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We demonstrate analytically and numerically the possibility of existence of the analogues of electromagnetic induced transparency (EIT) and electromagnetic 
induced reflection (EIR) in a simple mesoscopic structure. The latter consists of a ring of length 2d attached vertically to two semi-infinite leads (waveguide) by a 
wire of length d1. The ring is threaded by a magnetic flux Φ, the so-called Aharonov-Bohm effect. The number of dangling wire- ring resonators attached at the 
same point can be increased to N. First, we demonstrate analytically that in the absence of the magnetic flux (Φ ¼ 0) and for particular values of d1, the structure 
may present some states that are confined in the ring and do not interact with the waveguide states. These trapped states fall in the continuum states of the two 
leads and therefore represent bound in continuum (BIC) states. These states are characterized by a zero width resonance (i.e., infinite life-time) in the transmission 
and reflection spectra. In presence of a weak magnetic flux (Φ 6¼ 0), the BIC states transform to EIT or EIR resonances for specific values of the lengths d1and d of 
the wire and the ring respectively. In addition to the numerical results, we have developed Taylor expansion calculations of the transmission and reflection 
coefficients around EIT and EIR resonances to show that the latter can be written following a Fano shape. In particular, we have deduced the Fano parameter q 
and the quality factor Q of these resonances as function of N and the flux Φ. We have found that Q decreases as function of Φ for both EIT and EIR resonances, 
whereas it increases (decreases) as function of N for EIT (EIR) resonances. These results show the possibility of tuning EIT and EIR resonances by means of the 
magnetic flux Φ and the number of dangling resonators N. The effect of temperature on EIT and EIR resonances is also considered through an analysis of the 
Landauer-Buttiker conductance formula obtained from transmission. The theoretical results are obtained within the framework of the Green’s function method 
which enables us to deduce analytically the dispersion relation, transmission and reflection coefficients. These results may have important applications for 
electronic transport in mesoscopic systems such as filters and demultiplexers.   

1. Introduction

Electromagnetically induced transparency (EIT) is a quantum inter-
ference phenomenon resulting from coherent interactions between the 
excitation pathways to the atomic upper levels [1,2]. This phenomenon 
which can turn an opaque system into a transparent system was first 
observed in Strontium vapor by Boller at al [1]. This resonance is 
characterized by a dip inserted between two peaks in the absorption 
followed by a steep dispersion [2]. The EIT-like behavior has received 
increasing attention during the last two decades, due to its interesting 
physics and potential applications such as slow light effect [3–5] and 

data storage [6]. Recent studies have demonstrated that the analog of 
EIT can be also realized in classical systems due to similar interference 
effects. Different systems have been proposed for this purpose such as: 
photonic crystal waveguides coupled to cavities [7–9], 
coupled-microresonator systems [10,11], nonlinear materials [12,13], 
plasmonic nanostructures and metamaterials [14,15], acoustic wave-
guides [16–18], multilayers [19] and photonic circuits [20,21]. In 
addition to the EIT resonances, the electromagnetically induced reflec-
tion (EIR) refers to the formation of a reflection window inside a 
transparency band of an atomic system. Recently, this effect has been 
studied theoretically [22,23] and experimentally [24] in metamaterials 
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made of wire-slot and split-ring resonator arrays. Other works have 
treated theoretically [25] and experimentally [26] EIR resonances in 
planar metamaterials for plasmonic sensing applications. Also, other 
structures based on graphene plasmonic devices [27], 
coupled-resonators in photonic-crystal waveguides [28] and metal-
–insulator–metal plasmonic waveguide-resonator coupling systems
[29], have shown EIR resonances. In addition, EIR resonances have been 
proposed to realize a narrow-band perfect absorber with two absorption 
peaks for plasmonic sensor [30]. Besides EIT and EIR resonances, bound 
in continuum (BIC) sates or trapped modes have found an increasing 
interest in recent years [31]. These states can be found when the EIT and 
EIR resonances collapse in the transmission and reflection spectra. 
Therefore, they remain confined in some parts of the system even though 
they coexist with a continuous spectral range of radiating waves that can 
transport energy away. This is a counterintuitive idea which was origi-
nally proposed several decades before in quantum mechanics [32], but 
found a high amount of interest in the recent literature [31]. These states 
may exhibit potential applications as they are characterized by a high 
quality factor [31]. 

In the low dimensional systems, a rich variety of mesoscopic systems 
[33] have been proposed in the literature to understand transport phe-
nomena through quantum rings, wires, or dots due to the advances in 
micro-fabrication. Indeed, it has been made possible the confinement of 
electrons in a conductor with ultrasmall lateral extent of few nanome-
ters, leading to the phase coherence length of the electron to become 
larger than the system’s dimensions. As a result, the system becomes 
essentially an electron waveguide. These nano-devices have shown 
several nontrivial effects, such as Aharonov–Bohm (A-B) conductance 
oscillations, persistent currents and quantum Hall effect [34]. The A-B 
effect is one of the most intriguing quantum mechanical phenomenon in 
which the phase of a charged particle is affected by the vector potential 
of an electromagnetic field giving rise to charge–particle interference 
phenomena [35,36]. This effect has found applications in different do-
mains such as: electron phase spectroscopy [37], detection of 
single-molecule levels [38,39], and characterization of nanostructures 
such as graphene nanotubes [40,41]. This phenomenon has been 
extended recently to classical photonic structures based on transitions 
between two photonic modes [42,43] as well as photon-phonon inter-
action [44]. Different geometrical mesoscopic devices have been 
explored in the literature to show essentially another type of resonances 
called Fano resonances [45,46]. These latter resonances are character-
ized by a peak followed by a dip in the transmission spectra as a 
consequence of a destructive interference of the waves, giving rise to an 
asymmetric line shape. These resonances have been the subject of 
intensive study from the theoretical and experimental point of view in 
single [47–57] and double [58–65] rings placed between two leads. In 
addition to Fano resonances, persistent currents are also studied in detail 
in A-B structures made of one or double rings [47,53,58] in presence of 
the magnetic flux and impurity or quantum dots in the arms of the ring. 
However, few works have been devoted to EIT resonances in mesoscopic 
systems. Some of us [57] have studied a one-dimensional loop structure 
with dangling resonators on both sides. EIT-like resonances have been 
obtained by tailoring the lengths of the different wires constituting this 
structure. A resonance squeezed between two transmission zeros has 
been also found in a double quantum-ring [66] and a double stub cavity 
[67] connected at the same site along a quantum wire. Also, to our 
knowledge, EIR resonances in mesoscopic systems have not been treated 
before. 

In this work, we propose a simple and compact mesoscopic structure 
that enables to support BIC states, as well as EIT and EIR resonances. The 
system is composed of a ring of length 2dattached vertically to two semi- 
infinite leads (waveguide) by a wire of length d1. The ring is threaded by 
a magnetic flux Φ the so-called Aharonov-Bohm effect. The number of 
dangling wire-ring resonators attached at the same point is N (Fig. 1). 
We show that such a structure may exhibit trapped states as well as EIT 
and EIR resonances that can be tuned by means of the magnetic flux Φ 

and the number of dangling resonators N. 
The effect of temperature on EIT and EIR resonances is also consid-

ered through an analysis of the Landauer-Buttiker conductance from 
transmission formula [68,69]. The theoretical results are obtained 
within the framework of the Green’s function method [70] which en-
ables us to deduce the dispersion relation and transmission and reflec-
tion coefficients. 

