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Abstract

We consider the controllability of a viscous incompressible fluid modeled by the Navier-Stokes system
with a nonlinear viscosity. To prove the controllability to trajectories, we linearize around a trajectory and
the corresponding linear system includes a nonlocal spatial term. Our main result is a Carleman estimate
for the adjoint of this linear system. This estimate yields in a standard way the null controllability of the
linear system and the local controllability to trajectories. Our method to obtain the Carleman estimate is
completely general and can be adapted to other parabolic systems when a Carleman estimate is available.
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1 Introduction

The aim of this article is to consider the controllability to trajectories of a model for the motion of a
viscous incompressible fluid. This model was considered and studied by Ladyzhenskaya in [11]. The null-
controllability of this system is obtained in [5], and the controllability to stationary trajectories is proved
in [14] in the one-dimensional case (that is with the Burgers viscous equation instead of the Navier-Stokes
system).

Here our aim is to complete the previous results and to show the local null controllability to trajectories.
Besides the interest of the corresponding result, our interest consists in showing how we can derive Carleman
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estimates for a parabolic system with a nonlocal spatial term. Such terms can appear naturally in fluid
mechanics to model the turbulence, but with more complicated models and we can also see such terms
in biology, see for instance [15, Section 11.5]. Previous results have been obtained for parabolic systems
with nonlocal spatial terms, see, for instance, [9], [1], [8], [13], etc. Let us note that in these references,
the nonlocal spatial term is an integral term with a general kernel K(x, y) and here we only treat the case
of a kernel of the form K = a ⊗ b, see (1.6) below. Nevertheless with this type of kernels, we are able
to show a Carleman estimate whereas the previous references are considering a compactness-uniqueness
argument that does not permit to deduce directly a controllability result on the nonlinear systems. In [8],
the authors consider a nonlinear heat equation where the nonlinearity contains a nonlocal term similar to
the one here. Their method consists in showing the approximate controllability of the linearized system by
using a compactness-uniqueness argument and then deduce the approximate controllability of the nonlinear
system by using a Kakutani fixed point argument. Then the local exact controllability to trajectories is
obtained with a passage to the limit. With our approach, the Carleman estimate for the adjoint system
implies in a standard way the local exact controllability to trajectories with a Banach fixed point argument
and without any passage to the limit.

Let us present the model of Ladyzhenskaya for the motion of a viscous incompressible fluid. Assume Ω
is a smooth domain of R3 and T > 0. We consider the following system

∂tv −
(
ν0 + ν1

∫
Ω

curl(v)2 dx

)
∆v +∇p+ (v · ∇)v = 1ωu in (0, T )× Ω,

div v = 0 in (0, T )× Ω,
v = 0 on (0, T )× ∂Ω,

v(0, ·) = v0 in Ω.

(1.1)

In the above system, v and p are respectively the velocity and the pressure of the fluid. The viscosity of
the fluid is not constant and depends on the velocity of the fluid. Such a model where a nonlocal spatial
dependence appears has some common features with models for the turbulence (see, for instance, [2], [12],
etc.) The constants ν0 and ν1 are assumed to be positive. The control u of this system is supported in a
subdomain ω b Ω and we want to use it to obtain the controllability to the following given trajectory:

∂tv −
(
ν0 + ν1

∫
Ω

curl(v)2 dx

)
∆v +∇p+ (v · ∇)v = 0 in (0, T )× Ω,

div v = 0 in (0, T )× Ω,
v = 0 on (0, T )× ∂Ω,

v(0, ·) = v0 in Ω.

(1.2)

This means that we search a control u such that v(T, ·) = v(T, ·). In order to do this, we set

z = v − v, q = p− p,

µ := ν0 + ν1

∫
Ω

curl(v)2 dx, a = 2ν1∆v, b = ∆v, z0 = v0 − v0 (1.3)

so that
∂tz − µ∆z +

(∫
Ω

b · z dx
)
a+ z · ∇v + v · ∇z +∇q = F (z) + 1ωu in (0, T )× Ω,

div z = 0 in (0, T )× Ω,
z = 0 on (0, T )× ∂Ω,

z(0, ·) = z0 in Ω,

(1.4)

where

F (z) = ν1

(∫
Ω

| curl z|2 dx
)

∆z + ν1

(∫
Ω

| curl z|2 dx
)

∆v + 2ν1

(∫
Ω

(curl v) · curl z dx

)
∆z − z · ∇z. (1.5)

We are then reduced to show the null-controllability of the nonlinear system (1.4). A standard method to
prove the local null-controllability of (1.4) consists in showing the null-controllability of the linearized system
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of (1.4), that is
∂tz − µ∆z +

(∫
Ω

b · z dy
)
a+ z · ∇v + v · ∇z +∇q = f + 1ωu in (0, T )× Ω,

div z = 0 in (0, T )× Ω,
z = 0 on (0, T )× ∂Ω,

z(0, ·) = z0 in Ω,

(1.6)

where f is a given source term. To show the null-controllability of the above system, we need to prove an
observability inequality for the adjoint system of (1.6) given by

−∂tϕ− µ∆ϕ+

(∫
Ω

a · ϕ dx

)
b+ (∇v)> ϕ− v · ∇ϕ+∇π = g in (0, T )× Ω,

divϕ = 0 in (0, T )× Ω,
ϕ = 0 on (0, T )× ∂Ω,

ϕ(T, ·) = ϕT in Ω.

