
HAL Id: hal-03140686
https://hal.science/hal-03140686v1

Preprint submitted on 15 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint self-supervised blind denoising and noise
estimation

Jean Ollion, Charles Ollion, Elisabeth Gassiat, Luc Lehéricy, Sylvain Le Corff

To cite this version:
Jean Ollion, Charles Ollion, Elisabeth Gassiat, Luc Lehéricy, Sylvain Le Corff. Joint self-supervised
blind denoising and noise estimation. 2021. �hal-03140686�

https://hal.science/hal-03140686v1
https://hal.archives-ouvertes.fr


Joint self-supervised blind denoising and noise estimation
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Abstract

We propose a novel self-supervised image blind denoising approach in which two neural networks
jointly predict the clean signal and infer the noise distribution. Assuming that the noisy observations
are independent conditionally to the signal, the networks can be jointly trained without clean training
data. Therefore, our approach is particularly relevant for biomedical image denoising where the noise
is difficult to model precisely and clean training data are usually unavailable. Our method significantly
outperforms current state-of-the-art self-supervised blind denoising algorithms, on six publicly available
biomedical image datasets. We also show empirically with synthetic noisy data that our model captures the
noise distribution efficiently. Finally, the described framework is simple, lightweight and computationally
efficient, making it useful in practical cases.

1 Introduction
Image denoising is a well-known Computer Vision task designed to restore pictures taken in poor conditions.
In scientific imagery (microscopy, astronomy, etc.) for instance, the optical setting may produce very noisy
images, which limits their interpretability or their automatic processing.

Formally, image denoising is the process of recovering a clean signalX given an observation Y corrupted
by an additive noise ε. Classical denoising approaches are model-driven in the sense that they rely on strong
assumptions on the noise distribution or on the structure of the signal but are often limited by the relevance
of these assumptions. Recently, efficient data-driven methods have emerged. Most of them assume that pairs
made of noisy data Y associated with a clean signal X are available in a supervised learning framework,
see for instance [Weigert et al., 2017]. In [Lehtinen et al., 2018], the authors have demonstrated that it is
possible to train an efficient denoising method using only pairs of independent noisy measurements (Y 1, Y 2)
of the same signal. Such assumptions have also been used to solve deconvolution problems with repeated
measurements as in [Delaigle et al., 2008]. However, obtaining independent observations of the same signal
is often unrealistic in practice.

Recent self-supervised methods have overcome this limitation [Batson and Royer, 2019, Krull et al.,
2018] by training a neural network to predict the value of a (corrupted) pixel Y only using the noisy obser-
vations of the surrounding pixels. In such frameworks, the trained network extracts some local structure in
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the signal and therefore can be used as a denoiser. Such approaches are referred to as blind-denoising as
they only assume that the noises associated with different observations are independent and centered. This
is well suited to typical microscopy settings, in which the clean image is unavailable and the noise process
is complex and not known.

These methods rely on training a function fθ depending on an unknown parameter θ, usually imple-
mented as a convolutional neural network. Using only the noisy observations and a binary mask M , the ob-
jective is to minimize a self-supervision loss of the form θ 7→

∑N
i=1 ‖fθ(Y maskedi )− Yi‖22, where Y maskedi

is an image in which the pixel Yi has been masked using M . This masking step is crucial to foster learning
of local structure in the signal to predict the masked values.

While these methods are appealing in practice and result in efficient denoising functions, they suffer
from several drawbacks:

• It is not well understood why they are so effective in practice, i.e. what type of noise they are able to
remove, and how sensible they are to the masking scheme for instance.

• They often suffer from high frequency denoising artifacts known as checkerboard pattern.

To adress these issues, we introduce a novel self-supervised method, based on the joint training of two
neural networks referred to as D-net (denoiser net) and N-net (noise net). Similar to previous works, the de-
noiser is a convolutional neural network and receives a masked input during training. Our main contribution
is to add the flexible N-net which recovers precisely the noise distribution during training, even for complex
asymetric noises. We derive this method from a novel mathematical modeling of the denoising problem,
opening new avenues for better understanding of why self-supervised networks achieve remarkable results.

The contribution of this work can be summarized as follows.

• We introduce a novel self-supervised blind-denoising method, modeling both the signal and the noise
distributions.

• We show that the N-net recovers the noise distribution efficiently in varying experiments with synthetic
and real noises.

• The proposed architectures outperform state-of-the-art algorithms over 6 standard microscopy datasets,
without introducing denoising artifacts.

