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Abstract

This paper presents a baseline-free quantitative method for the imaging of corrosion flaws present in thin plates
with under-sampled data. This method is based on the Hybrid Algorithm for Robust Breast Ultrasound Tomography
(HARBUT) which is itself inherently baseline-free. However, in order to ensure that the incident field component
becomes negligible in the reconstruction, a calibration step is necessary. Indeed, it is essential to rescale the data with
respect to the acoustic model whether it be simulation data or experimental data. This calibration is usually performed
by manually choosing a ray for which the domain of propagation is assumed sound. This can be problematic because
this method is not automatic. Moreover, if the chosen ray happens to pass through a flaw, the resulting image will
be of poor quality. This paper proposes an autocalibration method for the rescaling step. The field of application
is Structural Health Monitoring (SHM) of critical structures with heavy constraints on both sensor intrusiveness and
diagnostic reliability. In order to limit intrusiveness, a sub-sampled array of embedded guided waves sensors within the
structure is used. Extensions to HARBUT are introduced to compensate for the aliasing caused by the undersampling.
The benefits of these extensions are then assessed with numerical simulations and experimental datasets measured by
a PZT network.

Keywords: Structural health monitoring, Guided waves, Ultrasound tomography, Piezoelectric transducers,
Baseline-free

1. Introduction

In most industries, corrosion can be disastrous if not correctly monitored. Structural Health Monitoring (SHM)
is “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” (see [1]
page 4). Guided wave tomography is a promising SHM solution to monitor corrosion. Actually, it is an imaging
method studied since many decades, allowing to estimate the remaining wall thickness of corrosion patches in plates,5

pipes, or more complicated structures. Several algorithms, based on different physical phenomena, have been devel-
oped, the older being straight-ray tomography [2–5]. This class of algorithms assumes the velocity field to be very
weakly non-uniform, thus neglecting refraction and diffraction. Another ray-tomography algorithm, named bent-ray,
takes into account the wave field refracted by the potential defect [6–9]. This means that very large, non-diffracting
defects can be imaged. A different approach is proposed by diffraction tomography (DT) algorithms [10–14]. These10

algorithms are based on the Born approximation and allow to image small defects. More recently, an hybrid algorithm
named Hybrid Algorithm for Robust Breast Ultrasound Tomography (HARBUT) has been proposed by Huthwaite
and Simonetti [15] in 2013 and was then followed by many developments [16–20].

The work presented in this paper proposes several extensions to HARBUT in order to satisfy the heavy constraints
imposed by the SHM framework, such as sensor intrusiveness and diagnostic reliability. To satisfy the former con-15

straint, one has to reduce the number of sensors embedded in the structure. Indeed, guided wave tomography needs
many sensors and it is known that PZT transducers can be intrusive because of their size and electrical wires. A way of
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source fi(t)

response ϕi j(t)

Defect involving a variation
of the parameters p ∈ Υ

Ξ : Laws governing the medium Ω

Direct problem: find ϕ s.t.
ϕ = Ξ ( f , p, q)

Inverse problem: given ϕi j, find p s.t.

p = Ξ̃−1
(

fi, ϕi j, q
)

The medium Ω

All the couples ( fi(t), ϕi j(t))
Positions of the sensors

Fig. 1. Inverse problem to solve with guided wave tomography.

preserving the robustness of the algorithm as the number of sensors decreases is presented in this paper. Concerning
the latter constraint (the diagnostic reliability), it is well known in SHM that baseline-free methods could decrease
tremendously the number of false alarms, typically caused by temperature changes or the ageing of sensors between20

two measurements. This paper presents an autocalibration method coupled to HARBUT. HARBUT is itself inherently
baseline-free but the calibration step is usually performed either manually by choosing a ray for which the domain
of propagation is assumed sound or by using a baseline measurement which increases the risk of false alarms. The
calibration method presented in this paper is automatic and thus adapted to the SHM context.

This paper is organized as follows. Section 2 presents the extensions of the original iterative HARBUT described25

in [15], such as the convergence criterion and several added or modified regularization methods (Gaussian filter,
threshold based on physical considerations and variable relaxation). Section 3 presents tomographic reconstructions
based on the original and modified algorithms with simulated data which take into account the PZT transducers
behavior. Three defects involving either refraction or diffraction phenomena are considered. Finally, in Section 4, the
method is validated on experimental data measured on a real 2 mm thick aluminum plate. Note that throughout this30

paper all tomographies are performed with the A0 mode.

2. Method

A direct problem consists in finding the response ϕ(x, t) for a given source f (x, t),∀(x, t) ∈ Ω × R given the laws
Ξ governing the medium Ω (Fundamental principle of dynamics, Hooke’s law) and the parameters of the problem
(q, p) ∈ Υ0 × Υ for some parameter spaces Υ0 and Υ (characteristics of the material, geometry). Guided wave35

tomography consists in finding some of the parameters p ∈ Υ (here, the thickness of the plate) given the laws Ξ̃−1

governing the medium, the other parameters q ∈ Υ0 (characteristics of the material) and a partial response ϕi j(t) for a
given source fi(t); it is an inverse problem. Note that Ξ̃ is an invertible regularization of Ξ. Fig. 1 is a representation of
the problem considered in this article. Sensors are positioned on a circle. i and j correspond to the sensor indices for
an emission i and a measurement j. The partial responses ϕi j(t) are the inputs to the guided wave tomography. These40

partial responses are measured for all the couples represented with thin blue lines on Fig. 1. Guided wave tomography
consists in inverting these measurements in order to obtain a quantitative image of the plate thickness.