(1.7)

A classical way to obtain this observability inequality relies on the Carleman estimates (see, for instance,
[10], [4], [7], etc.). The nice feature of this method is that the lower order terms can be neglected during the

proof. However, here the nonlocal spatial term

(∫
Ω

a · ϕ dx

)
b can not be absorbed in a direct way and one

has to work differently to handle this term.
First, we assume that

v ∈W 1,∞(0, T ;H1(Ω)) ∩H1(0, T ;W 1,∞(Ω)) ∩H1(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)). (1.8)

In particular, we have

µ ∈W 1,∞(0, T ), a ∈ H1(0, T ;L2(Ω)), b ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) (1.9)

and
µ(t) > ν0 > 0.

The domain of the control ω is a nonempty open set of Ω and we assume that

curl b 6≡ 0 in (0, T )× ω (1.10)

and more precisely that there exists a non empty open set (T1, T2)× ω0 ⊂ (0, T )× ω such that

| curl b| > c∗ > 0 in (T1, T2)× ω0. (1.11)

If curl b ∈ C0([0, T ] × Ω), then (1.10) implies (1.11) but in the general case, condition (1.11) is stronger.
In the controllability of (1.4), one can always consider the case where in (1.11), T1 = 0 and T2 = T by
considering a control u = 0 outside (T1, T2). Therefore we assume in what follows that

ω0 b ω, (1.12)

and
| curl b| > c∗ > 0 in (0, T )× ω0. (1.13)

Our first result is a Carleman estimate for (1.7). In order to state this result we first introduce some
standard weights. We choose ω1 a nonempty open set such that

ω1 b ω0 b ω (1.14)

There exists

η ∈ C2(Ω), η > 0 in Ω, η = 0 on ∂Ω, |∇η| > 0 in Ω \ ω1, max
Ω

η = 1. (1.15)

Assume λ > 2 ln 2, m > 4 and let us set

ξ(t, x) =
eλ(2m+η(x))

[t(T − t)]m , α(t, x) =
eλ(2m+2) − eλ(2m+η(x))

[t(T − t)]m . (1.16)

3



We also set

ξ](t) =
e2mλ

[t(T − t)]m , ξ[(t) =
eλ(2m+1)

[t(T − t)]m , (1.17)

α](t) =
eλ(2m+2) − e2mλ

[t(T − t)]m , α[(t) =
eλ(2m+2) − eλ(2m+1)

[t(T − t)]m . (1.18)

We have the following relations for C > 0 independent of T and λ :

ξ] 6 ξ 6 ξ[ and e−sα] 6 e−sα 6 e−sα[ in (0, T )× Ω, (1.19)

α] <
4

3
α[,

∣∣ξ′]∣∣ 6 CTξ
1+1/m
] ,

∣∣α′]∣∣ 6 CTξ
1+1/m
] in (0, T )× Ω, (1.20)∣∣ξ′′] ∣∣ 6 CT 2ξ

1+2/m
] ,

∣∣α′′] ∣∣ 6 CT 2ξ
1+2/m
] in (0, T )× Ω. (1.21)

There exists C > 0 such that if s > CT 2m, then

sξ] > 1 in (0, T )× Ω. (1.22)

Finally, let us define

ρ1 :=


e−

3
2
sα] in

[
T

2
, T

]
[
e−

3
2
sα]

](T
2

)
in

[
0,
T

2

] , ρ2 :=


s6/mλ−9ξ

6/m
] e−4sα[+ 3

2
sα] in

[
T

2
, T

]
[
s6/mλ−9ξ

6/m
] e−4sα[+ 3

2
sα]

](T
2

)
in

[
0,
T

2

] ,

(1.23)

ρ3 :=


s2λ3ξ2

] e
− 5

2
sα] in

[
T

2
, T

]
[
s2λ3ξ2

] e
− 5

2
sα]

](T
2

)
in

[
0,
T

2

] . (1.24)

Note that ρ2(T ) = 0 due to (1.20). We are now in a position to state the Carleman estimate for (1.7).

Theorem 1.1. Assume (1.8), (1.12) and (1.13). There exists a constant C > 0 such that for any ϕ solution
of (1.7)

‖ρ3ϕ‖L2(0,T ;L2(Ω)) + ‖ϕ(0, ·)‖L2(Ω) 6 C

[
‖ρ2ϕ‖L2(0,T ;L2(ω)) + ‖ρ1g‖L2(0,T ;L2(Ω))

]
. (1.25)

Remark 1.2. Note that if
curl b ≡ 0 in (0, T )× Ω,

then Theorem 1.1 holds true without conditions (1.12) and (1.13) and with a weaker condition than (1.8). In
fact, the result also holds true if b is in the kernel of any differential operator corresponding to a composition
with the curl operator: for instance, if ∆b = 0 or if ∇∆b = 0 in (0, T ) × Ω. In that case, one can easily
adapt the proof of Theorem 1.1 by using the operator ∆ or ∇∆ instead of the curl operator.

If b 6≡ 0 in (0, T )× Ω but
b ≡ 0 in (0, T )× ω, (1.26)

so that (1.10) does not hold, one can show that the unique continuation property is not satisfied so that one
can not expect a Carleman estimate in that case. More precisely, there exist a, b (without the relation with
v given by (1.3)), and (ϕ, π) a solution of (1.7) with g = 0 such that ϕ ≡ 0 in (0, T ) × ω but ϕ 6≡ 0 in
(0, T )×Ω. The construction is quite standard: we consider ϕ ∈ C2(Ω), independent in time to simplify, not
identically null, with divϕ = 0 and ϕ = 0 on ∂Ω. We also take π ≡ 0. Then, there exists a ∈ L2(Ω) such
that ∫

Ω

a · ϕ dx 6= 0

and we define b by

b :=
µ∆ϕ− (∇v)> ϕ+ v · ∇ϕ∫

Ω

a · ϕ dx

.