This paper is organized as follows: in Sec. 2 we recall the Green’s 
functions expressions of the wire, ring and leads constituting the whole 
structure (Fig. 1). Then, we show how to deduce the expressions of the 
transmission and reflection coefficients. Section 3 is devoted to analyt-
ical and numerical results of transmission and reflection coefficients to 
show the possibility of existence of BIC, EIT and EIR resonances. The 
effect of temperature on EIT and EIR resonances is discussed in Sec. 4. 
Section 5 gives a summary of the main results of this work and the 
conclusion. 

2. Theoretical results: transmission and reflection coefficients
and dispersion relations 

2.1. Green’s functions approach 

The mesoscopic structure described in Fig. 1 is composed of N 
mesoscopic Aharonov- Bohm rings of length 2d attached to a wire of 
length d1, all the rings are threaded by the same magnetic flux Φ. The 
whole structure is inserted between two semi-infinite leads. We use the 
Green’s function approach, called interface response theory of contin-
uous media [70] to solve the problem of the propagation of electronic 
waves in the structure presented in this work (Fig (1)). The objective of 
this theory is to calculate the Green’s function of a composite system 
containing a large number of interfaces that separate different homog-
enous media. The knowledge of this Green’s function enables us to 
obtain different physical properties of the system such as the reflection 
and transmission coefficients and the dispersion relations. All the matrix 
elements g(DD) in the whole space D of the composite material, can be 
obtained from the knowledge of the matrix elements g(MM) in the 
interface space M. g(MM) is calculated from its inverse g�1ðMMÞ. The 
latter is formed by a linear superposition of the surface matrix elements 
g�1i ðMMÞ of any independent wire [70]. We employ the usual boundary 
conditions: the continuity of the wave functions and their first de-
rivatives divided by the respective effective masses. These are implicitly 
taken into account in the framework of Interface Response Theory [70]. 

We shall avoid the details of calculation where an analysis of the 
Shr€odinger equation in presence of a magnetic flux gives rise to the bulk 
Green’s function of an infinite wire. These calculations are presented 

Fig. 1. Schematic illustration of N (N ¼ 5) Aharonov-Bohm rings of length 2d 
coupled to the waveguide by a wire of length d1, the rings are threaded by a 
magnetic flux Φ. The whole structure is inserted between two semi- 
infinite leads. 
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elsewhere [65]. 
The principle of the interface response theory [70] used in this work, 

requires before dealing with the whole structure, the knowledge of the 
surface Green’s functions elements of its elementary constituents, 
namely, the Green’s function of a finite wire of length d1 and of an 
Aharonov-Bohm ring of length 2d submitted to a magnetic flux Φ. The 
inverse of the Green’s function g�11 ðM1M1Þ in the space of interface M1 ¼
f0;1g of a finite wire of length d1 (Fig. 2(a)) can be written as a (2 � 2) 

matrix [65]: 

g�1
w ðM1M1Þ¼ � F

0

B

B

B

@

C1

S1

�1

S1

�1

S1

C1

S1

1

C

C

C

A

(1)  

where S1 ¼ sinðkd1Þ, C1 ¼ cosðkd1Þ and F ¼ ðℏ2 =2mÞk and k ¼
ffiffiffiffiffiffiffiffiffiffi2mEp

=

ℏ. ℏ, k and m refer respectively to the reduced Planck constant, the wave 
vector of the constituting medium and the effective mass of the electron. 
The inverse of the Green’s function g�1

r ðM2M2Þ in the space of interface 
M2 ¼ f1;2g of the ring made of two wires of length d and in presence of 
a magnetic flux Φ (Fig. 2(b)) can be written as a (2 � 2) matrix, namely 
[65]. 

g�1
r ðM2M2Þ¼ � F

0

B

B

@

2C

S

�2C’

S

�2C’

S

2C

S

1

C

C

A

(2)  

where S ¼ sinðkdÞ, C ¼ cosðkdÞ, C’ ¼ cosðπfÞ and f ¼ Φ= Φ0 is the ratio of 
the flux Φ to the quantum flux Φ0. Φ0 ¼ h=e is the quantum flux asso-
ciated with a single charge of the electron e. Note that the magnetic field 
is applied only inside the ring. 

The inverse of the Green’s function of the wire-ring system (Fig. 3) 
within the interface space M ¼ f0;1; 2g, is obtained from a juxtaposition 
of the inverse Green’s functions of the two subsystems (Eqs. (1) and (2)) 
[70], namely 

g�1
w;rðMMÞ¼ � F

0

B

B

B

B

B

B
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� 1
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0
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(3)  

2.2. Transmission and reflection coefficients 

In order to calculate the transmission and reflection coefficients 
through the whole structure depicted in Fig. 1, we need i) the element 
gw;rð0; 0Þ of the wire-ring system, this element is obtained by inverting 
the matrix in Eq. (3) and truncating the first element such that 

gw;rð0; 0Þ¼ � 1

2F

τ

ρ
(4)  

and ii) the Green’s function of the two semi-infinite leads in the space of 
interface M3 ¼ f0g, which is given by Ref. [65]. 
g�1

s ð0; 0Þ¼ 2jF (5)  

where 
τ¼ 2

�

C1CS� 2S1

�

S2 � S’2
��

; ρ¼ �
�

CSS1 þ 2C1

�

S2 � S’2
�� (6) 

S’ ¼ sinðπfÞ and j ¼
ffiffiffiffiffiffiffi

�1p .
Therefore, the inverse of the Green’s function of the whole system 

(Fig. 1) at the connection point M3 ¼ f0g is given by g�1ð0; 0Þ ¼
Ng�1w;rð0; 0Þþ g�1s ð0; 0Þ ¼ � 2NF ρ

τ
þ 2jF. 

The transmission coefficient through the structure given in Fig. 1 is 
defined by Ref. [65] t ¼ 2jFgð0; 0Þ. One obtains 

t¼ �jτ

Nρ � jτ
(7) 

By the same way, the reflection coefficient is given by Ref. [65] r ¼
� 1þ 2jFgð0; 0Þ, or equivalently 

r¼ �Nρ

Nρ � jτ
(8) 

From the expressions of t (Eq. (8)) and r (Eq. (9)), one can deduce the 
transmission and reflection rates 

T ¼ τ2

τ2 þ ðNρÞ2
(9)  

R¼ ðNρÞ2

ðNρÞ2 þ τ2
(10) 

One can deduce easily from Eqs. (9) and (10) the conservation en-
ergy, namely Rþ T ¼ 1. 

2.3. Dispersion relations of wire-ring structures with different boundary 
conditions 

The eigenstates of the finite structure made by the wire-ring (Fig. 3), 
depend on the particular choice of the boundary condition at the bottom 
side of the wire (Fig. 3). We chose the two most common boundary 
conditions, namely the vanishing of the wave function (Fig. 3(a)) called 
Dirichlet boundary condition DBC, or of its first derivative (Fig. 3(b)) 
called Neumann boundary condition NBC. Indeed, the eigenstates of the 
DBC structure (Fig. 3(a)) are given by vanishing the Green’s function 
gw;rð0;0Þ (Eq. (4)), namely 
τ¼ 0 (11)  

whereas, the eigenstates of the NBC structure (Fig. 3(b)) are given by the 
poles of the Green’s function gw;rð0; 0Þ (Eq. (4)), namely 
ρ¼ 0 (12) 

The common eigenstates of DBC and NBC structures will appear as 
trapped or BIC states with respect to the continuum states carried by the 

Fig. 2. (a) Schematic illustration of a one-dimensional mesoscopic wire of 
length d1 and (b) a mesoscopic ring of length 2d threaded by the magnetic flux 
Φ. The interface space of the wire (a) and ring (b) are called M1 ¼ f0;1g and 
M2 ¼ f1; 2g respectively. 