In order to solve the inverse problem, guided wave tomography is usually based on a simplified model of guided
wave propagation in order to avoid a prohibitive computation time. An acoustic model is generally used, which is
characterized by a scalar wave equation and a dispersion relation ω(k) for the chosen guided wave mode, A0 in this45

paper. The original iterative HARBUT [15] is used here to solve the inverse problem.
The original iterative HARBUT [15] uses a ray-tomography as a first estimation of the plate thickness, in order

to respect the Born approximation in the subsequent DT step. In this section, the differences between the original
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Fig. 2. Dispersion curves of the group velocity vG for S0, A0, A1, SH0 and SH1, and for a 2 mm thick aluminum plate (VL =
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HARBUT and our method are presented. Some additional elements are also introduced, such as a regularization
method called “variable relaxation”, which helps to limit aliasing effects with strongly undersampled data.50

2.1. Algorithmic differences with the original iterative HARBUT

This section includes two parts; first are presented some differences for the Time-of-Flight (ToF) tomography step
and then for the DT one.

2.1.1. Time-of-Flight Tomography step
Whether it be straight-ray or bent-ray, in order to solve the propagation problem, one uses the SART algorithm [21]

(or FMM-SART for bent-ray [6]). The structure to be imaged is represented at the position x by the scalar slowness
field s(x) = 1

vG(x) (isotropic material), where vG is the group velocity. Fig. 2 presents the dispersion curves of the group
velocity for the configuration presented in this paper (the working product frequency × thickness considered in this
paper is very low: 40.8 kHz mm). To represent the slowness s(x), we project it on a finite basis. In the original bent
ray algorithm [6], a basis of cubic or spherical pixels / voxels is used for the reconstruction, and a non-interpolating
B-spline filter [22] is applied a posteriori in order to accurately estimate the gradient when computing the rays. Here,
we have instead expressed the SART algorithm in terms of B-splines from the very beginning. The projection s̃(x) of
the scalar slowness thus reads:

s̃(x) =
∑

i, j

S i jβi j(x), (1)

where β is a 2D B-spline basis and S i j is the coefficient associated to the B-spline βi j.55

With this decomposition, it is now possible to express the ToF τk→l along the trajectory (straight or bended) γk→l

between the emitter k and the receiver l:

τk→l =

∫

γk→l

s(γ) dγ �
∫

γk→l

s̃(γ) dγ =

∫

γk→l

∑

i, j

S i jβi j(γ) dγ =
∑

i, j

S i jAi jkl, (2)

where Ai jkl =
∫
γk→l

βi j(γ) dγ is the contribution of the basis element βi j to the ToF τk→l.
The use of B-splines allows us to obtain smooth images, which is important for the following DT iterations. In

practice, fourth order splines are used. This is a good compromise to get a smooth-enough image while keeping a
sufficiently small support for the defect reconstruction.

To perform baseline-free tomography, only ToFs corresponding to the defect data are available: τdefect
k→l . Therefore,

an absolute estimator needs to be used, and is described here. The nth iteration of the ray-tomography step reads:
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S (n)
i j = S (n−1)

i j + δkS (n)
i j , where δkS (n)

i j is the correction applied to the coefficient S i j and is calculated according to the
following formulation:

δkS (n)
i j =

1
Ni j

∑

l

Wi jkl
τdefect

k→l − τ(n−1)
k→l

λk→l

 , (3)

where λk→l is the trajectory length, Wi jkl is equal to Ai jkl in the simplest case but usually includes a Hamming window60

to avoid side effects, and the normalization factor Ni j reads: Ni j =
∑

l Ai jkl.
Unlike the absolute estimator, the relative estimator uses the ToF corresponding to baseline data: τbaseline

k→l . The
relative estimator allows to eliminate some systematic errors due to experimental uncertainties and works on relative
ToF. The idea is to subtract independently the experimental ToF (τdefect

k→l and τbaseline
k→l ) and the calculated ToF (τk→l and

τ
healthy
k→l ). The relative estimator is then calculated according to the following formulation:

δkS (n)
i j =

1
Ni j

∑

l

Wi jkl
(τdefect

k→l − τbaseline
k→l ) − (τ(n−1)

k→l − τhealthy
k→l )

λk→l

 . (4)

Those two estimators are compared on experimental data in Section 4.2.1.
Finally, concerning the ray-tomography, a regularization method - presented in Section 2.2 - is applied to the map

at every iteration in order to obtain a “cleaner” ray-tomography image for the subsequent DT iterations.

2.1.2. Diffraction Tomography step65

Concerning the DT step, the algorithm used in this paper is the same as the original HARBUT. However, several
extensions to HARBUT are proposed in order to satisfy the heavy constraints imposed by the SHM framework, such
as sensor intrusiveness and diagnostic reliability. Specifically, a Gaussian blur adapted to the undersampled data is
applied between iterations and an autocalibration method is used to automate the imaging procedure.

Prerequisite. The same object function O(x) as in [15] is used to represent the image:

O(x) = k(x)2 − k2
0 = k2

0


(

v0

v(x)

)2

− 1

 , (5)

where k0 is the background wavenumber, v0 the background phase velocity and v(x) the phase velocity at the position70

x, which is linked to the thickness thanks to the dispersion curves when the algorithm has converged. Iterative
HARBUT consists in calculating iteratively the correction Oδ(x), which is added to the previous estimation Ob(x) so
that O(x) = Ob(x) + Oδ(x). The correction Oδ(x) is calculated by means of a beamforming image for which a filter in
the spatial frequency domain (see [15] for details) is applied. In the HARBUT theory, the input data is the diffracted
field but it is shown in [18] how it is possible to work with the total field instead of the diffracted field. This is the key75

step for HARBUT to be free of any baseline.

Autocalibration method. In order to perform HARBUT, it is essential to rescale the data with respect to the theoretical
model in order for the incident field component to become negligible in the reconstruction, whether it be simulation
data or experimental data. This calibration could be done thanks to a baseline but as explained before, this is unwanted
in the case of a SHM application because of the false alarms which could occur. This is why the calibration is usually80

made with the current measurements, by manually choosing a ray for which the domain of propagation is assumed
sound. This is not ideal either in SHM because it is not automatic. Moreover, if the chosen ray passes through a flaw,
the resulting image will be of poor quality. Here, an autocalibration method is proposed. This method makes the
global imaging process automatic and baseline-free while preserving its robustness.