One can check that (a, b, ϕ, π) satisfies the above hypotheses.
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Remark 1.3. Another important remark about the proof given here to obtain Theorem 1.1 is that it is quite
general and can be adapted to many other parabolic systems. One can for instance consider the controllability
of the system considered in [8] (nonlinear parabolic system with nonlinear diffusion) or a system of heat
equations with a nonlocal spatial term of the same type as here and in the case where one can show a
Carleman estimate without this nonlocal term.

Let us define

ρ0 :=


e−

11
8
sα] in

[
T

2
, T

]
[
e−

11
8
sα]

](T
2

)
in

[
0,
T

2

] . (1.27)

As a corollary of Theorem 1.1, we deduce the following controllability results:

Corollary 1.4. Assume (1.8), (1.12) and (1.13). Suppose

z0 ∈ H1(Ω),
f

ρ3
∈ L2((0, T )× Ω).

Then there exists u ∈ L2(0, T ;L2(ω)) such that the solution z of (1.6) satisfies∥∥∥∥ zρ0

∥∥∥∥
L2(0,T ;H2(Ω))∩C0([0,T ];H1(Ω))∩H1(0,T ;L2(Ω))

6 C

(∥∥∥∥ fρ3

∥∥∥∥
L2((0,T )×Ω)

+ ‖z0‖H1(Ω)

)
.

In particular, z(T, ·) = 0.
Moreover, there exists a constant c0 such that for any ‖z0‖H1(Ω) 6 c0, there exists u ∈ L2(0, T ;L2(ω))

such that the solution z of (1.4) satisfies

z

ρ0
∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)).

In particular, z(T, ·) = 0.

The outline of the article is as follows. In Section 2 we recall some preliminary results: well-posedness
of systems of type (1.6) or (1.7), and standard Carleman estimates for the gradient, the Laplace and the
heat operators. Let us emphasize that the Carleman estimate for the gradient is a key point in the proof
of Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.1 and we use this result to show the
controllability results (Corollary 1.4) in Section 4.

2 Preliminaries

2.1 A well-posedness result

Let us consider the system
∂tφ− κ(1)∆φ+∇r + (∇φ)κ(2) + κ(3)φ+

(∫
Ω

κ(4) · φ dx
)
κ(5) = h in (0, T )× Ω,

div φ = 0 in (0, T )× Ω,
φ = 0 on (0, T )× ∂Ω,

φ(0, ·) = φ0 in Ω,

(2.1)

where
κ(1) : (0, T )→ R∗+, κ(i) : (0, T )× Ω→ R3 (i = 2, 4, 5), κ(3) : (0, T )× Ω→ R9,

κ(1) ∈W 1,∞(0, T ), κ(1) > ν0 > 0, (2.2)

κ(2) ∈ H1(0, T ;L∞(Ω)) ∩ L∞(0, T ;H2(Ω)), (2.3)

κ(3) ∈ H1(0, T ;L∞(Ω)) ∩ L2(0, T ;H2(Ω)), (2.4)

κ(4) ∈ H1(0, T ;L2(Ω)), (2.5)

κ(5) ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)). (2.6)
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We set
X1 := L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)),

X2 := L2(0, T ;H4(Ω)) ∩ C0([0, T ];H3(Ω)) ∩H1(0, T ;H2(Ω)) ∩ C1([0, T ];H1(Ω)) ∩H2(0, T ;L2(Ω)).

Then we have the following result that can be obtained by standard methods:

Lemma 2.1. With the above assumptions, assume

φ0 ∈ H1
0 (Ω), div φ0 = 0, h ∈ L2((0, T )× Ω).

Then there exists a unique solution to (2.1)

(φ, r) ∈ X1 × L2(0, T ;H1(Ω)/R)

and there exists a constant C > 0 such that

‖φ‖X1 + ‖∇r‖L2((0,T )×Ω) 6 C
(
‖φ0‖H1

0 (Ω) + ‖h‖L2((0,T )×Ω)

)
.

Assume
φ0 ∈ H3(Ω) ∩H1

0 (Ω), div φ0 = 0, h ∈ X1

and there exists r0 ∈ H1(Ω) such that

φ1 := κ(1)(0)∆φ0 −∇r0 −
(
∇φ0)κ(2)(0, ·)− κ(3)(0, ·)φ0 −

(∫
Ω

κ(4)(0, ·) · φ0 dx

)
κ(5)(0, ·) + h(0, ·)

satisfies φ1 = 0 on ∂Ω, div φ1 = 0. Then there exists a unique solution to (2.1)

(φ,∇r) ∈ X2 ×X1

and there exists a constant C > 0 such that

‖φ‖X2 + ‖∇r‖X1 6 C
(
‖φ0‖H3(Ω) + ‖h‖X1

)
.

2.2 First Carleman estimates

We recall here some Carleman estimates that were obtained in previous articles. The weights used below
are given by (1.15)-(1.18).

First, we recall a Carleman estimate for the gradient operator (see, for instance, [3, Lemma 3]):

Lemma 2.2. There exists C > 0 depending on the geometry and on η such that for any T > 0, λ > C,
s > CT 2m and u ∈ L2(0, T ;H1(Ω)),∫∫

(0,T )×Ω

e−2sα|u|2 dx dt 6 C

(
1

s2λ2

∫∫
(0,T )×Ω

ξ−2e−2sα|∇u|2 dx dt+

∫∫
(0,T )×ω1

e−2sα|u|2 dx dt

)
.