Fig. 3. Ring attached to a wire (ring-wire structure) with Dirichlet (a) and 
Neumann (b) boundary conditions at the bottom side of the structure. 
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leads (see below). Also, equations (9), (11) and (12) show that the 
eigenstates of the DBC and NBC structures are directly related respec-
tively to the minima and maxima of the transmission coefficient (Eq. 
(9)). This property has been used by some of us to deduce both theo-
retically and experimentally bulk and surface modes [71,72] in coaxial 
photonic crystals. 

3. Numerical results and discussion

3.1. DBC, NBC and BIC states 

Before dealing with EIT and EIR resonances through an analysis of 
the transmission and reflection coefficients (sections 3.2 and 3.3 below), 
we shall first focus on the analytical and numerical results of the 
eigenstates in DBC and NBC structures sketched in Fig. (3) as well as the 
BIC states of the whole structure given in Fig. 1. As mentioned above, the 
dispersion relations of the ring-wire structure (Fig. 3) with either DBC 
(Fig. 3(a)) or NBC (Fig. 3(b)) boundary conditions are given by Eqs. (11) 
and (12) respectively. Therefore, the explicit expressions giving the 
eigenstates for DBC and NBC structures can be written respectively as 

S

�

S�CC1

2S1

�

� S’2 ¼ 0 (13)  

and 

S

�

SþCS1

2C1

�

� S’2 ¼ 0 (14) 

In the presence of a magnetic flux Φ such that S’ ¼ 0 (i.e., f is integer) 
and in particular in the absence of the magnetic field, we obtain two 
types of eigenstates of the DBC structure (Eq. (13)) which are totally 
decoupled from each other. These states are given by 
S¼ 0 (15)  

or 

S�CC1

2S1

¼ 0 (16) 

They are respectively associated to the eigenmodes of the ring alone 
or the ring-wire system alone. These two types of states coincide with 
each other for S ¼ 0 and C1 ¼ 0, i.e., 
d1 = d ¼ ð2mþ 1Þ=2n (17)  

where m and n are integers and n 6¼ 0. Equation (13) shows that the 
eigenstates of the DBC structure are the consequence of the coupling 
between the states given by S ¼ 0 of the ring alone (Fig. 2(b)) and those 
given by S � CC12S1 ¼ 0 which are associated to the coupled ring-wire 
(Fig. 3(a)). This coupling occurs by means of a magnetic flux such that S’ 

6¼ 0 (i.e., f is non-integer). 
Similarly, the eigenstates of the NBC structure which are given by 

(Eq. (14)) divide into two totally decoupled sets in the absence of a 
magnetic field and are given by 
S¼ 0 (18)  

or 

SþCS1

2C1

¼ 0 (19) 

These two types of states coincide with each other for S ¼ 0 and 
S1 ¼ 0, i.e., 
d1 = d ¼ m=n (20) 

Equation (14) shows that the eigenstates of the NBC structure are the 
consequence of the coupling between the states given by S ¼ 0 of the 
ring alone (Fig. 2(b)) and those given by S þ CS1

2C1 ¼ 0 of the coupled ring- 

wire (Fig. 3(b)). These results demonstrate that the eigenstates of DBC 
and NBC structures are the consequence of the coupling between the 
states of two resonators through the flux created by the magnetic field 
such that S’ 6¼ 0. 

The above analysis shows that the states given by S ¼ 0 are common 
to both structures (DBC and NBC). These states are independent of the 
wire of length d1 and therefore, in the presence of the magnetic field 
such that S’ ¼ 0, they remain trapped in the ring even if the ring-wire 
structure is connected to the semi-infinite leads. Indeed, the eigen-
states of the whole system (Fig. 1) are given by the poles of the Green’s 
function or equivalently the transmission coefficient (Eq. (7)), namely 
Nρ� jτ ¼ 0 (21)  

whereρand τ are given by Eq. (6). This latter equation is a complex 
quantity. Its real part gives the position of the resonances in the trans-
mission and DOS, whereas its imaginary part is related to the width of 
the resonances (see below). When the ring is not threaded by a magnetic 
flux (i.e., f ¼ 0), then using Eq. (6), one can factorize Eq. (21) by the term 
S as follows 
S½2ðC1C� 2S1SÞ� jNðCS1 þ 2C1SÞ� ¼ 0 (22) 

Equation (22) clearly shows that if 
S¼ 0 (23) 

(i.e., C ¼ � 1), then one obtains the eigenstates of the whole system 
(Fig. 1) even though these states fall in the continuum states of the two 
semi-infinite leads surrounding the ring-wire structure. These kinds of 
states are known as bound in continuum (BIC) states [31]. From Eq. 
(23), BIC states are given by kd ¼ nπ (n is an integer). The above results 
show that BIC states are independent of the nature of the boundary 
condition at the bottom side of the ring-wire structure (Fig. 3), that is 
why they are common states to DBC and NBC structures and remain 
totally decoupled from the waveguide on which they are grafted. 

In presence of a magnetic flux such that S’ � 0(i.e., f � lwhere l is an 
integer), we can easily show that it is not possible to cancel simulta-
neously real and imaginary parts of Eq. (21) at the same energy, which 
means the impossibility of existence of BIC states. Also, as mentioned 
above, the eigenstates of the DBC structure (Eqs. (15) and (16)) and NBC 
structure (Eqs. (18) and (19)) for f ¼ l, become coupled when f � l (see 
Eqs. (13) and (14)). This coupling between the eigenstates enables to 
transform the BIC states to either EIT or EIR resonances depending on 
the length d1 of the wire as it will be detailed below. 

In what follows, we shall first focus on the analytical and numerical 
results in the case where the structure is composed of a single ring of 
length 2d in presence of a magnetic flux Φ attached to a wire of length d1 
(i.e, N ¼ 1 in Fig. 1). Also, we shall fix the length 2d of the ring and 
discuss the effect of the length d1 of the wire, on the different eigenstates 
of the system as well as on the transmission and reflection rates. For the 
sake of simplicity, the length d1 will be given in units of d (half the length 
of the ring), and the dimensionless wave vector κ ¼ kd=π and the mag-
netic flux f ¼ Φ/Φ0 will be used. In addition, we shall focus on the results 
for a very weak flux (i.e., f � 0) even though the results remain also 
valid in the case f � l. It is worth mentioning that other possibilities of 
BIC, EIT and EIR resonances can be obtained for C’ � 0 (i.e., f � l’þ
1=2where l’ is an integer). The equations governing this case are given 
in Appendix A. 