The theoretical incident field is given by the non-perturbed Green’s function:

G0(x; x′) = − i
4

H(1)
0 (k0

∣∣∣x − x′
∣∣∣), (6)

4



−20 0 20

−20

0

20

Distance (cm)

1.6

1.8

2

T
hi

ck
ne

ss
(m

m
)

(a) Full ray distribution usually used on baseline data in order to cal-
ibrate the field in classic calibration.

−20 0 20

−20

0

20

Distance (cm)

1.6

1.8

2

T
hi

ck
ne

ss
(m

m
)

(b) All the rays used in order to calibrate the field with the autocali-
bration method presented un this paper.

Fig. 3. Rays crossing the defect area after straight-ray tomography reconstruction.
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Fig. 4. Calibration factors plotted in the complex plane.

where H(1)
0 is the Hankel function of the first kind and of zeroth order. The idea is to calculate the calibration factors

ci j:

ci j =
G0(xi; x j)

ϕ
healthy
i (x j)

, (7)

where the index i denotes the emitter, the index j the receiver and ϕhealthy the measured incident field. Then these85

calibration factors are multiplied to the measured data, which provides the input calibrated fields for HARBUT. In the
case of tomography relying on baseline signals, the construction of ϕhealthy is straightforward, but for a baseline-free
method it is challenging to do it in a robust way. Naively, we could select a couple (i, j) for which the ray crosses no
defect and then proceed to the calibration with only this couple. This leads to two problems: the first one is that when
experimental uncertainties are too strong this approach could introduce noise in the resulting image; the second one is90

that it is difficult in practice — even nearly impossible — to be sure that there is no defect on the path of the ray, and
this would strongly disrupt the rescaling process. Actually, even if a first ray-tomography using the absolute estimator
is performed to approximately locate potential defects, this kind of algorithm is not able to detect diffracting defects.
Therefore, it has been decided to develop a method to construct the ci j in a robust way without any baseline.

The ci j are constructed in three steps:95

5



1. A ray-tomography with absolute estimator is performed with enough regularization (presented in Section 2.2)
to obtain a background without noise. Fig. 3a presents a result of this kind of tomography with all the rays
corresponding to all possible couples (i, j). Fig. 4 shows all the potential ci j of Eq. (7) for baseline data (black
triangles) and for defect data (yellow squares). Obviously, the baseline calibration factors are in close proximity to
each other, and concerning the potential calibration factors corresponding to the defect state, it is possible to see100

some of them which diverge from the others. They correspond to the rays which cross the defect. Moreover, the
problem is axisymmetric, which implies that if nsensors is the number of sensors in the distribution, for each visible
point there are nsensors points superimposed. The non axisymmetric case is treated in Fig. 19 for experimental data.

2. For each ray, we verify that the ray is not crossing any visible defect on the ray-tomography along its path (in
practice, a threshold of 1 % relative to the healthy thickness has been used). If a ray crosses a defect, it is not used105

in the following step. This means that m rays are kept with m ≤ nrays where nrays =
nsensors(nsensors−1)

2 the total number
of rays. Fig. 3b shows the m remaining rays. Fig. 4 shows the corresponding ci j (red circle). This time, the factors
kept are in close proximity to each other. It is possible to notice that only 2 nsensors factors were discarded (two red
circles are not superimposed on yellow squares) despite being in close proximity, which suggests that the threshold
may be too strict, but this is preferable to the contrary.110

3. Finally, a confidence ellipse is computed based on the factors corresponding to the rays within the healthy area
(red circles). As noticed before, the ray-tomography algorithms are blind to diffraction. This means that it is
possible for a small defect to be within the healthy area, intersecting some of the kept trajectories. Fortunately, the
associated calibration factors should diverge from the “proximity area” and thus be outside the confidence ellipse.
In this paper, a 95 % confidence ellipse has been chosen but we have tested smaller values, down to 5 %, and the
global error of the resulting image does not change significantly. Only the p factors ci j are kept (p < 2 m because
one ray is composed of two sensors) which are inside the computed confidence ellipse. These p factors are named
cellipse and satisfy cellipse ∈ Cp ⊂ C2 nrays . They are represented by small green circles in Fig. 4. The 2 nrays − p
remaining factors to be calculated are named cdefect and are estimated as follows:

cdefect =

∑p
k=1 cellipse

k

p
. (8)

These three stages allow to compute all the needed calibration factors to perform baseline-free guided wave imaging
with iterative HARBUT.

Gaussian filter. In the usual iterative HARBUT, a Gaussian blur is already applied between DT iterations. It is a kind
of regularization. In this paper, a Gaussian blur is applied not only between DT iterations, but also for ray tomography.
Here the importance of this filter when the number of sensors decreases is discussed.115

Whether it be for ray-tomography or the DT iterations, it has been decided to adjust the Gaussian filter standard
deviation to the algorithm resolution. For ray-tomography algorithms it is well known that the resolution corresponds
to the first Fresnel zone

√
λL where λ is the wavelength and L is the propagation distance between the sensors, so for

our configuration L = 2R where R is the radius of the sensor distribution. The effect of the defect size on the forward
propagation when considering ray-theory is presented in Fig. 5 for three defects studied in Section 3. The

√
λL length120

is also plotted for scale. Regarding the HARBUT iterations (DT steps), [16] explains that the resolution of HARBUT
is around 1.5-2λ and [18] demonstrates that the spatial sampling must be carried out such that ∆lim = λ

2 where ∆lim is
the distance between two sensors. If ∆lim is smaller (more sensors), the quality of the results remains the same but the
computation time is increased, while if ∆lim is longer (less sensors), artifacts appear caused by aliasing.