In particular, if u ∈ L2(0, T ), then the above inequality writes∫∫
(0,T )×Ω

e−2sα|u|2 dx dt 6 C

∫∫
(0,T )×ω1

e−2sα|u|2 dx dt. (2.7)

Then, we recall a Carleman estimate for the Laplace operator (see, for instance, [3, Lemma 4]):

Lemma 2.3. There exists C > 0 depending on the geometry and on η such that for any T > 0, λ > C,
s > CT 2m and u ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)),∫∫
(0,T )×Ω

s4λ6ξ4e−2sα|u|2 dx dt+

∫∫
(0,T )×Ω

s2λ4ξ2e−2sα|∇u|2 dx dt

6 C

(∫∫
(0,T )×Ω

sλ2ξe−2sα|∆u|2 dx dt+

∫∫
(0,T )×ω1

s4λ6ξ4e−2sα|u|2 dx dt

)
. (2.8)
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Finally, we need a Carleman estimates for the heat equation with Neumann boundary conditions: ∂tu+ µ∆u = f (1) + div f (2) in (0, T )× Ω,

−µ∂u
∂n

+ f (2) · n = f (3) on (0, T )× ∂Ω.
(2.9)

The following lemma is obtained in [6] (see also [3, Lemma 5]):

Lemma 2.4. There exists C > 0 depending on the geometry and on η such that for any

T > 0, λ > C, s > C(T 2m + Tm),

f (1), f (2) ∈ L2(0, T ;L2(Ω)), f (3) ∈ L2(0, T ;L2(∂Ω)),

and u ∈ L2(0, T ;H1(Ω)) ∩ C0([0, T ];L2(Ω)) weak solution of (2.9),∫∫
(0,T )×Ω

s3λ4ξ3e−2sα|u|2 dx dt+

∫∫
(0,T )×Ω

sλ2ξe−2sα|∇u|2 dx dt

6 C

(∫∫
(0,T )×Ω

e−2sα|f (1)|2 dx dt+

∫∫
(0,T )×Ω

s2λ2ξ2e−2sα|f (2)|2 dx dt

+

∫∫
(0,T )×∂Ω

sλξ]e
−2sα] |f (3)|2 dγ dt+

∫∫
(0,T )×ω1

s3λ4ξ3e−2sα|u|2 dx dt

)
. (2.10)

3 Proof of Theorem 1.1

We consider the function ρ : [0, T ]→ R+ defined by

ρ := e−
3
2
sα] . (3.1)

Note that ρ(0) = ρ(T ) = 0. Then, we consider the following decomposition of the solution of (1.7):

ρϕ = ϕ̂+ ϕ̃ (3.2)

where 
−∂tϕ̂− µ∆ϕ̂+

(∫
Ω

a · ϕ̂ dx

)
b+ (∇v)> ϕ̂− v · ∇ϕ̂+∇π̂ = ρg in (0, T )× Ω,

div ϕ̂ = 0 in (0, T )× Ω,
ϕ̂ = 0 on (0, T )× ∂Ω,

ϕ̂(T, ·) = 0 in Ω,

(3.3)

and 
−∂tϕ̃− µ∆ϕ̃+

(∫
Ω

a · ϕ̃ dx

)
b+ (∇v)> ϕ̃− v · ∇ϕ̃+∇π̃ = −ρ′ϕ in (0, T )× Ω,

div ϕ̃ = 0 in (0, T )× Ω,
ϕ̃ = 0 on (0, T )× ∂Ω,

ϕ̃(T, ·) = 0 in Ω.

(3.4)

3.1 A priori estimates with weights

In this section we show the follow result:

Proposition 3.1. The solution of (3.3) satisfies

‖ϕ̂‖X1
6 C ‖ρg‖L2(0,T ;L2(Ω)) . (3.5)

Let us consider
γ1 := s−2/mλ3ξ

−2/m
] e−sα] . (3.6)

Then the solution of (3.4) satisfies

‖γ1ϕ̃‖L2(0,T ;H4(Ω)) + ‖γ1∂t∆ϕ̃‖L2(0,T ;L2(Ω)) + ‖γ1∂ttϕ̃‖L2(0,T ;L2(Ω))

6 C

(∥∥∥Ts2−1/mλ3ξ2e−sαϕ̃
∥∥∥
L2(0,T ;L2(Ω))

+ ‖ρg‖L2(0,T ;L2(Ω))

)
. (3.7)
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Proof. Relation (3.5) is a direct consequence of Lemma 2.1, (1.3) and (1.8). Let us set

γ0 := s1−1/mλ3ξ
1−1/m
] e−sα] . (3.8)

Then from (1.20), we deduce that for s > CT 2m,∣∣γ′0∣∣ 6 CTs2−1/mλ3ξ2
] e
−sα] ,

∣∣γ0ρ
′∣∣ 6 CTs2−1/mλ3ξ2

] e
−sα]ρ, (3.9)

and thus ∥∥γ′0ϕ̃∥∥L2(0,T ;L2(Ω))
6 C

∥∥∥Ts2−1/mλ3ξ2e−sαϕ̃
∥∥∥
L2(0,T ;L2(Ω))

, (3.10)

‖γ0ρ
′ϕ‖L2(0,T ;L2(Ω)) 6 C

(∥∥∥Ts2−1/mλ3ξ2e−sαϕ̃
∥∥∥
L2(0,T ;L2(Ω))