From Eq. (17), DBC branches cross each other at d1 ¼ 0.5, 1.5, … 

given respectively by n ¼ 1 and m ¼ 0, 1, … whereas from Eq. (20), NBC 
branches cross each other at d1 ¼ 0,1, …given respectively by n ¼ 1 and 
m ¼ 0, 1, … Higher energy crossing branches where BIC, EIT and EIR 
resonances may occur, are given by n ¼ 2 (i.e., kd ¼ 2π) and m ¼ 0, 1, … 

in Eqs. (17) and (20) and so one. In what follows, we shall concentrate 
on the case n ¼ 1. Fig. 4(a) gives the dispersion curves of the eigenstates 
(κ versus d1) of the DBC structure (dots) and the NBC structure (circles) 
when no magnetic flux is applied through the ring (f ¼ 0). These 
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dispersion curves are obtained from Eqs. (15), (16) and (19) and plotted 
in the domain 0 � d1 � 1:5around κ ¼ 1 (i.e., kd ¼ π) where the main 
phenomena (BIC, EIT and EIR resonances) are predicted. Both types of 
states in Fig. 4(a) exhibit a common horizontal branch at κ ¼ 1 as pre-
dicted from Eqs. (15), (18) and (23). In presence of the magnetic flux 
(Fig. 4(b)), we assist to a lifting of degeneracy at the crossing points 
around d1 ¼ 0:5; 1:5;:::for the DBC structure (blue dots in Fig. 4(b)) and 
around d1 ¼ 0; 1; ::: for the NBC structure (red circles in Fig. 4(b)). 
Indeed, by increasing the magnetic flux, the strength of the separation 
between the states increases around the anti-crossing points as it is 
illustrated in Fig. 5(a) and (b) around d1 ¼ 0:5 and d1 ¼ 1for the DBC 
and NBC structures respectively. Indeed, one can show (see below) that 
this separation is proportional to the flux f asΔκ ¼ 4

ffiffi5p fat d1 ¼ 0:5for the 
DBC structure and Δκ ¼ 4

ffiffi6p f at d1 ¼ 1for the NBC structure. 
As mentioned above, the eigenstates of the structures with either 

DBC or NBC are directly related to the minima and maxima of the 
transmission coefficient (Eqs. (9), (11), (12)). An interesting point that 
can be noticed in Fig. 4(b) is the existence of a full transmission (red 
circles) squeezed between two transmission zeros (blue dots) 
aroundd1 ¼ 0:5; this is a characteristic of the transparency (or EIT) 
resonance. This resonance is symmetrically placed between two trans-
mission zeros for d1 ¼ 0:5; 1:5 and becomes asymmetric when d1is 
slightly shifted from these values (Fig. 4(b)). Similarly, this phenomenon 
is completely inverted around d1 ¼ 0; 1where a transmission zero is 
inserted between two transmission maxima giving rise to a complete 
reflection; the so-called electromagnetic induced reflection (EIR) (see 
below). 

Fig. 6 gives a better insight about the evolution of DBC (blue dots) 
and NBC (red circles) eigenstates for integers and half integers values of 
the lengthd1around κ ¼ 1 and for f ¼ 0.03. As mentioned above, these 
states correspond to transmission and reflection zeros given by τ ¼
0andρ ¼ 0respectively (Eqs. (6), (9) and (10)). We can clearly see a full 
transmission (reflection) between two transmissions (reflections) zeros 
for half integers (integers) values ofd1; these are characteristics of EIT 
(EIR) resonances. Also, the separation between the transmission zeros 
and reflection zeros around κ ¼ 1 decreases considerably when 
d1increases (Fig. 6). 

3.2. Electromagnetic induced transparency 

In this section, we shall discuss the EIT resonances falling around 
d1 ¼ 0:5and κ ¼ 1. In Fig. 4, we have highlighted the wave vector re-
gions where complete transmission and complete reflection are ach-
ieved. However, in order to give a better insight about the behavior of 
the transmission rate for different values of κ and d1, we plot in Fig. 7 the 
transmission spectra (in color scale) versus κ and d1for f ¼ 0 (Fig. 7(a)) 
and f ¼ 0.03 (Fig. 7(b)). We have indicated by horizontal dashed line the 

position of BIC states in Fig. 7(a) for f ¼ 0. These states are hidden and do 
not give any signature in the transmission spectra as the corresponding 
resonances have zero width (see below). In particular, one can notice at 
κ ¼ 1 a decrease of the transmission from one at d1 ¼ 0 to zero at d1 ¼
0:5 and back to one at d1 ¼ 1. Indeed, when BIC states hold (i.e., S ¼ 0 or 
κ ¼ n), the transmission rate (Eq. (9)) becomes 
T ¼ 4C2

1

��

4C2
1 þNS2

1

� (24)  

which shows that for κ ¼ n, the transmission rate depends strongly on 
the value of d1 and oscillates between 0 and 1 when d1 increases. The 
positions of full transparency and full reflection regions in Fig. 7(a) 
coincide with those in Fig. 4(a). By applying a weak magnetic flux 
f ¼ 0.03 (Fig. 7(b)), a thin transparency window appears between two 
minima aroundκ ¼ 1andd1 ¼ 0:5. The width of this window increases 
when increasing the magnetic flux as it will be explained below. Also, 
contrary to the case f ¼ 0 (Fig. 7(a)), the transmission at κ ¼ 1 and f 6¼0 
(Fig. 7(b)) increases from zero at d1 ¼ 0 to one at d1 ¼ 0:5 and back to 
zero atd1 ¼ 1according to the equation 
T ¼ 4S2

1

��

4S2
1 þNC2

1

� (25) 
Fig. 8 gives three examples of the transmission spectra versus κ with 

(blue curves) and without (red curves) magnetic flux for different values 
ofd1. Fig. 8(b) clearly shows that for d1 ¼ 0.5, applying a magnetic flux 
induces a symmetric transparency window around κ ¼ 1 in accordance 
with Fig. 7(b). For d1 ¼ 0.3 (Fig. 8(a)) and d1 ¼ 0.7 (Fig. 8(c)) slightly 
different from d1 ¼ 0.5, one obtains an asymmetric EIT resonance. This 
resonance is a consequence of the coupling between the BIC state 
induced by the ring (Eq. (15)) and the other states induced by the ring- 
wire (Eq. (16)). In the following subsections, we shall detail the results of 
symmetric and asymmetric EIT resonances. 

3.2.1. Case of symmetric EIT resonance 
In the case where d1 ¼ 0.5 and the rings are threaded by a weak 

magnetic flux, we can obtain an approximate analytical expression for 
the transmission function (Eq. (7)) in the vicinity of the transparency 
resonance. A Taylor expansion around kd ¼ π þ ε enables us to write 

t¼ jA
ζ1ζ’1

ε þ j4Δ2=Nð1 þ Δ2Þ (26)  

whereζ1 ¼
�

ε þ 2Δ
ffiffi5p
�

, ζ’1 ¼
�

ε � 2Δ
ffiffi5p
�

, Δ ¼ πfand A ¼ 5/N(1þΔ2).
From Eq. (26), one can show that the transmission rate T can be 

written following a Fano form [45]: 

T ¼A2ðε � q1Γ1Þ2ðε þ q1Γ1Þ2

ε2 þ Γ2
1

(27) 

Fig. 4. (a) Dispersion curves of the eigenstates of the structures depicted in Fig. 3(a) with DBC (τ ¼ 0, dots) and Fig. 3(b) with NBC (ρ ¼ 0, circles) as a function of 
the length d1 for f ¼ 0. (b) Same as in (a) but in the case f ¼ 0.03. The large circles indicate the positions of crossing and anti-crossing branches. 
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whereq1 ¼ Nð1þΔ2Þ=2 ffiffiffi5p
Δ is the Fano parameter that describes the

asymmetry of the resonance. The full width at half maximum of the EIT 
resonance falling at ε ¼ 0 (i.e., kd ¼ π), is given by 
Γ1 ¼ 4Δ2

�

N
�

1þΔ2
� (28)  

and therefore, the quality factor defined by Q ¼ π=Γ1is given by 
Q¼Nπ

�

1þΔ2
��

4Δ2 (29) 
We can notice thatq1, Γ1and Q depend strongly on the magnetic flux f 

and the number of dangling resonators N. The results of the approximate 
expression (Eq. (27)) are shown in Fig. 9 by open circles. These results 
are in accordance with the exact ones (solid lines) and clearly show that 
the resonance is an EIT-like resonance with q1 ¼ 2.37 and 2Γ1 ¼ 0.068. 
This resonance induced magnetically (Aharonov-Bohm effect) is 
squeezed between two transmission zeros (indicated by solid circles on 
the abscissa of Fig. 9) located symmetrically around κ ¼ 1 and reaches 
unity (i.e., T ¼ 1). The above calculation shows that a simple dangling 
ring, without introducing any impurity or defect in its arms, enables to 
obtain an EIT-like resonance with a width 2Γ1 and a coupling parameter 
q1that can be tuned easily by varying the magnetic flux. 