In order to eliminate non-physical oscillations (above the theoretical resolution), the Gaussian filter standard de-125

viation is adapted as follows. A Gaussian filter is the convolution between the image data and a Gaussian of stan-

dard deviation σ. If we consider the 1-D case, the Gaussian reads f (x) ∝ exp
(
− (x−µ)2

2σ2

)
and its Fourier transform

f̂ (k) ∝ σ exp (−ikµ) exp
(
−σ2k2

2

)
. The normalized Gaussian is f̂ (k) = exp

(
− k2

2σ̂2

)
= exp

(
− (2π)2

2σ̂2λ2

)
with k = 2π

λ
and

σ̂ = 1
σ

. It has been decided to fix the relative remaining spectral density to 1 % for the spatial wavelength equal
to half the theoretical resolution. In practice, this means that 29.1 % of the spectral density remain for the spatial130

wavelength equal to the theoretical resolution. For our configuration, if λw is the working wavelength, the theoretical
ray-tomography resolution is

√
λwL =

√
31 mm 600 mm ≈ 136 mm ≈ 4λw and the HARBUT theoretical resolution

6
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(c) Defect 3 - Strong diffraction. edef =

0.65 mm, rbot = 3.5 cm and ltrans = 3 cm (see
Fig. 8 and Eq. (13) for the definitions).

Fig. 5. Forward propagation (ray-tracing) for different kinds of simulated defects.

is 2λw. After some basic calculations, we find that σray-tomo = λw and σHARBUT =
λw
2 . When the number of sensors

decreases, σHARBUT has to be adapted according to the new value of ∆lim. For instance, if half the optimal theoretical
number of sensors is used, the standard deviation should be σHARBUT = λw. It is shown in Section 3.2.2 that it is also135

possible to keep the standard deviation of λw
2 if other kinds of regularization are used.

It is worth noting that it would have also been possible to filter the disruptive spatial frequency components in the
dual space (K-space) as explained in [18], but the very smooth Gaussian filter behavior is also interesting because it
acts as a relaxation in the iterative process.

We have also tried to decrease the standard deviation at every iteration. The achieved resolution is better but the140

image is noisier. The regularization method called “variable relaxation” presented in Section 2.2 is then needed. For
the sake of simplicity, we have decided to keep a constant standard deviation for the Gaussian blur in this paper.

Convergence criterion. Contrary to what was used in [15], we have decided to formulate the convergence criterion
using the total map (not only the damage area) to avoid problems which could occur when the noise present in the
map becomes bigger than the threshold chosen to identify the defect area. The Q parameter, allowing to define the
convergence, then reads:

Q(n) =

∫ ∣∣∣e(n)(x) − e(n−1)(x)
∣∣∣ dx

eplt
∫

dx
, (9)

where eplt is the healthy plate thickness and e(n)(x) is the thickness at position x for iteration n. Convergence is
considered to be achieved when Q ≤ 2 × 10−4, which is different from the criterion chosen in [15], and this is justified
because [15] considers the defect area only. Moreover, in order to possibly work with very noisy data, another criterion145

is added. If Q is increasing more than M consecutive iterations, the algorithm stops and convergence is considered to
be reached. From experience, we have observed that M can be chosen to be 2 or 3.

2.2. Regularization
In order to perform baseline-free guided wave tomography with an undersampled sensor array, it is necessary to

add prior information on the set of possible parameters p, otherwise the inverse problem Ξ−1 would be ill-defined,150

leading to aliasing and bad convergence. This is accomplished through the use of several regularization methods [23].
Regularization is classically implemented by adding a penalty term to the Lagrangian [24]. However, this requires
to explicitly formulate the tomography as a minimization problem, which adds complexity to bent ray [7] and would
be impractical — if not impossible — for HARBUT. Instead, here we implement the regularization implicitly on
top of the usual HARBUT algorithm, as additional steps inserted between iterations. This allows us to use the same155

regularization methods both for the ray and diffraction tomography steps of HARBUT.
Each regularization step operates exclusively on the partial image (weights ei j or map e(n)(x)), independently of

the input ϕi j, in an attempt to enforce some of its properties. If the prior information introduced by the implicit

7



regularization method accurately represents the properties of the SHM setup (such as material properties, possible
defects or noise profile), it can enable us to obtain a more accurate reconstruction, or alternatively to maintain the160

same accuracy while using less sensors, in the spirit of sparse tomography methods [25]. On the other hand, if the
prior does not faithfully represent the properties of the setup, then the regularization method can introduce a bias.
It is therefore necessary to verify that the prior information is accurate for the specific SHM setup. This is done by
validating the model using physical or simulated test defects, which must be representative of the expected defects
when the system is later used in production. In principle, any prior can therefore be used provided that it is successfully165

validated. However, for the present work, we will use our knowledge of the setup to guide our choice of regularization
method.

The Gaussian blur has already been presented in Section 2.1.2. Two others methods are used in this paper. The
first one is based on a physical constraint: we assume that the thickness can never increase because of corrosion. This
is implemented as a constant threshold equal to eplt. The second one, which we call “variable relaxation”, is inspired
by Tikhonov regularization [23] (which limits the effective number of weights) and weight elimination [26] (which
further reduces small weights, hence limiting noise at the cost of a lower sensitivity to small defects), and is applied
to the thickness map for ray-tomography and to the object function for HARBUT after each iteration. It limits the
amplification of spatial fluctuations at each iteration due to noise and the lack of sensors, while still allowing us to
accurately reconstruct localized defects above the noise threshold. If we call ei j an element of the image, the “variable
relaxation” is defined as follows:

e′i j =



ẽ +
ei j − ẽ

(
1 + 1

z2
i j

) α
2

if 0 <
∣∣∣ei j − ẽ

∣∣∣ < γβẽ,

ei j otherwise,

(10)

with e′i j the new value of the element, ẽ the reference of the regularization (for example ẽ = eplt for the ray-tomography
step), β ∈ [0, 1] a threshold which has to be fixed depending on the amplitude fluctuation of the noise present in the
image, γ ∈ [1,+∞[ a constant fixing the relaxation limit, α ∈ R+ a constant defining the strength of the regularization
and zi j reads:

zi j =



∣∣∣ei j − ẽ
∣∣∣

βẽ
if

∣∣∣ei j − ẽ
∣∣∣ < βẽ,

∣∣∣ei j − ẽ
∣∣∣

1
2βẽ

[
1 − cos

(
π
|ei j−ẽ|−γβẽ

(1−γ)βẽ

)] if βẽ ≤
∣∣∣ei j − ẽ

∣∣∣ < γβẽ.
(11)

In order to clarify the effects of β, γ and α, several values are tested in Fig. 6 for a plate of thickness eplt = 2 mm, in
the case of time-of-flight tomography.

