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Modélisation Mathématique et Analyse Numérique

A HOMOGENEOUS RELAXATION LOW MACH NUMBER MODEL ∗

Gloria Faccanoni1, Bérénice Grec2 and Yohan Penel3

Abstract. In the present paper, we investigate a new homogeneous relaxation model describing the

behaviour of a two-phase fluid flow in a low Mach number regime, which can be obtained as a low

Mach number approximation of the well-known HRM. For this specific model, we derive an equation

of state to describe the thermodynamics of the two-phase fluid. We prove some theoretical properties

satisfied by the solutions of the model, and provide a well-balanced scheme.

To go further, we investigate the instantaneous relaxation regime, and prove the formal convergence

of this model towards the low Mach number approximation of the well-known HEM. An asymptotic-

preserving scheme is introduced to allow numerical simulations of the coupling between spatial regions

with different relaxation characteristic times.

Résumé. Dans cet article, nous étudions un nouveau modèle de relaxation homogène qui décrit le

comportement d’un fluide diphasique en régime à bas nombre de Mach. Ce modèle peut être obtenu

comme la limite asymptotique à bas nombre de Mach du modèle HRM. Pour ce modèle, nous définissons

une équation d’état décrivant la thermodynamique du fluide diphasique. Nous montrons quelques

propriétés théoriques vérifiées par les solutions du modèle, et introduisons un schéma équilibre.

Par la suite, nous nous intéressons au régime de relaxation instantané, et nous montrons la con-

vergence formelle de ce modèle vers l’approximation à bas nombre de Mach du modèle HEM. Nous

introduisons un schéma préservant l’asymptotique permettant des simulations numériques du couplage

spatial entre deux régions présentant des temps caractéristiques de relaxation différents.
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Introduction

Two-phase flows are found in many industrial applications, such as nuclear reactors and/or heat exchangers [7,
9], cavitating flow [39], oil and gas production, transport and storage [5, 8].

Modelling and simulating such flows is a challenging task due to the complex nature of the interactions
between the two phases, such as the motion, the topology and the heat and mass transfer across the interfaces.
A wide variety of models exists for two-phase flows. They range from describing the two-phase flow as a pseudo
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single-phase fluid (mixture) to a multi fluid flow. In the most general models, the two fluids (or two phases)
evolve independently. Each phase may be described by an equation of state, which determines all thermodynamic
properties of each phase from the knowledge of two thermodynamic quantities. These thermodynamic quantities
remain unaffected by the local velocity field, and each phase has separate pressures, temperatures, chemical
potentials and velocities. The model is thus formulated as a hyperbolic (relaxation) system with source terms
accounting for phase interactions. By considering the instantaneous limits of each relaxation process, we obtain
a hierarchy of models, each with partial equilibrium in one or more of the aforementioned variables. Most
industrial codes within the nuclear community – for instance CATHARE [9], FLICA [20], NEPTUNE_CFD [35],
RELAP [7], THYC [29], TRAC [40], WAHA [22] – rely on these models.

A hierarchy of relaxation two-phase flow models can be found in [12,21,32,33]. In this hierarchy, two families
can be considered: the inhomogeneous flows [32], with different velocities for the two phases formulated using
two momentum equations and velocity relaxation; and the homogeneous models [33], where there is no relative
velocity between the two phases.

Homogeneous Models

In homogeneous models, a single velocity is considered to describe the flow, and the mixture is treated as a
single fluid. These models require three partial differential equations which govern the evolution of the total
mass, the global momentum and the total energy of the whole mixture and some transport equations as well as
a number of externally supplied relations to specify the interaction between the two phases.

The most general homogeneous model is the 6-equation model presented for instance in [18, 25, 26, 36, 38]
where the flow is described using three fractions (mass, volume and energy) and the phase interactions are
accounted by source terms of the form (zeq − z)/ε, where zeq is the fraction at equilibrium and the exchange
between the two phases occurs with a given characteristic time ε.

A homogeneous model is relaxed when at least one equilibrium between phases is assumed. Relaxed models
will be denoted HRM for Homogeneous Relaxation Model. Among these models, we can consider the models
where only the equality of pressures is taken into account [1], or only the equality of temperatures [1, 28], or
equality of both pressures and temperatures [21, 33], or in the case of liquid and vapour water, equality of
pressures and the saturation of the water vapour phase [4, 10,13,16,19].