2 Related work
Masking and J-invariance. The most typical class of denoising functions is chosen to be comprised of
convolutional neural networks (CNNs), which are heavily parameterized functions and are not restricted to
solve denoising problems. As an important consequence, a naive self-supervised loss without any masking
would result in learning the identity function (i.e. the function outputing the noisy observation Y if it is not
masked in the input data), as the considered CNNs can typically implement it. Starting from this intuition,
many of the related works can be viewed as different masking schemes. This has been described in the
J-invariant framework introduced by [Batson and Royer, 2019]: a J-invariant function does not depend on a
few selected dimensions J of its input variables; typically this translates into a convolutional function which
does not depend on the central pixel of the convolutional receptive field, but rather on the observations of
neighboring pixels1.

1Those functions excluding the central pixel are sometimes also called blind spot, not to be confused with blind denoising in which
the noise process is not known.
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The first masked self-supervised denoising methods were introduced by Noise2Void (N2V) [Krull et al.,
2018], in which {(Y maskedi , Yi)}16i6N are sampled randomly in the picture, and masking consists in re-
placing Yi by a random observed value in its neighborhood, with a positive probability of replacing Yi by
itself meaning that leaks in masking are introduced.

Noise2Self (N2S) [Batson and Royer, 2019] masking procedure differs from N2V in the sense that
{(Y maskedi , Yi)}16i6N are obtained with a fixed grid, and Yi is replaced by the average of the 4 direct
neighboring observations. In practice, the masking procedure has a strong impact on training: (i) improving
masking schemes can improve denoising performance and (ii) as only masked pixels are used for training,
typically representing a few percent of the image, this affects greatly the training efficiency.

The underlying CNN architecture implemented by these works is the U-net [Ronneberger et al., 2015], a
typical convolutional autoencoder architecture, involving skip connections, which can reproduce fine grained
details, while making use of higher-level spatially coarse information. While showing strong denoising
performance in N2S and N2V, they however can produce checkerboard patterns, which are high frequency
artifacts that arise in the denoised results. These works have been extended in DecoNoising [Goncharova
et al., 2020] in which a Gaussian convolution is added after the neural network output to simulate microscope
Point Spread Function. This technique improves performances, however the deconvolved image (predicted
image before the Gaussian convolution) displays even stronger checkerboard pattern.

Finally, [Broaddus et al., 2020] showed that when the noise has local correlations (for instance a direc-
tional noise), masking can be adapted to remove them - by masking adjacent pixels in the same direction as
the noise spatial correlation for instance.

J-invariance without masking. Instead of masking specific pixels, it is possible to design specific con-
volutional operators to limit the receptive field, ensuring that the resulting function is J-invariant by design.
This was achieved in [Laine et al., 2019] by introducing directional convolution kernels, each kernel has its
receptive field restricted to a half-plane that does not contain the central pixel. The associated function then
takes values which only depend on pixels in specific directions, ensuring that it does not depend on pixels
in the opposite direction. One drawback is that the inference has to be performed four times, one in each
direction.

More recently, [Lee and Jeong, 2020] introduced a combination of specific convolution operators with
dilation and strides, guaranteeing that the function is independent of the central pixel by design, therefore
J-invariant. It is interesting to note that with standard convolutions, a two layered network already cannot
be made independent of the central pixel, which is why the authors had to rely on very specific convolutions.

The benefit of these architectures compared to the masking-based training is that all output pixels can
contribute to the loss function as in conventional training, rather than just the masked pixels; and they do
not require a carefully tuned masking procedure. However, they strongly constrain the network architecture,
which can hinder the denoising performance or result in more expensive inference schemes.

Contribution of a noise model. The denoising literature includes few works which explicitly model the
noise distribution, either by choosing a priori a family of distributions (e.g. a Gaussian noise), or by selecting
a more flexible class of distributions.

The former is illustrated in [Laine et al., 2019], in which three types of corrupting noise are considered:
Gaussian noise independent of the signal; Poisson-Gaussian noise, i.e. a Gaussian noise with variance
scaling linearly with the signal value; finally impulse noise, i.e. a uniform noise. In each case, the noise
parameters are either known or estimated with an auxiliary neural network. As the signal distribution and
the noise distribution belong to a known parametric family, the noisy central pixel can be included at test
time in order to improve performances. However, as the noise type has to be chosen a priori, the method is
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restricted to known and synthetic noise types and therefore falls under the category of non-blind denoising
methods.

In [Krull et al., 2019, Prakash et al., 2020b, Prakash et al., 2020a], the authors make use of a more
flexible noise model, which is a generic modelisation of the conditional distribution of the noise given the
signal intensity and thus can better model real noises. In these works, noise models are approximated using
2D histograms of denoised and noisy observed values, either using additional calibration data (in that case
the method is not fully self-supervised) or using a previously trained denoising function [Prakash et al.,
2020b]. In the latter variant, the noise distribution is parametrized with a centered Gaussian mixture model
with empirically designed constraints. This increases the complexity of the method, as it requires several
training procedures and calibration. The denoising network is then trained to predict a whole distribution
of 800 possible noisy values instead of a single point estimate of each pixel, approximating the previously
defined noise distribution at each pixel.