To discuss the effect of the magnetic flux on the EIT resonance, we 
have plotted in Fig. 10(a) the transmission coefficient versus the reduced 
wave vector κ for different values of the magnetic flux. Οne can notice 
that when the magnetic flux increases, the width of the EIT resonance 
increases according to Eq. (28). Also, it is remarkable that the two 
transmission zeros move symmetrically around κ ¼ 1 (see the insert of 
Fig. 10(b)), whereas the amplitude of the EIT resonance remains unity 
whatever the value of the flux (Fig. 10(a)). 

In Fig. 10 (b), we have plotted numerical (solid lines) and approxi-
mate (open circles) results of the quality factor Q of the EIT resonance as 
a function of the magnetic flux f for N ¼ 1. The approximate results are 
obtained from Eq. (29). The exact results are well reproduced by the 
approximate curve. On the other hand, one can observe that Q decreases 
when the magnetic flux increases and diverges when the magnetic flux 
vanishes according to Eq. (29). In the insert of Fig. 10(b), we have 
plotted by open circles and solid lines the variation of the positions of 
transmission zeros and EIT resonance versus the magnetic flux f. The 
slope of the two lines can be obtained easily from the transmission zeros 
of the approximate expression (Eq. (26)) as�2 = ffiffiffi5p .

In Fig. 11 we study the effect of the parameter N on the resonance 
transparency and the quality factor. 

In Fig. 11(a), we have plotted the transmission coefficient versus the 
dimensionless wave vector κ for different values of the number N when 
the magnetic flux is fixed at f ¼ 0.04. These results show that when N 
increases, the width of the EIT resonance decreases, its amplitudes 
reaches unity and the positions of the transmission zeros remain con-
stant. The quality factor as a function of N is illustrated in Fig. 11 (b). 
One can notice that as predicted, Q increases linearly as function of f 
according to Eq. (29), also with a good agreement between approximate 
and numerical results. 

3.2.2. Case of asymmetric EIT resonance 
In Fig. 12 (solid line), we have plotted the transmission coefficient 

versus the dimensionless wave vector κ for different values of d1around 
d1 ¼ 0.5. The flux is fixed to f ¼ 0.02. Contrary to the previous case 
where the resonance is squeezed between two symmetric anti- 
resonances with similar quality factors, the resonances in Fig. 12 
exhibit an asymmetric shape. Indeed, without magnetic flux (dashed 
curves), there exists only one anti-resonance with low Q factor. Turning 
on the flux, induces a second anti-resonance near κ ¼ 1 characterized by 
a high Q factor. Therefore, the EIT resonance aroundκ ¼ 1appears as a 
consequence of the interaction between two resonators with low and 
high Q factors called dark and bright resonators respectively [73,74]. 
The bright resonance (low Q) falls at the vicinity of κ ¼ 1 whatever the 
value of d1, whereas the dark resonance (high Q) moves from κ > 1 for 
d1 < 0.5 (Fig. 12(a), (b)) to κ < 1 for d1 > 0.5 (Fig. 12(c), (d)). 

Fig. 5. (a) Zoom of the crossing and anticrossing dispersion curves in Fig. 4 around d1 ¼ 0:5 andκ ¼ 1for the DBC structure (Fig. 3(a)). (b) Same as in (a) but for the 
NBC structure around d1 ¼ 1 and κ ¼ 1. The curves are plotted for three values of the magnetic flux: f ¼ 0 (dots), f ¼ 0.03 (triangles) and f ¼ 0.05 (open circles). 

Fig. 6. Transmission zeros (blue dots) and reflection zeros (red circles) as a 
function of integers and half integers values of the length d1 around κ ¼ 1 and 
for f ¼ 0.03. The transmission and reflection zeros are given by τ ¼ 0andρ ¼
0respectively (Eqs. (6), (9) and (10)). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Similarly to the symmetrical case (section 3.2.1) but with tedious 
calculation, we can obtain an approximate analytical expression for the 
transmission function (Eq. (7)) in the vicinity of the transparency reso-
nance. A Taylor expansion around kd ¼ π þ ε enables us to write the 
transmission rate T following a Fano form [45]: 

T ¼B
ðε þ q1tΓÞ2ðε þ q2tΓÞ2

εðε � βTÞ þ Γ2
T

(30)  

where B is a constant. q1t and q2t are the Fano parameters that describe 
the asymmetry of the resonance. Contrary to the symmetrical case, q1t 
and q2t are different; their expressions are cumbersome, they depend on 
the geometrical parameters of the structure as well as on the magnetic 

flux applied through the rings. We shall avoid giving their expressions 
here. βT gives the resonance position; its expression is given by 

βT ¼
Δ2ϕ

�

4 þ 4Δ2ð1 þ δÞ þ N2
�

�

2 � ϕ2

4

�

N2

�

ð1 þ Δ2ð1 þ δÞ � ϕ2=8Þ � ϕ2

2
ð5 þ δÞ

� (31) 

The full width at half maximum of the EIT resonance falling at ε ¼ βΤ, 
is given by 

ΓT ¼

0

B

B

@

N2Δ4ϕ2 þ 4Δ4

�

2 � ϕ2

4

�2

N2

��

1 þ Δ2

�

1 þ δ

�

� ϕ2

�

8

�

� ϕ2

2

�

5 þ δ

��

1

C

C

A

0:5

(32)  

where Δ ¼ πf, ϕ ¼ πδ and δ ¼ 2d1-d. Therefore, the quality factor can be 
deduced as QT ¼ π/ΓΤ. 

The results of the approximate expression (Eq. (30)) are shown in 
Fig. 12 by red open circles. These results are in accordance with the 
exact ones (solid lines) and clearly show that the resonance is an 
asymmetric EIT resonance. This resonance induced magnetically 
(Aharonov-Bohm effect) is squeezed between two transmission zeros 
located asymmetrically around κ ¼ 1 and reaches unity (i.e., T ¼ 1) 

Fig. 7. (a) Transmission spectra (in color scale) versus the dimensionless wave vector κ and the lengthd1for f ¼ 0. (b) Same as in (a) but for f ¼ 0.03. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Transmission cofficient versus the dimensionless wave vector κ for 
d1 ¼ 0.3 (a), 0.5 (b) and 0.7 (c). The red and blue curves are plotted for f ¼ 0 
and 0.03 respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. Transmission spectrum versus κ (solid line) and the approximate results 
obtained by Taylor expansion (Eq. (27)) (open circles) for the EIT resonance 
with d1 ¼ 0.5, f ¼ 0.03 and N ¼ 1. 
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whatever the value of d1. 
The behaviors of the quality factor and Fano parameters are given in 

Fig. 13 (a) and (b) respectively. The quality factor (Fig. 13(a)) reaches its 
maximal value (�200) for d1 ¼ 0.5 and decreases for d1 far from this 
value. The Fano parameters q1t and q2t are opposite for d1 ¼ 0.5 (Eq. 
(27)), whereas for d1 6¼ 0.5, q1t and q2t are quite different showing 
clearly the asymmetric shape of the EIT resonances around κ ¼ 1. All the 
above results show that the EIT resonance parameters can be tuned 
easily by varying the magnetic flux or by varying the length of the wire 
connecting the ring to the waveguide. 