The Homogeneous Equilibrium Model (acronym HEM) is the simplest of the homogeneous models. It assumes
that the two phases are at thermodynamic equilibrium. In this case, a set of three equations in order to account
for total mass, total momentum and total energy balances is sufficient to describe the flow.

In this paper we focus on two-phase flows (liquid and vapour phases of the same fluid), described by a four-
equation model with equality of both pressures and temperatures of the phases and supplemented with a source
term relaxing the mass fraction to an equilibrium (saturation) mass fraction.

Low Mach Number models

In some applications, like in nuclear cores, convection is characterised by a low Mach number flow, where
the convective velocities are much slower than the speed of sound in the fluid, typically by one to two orders of
magnitude. The disparity between the time scales of convective motions and sound waves is a major computa-
tional challenge when convection is the phenomenon of interest [37]. Following sound waves explicitly, as in a
traditional compressible approach, introduces a much shorter time scale than the one driven by the convective
motions in the computation, making it difficult to simulate expected time scales, which are long with respect
to the convective time scale. This made the development of so-called low Mach number models attractive, as
sound waves are filtered out (e.g. [2, 3, 17,34]).

Low Mach number formulations replace the compressible flow equations with a constrained system of partial
differential equations with a similar structure to the incompressible Navier-Stokes equations. The equations of
hydrodynamics are reformulated in order to analytically remove the propagation of acoustic waves while keeping
local compressibility effects due to heat release and phase changes. Because low Mach number models do not
track the propagation of acoustic waves, they can use a time step based on the fluid velocity rather than the
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sound speed and thus often gain an order of magnitude or more in computational efficiency over a traditional
compressible approach.

The fundamental approximation made in the the low Mach number equations is that the compressible pressure
can be approximated by a reference pressure in the equation of state. Mathematically, this leads to the addition
of a constraint on the velocity field compared to standard hyperbolic evolution equations. The pressure is thus
decomposed as p(t,x) = p∗(t) + p(t,x), where p∗ is the reference state pressure (or “background” or “ambient
thermodynamic” pressure) and p is the perturbational pressure (often called “dynamic pressure”). For low Mach
number flows, an asymptotic analysis shows that p(t,x)/p(t,x) = O(M2), where M is the Mach number. We
can then approximate p(t,x) by p∗(t) in the computation of thermodynamics quantities.

A Hierarchy of Low Mach Number Models for Nuclear Reactor

In the context of pressurised water reactor cores, an asymptotic low Mach number model for the HEM system
has been derived and investigated in a series of papers [6, 14, 15]. The fluid is described by a single equation
of state taking into account the phase transition by supposing that, when both vapour and liquid phases are
present, they have the same pressure, temperature and chemical potential. It incorporates large compressibility
effects due to the vaporisation and thermal processes with a spatially constant background pressure p∗ = 155 bar.

In the present paper we are interested in studying an asymptotic low Mach number model for a 4-equation
HRM: we assume that both the vapour and liquid phases have the same pressure and temperature but different
chemical potentials. In the following the low Mach asymptotic expansion of the HEM described in [6] will be
referred to as 3-Lmnc model and the low Mach asymptotic expansion of the 4-equation HRM as 4-Lmnc model,
where Lmnc stands for Low Mach Nuclear Core.

Content of the paper

The organisation of the paper is as follows. We first present the 4-Lmnc model in Section 1: the system
of equations with boundaries and initial conditions. In Section 2, we derive the isothermal isobar equation of
state to close the system based on a stiffened gas law for each phase. Then, we describe the relaxation term in
Section 3 and the different regimes that can be considered.

Section 4 is devoted to the investigation of the non-instantaneous relaxation regime: we prove some properties
of the system (maximum principle, positivity of the source terms, analytical steady solution) and we introduce
a well-balanced numerical scheme mimicking these theoretical properties.

In Section 5, we study the instantaneous relaxation regime towards the 3-Lmnc model: we first recall the
equations governing the 3-Lmnc model and its closure law (isothermal, isobar, iso-chemical potential equation of
state). We then prove the formal convergence of the 4-Lmnc model towards the 3-Lmnc model. An asymptotic-
preserving numerical scheme is then introduced to handle numerical simulations in the stiff relaxation regime.

Let us notice that for the sake of simplicity, the analysis of the present paper is restricted to dimension 1.