Finally, [Prakash et al., 2020a] used the Variational AutoEncoder formalism, adding a pre-calibrated
noise model in their architecture. This provides new interesting possibilities, as it can generate a diver-
sity of denoised results, possibly interesting in creative processes. In the case of scientific images such as
microscopy, the possible presence of visual artifacts or blurry results makes it less appropriate.

It is worth noting that supervised blind denoising methods have used parametrized noise models, such
as [Zhang et al., 2017, Yue et al., 2019], which explicitly used large neural networks to model a complex
noise, with even less assumptions (it can be slightly structured). Even though the algorithm proposed in [Yue
et al., 2019] is able to train jointly a noise network and a denoiser, their modeling only works in a supervised
setting, which does not apply in our setting.

Chosen approach. The work of Laine et al. [Laine et al., 2019] gave the intuition that a striclty J-invariant
function lacks the information of the central pixel at test-time. On the contrary, methods such as N2V or
N2S use the central pixel at test-time, but the dependency on the central pixel is not explicit and unknown.
Instead of focusing on finding new strictly J-invariant functions at test time, our approch rather emphasizes
on designing an efficient masking procedure only at train-time. Our mathematical formulation enables the
use of the central pixel at test time. This also gives the flexibility to tune the masking to match structured
noises, which we observed in 2 of the 6 considered datasets (see section 4.3). We also build upon the work of
[Laine et al., 2019, Krull et al., 2019] by designing a noise model which can be jointly trained alongside the
denoiser (see Fig. 1), and only requiring a single prediction per pixel: this results in a training and inference
procedures that are simpler, more efficient and more stable.

3 Model
Estimating a signal corrupted by additive noise is a challenging statistical problem. In such frameworks,
the received observation Y is given by Y = X + ε, where X is the signal and ε is the noise. A lot of
works have been devoted to deconvolution where the aim is to recover the distribution of the signal based
on the observations. It has been for instance applied in a large variety of disciplines and has stimulated a
great research interest in signal processing [Moulines et al., 1997, Attias and Schreiner, 1998], in image
reconstruction [Kundur and Hatzinakos, 1996, Campisi and Egiazarian, 2017], see also [Meister, 2009].
Recently, [Gassiat et al., 2020] proved that it is possible to recover the signal distribution when X has at
least two dimensions and may be decomposed into two subsets of random variables which satisfy some weak
dependency assumption. This identifiability result does not require any assumption on the noise distribution
but illustrates that the components of the signal must be dependent to allow its identification.
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In this work, it is assumed that the observation Y associated with X is given by

Y = X + σθn(X)ε , (1)

where ε is a centered noise independent of X and σ2
θn

is parameterized by a convolutional neural network,
called N-net and with unknown weights θn. This contrasts with most common denoising algorithms where
ε is assumed to be a centered Gaussian random variable and x 7→ σ2

θn
(x) is either known and constant2 or

has a Poisson-Gaussian shape i.e., scales with αx + η2. As illustrated in Section 5, these assumptions do
not usually hold, in particular when considering biomedical images, and they may have a severe impact on
denoising performances.

In [Gassiat et al., 2020], σ2
θn

is assumed to be constant and the target signal is assumed to be weakly
dependent to obtain identifiability of the noise and the signal distributions. In (1), we extend the model
proposed by [Gassiat et al., 2020] by considering a state-dependent standard deviation and identifiability
remains an open problem. However, we assume in this work that X is dependent with the signal in the
neighbooring pixels ΩX so that heteroscedasticity is the only challenge to obtain identifiability of (1) which
is left for future works. In this work, we assume that (X,ΩX) is a random vector with dependent variables
and we propose to model the conditional mean of X given (Y,ΩY ) by a parametric function denoted by µθd
so that E[X|Y,ΩY ] = µθd(ΩY , Y ) where ΩY are the noisy observations of the signals in the neighborhood
of X . The function µθd is parameterized by a convolutional neural network, called D-net and with unknown
weights θd.

A natural estimator ofX given the noisy observations is X̂ = µθd(ΩY , Y ). During training this predictor
X̂ cannot be used to estimate θd and θn as µθd would learn to output the noisy observation Y if it is not
masked in the input data. This is the reason why we adopt a making approach and assume during training
that µθd cannot use Y as an input which must be replaced by an estimator. In this framework, a genuine
prediction of Y is given by E[Y |ΩY ] which we estimate by µθd(ΩY , g(ΩY )) where g is a known function.
In the experiments below, we provide empirical evaluations that choosing g(ΩY ) as the empirical mean of
the noisy pixels in ΩY is a robust solution while other choices can be made straightforwardly.