+ ‖ϕ̂‖L2(0,T ;L2(Ω))

)
. (3.11)

Using (3.4), we deduce that γ0ϕ̃ solves (2.1) (with a change of variables t 7→ T − t) with the right-hand side
−γ′0ϕ̃− γ0ρ

′ϕ and with a null final condition. We can apply Lemma 2.1 and combine it with (3.10), (3.11)
and (3.5) to obtain

‖γ0ϕ̃‖X1 6 C

(∥∥∥Ts2−1/mλ3ξ2e−sαϕ̃
∥∥∥
L2(0,T ;L2(Ω))

+ ‖ρg‖L2(0,T ;L2(Ω))

)
. (3.12)

Using (1.20)-(1.21), we deduce that for s > C(Tm + T 2m),∣∣γ′1∣∣ 6 Cγ0,
∣∣γ1ρ

′∣∣ 6 Cγ0ρ, (3.13)

|γ′′1 | 6 CT 2s2−2/mλ3ξ2e−sα,
∣∣γ′1ρ′∣∣+

∣∣γ1ρ
′′∣∣ 6 CT 2s2−2/mλ3ξ2e−sαρ. (3.14)

From (3.4), we remark that γ1ϕ̃ solves (2.1) (with a change of variables t 7→ T − t) with the right-hand side
−γ′1ϕ̃− γ1ρ

′ϕ and with a null final condition. Applying Lemma 2.1, we obtain that

‖γ1ϕ̃‖X2 6 C(‖γ′1ϕ̃‖X1 + ‖γ1ρ
′ϕ‖X1). (3.15)

From (3.9), (3.13), (3.14), the above estimate yields

‖γ1ϕ̃‖X2 6 C

(
‖γ0ϕ̃‖X1 +

∥∥∥(T 2s2−2/m + Ts2−1/m)λξ2e−sαϕ̃
∥∥∥
L2(0,T ;L2(Ω))

+ ‖ϕ̂‖X1

)
.

The above estimate combined with (3.12) and (3.5) implies

‖γ1ϕ̃‖X2 6 C

(∥∥∥Ts2−1/mλ3ξ2e−sαϕ̃
∥∥∥
L2(0,T ;L2(Ω))

+ ‖ρg‖L2(0,T ;L2(Ω))

)
, (3.16)

for s > CTm. Combining this with (3.9), (3.13), (3.14), and (3.12), we deduce (3.7).

Remark 3.2. Let us notice that for s > C(Tm + T 2m),

e−2sα[ 6 Cγ−2
1 e−4sα[ . (3.17)

Using that α] < 2α[, we deduce that

γ−2
1 e−4sα[ =

(
γ−2

1 e−4sα[
)′

= 0 at t ∈ {0, T}. (3.18)

3.2 Carleman estimates for the system (3.4)

Taking the curl of the first equation of (3.4), we obtain

− ∂t curl ϕ̃− µ∆ curl ϕ̃ = − curl

[(∫
Ω

a · ϕ̃ dx

)
b+

(
(∇v)> ϕ̃− v · ∇ϕ̃

)
+ ρ′ϕ

]
. (3.19)
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We first apply Lemma 2.4 (for f2 = 0) and we use that v ∈ L∞(0, T ;W 2,∞(Ω)) :∫∫
(0,T )×Ω

s3λ4ξ3e−2sα| curl ϕ̃|2 dx dt+

∫∫
(0,T )×Ω

sλ2ξe−2sα|∇ curl ϕ̃|2 dx dt

6 C

[∫∫
(0,T )×Ω

e−2sα
(∣∣ϕ̃|2 + |∇ϕ̃

∣∣2 + |∇ curl ϕ̃|2 + |ρ′ curlϕ|2
)
dx dt

+

∫∫
(0,T )×Ω

e−2sα

(∫
Ω

a · ϕ̃ dx

)2

| curl b|2 dx dt+

∫∫
(0,T )×∂Ω

sλξ]e
−2sα]

∣∣∣∣ ∂∂n curl ϕ̃

∣∣∣∣2 dγ dt

+

∫∫
(0,T )×ω1

s3λ4ξ3e−2sα| curl ϕ̃|2 dx dt

]
. (3.20)

Then, we apply Lemma 2.3:∫∫
(0,T )×Ω

s4λ6ξ4e−2sα|ϕ̃|2 dx dt+

∫∫
(0,T )×Ω

s2λ4ξ2e−2sα|∇ϕ̃|2 dx dt

6 C

(∫∫
(0,T )×Ω

sλ2ξe−2sα|∆ϕ̃|2 dx dt+

∫∫
(0,T )×ω1

s4λ6ξ4e−2sα|ϕ̃|2 dx dt

)
. (3.21)

Using (3.1), (3.2) and (1.20), we deduce that∫∫
(0,T )×Ω

e−2sα|ρ′ curlϕ|2 dx dt 6 C

(∫∫
(0,T )×Ω

| curl ϕ̂|2 dx dt+

∫∫
(0,T )×Ω

s2ξ
2+2/m
] e−2sα| curl ϕ̃|2 dx dt

)

and thus, with (3.5),∫∫
(0,T )×Ω

e−2sα|ρ′ curlϕ|2 dx dt

6 C

(∫∫
(0,T )×Ω

|ρg|2 dx dt+

∫∫
(0,T )×Ω

s2ξ
2+2/m
] e−2sα| curl ϕ̃|2 dx dt

)
. (3.22)