1. Governing equations

As for the 3-Lmnc model [14], given the reference pressure p∗, a standard asymptotic analysis yields the
following system of conservative equations (called 4-lmnc model)

(4-LMNC)







∂t̺+ ∂y(̺v) = 0, (1a)

∂t(̺h) + ∂y(̺hv) = Φ, (1b)

∂t(̺ϕ) + ∂y(̺ϕv) = ̺Rε(̺, ϕ), (1c)

∂t(̺v) + ∂y(̺v
2 + p) = 0, (1d)

where ̺ is the total specific density, v the velocity field, h the total specific enthalpy. The power density Φ ≥ 0
models the heating due to fission reactions, and might be varying in time and space. ϕ ∈ [0; 1] is the mass
fraction: if ϕ = 1 the fluid is in vapour phase, if ϕ = 0 is in liquid phase and when 0 < ϕ < 1 the fluid is a
liquid-vapour mixture. Finally Rε is a relaxation term accounting for interaction between phases.
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To close the system, we have to provide a closure relation between the thermodynamic variables ̺, h and ϕ,
called “equation of state”, modelling the thermodynamic properties of the fluid. The fluid can be a pure phase
(liquid or vapour) of the same fluid (e.g. water and steam) or a mixture of both phases.

The fundamental change with respect to the fully compressible model (the HRM model) lies in the replace-
ment of the full pressure field in the equation of state by the constant reference pressure p∗ > 0 (p∗ = 155 bar
for a Pressurised Water Reactor (PWR)), and in the momentum equation by the pressure p.

Under smoothness assumptions we can derive a non-conservative formulation equivalent to (1), which is the
one we shall focus on for analysis and derivation of numerical schemes. We choose h, ϕ and v as unknowns and
let the specific volume τ = 1/̺ be given by the equation of state as a function of h and ϕ (see Section 2 for an
admissible equation of state for this model based on stiffened gas laws for pure phases). System (1) is written







∂yv = Φ
∂τ

∂h

∣
∣
∣
∣
ϕ

+
Rε(h, ϕ)

τ(h, ϕ)

∂τ

∂ϕ

∣
∣
∣
∣
h

, (2a)

∂th+ v∂yh = Φτ(h, ϕ), (2b)

∂tϕ+ v∂yϕ = Rε(h, ϕ). (2c)

The fourth equation in (1) involving the dynamic pressure p is left apart in dimension 1 as it is decoupled
from the other equations of (2).

Boundary and initial conditions

The model is set in some bounded domain Ω = (0, L), which may represent the nuclear core. The fluid is
injected at the bottom with a given enthalpy he > 0, mass fraction ϕe ∈ [0; 1] and at a given flow rate De(t) > 0:
we assume the flow to be upward (which corresponds to a nuclear power plant of PWR or BWR type). The
boundary conditions are thus written

h(t, y = 0) = he(t), (3a)

ϕ(t, y = 0) = ϕe(t) ∈ [0, 1], (3b)

v(t, y = 0) = De(t) τ
(
he(t), ϕe(t)

)
. (3c)

The system is supplemented with initial conditions:

h(t = 0, y) = h0(y), (4a)

ϕ(t = 0, y) = ϕ0(y) ∈ [0, 1], (4b)

and (2a) is satisfied at time t = 0.

Closure relation and relaxation source term

As already mentioned, the system requires appropriate equations of state (referred to as the EoS in the
following) in order to describe the “pure vapour” phase, the “pure liquid” phase but also the “mixture” phase.
They are specified in Section 2, and the relaxation source term Rε in Section 3.

2. Equation of state for the 4-lmnc model

The equation of state (EoS) corresponds to the modelling of thermodynamic properties of the fluid and
consists of an algebraic relation between thermodynamic variables.

In classic thermodynamics, the thermodynamic state of a pure single-phase fluid is represented by means of
a relation between the internal energy e, the specific volume τ and the entropy S (see for example [11, 24]).
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As a preliminary study, we chose a simple analytical form capable of capturing the essential physics of a pure
phase, which is the stiffened gas equation of state (SG EoS).