Combining this with the additive model (1) yields the following loss function associated with N obser-
vations (Y1, . . . , YN ):

`θ : (Y1, . . . , YN ) 7→ 1

N

N∑
i=1

`θ(Yi|ΩYi
) ,

where θ = (θn, θd) and

`θ(Yi|ΩYi
) = log(σθn(µθd(ΩYi

, g(ΩYi
)))2) +

(
Yi − µθd(ΩYi

, g(ΩYi
))

σθn(µθd(ΩYi , g(ΩYi))

)2

.

An interesting feature of our approach is that it can be extended straightforwardly to more complex
noise distributions. As detailed above, model (1) is an extension of the model considered in [Gassiat et al.,
2020] where the authors establish that the noise distribution can be identified without any assumption. Full
identifiability of model (1) remains an open question but we display in Section 4 an example of non-Gaussian
noises, and we propose an application with mixture models to account for positive skewness which cannot be
modeled with a single Gaussian distribution. In this context, each component of the mixture describing the
distribution of ε is a Gaussian distribution with signal-dependent standard deviation. The results provided in
Section 4 illustrate how such models improve denoising performance for asymmetrical noise distributions.

2From the perspective of our model, the approach of N2V and N2S is equivalent to considering that x 7→ σ2
θn

(x) = 1.

5



Ollion et al. Joint self-supervised blind denoising and noise estimation

4 Experiments

Noisy

Mask

Masked

Denoised
Noise 

distribution

Noise

g(x)

D-Net N-Net

Loss function

Figure 1: Training setup. For each mini-batch, a random grid is drawn. The masking function x 7→ g(x) is
applied on each element of the grid, replacing the original pixels in the masked image. The denoised image
predicted by the D-net is fed to the N-net that predicts a noise distribution for each pixel. The loss function
is then computed on each element of the grid.

4.1 Model Architecture
D-net. The function µθd is parametrized by a U-net. The main difference with the networks used in N2S
and N2N is that we use upsampling layers with nearest-neighbor approximation instead of transpose convo-
lutions, as we observed that transpose convolution tends to increase the checkerboard artefact. Additional
architecture and training information can be found in Section A. The receptive field of this network is 35x35
pixels, which means that the network may use pixels from the neighorhood that are masked. At test-time,
we averaged the prediction of the image with the predictions of its transposed and flipped versions on each
axis, which improves performances.

N-net. The function σθn : R → R describing the local variance of the noise distribution is a fully-
connected deep neural network with several hidden layers. This choice is motivated by the large expres-
sivity of such a network, necessary to approximate complex noise distributions. In practice, it is applied to
each pixel, so it is implemented efficiently as a fully convolutional network using only 1x1 convolutional
layers. In the Gaussian Mixture Model (GMM) case, the network parametrizes a more complex distribution
and therefore has several outputs: for a mixture of N Gaussian distributions, there are N variances, N − 1
means (the last mean is computed to ensure that the resulting distribution is centered) andN mixture weights
parametrized by the N-net. The full architecture detail for both models are available in Section A.
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4.2 Datasets
We train and evaluate our method on 6 publicly available datasets of microscopy images. In those datasets,
ground truth (X) is estimated by averaging several observations (Y ) of the same field-of-view (FOV). This
allows to have access to an estimation of the noise Y −X , which we refer to as real noise in this article.

The 3 first datasets (PN2V-C, PN2V-MN, PN2V-MA) have been published along with the PN2V method
[Krull et al., 2019], each is composed of several observations of one single FOV. For a fair comparison, we
use the same training and evaluation sets as the authors: for each sample type the whole dataset is used for
training, and only a subset of the FOV is used for evaluation (see Section B.1 for details).

The 3 last datasets are the 3 channels of the W2S dataset [Zhou et al., 2020] referred to as W2S-1, W2S-
2 and W2S-3. The dataset is composed of 120 FOV, the first 80 are used for training and the last 40 for
evaluation (see Section B.1 for more details). Following the authors, for each FOV, only one observation is
used for training and for evaluation, which better corresponds to a real setting where only one observation
per FOV is available.

4.3 Masking procedure
Following [Batson and Royer, 2019], we mask pixels along a grid and compute the loss only on masked
pixels. We obtained the best results by replacing the central value by the weighted average of the 8 direct
neighbors with Gaussian weights (σ = 1). The drawback of masking along a grid is that pixels are masked
at fixed relative positions with regards to the central pixel. If grid spacing is too small, then too many masked
pixels are present in the receptive field and perturb the performances, because the available information is
reduced. On the other hand, the larger the spacing, the less pixels are used for training, which reduces dra-
matically training efficiency. In order to push the limits of this trade-off, we use a random dynamic spacing
between 3 and 5 pixels, which allows to have relative positions of masked pixels that change randomly. On
average, 6.8% of the image is masked.