Combining (3.20), (3.21) and (3.22), and using that curl curl ϕ̃ = −∆ϕ̃, we deduce that

I0(s, λ, ϕ̃) :=

∫∫
(0,T )×Ω

s4λ6ξ4e−2sα|ϕ̃|2 dx dt+

∫∫
(0,T )×Ω

s2λ4ξ2e−2sα|∇ϕ̃|2 dx dt

+

∫∫
(0,T )×Ω

s3λ4ξ3e−2sα| curl ϕ̃|2 dx dt+

∫∫
(0,T )×Ω

sλ2ξe−2sα|∇ curl ϕ̃|2 dx dt (3.23)

satisfies for λ > C, s > CT 2m,

I0(s, λ, ϕ̃) 6 C

[∫∫
(0,T )×Ω

|ρg|2 dx dt+

∫∫
(0,T )×Ω

e−2sα

(∫
Ω

a · ϕ̃ dx

)2

| curl b|2 dx dt

+

∫∫
(0,T )×∂Ω

sλξ]e
−2sα]

∣∣∣∣ ∂∂n curl ϕ̃

∣∣∣∣2 dγ dt

+

∫∫
(0,T )×ω1

s3λ4ξ3e−2sα| curl ϕ̃|2 dx dt+

∫∫
(0,T )×ω1

s4λ6ξ4e−2sα|ϕ̃|2 dx dt

]
. (3.24)

Here, we have used that m > 4.
In order to deal with the nonlocal term in (3.24), we apply Lemma 2.2 and in particular (2.7): for all

λ > C, s > CT 2m,∫∫
(0,T )×Ω

e−2sα

(∫
Ω

a · ϕ̃ dx

)2

| curl b|2 dx dt 6 C

∫∫
(0,T )×ω1

e−2sα

(∫
Ω

a · ϕ̃ dx

)2

dx dt. (3.25)
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On the other hand, from (3.19) and (1.13),∣∣∣−∂t curl ϕ̃− µ∆ curl ϕ̃+ ρ′ curlϕ+ curl
[(

(∇v)> ϕ̃− v · ∇ϕ̃
)]∣∣∣2 =

(∫
Ω

a · ϕ̃ dx

)2

| curl b|2

> (c∗)2

(∫
Ω

a · ϕ̃ dx

)2

in (0, T )× ω0 (3.26)

and consequently, using (1.14)∫∫
(0,T )×ω1

e−2sα

(∫
Ω

a · ϕ̃ dx

)2

dx dt

6 C

∫∫
(0,T )×ω1

e−2sα

(
|∂t curl ϕ̃|2 + |∆ curl ϕ̃|2 +

∣∣ρ′ curlϕ
∣∣2

+
∣∣∣curl

[
(∇v)> ϕ̃

]∣∣∣2 + |curl [v · ∇ϕ̃]|2
)
dx dt. (3.27)

Combining the above relation with (3.25), we deduce∫∫
(0,T )×Ω

e−2sα

(∫
Ω

a · ϕ̃ dx

)2

| curl b|2 dx dt

6 C

∫∫
(0,T )×ω1

e−2sα

(
|∂t curl ϕ̃|2 + |∆ curl ϕ̃|2 +

∣∣ρ′ curlϕ
∣∣2

+
∣∣∣curl

[
(∇v)> ϕ̃

]∣∣∣2 + |curl [v · ∇ϕ̃]|2
)
dx dt. (3.28)

The last three terms in the right-hand side of (3.28) can be estimated as previously, and we can focus on
the first two terms in the right-hand side of (3.28). We consider a nonempty open set ω2 such that

ω1 b ω2 b ω0 (3.29)

and a function θ such that
θ ∈ C∞c (ω2;R+), θ ≡ 1 in ω1. (3.30)

Using (1.19) and (3.17) and integrating by parts, we deduce∫∫
(0,T )×ω1

e−2sα|∂t curl ϕ̃|2 dx dt 6 C

∫∫
(0,T )×ω2

e−2sα[θ|∂t∇ϕ̃|2 dx dt

= C

∫∫
(0,T )×ω2

e−2sα[

(
∆θ

2
|∂tϕ̃|2 − θ∂tϕ̃ · ∂t∆ϕ̃

)
dx dt.

6 C

∫∫
(0,T )×ω2

γ−2
1 e−4sα[ |∂tϕ̃|2 dx dt+ C

∫∫
(0,T )×ω2

γ2
1 |∂t∆ϕ̃|2 dx dt. (3.31)

We can estimate the first term of the right-hand side of (3.31) by integrating by parts in time and by using
(3.18):∫∫

(0,T )×ω2

γ−2
1 e−4sα[ |∂tϕ̃|2 dx dt =

∫∫
(0,T )×ω2

(
−γ−2

1 e−4sα[∂ttϕ̃ · ϕ̃+
1

2

(
γ−2

1 e−4sα[
)′′ |ϕ̃|2) dx dt

6
∫∫

(0,T )×ω2

(
γ−6

1 e−8sα[ |ϕ̃|2 +
1

2

(
γ−2

1 e−4sα[
)′′ |ϕ̃|2 + γ2

1 |∂ttϕ̃|2
)
dx dt. (3.32)

Combining the above estimate with (3.31), we deduce∫∫
(0,T )×ω1

e−2sα|∂t curl ϕ̃|2 dx dt 6 C

∫∫
(0,T )×ω2

(
γ−6

1 e−8sα[ +
1

2

(
γ−2

1 e−4sα[
)′′) |ϕ̃|2 dx dt

+ C

∫∫
(0,T )×ω2

γ2
1

(
|∂t∆ϕ̃|2 + |∂ttϕ̃|2

)
dx dt. (3.33)
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From (1.18) and (3.17) we have