2.1. Equation of state for a pure phase

For a given fluid, the stiffened gas EoS is fully defined by the relation

(τ, e) 7→ S = cv [ln(e− q − πτ) + (γ − 1) ln(τ)] +m. (5)

The constant stiffened gas parameters describing thermodynamic properties of the fluid are the following:

• cv > 0 [J ·K−1 · kg−1] is the specific heat at constant volume,
• γ > 1 is the adiabatic index, which is a non-dimensional coefficient,
• −π [Pa] is the minimal admissible pressure,
• q [J · kg−1] is a reference enthalpy,
• m [J ·K−1 · kg−1] is a reference entropy (relevant when phase transition is involved).

Note that the ideal gas EoS is recovered when π = q = 0.

The classic definitions in thermodynamics provide the following expressions of the temperature T , the pressure
p, the enthalpy h and the Gibbs potential g as functions of the specific volume τ and the internal energy e:

T (τ, e) def=

(
∂S

∂e

∣
∣
∣
∣
τ

)−1

=
e− q − πτ

cv
,

p(τ, e) def= T
∂S

∂τ

∣
∣
∣
∣
e

=
(γ − 1)(e− q − πτ)

τ
− π =

(γ − 1)(e− q)

τ
− γπ,

h(τ, e) def= e+ p(τ, e)τ = q + (e− q − πτ)γ,

g(τ, e) def= h(τ, e)− T (τ, e)S(τ, e).

The positivity of the temperature requires e− q−πτ > 0, which is equivalent to p+π > 0 and also to h− q > 0
(we refer to [38] for a more in-depth discussion on the physical basis for this EoS).

Making a change of thermodynamic variables from (τ, e) to (τ, p), which can be made explicit1 for this kind
of EoS, we obtain the monophasic stiffened gas law:

h(τ, p) =
γ

γ − 1
(p+ π)τ + q, T (τ, p) =

p+ π

(γ − 1)cv
τ.

If we denote

ζ(p) def=
∂h

∂τ

∣
∣
∣
∣
p

=
γ

γ − 1
(p+ π), cp

def=
∂h

∂T

∣
∣
∣
∣
p

= γcv,

then we can express h and T as functions of τ, p

h(τ, p) = ζ(p)τ + q, T (τ, p) =
ζ(p)

cp
τ

and τ is given as a function of h, p by

τ(h, p) =
h− q

ζ(p)
.

1e(τ, p) = q + τ p+γπ
γ−1

.
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Making a change of thermodynamic variables from (τ, p) to (T, p) we could also write

τ(T, p) =
cp
ζ(p)

T, h(T, p) = q + cpT.

Notice that, with SG EoS, the specific heat at constant pressure cp is always constant while the coefficient ζ
depends on p (and is thus constant in 4-Lmnc model since the thermodynamic pressure is constant equal to
p∗).

Let us use the index κ = ˜l for the liquid phase or κ = `g for the vapour phase. If all parameters involved

in pure phase equations of state are given (i.e. cv,κ, γκ, πκ, qκ, mκ), then cp,κ and ζκ are also given. Let us

denote by T ¯sfi`a˚t(p) the solution of the equation g˜l(T, p) = g`g(T, p) (the so called temperature at saturation). We

can then define h¯sfi`a˚t
κ (p) def= hκ(T

¯sfi`a˚t(p), p) and τ ¯sfi`a˚t
κ (p) def= τκ(T

¯sfi`a˚t(p), p).
Notice that, at a fixed pressure p∗, all these quantities are constant and satisfy the equalities

ζκ(p∗)τ
¯sfi`a˚t
κ (p∗) = cp,κT

¯sfi`a˚t(p∗) = h¯sfi`a˚t
κ (p∗)− qκ. (6)

2.2. Iso-Tp equation of state for a mixture

We consider each phase κ (κ = `g or ˜l) as a compressible fluid characterised by its thermodynamic properties,

i.e. each fluid is governed by a given EoS (see Section 2.1). The two-fluid mixture is constructed according to
isobar and isothermal assumptions: when fluids coexist (i.e. when 0 < ϕ < 1), they have the same pressure
and the same temperature,2 so that we consider the volume τκ, the internal energy eκ and the entropy Sκ as
functions of p and T .