Furthermore, we observed that datasets PN2V-C and PN2V-MA display axial correlation in the noise,
for those datasets we adapted the masking procedure introduced in [Broaddus et al., 2020]: the replacement
value was computed on a neighborhood excluding the neighbors along the correlation axis, and neighbors
were masked along this axis, within an extent of 3 pixels3.

4.4 Training
Networks are trained using Adam optimizer with a learning rate of 4 · 10−4, decreased by 1/2 on plateau
of 30 epochs until 10−6. We train networks for 400 epochs of 200 steps. Training time is about 2 min per
epoch on a NVIDIA Tesla P4. We obtain better and more reproductible results using the weights of the
trained model at the last epoch instead of the weights of the model with the best validation loss, possibly
because the loss is a bad proxy for the denoising performances. For that reason, we do not use a validation
step. Batch size is set to 1, and each batch is split into 100 (overlapping) tiles of 96x96 pixels. Tiles are
augmented with random horizontal and/or vertical flip and/or a random rotation with an angle chosen within
(90◦, 180◦, 270◦)4.

3The masking extension can be determined easily in a self-supervised setup because the neural network tends to amplify the noise
correlation, thus one can easily chose the smallest range for which the axial correlation disappears.

4For the datasets with axial noise correlation, data-augmentation is only composed of combinations of flips to avoid axes transposi-
tion.
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4.5 Evaluation
We compared denoised image to ground truth with the classical Peak Signal-to-Noise Ratio (PSNR) metric.
However PSNR is not highly indicative of perceived similarity, in particular it does not reflect similarity of
high frequency information such as textures and local contrasts [Wang et al., 2004], that denoising methods
tend to reduce. It is thus essential to have other metrics that them into account. To address this shortcoming,
we used Structural Similarity (SSIM) that take textures and edges into account [Wang et al., 2004], computed
as in the original work.

5 Results

5.1 Noise estimation
To evaluate the capacity of the N-net to capture blindly different noise distributions, we generated 3 datasets
by adding synthetic noise to the ground truth of dataset W2S-1, and we chose the parameters of the noise
models so that PSNR of noisy images match the one of the original dataset (in a range of ±0.1dB). We used
3 classical noise models: additive Gaussian, Poisson-Gaussian (which is a good model for shot noise) and
speckle (see Section B.2 for details). Empirical and predicted distributions of the noise standard deviation
are illustrated in Fig. 2. One of the most striking result of this experiment is that for the 3 cases of synthetic
noise, the predicted standard deviation provided by the N-net is a very sharp approximation of the known
theoretical standard deviation. It shows in particular that our method is able to capture the different noise
distributions even in areas where signal is rare.

5.2 Improving estimation on real noise
We observed that contrary to the classical noise models considered in the denoising literature, real noise
often displays a certain amount of skewness, as illustrated in Fig. 3.

Table 1: Evaluation of our method on 6 datasets with PSNR/SSIM metrics. SSIM estimates structural simi-
larity (sharpness). Metrics computed on noisy images are displayed in the Noisy columns. For DecoNoising
(DN) and N2V, PSNR are taken from [Goncharova et al., 2020] and SSIM are computed on prediction made
by networks trained using the source code provided by the authors10. Gaussian corresponds to the optimal
Gaussian baseline defined in section 5.3.

DATASET NOISY GAUSSIAN N2V DN OURS (G1) OURS (G2) OURS (G3)

PN2V-C 28.98 / 0.7713 34.92 / 0.9409 35.85 / 0.9404 36.39 / 0.9483 38.33 / 0.9754 38.47 / 0.9738 38.28 / 0.9756
PN2V-MN 28.10 / 0.6836 35.53 / 0.9392 35.86 / 0.9419 36.34 / 0.9489 39.08 / 0.9776 39.22 / 0.9779 39.18 / 0.9780
PN2V-MA 23.71 / 0.3731 34.07 / 0.8739 33.35 / 0.8384 34.04 / 0.8633 34.79 / 0.8905 34.68 / 0.8880 34.70 / 0.8877
W2S-1 21.85 / 0.3490 33.87 / 0.9326 34.30 / 0.9026 34.90 / 0.9169 35.33 / 0.9619 35.27 / 0.9623 35.27 / 0.9624
W2S-2 19.33 / 0.2256 32.27 / 0.8531 31.80 / 0.8311 32.31 / 0.8524 33.46 / 0.8867 33.48 / 0.8871 33.47 / 0.8871
W2S-3 20.39 / 0.2232 34.66 / 0.9013 34.65 / 0.8637 35.09 / 0.9051 36.57 / 0.9263 36.60 / 0.9269 36.59 / 0.9269

6Display range was shrinked in Y-axis for visualization purposes, excluding some points of the empirical standard deviation of the
Speckle noise model.

