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A Matched CBCT Projector-Backprojector
Based on the Convolution of B-splines

Marion Savanier(1,2), Cyril Riddell(1), Yves Trousset(1), Emilie Chouzenoux(2) and Jean-Christophe Pesquet(2)

Abstract—Discretizing tomographic operators is a crucial step
in the design of reconstruction algorithms. In particular, for
iterative methods, the projector and backprojector are usually
assumed to be matched to guarantee convergence. In practice,
the reconstruction task is challenging, especially in cone-beam
geometry. To this end, in the context of CBCT with a flat
panel detector, we propose to rely on an interpolating kernel
based on the convolution of B-splines taking into account the
sampling of the detector and of the volume. Matched CBCT
projector/backprojector based on resampling transforms are
designed.

Index Terms—CBCT, discretization, matched pair, projector,
backprojector, B-spline, flat-panel.

I. INTRODUCTION

FLAT-panel based C-arm systems are widely used imag-
ing tools for image-guidance in interventional radiology

and surgery. In addition, cone-beam computed tomography
(CBCT) allows planning, guidance and control of the pro-
cedure. C-arm CBCT often suffers from poor sampling rate.
The potential of reconstructing undersampled data with non
linear iterative algorithms has been demonstrated, for instance
to reduce angular and cone-beam undersampling artifacts [1].
One may intentionally decrease the sampling to reduce the X-
ray dose. In this context, we are particularly interested in least-
squares based optimization criteria regularized with nonlinear
terms [2]. Most penalized least-squares algorithms require the
use of the forward operator (i.e., projector), and the asso-
ciated backward operator (i.e., backprojector). The projector
must encode the C-arm projective geometry as accurately as
possible. Furthermore, an underlying symmetry assumption is
made, as the backprojector is assumed to coincide with the
algebraic adjoint of the projector. Most forward models assume
a geometric voxel shape (e.g. cubic) and its projection onto
the detector. When ray-tracing is chosen, the backprojection
implementation is not efficient, so that alternative models
have been proposed, namely the distance-driven [3] and the
separable-footprint [4]. These implementations are generic
enough to be used with CT scanners curved detector and
C-arm flat panel. In the context of flat panel CBCT, the
geometry can be described with projection matrices. These
matrices continuously relate any point in space to any point
over the detection surface. This naturally leads to modeling
the volume as samples in space and the measurements as
samples over the detector. Voxels are considered through their
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centers and no shape is assumed. Very efficient backprojection
schemes, using resampling transforms, are derived and used
for standard analytical reconstruction, where backprojection
is required only. Unfortunately, they cannot be represented
as being the adjoint of any of the aforementioned forward
models, and thus do not secure the convergence of standard
iterative minimization schemes. It is worth pointing out that,
in practice, the combination of resampling transforms for
backprojection and ray-tracing for forward projection has been
used [5], with apparently limited consequences despite the
violation of the symmetry condition. The main reason may
be that most iterative schemes are run for few iterations only,
so that convergence issues may not be detected. Resampling
transforms have also been used for the forward projection and
here again, symmetry remains an issue [6].
Optimal resizing based on the convolution of B-splines has
been extensively studied by Unser et al. [7]. In this paper,
we propose to extend this approach to the discretization of
resampling homographies, the transforms involved in CBCT
with flat panel. We thus derive novel matched pairs of projec-
tor/backprojector that allow for precise and efficient forward
and backward modeling while keeping symmetry.
In Section II, we recall the decomposition of cone-beam pro-
jection/backprojection with projection matrices as a series of
homographies and introduce the proposed convolution scheme.
Numerical experiments are then provided and discussed in
Section III to evaluate the image quality associated with these
novel tomographic operators.