Domain of effect of the regularization: The effect of the regularization is limited. Indeed, e′i j , ei j,∀ei j ∈ ]
(1 − γβ)ẽ, ẽ

[
170

and e′i j = ei j elsewhere. This can be verified with the red curves in Fig. 6: for the solid red line e′i j , ei j,∀ei j ∈
]0, 2[ and e′i j = ei j elsewhere whereas for the dashed red line e′i j , ei j,∀ei j ∈ ]1, 2[ and e′i j = ei j elsewhere.
Thereby, the domain of effect of the regularization is twice larger for the solid red line than for the dashed one.

Effect of the threshold β: The effect of the regularization is low for ei j ∈ ]
(1 − γβ)ẽ, (1 − β)ẽ

[
and high for ei j ∈]

(1 − β)ẽ, ẽ
[
. To illustrate that, the solid blue line (scenario 2) and the solid red line (scenario 4) are compared.175

Scenarios 2 and 4 have the same regularization domain, i.e. γ2β2 = γ4β4, the same strength, i.e. α2 = α4, but
two different thresholds, i.e. β2 , β4. We can see that the effect of the regularization is high in a larger domain
for the scenario 4 than for the scenario 2. β has to be adapted to the amplitude fluctuations of the noise present
in the image. In real applications, it is possible to estimate the amplitude of the unwanted fluctuations present
in the image. This noise can be due to several factors such as an error in the positioning of the sensors, a lack of180

sensors which causes aliasing, noise in the data or an approximation in the model. In this paper, the unwanted
fluctuations have been estimated to be around 10 % of the reference thickness. So it has been decided to fix
β = 0.1.
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Fig. 6. Explanation of the regularization called “variable relaxation” for the case of time-of-flight tomography with ẽ = 2 mm and
different values of β, γ and α.

Effect of α: Finally, the parameter α is studied thanks to the blue curves in Fig. 6. This parameter is the strength of
the regularization: the higher is α, the stronger is the effect of the regularization.185

These three hyperparameters have been studied in several configurations and we have noticed that the optimal behavior
is obtained when γβ = 1. It is interesting to note that this result allows us to fix only two parameters instead of three.
We have fixed β = 0.1 as explained before. Concerning the strength, we decided to fix α = 4 for the ray tomography
because we need a very clean map for the autocalibration step, and α = 2 for the DT step of HARBUT. We expect that
hyperparameters will need to be adjusted to each specific SHM setup for optimal performance. However, as long as190

they only depend on the general properties of the setup, which are stable in time, our regularization method remains
compatible with baseline-free tomography.

2.3. Global relative error

In order to quantitatively compare tomographic images, a global relative error is used. Let f̃i be the ith pixel of the
reference map and fi the ith pixel of the tomographic image. The global relative error Eglobal reads:

Eglobal =

√∑Npix

i=1

(
f̃i − fi

)2

√∑Npix

i=1 f̃ 2
i

, (12)

where Npix is the number of pixel in the image. The methods used to construct the reference maps for the numerical
results and the experimental results are explained in Sections 3.1 and 4.1, respectively.195
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Fig. 7. General FEM setup.

3. Numerical results

3.1. Numerical model

In order to test the algorithm, numerical 3D elastodynamic simulations based on the Finite Element Method (FEM)
were performed. The FEM code is internally developed in the NDE department of CEA-LIST [27]. The configuration
is presented in Fig. 7. An aluminum plate of density ρ = 2.7 g cm−3, longitudinal velocity VL = 6360 m s−1, transversal200

velocity VT = 3140 m s−1 and dimensions 1400 mm× 1250 mm× 2 mm is considered. The sensors are positioned on a
circle of radius rdistrib = 300 mm, as shown in Fig. 7. To simulate the PZT transducer behavior, we use a second order
numeric scheme both in time and in space, as well as a mesh adapted to the emitter geometry (see Fig. 7). In-plane
forces normal to the circle of same diameter as the PZT disc are applied to the mesh nodes (see [28] for the modeling
of PZT transducers and [29, 30] for experimental validations). The size of the elements is set to 2 mm (because the205

working frequency is 20.4 kHz and the associated wavelength 30.7 mm) along the two in-plane dimensions (excepted
for the emitter zone). An axisymmetrical model is used in order to minimize the computation time.