8All the graphs are computed using regular signal value bins and excluding signal values greater to the 99.5% percentile of the
dataset so that there are enough observed samples in each bin to compute statistically significant metrics.
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Figure 2: Noise estimation. For 3 models of synthetic noise as well as the real noise, the plots display the
empirical standard deviation of the noise Y −X , as well as the predicted standard deviation of the noise by
the N-net6as a function of X . Theoretical standard deviation of the noise is displayed for the 3 models of
synthetic noise. The empirical distribution of Y is displayed in blue, in logarithmic scale. Examples of noisy
images and the corresponding predicted denoised images are displayed in columns Noisy and Denoised.

In order to be able to capture this aspect, we predict a Gaussian mixture model (GMM) instead of a
simple Gaussian model as described in Section 3. Fig. 3 shows that noise skewness is well described by the
predicted model, and the noise distribution is better described by a GMM than by a single Gaussian. This
applies for all datasets and the equivalent figures can be found in Section C. In this example, it is interesting
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Figure 3: Real noise estimation for dataset W2S-1. Upper-left: empirical distribution of the noise Y −X as a
function of X . The probability density is normalized for each signal value bin. Upper-right: corresponding
predicted noise distribution for a 3-component-GMM. Lower-left: Skewness of real and predicted noise
distribution as a function of X , estimated with Pearson’s moment coefficient of skewness8. Lower-rigth:
Kullback–Leibler divergence between real noise distribution and predicted distribution generated by each
model, as a function of X . G1 stands for Gaussian model, G2 for a 2-component-GMM and G3 a 3-
component-GMM.

to note that the Kullback–Leibler divergence between the empirical noise distribution and the predicted
distribution (as a function of the signal value) is improved by considering a GMM instead of a uninomodal
distribution. This supports the use of our flexible N-net to capture a large variety of noise distributions (with
mutltimodality and/or skewness) which can be observed in experimental datasets. This comment paves
the way to several perspectives for our work such as the design of statistically consistent model selection
procedures to choose automatically the number of mixing components. Such approaches have been proposed
in more simple cases using for instance penalized maximum likelihood based algorithms. This remains an
open problem in our framework and we leave this topic for future research.
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5.3 Denoising performances
We compared our method to 3 baselines: N2V, DecoNoising, which is the self-supervised blind denoising
method that has shown best results on the datasets we considered, as well as one of the most simple denoising
method: convolution by a Gaussian, whose standard deviation is chosen to maximizes the PSNR on the
evaluation dataset. We believe the latter makes a good reference, as it is one of the simplest denoising
methods, and it removes noise efficiently but also other high-frequency information such as local contrasts.

The considered metrics are summarized in table 1. Our method significantly outperforms the 3 baselines
both in terms of PSNR and SSIM on all datasets. For the version predicting a simple Gaussian distribution,
the average PSNR gain over DecoNoisng is +1.42dB. This is also confirmed by the visual aspect, displayed
in Fig. 4: our method produces images closer to the ground truth, smoother, sharper, more detailed and
without visual artefacts. Remarkably, our method performs significantly better than the supervised method
CARE [Weigert et al., 2017], with an average PSNR gain of +1.49dB11.

It is worth noting that considering mixture models improves the PSNR in two datasets out of six. As
mentionned in Section 5.2 an optimal and data-driven choice of the number of components remains an open
(and challenging) statistical problem but we believe that such experiments support future research in this
direction.

6 Discussion
We introduced a novel self-supervised blind-denoising method modeling both the signal and the noise dis-
tributions. We believe its simplicity, performances and the interpretability of the noise distribution will be
useful both in practical applications, and as a basis for future research.

First, future works could consider more complex families of noise distributions such as structured or
non-centered noises, that can also arise in real-life setups. In particular, [Lehtinen et al., 2018] managed to
remove very structured non-centered noises such as overlaid text. With stronger assumptions and architec-
ture changes, it might be possible to capture such noises.

Second, more theoretical works could explore the model proposed in this work (i) to obtain identifiability
of model (1) and extend [Gassiat et al., 2020] to state-dependent standard deviations and (ii) to establish rates
of convergence for the proposed estimators.

Finally, it would also be interesting to understand the role of the central pixel at test time, as it has a
significative impact on performance: it depends on the masking procedure and the convolutional architecture,
but the network is not trained explicitely to use it. Our mathematical modeling could be a good basis to study
this specific dependency on the central pixel.

7 Code
Source code will be available after peer review process.

10Using no positivity constraint, and removing the convolution for N2V.
11Comparison with PSNR values reported in [Goncharova et al., 2020]

11



Ollion et al. Joint self-supervised blind denoising and noise estimation

References
[Attias and Schreiner, 1998] Attias, H. and Schreiner, C. E. (1998). Blind source separation and deconvo-

lution: the dynamic component analysis algorithm. Neural computation, 10(6):1373–1424.