II. PROPOSED METHOD

A. Projector and backprojector pair

Let f = (fl)1≤l≤L ∈ RL denote the unknown volume
attenuation with L voxels, p = (pk)1≤k≤K ∈ RK , the log-
transformed of the K detector cell measurements acquired on a
C-arm system, and R ∈ RK×L the forward projection model,
whose entries (Rk,l)1≤k≤K,1≤l≤L relate each detector cell k
to each voxel l. Reconstruction aims to estimate volume f from
the knowledge of p and R, based on the linear observation
model:

p = Rf + n, (1)

where n is an additive noise. Iterative penalized least-
squares algorithms minimize the sum of a data fidelity term
1
2 ‖Rf − p‖22 and a regularizer embedding prior information,
such as image smoothness or range constraints. They usually
account for the least-squares term through its gradient of the
form B(Rf − p), where B ∈ RL×K denotes the backprojec-
tion operator. Ideally, we should have B = R>. However, as



we will discuss hereafter, it may happen that the latter equality
does not hold, possibly leading to convergence instabilities and
image quality deterioration.

B. Cone-beam geometry

The projection geometry is defined by the relationship
between voxel coordinates (x, y, z) and the coordinates of the
projected pixels (u, v). In CBCT with a flat-panel detector, the
projector is characterized by a set of 3×4 projection matrices.
There is one projection matrix per position of the imaging
system. For a given projection matrix P , the coordinates (u, v)
of the projection of (x, y, z) onto the detection plane Π can be
written with homogeneous coordinates (su, sv, s), with s ∈ R,
as
(
su, sv, s

)>
= P

(
x, y, z, 1

)>
. The projection operation

being separable, its discretization can be decomposed into 1D
homographies that relate one free variable in space, e.g. x, to
another one over the detector, e.g. u. For instance,(

su, sv0, s
)>

= P
(
x, y0, z0, 1

)>
(2)

reduces to (
su, s

)>
= H

(
x, 1
)>

(3)

with H = (hs,t)1≤s,t≤2 a 2 × 2 homographic matrix. This
operation can be analytically recast as the 1D homographic
function h:

u = h(x) =
h1,1x+ h1,2

h2,1x+ h2,2
. (4)

Without loss of generality, we shall thus treat the projected
data p and original data f as continuous 1D signals. Backpro-
jection resamples f from p and reprojection resamples p from
f according to p(u) = p ◦ h(x) = f ◦ h−1(u) = f(x).
Homography h captures the continuously varying sampling
scale by the magnification factor given by derivative h′(x).
In our clinical context, the geometry has a large focal dis-
tance with respect to the field of view so that h is never
singular and the magnification factor varies slowly around
h′(0) = detH/h2

2,2. Consequently, the inverse homography
h−1 behaves in a similar way. The discretization defines index
i spanning the subset of detector cell locations (ui)1≤i≤I and
index j spanning the subset of voxel locations (xj)1≤j≤J
that are seen through h, giving rise to the discrete signals
p = (p(ui))1≤i≤I and f = (f(xj))1≤j≤J .
To interpolate, one decomposes signals p and f onto a set
of continuous basis functions. A famous family of basis
functions is that of B-splines of order n ∈ N denoted by
βn : R → R. The associated centered B-spline of order n
and scale δ > 0 is defined by βnδ = βn(·/δ). The simplest
B-spline, of order 0, leads to nearest neighbor interpolation,
while order 1 corresponds to linear interpolation. For a given
h, one defines δ1 = 1 and δ2 = δ1h

′(0) as the sampling steps
for f and p, respectively.
Backprojection operator B computes the values (fj)1≤j≤J
from (pi)1≤i≤I of p using p(u) =

∑I
i=1 piβ

n
δ2

(u − ui) so
that Bj,i = βnδ2(h(xj) − ui). Conversely, projection operator
R uses f(x) =

∑J
j=1 fjβ

n
δ1

(x − xj) from the components
(fj)1≤j∈J of f so that Ri,j = βnδ1(h−1(ui) − xj). To get

a matched pair, one would replace B with R> which gives
f(xj) =

∑
i|j∈Ωi

piβ
n
δ1

(h−1(ui) − xj) with Ωi the set of
indices j such that for a given i, Ri,j 6= 0. This expansion
appears as a poor choice for computing fj in a direct manner
because it uses the basis functions βnδ1 instead of βnδ2 . As a
result, detector cells contribute with gaps or redundancies to
image pixels, which leads to high frequency artifacts.