The defect is parametrized using a segment Υbot of length rbot corresponding to the defect bottom radius, the defect
depth edef and a transition zone Υtrans of length ltrans defined in terms of Bernstein polynomials b(m)

i :


Υtrans(xtrans) = eplt + edef

(
−1 +

∑3
i=0 βib

(3)
i

(
xtrans−rbot

ltrans

))
∀xtrans ∈ [rbot, rbot + ltrans] ,

b(m)
i (x) = m!

i!(m−i)! xi(1 − x)m−i,
(13)

where β0 = 0, β1 = 0, β2 = 1 and β3 = 1. With a revolution of Υbot and Υtrans with respect to the normal axis to
the plate surface and crossing the center of the sensors distribution, the defect geometry is constructed as presented in
Fig. 8. The three defects studied in this paper are presented in Fig. 5.210

The solution is extracted within a ring and then processed to reconstruct either the PZT response or the normal
response. To obtain the normal response, we only need to interpolate the ring solution for each time-step and then
extract the out-of-plane displacement for the points of interest. To compute the PZT response f rec

PZT, it is necessary to
integrate the in-plane displacements u1 and u2 of the active part of the PZT disc along the closed curve γPZT:

f rec
PZT(t) = kPZT

∮

γPZT

(u(t) · n) dγ(x), where u ≡ (u1, u2) and x ≡ (x1, x2). (14)

where n is the outer-pointing normal of γPZT and kPZT is a constant depending on the piezoelectric material parameters
(see [28] for more details). kPZT is ignored here because we only need to consider relative amplitude signal variations
for this work.
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Fig. 8. Defect FEM setup.

The frequency behavior of a PZT transducer can be described as follows (see [29, 31] for more details):

∣∣∣ f̂ rec
PZT(ω)

∣∣∣ ∝
∣∣∣∣∣∣ J1

(
π
∅PZT

λ(ω)

) ∣∣∣∣∣∣, (15)

where ∅PZT is the diameter of the active part of the PZT disc and J1 is the Bessel function of the first kind and of first
order. Fig. 9a shows such a behavior for our setup.215

Finally, before studying the algorithm behavior, experimental signals and simulated signals are compared in
Fig. 9b. The excitation is a 5 cycles toneburst of central frequency 20.4 kHz. It may be noted that there is an
electromagnetic coupling between the emission and the experimental measurement. The simulated normal response
does not contain the S0 mode. This is due to S0 having practically no out-of-plane displacement in comparison with
the in-plane displacement for our setup (the out-of-plane displacement is around 1 % of the in-plane displacement220

here). However, S0 is visible in the simulated PZT response as well as in the experimental signal, both of which use
the same PZT geometry. This means that, because of reflexions on the plate sides, S0 will interfere with A0 (the packet
of interest in this paper).

3.2. Reconstructions

3.2.1. Ray-tomography225

In this section, we explain why straight-ray is preferred to bent-ray as a first iteration for HARBUT - which seems
paradoxical given that bent-ray uses a more accurate model of wave propagation. It should be mentioned that all the
ray-tomographies of Section 3 use the absolute estimator, because our final aim is to perform baseline-free guided
wave tomography. Moreover, in order to avoid S0 perturbations, as a first step we will only consider the normal
response. Furthermore, no regularization (not even the Gaussian blur) is used in this Section.230

First we consider the defect of Fig. 5a, which presents no diffraction but features strong refraction. In this particular
case, Fig. 10 shows, as expected, that bent-ray gives better results than straight-ray. However, when the defect of
Fig. 5c is considered, Fig. 11 shows that straight-ray has a better behavior when strong diffraction is present. This
is because straight-ray is better conditioned than bent-ray. Consequently, it is sometimes better to use straight-ray
instead of bent-ray, depending on the kind of defect searched for. In SHM, this problem can be overcome. Indeed, it235

is possible to record the reconstruction each time an inspection is performed. As the defect is growing, inspections
are performed frequently enough such that the nth one can use the (n − 1)th reconstructions as background, so that the
Born approximation is never violated.
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Fig. 9. Validation of the simulation.
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Fig. 10. Ray-tomography with refraction only (defect 1).
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Fig. 11. Ray-tomography with strong diffraction (defect 3).

3.2.2. HARBUT
Gaussian blur effect. The defect of Fig. 5b, presenting both refraction and diffraction, is considered. Is should be240

mentioned that no Gaussian blur is used for the bent-ray tomographies.
Concerning HARBUT, Fig. 12a is a reconstruction without any regularization nor Gaussian blur. We used much

more sensors than the optimum number of 120 which is necessary to adequately sample the Ewald circle [18]. The
algorithm has been stopped at the 7th iteration as it would otherwise diverge. It is possible to see the 2k0 spatial
frequency oscillations. If a Gaussian blur of standard deviation 1

2λ (explained in Section 2.1.2) is used, the recon-245

struction is practically perfect, as seen in Fig. 12b. Then, if the number of used sensors is decreased to the optimal
number 120, Fig. 12c shows that the reconstruction has the same quality but the computation time is naturally lower
(roughly four times faster). If half the optimal number of sensors are exploited (60) and the same Gaussian blur is
applied, Fig. 12d shows again some parasitic spatial oscillations but this time of spatial wavelength longer than the
ones present in Fig. 12a. If the standard deviation is increased to 1λ, as explained in Section 2.1.2, these oscillations250

disappear but the defect reconstruction decreases in quality: see Fig. 12e. Finally, it is possible to see in Fig. 12f that
by adding regularization (here, the physical threshold) and by keeping the standard deviation to 1

2λ for 60 sensors, we
can still obtain a reconstruction of good quality.

Baseline-free HARBUT with autocalibration method. For the following reconstructions in this paper, only 30 sensors
are used. In order to obtain the best reconstructions, we use a standard deviation of 1λ (and not 2λ) with regularization,255

i.e. the threshold and/or the variable relaxation. Moreover, the Gaussian filter is always used for the ray-tomography
reconstructions.

Baseline-free HARBUT combined with the autocalibration method and HARBUT combined with a classic cal-
ibration and with the relative estimator for the time-of-flight tomography step are compared in Fig. 13 for defect 3.
Only 30 sensors are used, which corresponds to a 75 % reduction compared to optimal sampling. It should be un-260

derlined that this time the PZT response is used. Moreover, only the threshold is used (no variable relaxation). It
is possible to see some small artifacts on both reconstructions due to the lack of sensors. If variable relaxation had
been employed, those artifacts would have disappeared (this will be shown in the experimental Section 4.2.2). The
reconstructions of Fig. 13 correspond to the calibration factors presented in Fig. 4.