3.3. Electromagnetic induced reflection 

As mentioned above (Figs. 4(b) and 6), it is possible to squeeze a 
reflection resonance between two reflection zeros (the so-called EIR 
resonance) for integers values of the length d1 around κ ¼ 1 and in 
presence of a magnetic flux. We plot in Fig. 14 the reflection spectra (in 
color scale) versus κ and d1 for f ¼ 0 (Fig. 14(a)) and f ¼ 0.03 (Fig. 14 
(b)). We have indicated by horizontal dashed line the position of BIC 
states in Fig. 14(a) for f ¼ 0. These states are hidden and do not give any 
signature in the reflection spectra as the corresponding resonances have 
zero width (see Fig. 15). In particular, one can notice a decrease of the 
reflection from zero at d1 ¼ 0.5 to one at d1 ¼ 1 and back to zero at 
d1 ¼ 1.5. Indeed, when the BIC states hold (i.e., S ¼ 0, C ¼ 1), the 
reflection rate (Eq. (10)) becomes 

R¼N2S2
1

��

4C2
1 þN2S2

1

� (33)  

which shows that at the BIC states (i.e., kd ¼ nπ), the reflection rate 
depends strongly on the value of d1 and oscillates between 0 and 1. The 
positions of full transparency and full reflection regions in Fig. 14(a) 
coincide with those in Fig. 4(a). By applying a weak magnetic flux 
f ¼ 0.03 (Fig. 14(b)), a thin reflection window appears between two 
minima around κ ¼ 1 and d1 ¼ 1. The width of this window increases 
when the magnetic flux increases as it will be explained below. Also, 
contrary to the case f ¼ 0 (Fig. 14(a)), the reflection at κ ¼ 1 and f6¼0 
(Fig. 14(b)) increases from zero at d1 ¼ 0:5 to one at d1 ¼ 1 and back to 
zero atd1 ¼ 1:5according to the equation 
R¼N2C2

1

��

4S2
1 þN2C2

1

� (34) 
Fig. 15 gives three examples of the reflection spectra versus κ with 

(blue curves) and without (red curves) magnetic flux for different values 
of d1. Fig. 15(b) shows that for d1 ¼ 1 applying a magnetic flux induces a 
complete reflection of the incident wave through a very small energy 
window in accordance with Fig. 14 (b). For d1 ¼ 0.8 (Fig. 15(a)) or 
d1 ¼ 1.2 (Fig. 15 (c)) one obtains an asymmetric EIR resonance. This 
resonance is a consequence of the coupling between BIC states given by 
Eq. (18) and other states given by Eq. (19). 

Similarly to the above study about symmetric and asymmetric EIT 
resonances, we have performed a detailed sudy for EIR resonances. In 
order to avoid redundancy and lighten the text, we give these results in 
Appendix B for a reader interested by the details of the calculations. 

Fig. 10. (a) Same as in Fig. 8 (b) around κ ¼ 1 and for different values of the magnetic flux. (b) Quality factor versus the magnetic flux f. Solid lines and open circles 
correspond to numerical and approximate results respectively. The insert shows the variation of the positions of EIT resonance and transmission zeros versus the 
magnetic flux f. 

Fig. 11. (a) The same as in Fig. 10 (a) but for different values of N and f ¼ 0.04. (b) Quality factor versus N. Solid lines and open circles correspond to numerical and 
approximate results respectively. 
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4. Effect of temperature on EIT and EIR resonances

In all the above results, we have considered EIT and EIR resonances
at zero temperature. In order to take account of the thermal effect, we 
should employ the Landauer-Büttiker formula [68,69] giving the finite 
temperature conductance from the transmission rateTðEÞin 
one-dimensional channels as [33,34]. 

GT

�

EF; θ

�

¼G0

Z

dE

�

� ∂f ðE;EF ; θÞ
∂E

�

T

�

E

�

(35)  

where G0 ¼ 2e2
h is the quantum conductance, h the Planck constant and 

we have chosen θ to designate the temperature to be distinguished from 
the transmission T. fðEÞ is the Fermi distribution function given byfðE;EF;
θÞ ¼ ½eðE�EFÞ=kBθ þ 1��1whereEFis the Fermi energy and kBthe Boltzmann
constant. By using the following change of variables E ¼ E*κ2where 
E* ¼ ℏ2π2

2md2 is the units of energy that enables to transform κ toE and the 
dimensionless temperatureθd ¼ kBθ=E*, then Eq. (35) can be written as 

GTðκF ; θÞ¼
G0

2θd

Z

dκ TðκÞ cosh�2

�

κ2 � κ2
F

2θd

�

(36) 

It is worth mentioning that if we chose a small quantum ring of 
perimeter L ¼ 200 nm (i.e., d ¼ 100 nm) and all the wires are made of 
GaAs semiconductor with effective electron mass m ¼ 0:067m0 (m0is the 
free electron mass), then a temperature θ ¼ 533 mKwill correspond to 
θd ¼ 0:1. These parameters are connected to the experimental re-
alizations [75,76]. Equation (36) has been used successfully to explain 
the temperature dependence of the A-B oscillations in a single mode 
ballistic ring [77]. Also, the temperature dependence of the Fano reso-
nance in electronic transport of quantum wires and rings [78,79] with 
impurities has been addressed based on Eq. (36). 

Fig. 16(a) and (b) give the normalized conductanceGT=G0versus the 
dimensionless Fermi wave vector κF ¼ ðEF=E*Þ1=2for d1 ¼ 0:5and d1 ¼
1at different temperatures respectively. The magnetic flux through the 
ring is fixed to f ¼ 1.05 (i.e., a magnetic field B ¼ 1.37 T [78]). One can 
see that the EIT and EIR resonances are considerably affected when the 
temperature increases, however the EIT (EIR) keep the shape of a 

Fig. 12. Transmission cofficient versus the dimensionless wave vector κ for different values of d1. Dashed and solide lines correspond to f ¼ 0 and 0.02 respectively, 
red open cercles present the approximate results obtained by Taylor expansion around the resonance (κ ¼ 1). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 13. (a) Theoretical variation of the quality factor QT of the transmission resonance. (b) Variation of the Fano parameters of the transmission resonance around 
kd ¼ π as a function of the length d1 for f ¼ 0.02. 
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resonance (dip) squeezed between two dips (resonances). Let us recall 
that θd ¼ 0:01corresponds toθ ¼ 53:3 mKetc. The amplitudes of the 
resonances decrease, whereas the magnitudes of the dips increase when 
increasing the temperature. In particular, thinner resonances and 
anti-resonances are more affected by the temperature (Fig. 16(a), (b)). 
These results are summarized in Fig. 17 (a) and (b) where we can see 
that EIT resonance shape around κ ¼ 1ceases to exist for θd > 0:05 
(Fig. 17(a)) whereas the EIR resonance shape ceases to exist for θd >

0:03 (Fig. 17(b)). 