C. Convolution-based basis function

We now assume that p and f are decomposed onto sets of
B-splines of possibly different orders, n ∈ N for p and m ∈ N
for f .
To overcome the previously described limitation, we propose
to use a basis function suitable for both projection and
backprojection, the latter requiring to capture βnδ1 ◦ h

−1(u).
For this purpose, we define the interpolating kernel φm,nδ1,∆1,i

made of the normalized convolution of basis functions βmδ1 and
βn∆1,i

with ∆1,i = (h−1)′(ui)δ1. Without loss of generality,
we set δ1 = 1, and ∆1,i is interpreted as a sampling parameter
for the variation of magnification induced by the homography.
The projection sampled at locations (ui)1≤i≤I now reads:

pi = f(h−1(ui)) = (Rf)i =

J∑
j=1

fjφ
m,n
1,∆1,i

(h−1(ui)− xj)

=

J∑
j=1

fj
∆1,i

(
βn∆1,i

∗ βm1
)

(h−1(ui)− xj) (5)

with Ri,j = 1
∆1,i

(
βn∆1,i

∗ βm1
)

(h−1(ui) − xj). From the
general scaling property, for every ∆ > 0, (βn∆ ∗ βm1 ) (u) ≡
∆
(
βn1 ∗ βm1

∆

)
(u/∆). This allows us to deduce the adjoint of

matrix R aiming at computing the backprojection at locations
(xj)1≤j≤J :

fj = (R>p)j =

I∑
i=1

pi
∆1,i

(
βn∆1,i

∗ βm1
) (
h−1(ui)− xj

)
=

I∑
i=1

pi

(
βn1 ∗ βm1

∆1,i

)(
h−1(ui)− xj

∆1,i

)

=

I∑
i=1

pi

(
βn1 ∗ βm1

∆1,i

)(
ui −

xj
∆1,i

)
. (6)

Similarly, we can express B using the normalized convolution
1

∆2,j

(
βm∆2,j

∗ βn1
)

. The backprojected function at locations
(uj)1≤j≤J can then be computed as

fj = p(h(xj)) =

I∑
i=1

pi
∆2,j

(
βn1 ∗ βm∆2,j

)
(h(xj)− ui)

=

I∑
i=1

pi
∆2,j

(
βn1 ∗ βm∆2,j

)
(∆2,jxj − ui). (7)

The coefficients of matrix B are thus Bj,i =
1

∆2,j

(
βn1 ∗ βm∆2,j

)
(h(xj) − ui). From (7) and (6), we

still have B> 6= R, but, up to a normalization factor, the
difference now comes from our linear approximation to
the homography h, quantified by the set of magnification



factors (∆2,j)1≤j≤J and (1/∆1,i)1≤i≤I . The precision of
our model relies on two factors, namely the order of the
B-spline1, and the set of magnifications. The former point is
well documented and one can easily select the best trade-off
between precision and complexity for a given application.
Regarding magnification factors, neither the projector nor the
backprojector is worthy to be privileged. In (6), ∆1,i could
be replaced by ∆2,j . The largest set of magnifications should
be chosen to better capture the changes in sampling rates
induced by h and h−1.

D. Implementation
Since detectors are composed of cells, we choose to rep-

resent p with zero order B-spline, β0
1 i.e. n = 0. We do not

restrict the volume to be a set of cubic voxels and we keep
the flexibility m ∈ {0, 1} for f . Let us set ∆ > 0. The scaled
convolution kernel φm,01,∆ is such that

φm,01,∆(`) =
1

∆
(βm1 ∗ β0

∆)(`) =
1

∆

∫ +∞

−∞
βm1 (τ)β0

∆(`− τ)dτ,

(8)
for ` ∈ R. The latter kernel gives the interpolation values at
(xj)1≤j≤J and (ui)1≤i≤I . In addition, if B-splines of order
1 are chosen for function f (i.e. m = 1), once the entries
of f = (f(xj))1≤j≤J have been computed with B, a digital
post-filter to f corresponding to the cubic spline interpolation
filter must be applied to f as demonstrated in [7].
Given our choices for n and m, we are interested in two
interpolating kernels: φ0,0

1,∆ and φ1,0
1,∆. Before deriving their

explicit formula from (8), let us recall the formula of the B-
splines of order 0 and 1, for every ` ∈ R:

β0(`) =

{
1 if |`| < 1

2

0 otherwise,

β1(`) =

{
1− |`| if |`| < 1

0 otherwise.

