yx = µu xxx + µ v -	2 3	µ u xyx	(3.20)
				P xxy = µu xxxx + µ v -	2 3	µ u xxxy	(3.21)
					P yy = µu xxxy + µ v -	2 3	µ u xxyy	(3.22)
	P yyy = µu xxxyy + µ v -∂ρ ∂x eu + ρe ∂u ∂x + ρu ∂e ∂x + u 2 3 ρue xy + u(-ρ y uu x -ρu y u x -ρuu xy + µ v + 4 3 = µ v + 4 3 µ u ∂ 2 u ∂x 2 + µ v + 4 3 µ ∂u ∂x 2 µ u xxyyy ∂P ∂x + P µ u xxy + µu xyy ) + Pu xy ∂u ∂x + κ ρ ∂ 2 P ∂x 2 -κP ρ 2 ∂x +µu ∂ 2 u ∂xy + µ ∂u ∂x ∂u ∂y + κ ρ ρ 2 ∂y ∂y 2 -κP ∂ρ ∂ 2 P +µuu xyy + κ ρ (µu xxxyy + µ v -2 3 µ u xxyyy ) -ρ 2 ρ yy κP ∂ρ = µ v + 4 3 µ uu xxy + κ ρ (µu xxxx + µ v -2 3 µ u xxxy ) -κP ρ 2 ρ xy	(3.23) 10) (3.11) (3.24)

We neglect terms having powers larger of unity or multiplication for derivatives. This reduces the equations to three having three unknowns ρ ,P and u where e = f (ρ, P). uρ x + ρu x = 0 (3.25)
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