5. Conclusion

In the present work, we have investigated theoretically and

numerically the existence of EIT and EIR resonances in a simple meso-
scopic structure composed of an Aharonov-Bohm ring of length 2d 
attached vertically to two semi-infinite leads (waveguide) by a wire of 
length d1. The number of dangling wire-ring resonators attached at the 
same point is N. A general analytical expression for the transmission and 
reflection coefficients as well as dispersion relations are obtained by 
means of the Green’s function method in the presence of a magnetic flux. 
The behavior of the EIT and EIR is analyzed as a function of several 
parameters such as the geometry of the structure and the magnetic flux. 
We have demonstrated analytically that for particular values of the 
magnetic flux Φ, and in particular in the absence of the magnetic field, 
the structure exhibits bound in continuum (BIC) states with zero width 
resonance in transmission and reflection spectra. These trapped states 
transform to EIT or EIR resonances for particular values of length d1 in 
presence of a weak magnetic flux. In order to understand the behavior of 
all the scattering parameters around the EIT and EIR resonances, we 
have performed in addition to numerical calculation, the approximate 
expressions of the transmission and reflection coefficients by using 
Taylor expansion around EIT and EIR resonances respectively for 

Fig. 14. (a) Reflection spectra (in color scale) versus the dimensionless wave vector κ and the length d1for f ¼ 0. (b) Same as in (a) but for f ¼ 0.03. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 15. Reflection cofficient versus the dimensionless wave vector κ for 
d1 ¼ 0.8 (a), 1 (b) and 1.2 (c). The red and blue curves are plotted for f ¼ 0 and 
0.03 respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 16. (a) Normalized conductance versus the dimensionless Fermi wave 
vector κF for different temperatures for d1 ¼ 0.5 and f ¼ 1.05. (b) Same as in (a) 
but for d1 ¼ 1. 
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d1 ¼ 0.5d and d1 ¼ d. In this context, we have shown a good agreement 
between numerical and approximate results. Also, we have deduced the 
Fano parameter q and the quality factor Q. The latter is analyzed as a 
function of the magnetic flux and the number of dangling resonators N. 
Indeed, it has been found that Q decreases as function of the magnetic 
flux f for both resonances, whereas it increases (decreases) as function of 
N for EIT (EIR) resonances. From the experimental point of view, while 
the fabrication of N ¼ 1 ring would be easier, the case N ¼ 2 does not 
seem to be much more difficult and even the extension to N ¼ 3 or 4 
should be feasible. The effect of temperature on EIT and EIR resonances 
is also considered through an analysis of the Landauer-Buttiker 

conductance formula. As predicted, the EIT resonance broadens and 
its intensity decreases when temperature increases. Similarly the dip 
(anti-resonnace) associated to the EIR resonance in the conductance 
broadens and its intensity increases versus temperature. The structure 
proposed in this work may have important applications for electronic 
transport in mesoscopic systems like filters and demultiplexers. The 
possibility to realize a Y-shaped demultiplexer [80] with one input line 
and two output lines; where each containing its own appropriate 
wire-ring resonator is in progress. Indeed, such as device would allow 
filtering a given energy in one line keeping the other line unaffected.  

Appendix A. BIC, EIT and EIR resonances for C’ � 0 

The explicit expressions giving the eigenstates for DBC and NBC structures (Eqs. (13) and (14) can also be written respectively as 

C

�

Cþ SC1

2S1

�

�C’2 ¼ 0 (A1)  

and 

C

�

C� SS1

2C1

�

�C’2 ¼ 0 (A2) 

In presence of a magnetic flux such thatC’ ¼ 0 (i.e., f is half integer), we obtain two types of eigenstates of the DBC structure (Eq. (A1)) which are 
totally decoupled from each other. These states are given by 
C¼ 0 (A3)  

or 

Cþ SC1

2S1

¼ 0 (A4) 

They are respectively associated to the ring alone or to the ring-wire system alone. These two types of states coincide with each other for C ¼ 0and 
C1 ¼ 0, i.e., 
d1 = d ¼ ð2mþ 1Þ=ð2nþ 1Þ (A5)  

where m and n are integers. Similarly, we obtain two types of eigenstates of the NBC structure (Eq. (A2)) totally decoupled from each other and given 
by 
C¼ 0 (A6)  

or 

Fig. 17. (a) Normalized conductance versus the wave vector κ and temperature θd for d1 ¼ 0.5 and f ¼ 1.05. (b) Same as in (a) but for d1 ¼ 1.  
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C� SS1

2C1

¼ 0 (A7) 

These two types of states coincide with each other for C ¼ 0and S1 ¼ 0, i.e., 
d1 = d ¼ m=ð2nþ 1Þ (A8) 

Equation (A3) shows that the eigenstates of the DBC structure are the consequence of the coupling by means of the magnetic flux, between the 
states given byC ¼ 0 of the ring alone (Fig. 2(b)) and those given by C þ SC1

2S1 ¼ 0 which are associated to the coupled ring-wire (Fig. 3(a)). Similarly, Eq. 
(45) shows that the eigenstates of the NBC structure are the consequence of the coupling between the states given byC ¼ 0of the ring alone (Fig. 2(b)) 
and those given by C � SS1

2C1 ¼ 0 of the coupled ring-wire (Fig. 3(b)). These results demonstrate that the eigenstates of DBC and NBC structures are the 
consequence of the coupling between two resonators by means of the magnetic flux such that C’ 6¼ 0(i.e., f is non-half integer). 

We can notice that the states given by C ¼ 0are common to both structures (DBC and NBC). These states are independent of the wire of length d1 
and therefore they remain trapped in the ring even if the ring-wire structure is connected to the semi-infinite leads. Indeed, we can show easily that the 
eigenstates of the whole system (Fig. 1) are given by 
C½2ðC1Sþ 2S1CÞ� jNðSS1 � 2C1CÞ�¼ 0 (A9) 

Equation (A9) clearly shows that if 
C¼ 0 (A10) 

(i.e., S ¼ � 1), then one obtains the BIC states of the whole system (Fig. 1). From Eq. (A10), BIC states are given by kd ¼ (2n þ 1)π/2 (n is an 
integer). The above results show that the BIC states are independent of the nature of the boundary condition at the bottom side of the ring-wire 
structure (Fig. 3), that is why they are common states to DBC and NBC structures and remain totally decoupled from the waveguide on which 
they are grafted. 

In presence of a magnetic flux such that C’ � 0(i.e., f � l’ þ 1=2 where l’ is an integer), we can easily show that it is not possible to cancel 
simultaneously real and imaginary parts of Eq. (21) at the same energy, which means the impossibility of existence of BIC states. Also, as mentioned 
above, the eigenstates of the DBC structure (Eqs. (A3) and (A4)) and NBC structure (Eqs. (A6) and (A7)) for f ¼ l’ þ 1=2 (half integer), become coupled 
when f � l’ þ 1=2 (see Eqs. (A1) and (A2)). This coupling between the eigenstates enables to transform the BIC states to either EIT or EIR resonances 
depending on the length d1 of the wire in the same way as it was developed in this paper for the case where fis integer. 