1

2

(
γ−2

1 e−4sα[
)′′

6 Cγ−6
1 e−8sα[

and thus combining (3.33) and (3.7), we obtain∫∫
(0,T )×ω1

e−2sα|∂t curl ϕ̃|2 dx dt 6 C

∫∫
(0,T )×ω2

γ−6
1 e−8sα[ |ϕ̃|2 dx dt

+ C

(∥∥∥Ts2−1/mλξ2e−sαϕ̃
∥∥∥2

L2(0,T ;L2(Ω))
+ ‖ρg‖2L2(0,T ;L2(Ω))

)
. (3.34)

With a similar calculation, we can also show that∫∫
(0,T )×ω1

e−2sα|∆ curl ϕ̃|2 dx dt 6 C

∫∫
(0,T )×ω2

γ−6
1 e−8sα[ |ϕ̃|2 dx dt+ C‖γ1ϕ̃‖2L2(0,T ;H4(Ω)),

and thus, with (3.7), we deduce∫∫
(0,T )×ω1

e−2sα|∆ curl ϕ̃|2 dx dt 6 C

∫∫
(0,T )×ω2

γ−6
1 e−8sα[ |ϕ̃|2 dx dt

+ C

(∥∥∥Ts2−1/mλξ2e−sαϕ̃
∥∥∥2

L2(0,T ;L2(Ω))
+ ‖ρg‖2L2(0,T ;L2(Ω))

)
. (3.35)

We can also estimate the following local term in (3.24):∫∫
(0,T )×ω1

s3λ4ξ3e−2sα| curl ϕ̃|2 dx dt 6
∫∫

(0,T )×ω2

θs3λ4ξ3e−2sα| curl ϕ̃|2 dx dt

=

∫∫
(0,T )×ω2

curl
(
θs3λ4ξ3e−2sα curl ϕ̃

)
· ϕ̃ dx dt

6 C

∫∫
(0,T )×ω2

s4λ5ξ4e−2sα |curl ϕ̃| |ϕ̃| dx dt+ C

∫∫
(0,T )×ω2

s3λ4ξ3e−2sα |∆ϕ̃| |ϕ̃| dx dt.

Thus for any ε > 0, there exists Cε such that∫∫
(0,T )×ω1

s3λ4ξ3e−2sα| curl ϕ̃|2 dx dt 6 Cε

∫∫
(0,T )×ω2

s5λ6ξ5e−2sα|ϕ̃|2 dx dt

+ ε

(∫∫
(0,T )×ω2

s3λ4ξ3e−2sα| curl ϕ̃|2 dx dt+

∫∫
(0,T )×ω2

sλ2ξe−2sα|∆ϕ̃|2 dx dt

)
. (3.36)

Finally, for the boundary term in (3.24), we use a trace property and an interpolation inequality:∫∫
(0,T )×∂Ω

sλξ]e
−2sα]

∣∣∣∣ ∂∂n curl ϕ̃

∣∣∣∣2 dγ dt 6 C

∫ T

0

sλξ]e
−2sα] ‖∇ curl ϕ̃‖L2(Ω) ‖∇ curl ϕ̃‖H1(Ω) dt

6 C

∫ T

0

sλξ]e
−2sα] ‖curl ϕ̃‖L2(Ω) ‖ϕ̃‖H4(Ω) dt.

Thus, using that m > 4, we obtain that for any ε > 0 there exists Cε > 0 such that∫∫
(0,T )×∂Ω

sλξ]e
−2sα]

∣∣∣∣ ∂∂n curl ϕ̃

∣∣∣∣2 dγ dt

6 ε

∫∫
(0,T )×Ω

s3λ4ξ3
] e
−2sα] | curl ϕ̃|2 dx dt+ Cλ−8 ‖γ1ϕ̃‖2L2(0,T ;H4(Ω))

6 ε

∫∫
(0,T )×Ω

s3λ4ξ3
] e
−2sα] | curl ϕ̃|2 dx dt

+ Cλ−8

(∥∥∥Ts2−1/mλξ2e−sαϕ̃
∥∥∥2

L2(0,T ;L2(Ω))
+ ‖ρg‖2L2(0,T ;L2(Ω))

)
.

11



Gathering the above estimate with (3.24), (3.28), (3.34), (3.35), (3.36) yields

I0(s, λ, ϕ̃) 6 C

[∫∫
(0,T )×ω2

γ−6
1 e−8sα[ |ϕ̃|2 dx dt+

∫∫
(0,T )×ω2

s5λ6ξ5e−2sα|ϕ̃|2 dx dt

+
∥∥∥Ts2−1/mλ3ξ2e−sαϕ̃

∥∥∥2

L2(0,T ;L2(Ω))
+ ‖ρg‖2L2(0,T ;L2(Ω))

+ ε

(∫∫
(0,T )×ω2

s3λ4ξ3e−2sα| curl ϕ̃|2 dx dt+

∫∫
(0,T )×ω2

sλ2ξe−2sα|∆ϕ̃|2 dx dt

)]
.