• Case 1

φ0,0
1,∆(`) =

 min(1,∆)/∆ if |`| < a1
1
∆ (a2 − |`|) if a1 ≤ |`| < a2

0 if |`| ≥ a2

with a1 = |∆−1|
2 , and a2 = ∆+1

2 .
• Case 2

φ1,0
1,∆(`) =


ck,0 + ck,1|`|+ ck,2`

2 for |`| ∈ [ak−1, ak)

and k ∈ {1, 2}
0 otherwise

with a0 = 0, a1 = |∆2 − 1|, a2 = ∆
2 + 1 and expressions

for (ck,0, ck,1, ck,2) are given in Tab. I.
The approach of lowest order is comparable in complexity to
linear interpolation and is thus simpler than original distance-
driven. Kernels of higher degree increase computation time
proportionally to their larger support.

1None of the above calculations rely on the fact that the basis functions are
B-splines. Thus, one could easily choose another class of functions, noting
that B-splines functions enjoy the minimal support for a given approximation
order and the maximal approximation order for a given support.

Interval ck,0 ck,1 ck,2

|`| < a1

if ∆ ≤ 2 ∧ |`| < ∆/2

if ∆ ≤ 2 ∧ |`| ≥ ∆/2

if ∆ > 2

1−∆/4

1

1/∆

0

−1

0

− 1
∆

0

0

a1 ≤ |`| < a2

if |`| ≥ ∆/2

if |`| < ∆/2

(∆ + 4 + 4/∆)/8

(−∆ + 4 + 4/∆)/8

− 1
∆

+ 1
2

− 1
∆
− 1

2

− 1
2∆

1
2∆

TABLE I: B-spline parameters for case 2

III. EXPERIMENTS

A. Simulation context

To prove the concept of our approach, we evaluated our
projector and backprojector as single modules and within an
iterative reconstruction task. We computed simulated noise-
free data of geometrical phantoms in CBCT geometry of
half cone angle of 20◦, as can be found on clinical C-arm
systems. The detector bins are sampled on a finer grid than
the voxels leading to a magnification of factor

√
2. Linear in-

terpolation was taken as a baseline, for projector/backprojector
construction and the distance-driven pair (DD) was added
to the comparison. First, we analyzed the performance of
matrix R for the B-splines kernels when projecting a centered
uniform cylinder of attenuation 0.1 per voxels of diameter
80 voxels over 360◦. The scanned object being invariant by
rotation, we quantified the rotation invariance by computing
the root mean-square error (RMSE) and the maximum error
(MAE) between each profile over the range [0◦, 45◦] and
profile at angle 0◦. Then, for the same task, we compared
the performance of the transpose of matrix B. Finally we
evaluated the spatial resolution associated to the different
interpolation kernels using the modulation transfer function
(MTF) on the reconstruction of a cube from 600 projections
over 360◦. To avoid the inverse crime, the forward-projection
data was calculated with a 3000× 20 pixel detector that was
rebinned to 750 × 20 pixels. An FDK reconstruction was
first performed to investigate the quality of R> and B as
backprojectors. Then an iterative reconstruction was performed
by applying 500 Landweber iterations with f (0) chosen as the
zero vector:

f (n+1) = f (n) − τR>(Rf (n) − p), n ∈ N. (9)

Parameter τ is chosen as 1.9/‖R‖2. No regularization was
added as we aim to highlight features that are intrinsic to the
model. This experiment gives an insight on the largest sin-
gular values of operator R. Since the reconstruction methods
investigated here are linear, spatial resolution at a slanted edge
(tilting of 5◦) is a suitable MTF.