Table 1 allows us to quantitatively estimate the quality of the reconstructions. The global relative error (see265

Eq. (12)) is very similar between the autocalibration and classic calibration methods. This study demonstrates the
good performance of the autocalibration method on simulated data. The next section is dedicated to experimental
studies.
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Fig. 12. HARBUT behavior (defect 2) as the sensor number decreases.
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Fig. 13. Comparison between HARBUT with autocalibration and HARBUT with classic calibration (defect 3).
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Straight-ray HARBUT

Classic calibration 1.83 % 0.86 %

Autocalibration 1.75 % 0.83 %

Table 1: Global relative error Eglobal of Fig. 13 tomographies (data from simulation).

(a) Aluminum plate and PZT transducer positions. (b) Defect position.

Fig. 14. Picture of the plate studied.

4. Experimental results

4.1. Experimental setup270

Two pictures of the experimental setup are showed in Fig. 14. We consider an aluminum plate of density ρ =

2.7 g cm−3, longitudinal velocity VL = 6360 m s−1, transversal velocity VT = 3140 m s−1 and dimensions 1400 mm ×
1250 mm × 2 mm. The sensors distribution is a circle of radius rdistrib = 300 mm. The PZT transducers, of diameter
∅PZT = 18 mm, are glued to the aluminum plate.

In order to have a reference to calculate the global relative error, an ultrasonic scan is performed in water im-275

mersion and the thickness map of Fig. 15 is obtained from the ToFs. The first Fresnel zone and the wavelength are
superimposed on it. We can see that the defect to be imaged looks like the simulated one presented in Fig. 5c.

4.2. Reconstructions
4.2.1. Ray-tomography

Here we compare the absolute estimator (Eq. (3)) to the relative estimator (Eq. (4)) in the case of experimental280

data.
The straight-ray reconstruction using the relative estimator is presented in Fig. 17a. The healthy part of the map is

relatively “clean”. When the absolute estimator is used (see Fig. 17b) the healthy part is noisier which was expected
because the experimental uncertainties cannot be compensated with this estimator. However, in order to limit the
noise, it is possible to apply the variable relaxation. As explained in Section 2.2, it has been decided to fix β = 0.1,285

the product γβ = 1 and α = 4 for the ray tomography step in order to get a very clean background image for
the autocalibration step. Fig. 16 shows the curve of Eq. (10) for these parameters. The resulting reconstruction is
presented in Fig. 17c. This time, the healthy part contains no noise, which is essential for the following HARBUT
steps.

4.2.2. HARBUT290

In order to perform baseline-free HARBUT with autocalibration, the approach proposed in Section 2.1.2 to cali-
brate the field is applied to experimental data. First, the baseline-free straight-ray reconstruction is used to find all the
healthy rays. This is presented in Fig. 18a for the full ray distribution and in Fig. 18b for the healthy rays.
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Fig. 16. Effect of the variable relaxation for a 2 mm thickness plate (β = 0.1, γβ = 1 and α = 4). This kind of regularization is used
for ray-tomography.
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Fig. 17. Experimental straight-ray tomographies with a 2 mm threshold.
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Fig. 18. Rays crossing the defect area after straight-ray tomography reconstruction.
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Fig. 19. Calibration factors plotted in the complex plane.

All the calibration factors are presented in Fig. 19a. This time, contrary to the axisymmetrical simulation cases,
no calibration factors are superimposed on each others. Moreover, the distinction between the factors corresponding295

to rays crossing the defect and those travelling through the healthy part is not as clear as with simulated data. It is
possible to see factors considered healthy which diverge from the proximity area. This means that the confidence
ellipse visible in Fig. 19b plays a full role to remove the factors viewed as healthy but which would cause a poor
calibration.

Finally, we present in Fig. 21 the results for HARBUT with the use of a baseline (all the calibration factors are300

calculated thanks to a baseline) and in Fig. 22 those for baseline-free HARBUT with the autocalibration method.
The cross-sections plotted on the reference (see Fig. 15) are presented in Fig. 21b, 21d, 22b and 22d. Fig. 21a and
22a present the reconstructions without the variable relaxation for the DT steps. On both images, the healthy part
presents artifacts because of aliasing due to the lack of sensors. By comparing cross-sections (Fig. 21b and 22b),
ones can observe that the artifacts are stronger on baseline-free HARBUT with autocalibration. Fig. 21c and Fig. 22c305

present the reconstructions with the use of variable relaxation presented in Fig. 20a and 20b. Again, as explained in
Section 2.2, it has been decided to fix β = 0.1, the product γβ = 1 and α = 2 for the DT step of HARBUT. α does not
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(b) Effect of the variable relaxation for the imaginary part of O(x).

Fig. 20. Effect of the variable relaxation for the DT step of HARBUT (β = 0.1, γβ = 1 and α = 2).

Baseline Baseline-free

Straight-ray 1.56 % 1.62 %

HARBUT without variable relaxation 0.81 % 1.20 %

HARBUT with variable relaxation 0.44 % 0.65 %

Table 2: Global relative error Eglobal of the tomographies of Fig. 21 and 22 (data obtained from the experience).

have to be as strong as in the case of ray tomography. The artifacts disappear almost entirely. In addition, Fig. 21d
and 22d show that while small variations present in the defects (see reference) are not reconstructed because of the
too large value of λ and the lack of sensors, the global geometry is, however, well identified.310

Finally, the global relative errors are presented in Table 2. This allows us to quantitatively compare the recon-
structions. We can see that baseline-free HARBUT with autocalibration presents relative errors of the same order of
magnitude as HARBUT with the use of a baseline for the calibration.