The mixture specific volume τ and the mixture internal energy e are defined by







τ(ϕ, T, p) def= ϕτ`g(T, p) + (1− ϕ)τ˜l(T, p), (7a)

e(ϕ, T, p) def= ϕe`g(T, p) + (1− ϕ)e˜l(T, p), (7b)

where ϕ is the mass fraction. Let hκ the enthalpy of the phase κ and h the enthalpy of the mixture. When the
pressure is the same in both fluids, recalling that the internal energy is linked to the enthalpy by the relation
hκ = eκ + pτκ, it leads to

h(ϕ, T, p) = ϕh`g(T, p) + (1− ϕ)h˜l(T, p). (8)

We now assume that each fluid κ is described by its own stiffened gas EoS, thus we can write

h(ϕ, T, p) = cp(ϕ)T + q(ϕ)

where we defined

cp(ϕ)
def= ϕcp,`g + (1− ϕ)cp,˜l, q(ϕ) def= ϕq`g + (1− ϕ)q˜l. (9)

Therefore the temperature T is written as a function of h, ϕ, p as

T (h, ϕ, p) =
h− q(ϕ)

cp(ϕ)
.

2Note that this model is a low Mach number approximation of the 4-equation relaxation model of [21, 33] which accounts for
chemical non-equilibrium but assumes thermal and mechanical equilibria. It is different from the HRM model of [4,10,16,19] which
assumes that the vapour phase is always at saturation conditions.
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We can hence compute the specific volume τ(h, ϕ, p) according to (7a)

τ(h, ϕ, p) =

(

ϕ
cp,`g

ζ`g(p)
+ (1− ϕ)

cp,˜l
ζ˜l(p)

)

T (h, ϕ, p) =

(

ϕ
cp,`g

ζ`g(p)
+ (1− ϕ)

cp,˜l
ζ˜l(p)

)

h− q(ϕ)

cp(ϕ)
.

From now on, let us drop the dependency upon p ≡ p∗. Hence

τ(h, ϕ) =
h− q(ϕ)

ζ(ϕ)
, (10)

where

ζ(ϕ) =
ϕcp,`g + (1− ϕ)cp,˜l

ϕ
cp,`g
ζ`g + (1− ϕ)

c
p,˜l
ζ˜l

. (11)

By introducing

G(ϕ) def= ϕ
cp,`g

ζ`g
+ (1− ϕ)

cp,˜l
ζ˜l
,

we can also express ζ(ϕ) as

ζ(ϕ) =
cp(ϕ)

G(ϕ)
.

Defining

τ ¯sfi`a˚t(ϕ) def= ϕτ ¯sfi`a˚t
`g + (1− ϕ)τ ¯sfi`a˚t

˜l , (12)

we express, using (6)

G(ϕ) =
τ ¯sfi`a˚t(ϕ)

T ¯sfi`a˚t ,

which leads to

ζ(ϕ) =
cp(ϕ)

τ ¯sfi`a˚t(ϕ)
T ¯sfi`a˚t > 0.

Hence the mixture can be considered as a generalised stiffened gas in the sense that, at constant pressure,
coefficients ζ and q only depend on ϕ.

By using (6), we can also write the temperature as

T (h, ϕ) =
h− q(ϕ)

cp(ϕ)
= τ(h, ϕ)

ζ(ϕ)

cp(ϕ)
= τ(h, ϕ)

1

G(ϕ)
=
τ(h, ϕ)T ¯sfi`a˚t

G(ϕ)T ¯sfi`a˚t =
τ(h, ϕ)

τ ¯sfi`a˚t(ϕ, p)
T ¯sfi`a˚t.

Remark 2.1. A major remark is that EoS (10) not only describes the iso-Tp mixture but also pure phases.
Indeed, τ(h, ϕ = 0) = τ˜l(h) and τ(h, ϕ = 1) = τ`g(h). Likewise, T (h, ϕ = 0) = T˜l(h) and T (h, ϕ = 1) = T`g(h). It

is thus different from the EoS at saturation (see § 5.2) which is defined piecewise: in particular, the values ζκ

are three different constants for κ = ˜l, `g and in the mixture, whereas in (11), we recover that ζ(ϕ = 0) = ζ˜l and

ζ(ϕ = 1) = ζ`g.
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3. Relaxation term

In the 3-Lmnc model [6], the two fluids are the liquid and the vapour phases of the same component. The
mixture is supposed to be at thermodynamic equilibrium and the mass fraction ϕ is computed to take into
account the phase transition (i.e. an instantaneous mass transfer from one phase to the other). The rate of
mass transfer from the liquid phase to the vapour phase is due to their difference of Gibbs potentials.