[Batson and Royer, 2019] Batson, J. and Royer, L. (2019). Noise2self: Blind denoising by self-supervision.
arXiv preprint arXiv:1901.11365.

[Broaddus et al., 2020] Broaddus, C., Krull, A., Weigert, M., Schmidt, U., and Myers, G. (2020). Removing
structured noise with self-supervised blind-spot networks. In 2020 IEEE 17th International Symposium
on Biomedical Imaging (ISBI), pages 159–163. IEEE.

[Campisi and Egiazarian, 2017] Campisi, P. and Egiazarian, K. (2017). Blind image deconvolution: theory
and applications. CRC press.

[Delaigle et al., 2008] Delaigle, A., Hall, P., Meister, A., et al. (2008). On deconvolution with repeated
measurements. The Annals of Statistics, 36(2):665–685.

[Gassiat et al., 2020] Gassiat, E., Le Corff, S., and Lehéricy, L. (2020). Deconvolution with unknown noise
distribution is possible for multivariate signals. ArXiv:2006.14226.

[Goncharova et al., 2020] Goncharova, A. S., Honigmann, A., Jug, F., and Krull, A. (2020). Improving
blind spot denoising for microscopy. In Proceedings of the European Conference on Computer Vision,
Workshops.

[Krull et al., 2018] Krull, A., Buchholz, T.-O., and Jug, F. (2018). Noise2void-learning denoising from
single noisy images. 2019 ieee. In CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2124–2132.

[Krull et al., 2019] Krull, A., Vicar, T., and Jug, F. (2019). Probabilistic noise2void: Unsupervised content-
aware denoising. arXiv preprint arXiv:1906.00651.

[Kundur and Hatzinakos, 1996] Kundur, D. and Hatzinakos, D. (1996). Blind image deconvolution. IEEE
signal processing magazine, 13(3):43–64.

[Laine et al., 2019] Laine, S., Karras, T., Lehtinen, J., and Aila, T. (2019). High-quality self-supervised
deep image denoising. In Advances in Neural Information Processing Systems, pages 6970–6980.

[Lee and Jeong, 2020] Lee, K. and Jeong, W.-K. (2020). Noise2kernel: Adaptive self-supervised blind
denoising using a dilated convolutional kernel architecture. arXiv preprint arXiv:2012.03623.

[Lehtinen et al., 2018] Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., and
Aila, T. (2018). Noise2Noise: Learning image restoration without clean data. In Proceedings of the 35th
International Conference on Machine Learning, pages 2965–2974.

[Meister, 2009] Meister, A. (2009). Deconvolution problems in nonparametric statistics. Springer.

[Moulines et al., 1997] Moulines, E., Cardoso, J.-F., and Gassiat, E. (1997). Maximum likelihood for blind
separation and deconvolution of noisy signals using mixture models. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, volume 5, pages 3617–3620. IEEE.

12



Ollion et al. Joint self-supervised blind denoising and noise estimation

[Prakash et al., 2020a] Prakash, M., Krull, A., and Jug, F. (2020a). Divnoising: Diversity denoising with
fully convolutional variational autoencoders. arXiv preprint arXiv:2006.06072.

[Prakash et al., 2020b] Prakash, M., Lalit, M., Tomancak, P., Krul, A., and Jug, F. (2020b). Fully unsu-
pervised probabilistic noise2void. In 2020 IEEE 17th International Symposium on Biomedical Imaging
(ISBI), pages 154–158. IEEE.

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional net-
works for biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer.

[Wang et al., 2004] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image qual-
ity assessment: from error visibility to structural similarity. IEEE transactions on image processing,
13(4):600–612.

[Weigert et al., 2017] Weigert, M., Schmidt, U., Boothe, T., Andreas, M., Dibrov, A., Jain, A., Wilhelm, B.,
Schmidt, D., Broaddus, C., Culley, S., et al. (2017). Content-aware image restoration: Pushing the limits
of fluorescence microscopy. biorxiv.

[Yue et al., 2019] Yue, Z., Yong, H., Zhao, Q., Meng, D., and Zhang, L. (2019). Variational denoising
network: Toward blind noise modeling and removal. In Advances in Neural Information Processing
Systems.

[Zhang et al., 2017] Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising. IEEE transactions on image processing,
26(7):3142–3155.