B. Results

For the projection of the uniform cylinder, with R, upon
visual inspection of plotted profiles, the results are very similar
for all interpolation schemes (plots not shown). For both
invariance metrics, the convolution kernel φ1,0

· combined with



a digital filter provides slightly better results: RMSE is 0.008
and MAE is 0.044 at angle 0◦ and monotonically increases up
to 0.178 and 1.052 at 45◦ while the other schemes perform
almost identically (RMSE of 0.04 and MAE of 0.213 at 0◦,
RMSE of 0.185 and MAE of 1.09 at 45◦). With B>, the profile
of the projected cylinder at the angle 45◦ resulting from the
transpose of linear interpolation is clearly distinguishable as
it is degraded by high-frequency oscillations, which do not
appear with any of the other convolutional basis functions
(profiles not shown). The RMSE and MAE scores corroborate
this observation.
Figure 1 displays the MTF curves obtained for the FDK
reconstruction task with B. For this task, φ0,0

· and DD scheme

Fig. 1: MTF curve for B

provides superimposed MTF curves just below the curve
obtained with linear interpolation. Kernel φ1,0

· combined with
a digital filter for the backprojection produces better spa-
tial resolution. We further quantitatively compare their MTF
curves through frequency ν0.2 for which the MTF reaches
value 0.2. For kernel φ1,0

· , ν0.2 is increased by 0.1. Then for
FDK reconstruction with R>, the same frequencies ν0.2 are
tabulated in Table II. All MTF curves are close with a slight
advantage for φ0,0

· .

Linear DD φ0,0
· φ1,0

·
ν0.2 0.808 0.824 0.824 0.793

TABLE II: Spatial frequency ν0.2 at 20% MTF for FDK with R>

Fig. 2: Zoom on corner of reconstructed slice. From left to right: Linear
interpolation, DD, φ0,0

· , φ1,0
· .

Finally, after 500 Landweber iterations, the reconstructed
square with linear interpolation is substantially different than
those obtained with the other models as shown on Figure
2. Undesirable interpolation patterns are visible with linear
interpolation. This indicates that some non-null singular values
of such R are of very low magnitude, yielding a reconstruction

with details similar to discretization errors. For the other
models, frequencies ν0.2 are reported in Table III. All MTF
curves are almost superimposed: φ0,0

· , φ1,0
· and DD scheme

produce sharp reconstructions, comparable to that of FDK.

DD φ0,0
· φ1,0

·
ν0.2 0.8945 0.8945 0.8711

TABLE III: Spatial frequency ν0.2 at 20% MTF for iterative reconstruction

These preliminary results suggest that the transpose of the
linear interpolation-based backprojection does not qualify as
a quality projection model. By using a refined discretization
of the resampling transform through our convolution kernels,
the performance of the transpose becomes similar to that of
direct models for the basic tests given here, even with the
lowest order of B-spline. Our results indicate that the kernel
obtained with B-splines of order 0 perform as well as the
distance-driven pair in a consistent fashion. This scheme is
based on a similar rationale as ours, but is not flexible as
it does not provide means for higher–order interpolation. We
did not get consistent MTF increases when raising the degree
of the spline modeling the volume. Further experiments are
needed to tell whether it can improve reconstruction of real
data at a reasonable computation cost. As advocated in [6],
iterative reconstruction could have been performed in a virtual
geometry, called rectified geometry. On the one hand, it incurs
an additional resampling step that may degrade precision. On
the other hand, homographies reduce to magnifications. The
resampling task is simplified into that of the resizing problem
for which the B-splines approach chosen here benefits from
strong theoretical properties [7], especially in terms of optimal
approximation.

IV. CONCLUSION

A novel interpolation scheme based on B-spline convolution
has been proposed to discretize the projector and backpro-
jector, in the context of CBCT with a flat panel detector.
The expected benefits of this approach is improved recon-
struction for various methods involving a matched pair of
projector/backprojector requiring high-quality interpolation.
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