Appendix B. Symmetric and asymmetric EIR resonances 

B.1. Case of symmetric EIR resonance 

Similarly to the transmission coefficient, we give the approximate expression of the reflection function (Eq. (8)). A Taylor expansion in the vicinity 
of the reflection resonance around kd ¼ π þ ε for d1 ¼ 1 enables us to write r as follows 

r ¼ jB
ζ2ζ’2

ε þ jNΔ2=1 þ 2Δ2
(B1)  

where ζ2 ¼ εþ Δ
ffiffiffi2p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 þ Δ2=2
q

, ζ’2 ¼ ε � ðΔ
ffiffiffi2p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 þ Δ2=2
q

Þ and B ¼ Nð3 þ Δ2 =2Þ=2ð1 þ 2Δ2Þ. From the reflection coefficient (Eq. (B1)), one can 
show that the reflection rate R can be written following the Fano form [45]: 

R¼B2ðε þ q2Γ2Þ2ðε � q2Γ2Þ2

ε2 þ Γ2
2

(B2)  

where q2 ¼
ffiffiffi2p
ð1 þ 2Δ2Þ=NΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 þ Δ2=2
q

. The full width at half maximum of the EIR resonance falling at ε ¼ 0 (i.e., kd ¼ π), is given by 
Γ2 ¼NΔ2

�

1 þ 2Δ2 (B3)  

and therefore, the quality factor defined by Q2 ¼ π=Γ2 is given by 
Q2 ¼ π

�

1þ 2Δ2
��

NΔ2 (B4)  

We can notice thatq2, Γ2and Q2 depend strongly on the magnetic flux f and the number of dangling resonators N. The results of the approximate 
expression (Eq. (B2)) are shown in Fig. B1 by open circles. These results are in accordance with the exact ones (solid lines) and clearly show that the 
resonance is an EIR-like resonance with q2 ¼ 8.81 and 2Γ2 ¼ 0.01745. This resonance induced magnetically (Aharonov-Bohm effect) is squeezed 
between two reflection zeros (indicated by solid circles on the abscissa of Fig. B1) located symmetrically around κ ¼ 1 and reaches unity (i.e., R ¼ 1). 
The above calculation shows that a simple dangling ring, without introducing any impurity or defect in its arms, enables to obtain an EIR-like 
resonance with a width 2Γ2 and a coupling parameterq2that can be tuned easily by varying the magnetic flux. 

12



Fig. B1. Reflection spectrum versus κ (solid line) and the approximate results obtained by Taylor expansion (Eq. (B2)) (open circles) for the EIR resonance with 
d1 ¼ 0.5, f ¼ 0.03 and N ¼ 1. 

The effect of the magnetic flux on electromagnetic induced reflection (EIR) is presented in Fig. B2(a). One can see that the width of the EIR 
resonance is very sensitive to the magnitude of the magnetic flux. Indeed, when the magnetic flux increases, the width of the EIR resonance decreases. 
In Fig. B2(b) we have plotted the approximate and numerical quality factor as a function of the magnetic flux. The approximate results (open circles) 
are in accordance with the exact ones (solid lines). On the other hand, the quality factor decreases when the flux increases and diverges when the flux 
vanishes. The insert of Fig. B2(b) shows the positions of the EIR resonance and reflection zeros as a function of the magnetic flux f. The slope of the two 
lines can be obtained easily from the reflection zeros of the approximate expression (Eq. (B2)) as�

ffiffiffiffiffiffiffi2 =3
p

.

Fig. B2. (a) Same as in Fig. 15(b) around κ ¼ 1 and for different values of the magnetic flux. (b) Quality factor versus the magnetic flux f. Solid lines and open circles 
correspond to numerical and approximate results respectively. The insert shows the variation of the positions of reflection zeros versus the magnetic flux f. 

Figure B3(a) gives the reflection spectra versus κ for different values of N. The magnetic flux is fixed at f ¼ 0.02. One can notice that, contrary to the 
EIT resonance (Fig. 11(a)), the width of the EIR increases when increasing N (Fig. B3(a)). These resonances remains squeezed between two trans-
mission zeros located symmetrically around κ ¼ 1 (indicted by solid circles on the abscissa) of Fig. B3(a). In Fig. B3(b), we have plotted the evolution of 
the quality factor as a function of 1/N. This result shows that Q increases linearly as function of 1/N according to Eq. (B4), also a good agreement 
between approximate and numerical results has been achieved. 
B.2. Case of asymmetric EIR resonance 

As mentioned in Fig. 15, in order to show asymmetric EIR resonances, we have to take d1 slightly different from d and in presence of a weak 
magnetic flux through the ring of length 2d. However, in order to show that such resonances follow a Fano form, we have made a Taylor expansion of 
the expression of the reflection coefficient (Eq. (8)) around the EIR resonance at kd ¼ π. After a tedious calculation, we found the following expression 
for the reflection rate 

R¼B2ðε þ qr1ΓrÞ2ðε þ qr2ΓrÞ2

εðε � βrÞ þ Γ2
r

(B5)   
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Fig. B3. (a) Same as in Fig. 17 (a) but for different values of N and f ¼ 0.04. (b) Quality factor versus 1/N. Solid lines and open circles correspond to numerical and 
approximate results respectively. 

where B is constant. q1r and q2r are the Fano parameters that describe the asymmetry of the resonance. Contrary to the symmetrical case, q1r and q2r 
are different; their expressions are cumbersome, they depend on the geometrical parameters of the structure as well as on the magnetic flux applied 
through the ring. We shall avoid giving their expressions here. βr gives the resonance position; its expression is given by 

βr ¼ � 2Δ2ϕðϕ2 � 2Þ
�

N2 � 4
�

4

�

2Δ2ð1 þ δÞ þ 1 � ϕ2

2

�2

þ N2ϕ2ð2Δ2ð1 þ δÞ þ 1Þ2

(B6) 

The full width at half maximum of the EIR asymmetric resonance falling at ε ¼ βr is given by 

Γr ¼

0

B

B

B

@

16ϕ2Δ4 þ N2Δ4
�

ϕ2 � 2
�2

4

�

2Δ2

�

1 þ δ

�

þ 1 � ϕ2

2

�2

þ N2ϕ2

 

2Δ2 1 þ δ

!

þ 1

!2

1

C

C

C

A

0:5

(B7)  

where Δ ¼ πf, ϕ ¼ πδ and δ ¼ d1-d. Therefore, the quality factor can be deduced as QR ¼ π/Γr. 
The results of the approximate expression (Eq. (B5)) are shown in Fig. B4 by red open circles. These results are in accordance with the exact ones 

(solid lines) and clearly show that the resonance is an asymmetric EIR resonance. This resonance induced magnetically (Aharonov-Bohm effect) is 
squeezed between two transmission zeros located asymmetrically around κ ¼ 1 and reaches unity (i.e., T ¼ 1) whatever the value of d1. The behaviors 
of the quality factor and Fano parameters are given in Figs. B5 (a) and (b) respectively. The quality factor (Fig. B5(a)) reaches its maximal value 
(�800) for d1 ¼ 1 and decreases for d1 far from this value. The Fano parameters q1r and q2r are opposite for d1 ¼ 1 (Eq. (B2)), whereas for d1 6¼ 1, q1t and 
q2t are quite different showing clearly the asymmetric shape of the EIT resonances around κ ¼ 1. These two parameters give information on the degree 
of asymmetry of the resonance profile. We find that for values of d1 less than 1, q1r varies greatly while q2r remains almost constant around 0 and the 
inverse happens when d1 becomes greater than d. All the above results show that the EIR resonance parameters can be tuned easily by varying the 
magnetic flux or by varying the length of the wire connecting the ring to the waveguide.

Fig. B4. Theoretical (solid line) variations of the reflection coefficient versus the dimensionless frequency κ for diffrents values of d1, the magnetic flux is fixed to 
f ¼ 0.02. The curves give a comparison between the approximate results obtained by Taylor expansion (red open circles) around the resonance with the exact 
calculations (solid lines).  
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Fig. B5. Theoretical variation of the quality factor and Fano parameters of the asymmetric EIR around kd ¼ π as a function of the length d1 for f ¼ 0.02.  
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