[Zhou et al., 2020] Zhou, R., El Helou, M., Sage, D., Laroche, T., Seitz, A., and Süsstrunk, S. (2020). W2S:
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Figure 4: Visual comparison of denoising on the considered datasets. For each dataset a 256x256 portion of
an evaluation image is displayed, on which metrics are computed and displayed below. For DecoNoising and
N2V, images are predicted with networks trained using the source code provided with [Goncharova et al.,
2020]footnote 10. Gaussian corresponds to the optimal gaussian baseline defined in section 5.3.
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A Additional Implementation details

A.1 Networks and training
D-Net architecture details. The architecture is based on U-net [Ronneberger et al., 2015]. We propose
several changes from the original version: we do not crop the image and use zero-padding instead, we
use 2 levels of contractions/expansions with 64 filters, expansions are performed by an upsampling layer
with nearest-neighbor approximation directly followed by 2x2 convolution. We also add two layers of 1x1
convolution with 64 filters and ReLU activation at the end of the network, and set no activation function at
the output layer.

N-Net architecture details. In the case of a Gaussian noise, the N-Net is composed 3 successive blocks,
each block being composed of two 1x1 convolutions layers of 64 filters, each followed by a non-linear
activation layer (alternatively tanh and leaky ReLU with alpha parameter set to 0.1). A convolution 1x1 with
a single channel followed by an exponential activation function is placed after the last block (to ensure that
the predicted σ is positive).

In the case where the N-net predicts a GMM with N components with weights (αi)16i6N , means
(µi)16i6N and variances (σ2

i )16i6N , the second block is connected to three distinct blocks, each connected
to a convolution 1x1 with:

• N channels, followed by an exponential activation function to predict σi.

• N channels, followed by a softmax activation to predict αi.12

• N-1 channels to predict the ditribution means µi.

To ensure that the distribution is centered, the center of the last distribution is computed as

µN = − 1

αN

N−1∑
i=1

αiµi .

B Datasets

B.1 Experimental Datasets
Datasets published along with the PN2V [Krull et al., 2019].

• Convallaria dataset, referred to as PN2V-C is composed of 100 images of size 1024x1024. Evaluation
subset is: Y ∈ [0 ; 512], X ∈ [0 ; 512].

• Mouse skull nuclei referred to as PN2V-MN is composed 200 images of size 512x512. Evaluation
subset is: Y ∈ [0 ; 512], X ∈ [0 ; 256].

• Mouse Actin referred to as PN2V-MA is composed of 100 images of size 1024x1024. Evaluation
subset is: Y ∈ [0 ; 1024], X ∈ [0 ; 512].

The PN2V-C and PN2V-MA datasets are acquired on a spinning disc confocal microscope and PN2V-
MN dataset is acquired with a point scanning confocal microscope. Datasets can be downloaded from:
https://github.com/juglab/pn2v

12When N = 2, only one channel is used and followed by a sigmoid activation function.
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Datasets published in [Zhou et al., 2020]. We used the 16-bit raw images kindly provided by the authors.
The dataset is composed of 120 FOV of 400 observations of size 512x512 pixels. The first 80 are used for
training and the last 40 for evaluation. Following the authors, for each FOV, only the observation of index
249 is used for training and evaluation images are acquired with a electron-multiplying charge-coupled
device camera on a wide-field microscope. It can be downloaded here: https://datasets.epfl.
ch/w2s/W2S_raw.zip

Normalization. For both datasets images were normalized using the modal value as center and the dif-
ference between modal value and 95% percentile as scale factor, computed on the whole dataset. This is
relevant in fluorescence microscopy data where signal is often less abundant than background with propor-
tion that vary among images and signal distribution often has a heavy tail towards high values.

Metrics. For the 6 chosen datasets, images are encoded in 16-bit. PSNR is defined as

PSNR = 10 log10(d/MSE) ,

with d the maximum possible pixel value of the image and MSE the mean squared error. For 8-bit encoded
images d is simply 255, and for 16-bit images it would be 65635 but this does not correspond to the actual
possible range of microscopy data, thus the actual range of values of each ground truth image is used. This
is also what is done in [Goncharova et al., 2020] as we obtain the same PSNR values for raw images. The
same applies for SSIM computation.

B.2 Synthetic noise datasets
• Additive gaussian: Y = X + ε with ε ∼ N (0, σ2), σ = 20.

• Poisson-Gaussian: Y = X + (α ∗ (X −X) + η2)1/2ε with ε ∼ N (0, 1), α = 5, η = 12 and X being
the minimal value of the ground truth on the whole dataset.

• Speckle: X = X + (X −X)ε with ε ∼ N (0, σ2), σ = 0.405 and X being the minimal value of the
ground truth on the whole dataset.
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Figure 5: Real noise estimation for dataset PN2V-C. See main text Fig 3.
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Figure 6: Real noise estimation for dataset PN2V-MN. See main text Fig 3.
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Figure 7: Real noise estimation for dataset PN2V-MA. See main text Fig 3.
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Figure 8: Real noise estimation for dataset W2S-2. See main text Fig 3.
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Figure 9: Real noise estimation for dataset W2S-3. See main text Fig 3.
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