5. Discussion

The two main contributions of this paper are the autocalibration method and a way to deal with undersampled315

data.
Concerning the autocalibration method, one could think of a situation which could lead to poor calibration. This

situation is discussed below. The autocalibration method is based on an image obtained with ray-tomography. If a
transducer or a group of transducers is mispositioned, this leads to a local change in the reconstructed velocity very
close to these transducers, and thus the concerned rays are not used for the autocalibration. What about the conse-320

quences of this scenario? First, in an industrial use of this method, the mispositioning is expected to be sufficiently
small that it would not cause any false values within the initial image. The experimental results showed in this paper
are of good quality although no particular attention has been paid to the positioning of the sensors (i.e. positioning
accuracy ≈ 1 mm). But even if one or a group of transducers is mispositioned on purpose (or have errors), the rays
concerned by the velocity change will not be used for the calibration. This is not a problem as long as there are enough325

rays to perform the calibration. As explained in the paragraph concerning the autocalibration, we even tried to keep
only 5 % of the healthy rays (the ones which do not intersect the flaws in the ray tomography image) but the resulting
image does not change significantly. Finally, the sensor positioning accuracy required to obtain a high-quality recon-
struction would be enough to ensure a good autocalibration. Consequently, the autocalibration method seems to be
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(a) No variable relaxation is used for the DT steps.
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(b) Cross-section of Fig. 21a.
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(c) Variable relaxation (β = 0.1, γβ = 1 and α = 2).
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(d) Cross-section of Fig. 21c.

Fig. 21. Experimental HARBUT tomographies with a 2 mm threshold and using baseline data to calibrate the fields. The initial
image used for iterative HARBUT is a straight-ray (relative estimator) tomography with a 2 mm threshold and with variable
relaxation (β = 0.1, γβ = 1 and α = 4).
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(a) No variable relaxation is used for the DT steps.
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(b) Cross-section of Fig. 22a.

λ
√
λL

−20 0 20

−20

0

20

Distance (cm)

1.4

1.6

1.8

2

T
hi

ck
ne

ss
(m

m
)

(c) Variable relaxation (β = 0.1, γβ = 1 and α = 2).
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Fig. 22. Baseline-free experimental HARBUT tomographies with autocalibration and a 2 mm threshold. The initial image used for
iterative HARBUT is a straight-ray (absolute estimator) tomography with a 2 mm threshold and with variable relaxation (β = 0.1,
γβ = 1 and α = 4).
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robust enough to be used in a SHM context.330

Concerning the undersampling issue, the idea was to use less sensors than the optimal number in order to be less
intrusive in the structure. It has been shown in this paper that we could still obtain an image of good quality with
four times less sensors than the optimal number. However, for some applications (such as aeronautics), the density
of sensors required remains too high to be of practical relevance. Further studies are being conducted in parallel by
the authors (and other teams) to further reduce the required number of sensors. Another promising approach is to335

reduce intrusiveness thanks to Fiber Bragg Gratings (FBGs). Using this technology, all the sensors can be replaced by
one fiber with Bragg gratings written in the fiber. This could be a far less intrusive way to perform SHM. However,
FBGs can only measure received guided waves and cannot generate them. In order to overcome this problematic the
idea is to use so-called “passive methods” to retrieve the signals that are needed to perform tomography [32]. A work
is conducted in parallel on passive tomography [33], and more generally on passive imaging with FBGs; it will be340

discussed in a future paper.

6. Conclusion

This paper has presented extensions to the original iterative HARBUT to deal with SHM constraints. Indeed,
these extensions allow diagnostic reliability despite low sensor intrusiveness. This work focused on the use of PZT
transducers which can be very intrusive when used in large numbers. It has been necessary to find a way to keep345

the algorithm robust when the number of sensors decreases below the optimal number which is typically required
for proper sampling. In order to study a large number of configurations, a simulation campaign, which can take into
account either PZT emission and reception or out-of-plane displacement, has been realized. Then, to confirm the
results, experimental tomographies have been studied on real PZT data.

A method for working with a baseline-free algorithm while preserving the robustness of the calibration has been350

presented. This is done by using the absolute estimator for ray-tomography and an autocalibration method which is
automatic, and is thus adapted to the SHM context. The absolute estimator does not compensate some systematic
experimental uncertainties, which may result in a noisy map. This could make HARBUT diverge locally if this noise
is too high. Moreover, it is crucial to have a clean map for the autocalibration step. In order to address this serious
issue, a regularization method called variable relaxation has been developed.355

Finally, because of the very low number of sensors used (four times less than the optimal number needed to
reach the theoretical resolution of HARBUT) several regularizations methods have been presented. The Gaussian
blur, which smoothly filters the spatial frequency components, is adjusted to the number of used sensors by tuning
its standard deviation. The threshold, based on a physical constraint, allows to stabilize the reconstruction at each
iteration. Lastly, the variable relaxation allows to compensate for the lack of sensors by reducing the effect of aliasing360

as well as the potential noise inherent to real data.
This paper has shown that it is possible to perform baseline-free HARBUT with a very low number of sensors

compared to the optimal number, but this is at the expense of resolution. Future work could be performed to maintain
a relatively good resolution even with a low number of sensors. Compressed sensing seems to be a promising tool
for that purpose [25]. Moreover, recently Shi and Huthwaite worked on the undersampled diffraction tomography365

problematic in the case of a 50 % reduction of the number of sensors. The idea is to use a forward model to get virtual
transducers measurements in an iterative approach and so improve the imaging resolution [34].

Another approach would be to use less intrusive sensors. For instance, Fiber Bragg Gratings (FBGs) is a promising
solution to increase the number of measurement points without increasing the intrusiveness of the system. However,
unlike PZT transducers generally used in SHM, FBGs cannot emit elastic waves. This shortcoming can be circum-370

vented by employing passive methods in order to retrieve the Green’s function from elastic diffuse fields — naturally
present in structures — measured simultaneously between two sensors [32, 33, 35].

Work is being conducted by the authors in parallel on passive tomography and will be discussed in a future paper.
A longer-term program consists in performing passive tomography with FBGs only, in order to use a sufficient number
of sensors to reach the maximum achievable resolution by the HARBUT algorithm.375
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