From (3.23), for s > C(Tm + T 2m) and ε > 0 small enough, the above relation implies

I0(s, λ, ϕ̃)

6 C

[∫∫
(0,T )×ω2

γ−6
1 e−8sα[ |ϕ̃|2 dx dt+

∫∫
(0,T )×ω2

s5λ6ξ5e−2sα|ϕ̃|2 dx dt+ ‖ρg‖2L2(0,T ;L2(Ω))

]
. (3.37)

From (1.18) and (3.17), we have
s5λ6ξ5e−2sα 6 Cγ−6

1 e−8sα[

and thus combining this with (3.1) and (3.2), yields

∫∫
(0,T )×Ω

s4λ6ξ4
] e
−5sα] |ϕ|2 dx dt 6 C

[∫∫
(0,T )×ω2

γ−6
1 e−8sα[−3sα] |ϕ|2 dx dt+‖ρg‖2L2(0,T ;L2(Ω))

]
. (3.38)

4 Proof of Corollary 1.4

The proof of Corollary 1.4 is completely standard and we only present the main ideas to prove it from
Theorem 1.1.

We define the space

X0 :=

{
(ϕ, π) ∈ C∞([0, T ]× Ω) : divϕ = 0, ϕ = 0 on (0, T )× ∂Ω,

∫
Ω

π dx = 0

}
the operators

L∗ϕ := −∂tϕ− µ∆ϕ+

(∫
Ω

a · ϕ dx

)
b+ (∇v)> ϕ− v · ∇ϕ,

and

〈(ϕ, π), (ϕ̌, π̌)〉X :=

∫∫
(0,T )×Ω

ρ2
1(L∗ϕ+∇π) · (L∗ϕ̌+∇π̌) dx dt+

∫∫
(0,T )×ω

ρ2
2ϕ · ϕ̌ dx dt.

From (1.25), we deduce that

‖(ϕ, π)‖X := 〈(ϕ, π), (ϕ, π)〉1/2X > C

(∫∫
(0,T )×Ω

ρ2
3|ϕ|2 dx dt

)1/2

+ C‖ϕ(0, ·)‖L2(Ω) (4.1)

and thus ‖ · ‖X is a norm and we can define the completion X of X0 for this norm.
We also define

`((ϕ̌, π̌)) :=

∫∫
(0,T )×Ω

f · ϕ̌ dx dt+

∫
Ω

z0 · ϕ̌(0, ·) dx.

From (4.1), we deduce that ` is a linear continuous form of X and

‖`‖X ′ 6 C

(∥∥∥∥ fρ3

∥∥∥∥
L2((0,T )×Ω)

+ ‖z0‖L2(Ω)

)
.

Thus from the Riesz theorem, there exists a unique (ϕ, π) ∈ X such that

∀(ϕ̌, π̌) ∈ X , 〈(ϕ, π), (ϕ̌, π̌)〉X = `((ϕ̌, π̌)). (4.2)
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We set
z := ρ2

1(L∗ϕ+∇π), u := −ρ2
2ϕ, (4.3)

and from (4.2), we deduce that∥∥∥∥ zρ1

∥∥∥∥
L2((0,T )×Ω)

+

∥∥∥∥ uρ2

∥∥∥∥
L2((0,T )×Ω)

6 C

(∥∥∥∥ fρ3

∥∥∥∥
L2((0,T )×Ω)

+ ‖z0‖L2(Ω)

)
(4.4)

and that∫∫
(0,T )×Ω

z · (L∗ϕ̌+∇π̌) dx dt =

∫∫
(0,T )×ω

u · ϕ̌ dx dt+

∫∫
(0,T )×Ω

f · ϕ̌ dx dt+

∫
Ω

z0 · ϕ̌(0, ·) dx.

The last relation yields that z is a weak solution of (1.6). We recall that ρ0 is defined by (1.27). We can
check that 

∂t

(
z

ρ0

)
− µ∆

(
z

ρ0

)
+

(∫
Ω

b ·
(
z

ρ0

)
dy

)
a+

(
z

ρ0

)
· ∇v

+v · ∇
(
z

ρ0

)
+∇

(
q

ρ0

)
=

(
f

ρ0

)
+ 1ω

(
u

ρ0

)
−
(
ρ′0z

ρ2
0

)
in (0, T )× Ω,

div

(
z

ρ0

)
= 0 in (0, T )× Ω,(

z

ρ0

)
= 0 on (0, T )× ∂Ω,(

z

ρ0

)
(0, ·) = z0 in Ω,

(4.5)

and that
ρ2

ρ0
,
ρ3

ρ0
,
ρ′0ρ1

ρ2
0

∈ L∞(0, T ),

and thus using Lemma 2.1 and (4.4), we deduce that∥∥∥∥ zρ0

∥∥∥∥
X1

6 C

(∥∥∥∥ fρ3

∥∥∥∥
L2((0,T )×Ω)

+ ‖z0‖H1(Ω)

)
. (4.6)

This implies in particular that z(T, ·) = 0.

In order to prove the local null controllability of (1.4), we define

F3 :=

{
f ;

f

ρ3
∈ L2((0, T )× Ω)

}
and the mapping

N : F3 → F3, f 7→ F (z)

where z is the above solution (that is given by (4.3)) and where F (z) is defined by (1.5).
Using that

ρ2
0

ρ3
∈ L∞(0, T ),

we can check that the map N is well-defined and from (4.6), we can also show that if ‖z0‖H1(Ω) 6 r and if
r is small enough, the closed ball

B3 :=

{
f ∈ F3 ;

∥∥∥∥ fρ3

∥∥∥∥
L2((0,T )×Ω)

6 r

}

is invariant by N and is a strict contraction on this set. This yields the existence of a fixed point for N .

The corresponding solution z satisfies (1.4), and since
z

ρ0
∈ X1, we deduce that z(T, ·) = 0.
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