Here the mixture is supposed to be only at isothermal and isobar equilibrium and mass transfer can be
modelled by introducing a relaxation source term Rε allowing the exchange of mass between the two phases
with a given characteristic time ε.

We choose to model the mass transfer as in [4, 25,26] by setting

Rε(h, ϕ)
def=

1

ε
(ϕs(h)− ϕ) , (13)

where the coefficient ε represents the relaxation time and the mass fraction ϕs(h) is computed to ensure the
saturation of the mixture (equality of the pressure, temperature and Gibbs potential of each phase, see §5.2 for
complete analysis), that is

ϕs(h) def=







0, if h ≤ h¯sfi`a˚t
˜l ,

ϕ¯sfi`a˚t(h, p) =
h− h¯sfi`a˚t

˜l
h¯sfi`a˚t
`g − h¯sfi`a˚t

˜l
, if h¯sfi`a˚t

˜l < h < h¯sfi`a˚t
`g ,

1, if h ≥ h¯sfi`a˚t
`g .

(14)

Three regimes can be considered:

• the instantaneous relaxation regime: it corresponds to ε→ 0, and we recover formally the equation
of state at saturation and the 3-Lmnc model (which corresponds to the equality of chemical potentials);

• the infinite relaxation regime: when ε→ ∞, only the convective part is involved (the thermodynamic
is too slow to affect the hydrodynamic motion, no mass transfer between phases);

• in between: finite values of ε > 0 lead to an actual relaxation system.

In this paper we shall study two regimes:

• the non-instantaneous relaxation regime (ε > 0) in Section 4,
• the instantaneous relaxation regime (ε→ 0) in Section 5.

4. The non-instantaneous relaxation regime

Let us first state some properties of Model (2). As a preamble, observe that this model makes sense provided
that τ(h, ϕ) > 0, which implies that T (h, ϕ) > 0. Since the model induces that

∂tτ(h, ϕ) + v∂yτ(h, ϕ) = τ(h, ϕ)∂yv,

it guarantees the positivity of τ provided that h0 > q(ϕ0) and he > q(ϕe).

4.1. Properties of the 4-lmnc

We can now state a first lemma which ensures that ϕ represents a fraction.

Proposition 4.1 (Maximum principle). Let us assume that ϕe and ϕ0 take values in [0, 1]. For Rε defined
by (13), the solution ϕ of (2) satisfies the maximum principle and takes values in [0, 1].
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Proof. Let us set ẑ(σ) = z
(
σ, χ(σ; t, x)

)
, for z ∈ {v, ϕ, h,Φ}, where the characteristic flow χ is defined by







dχ

dσ
= v̂(σ),

χ(t; t, x) = x.

Then for all σ ≤ t, (2c) yields

ϕ(t, x) = ϕ̂(σ)e
σ−t

ε +
1

ε

∫ t

σ

ϕs
(
ĥ(ς)

)
e

ς−t

ε dς,

1− ϕ(t, x) = (1− ϕ̂(σ)) e
σ−t

ε +
1

ε

∫ t

σ

(

1− ϕs
(
ĥ(ς)

))

e
ς−t

ε dς.

Depending on whether χ(0; t, x) ∈ Ω (resp. whether there exists σ∗ ∈ (0, t) such that χ(σ∗; t, x) ∈ ∂Ω), then we
can set σ = 0 (resp. σ = σ∗) so that ϕ̂(σ) = ϕ0

(
χ(0; t, x)

)
∈ [0, 1] (resp. ϕ̂(σ) = ϕe(σ

∗) ∈ [0, 1]), which finishes
the proof. �

A second result that can be proved about this model is the positivity of the relaxation term Rε.

Proposition 4.2 (Positivity). The solution (h, ϕ) of (2) satisfies ϕs(h) > ϕ for any t ≥ 0 provided that
ϕs(he) > ϕe and ϕs(h0) > ϕ0.

Proof. Let us denote ψ(t, x) = ϕs(h(t, x)) − ϕ(t, x). For all σ ≤ t, (2c) yields ϕ̂′(σ) = 1
ε ψ̂(σ) and (2b) yields

ĥ′(σ) = Φ̂(σ)τ̂(σ). Then we can compute

(

ψ̂(σ)eσ/ε
)′

= ψ̂′(σ)eσ/ε +
1

ε
ψ̂(σ)eσ/ε =

(

ϕs(ĥ)− ϕ̂
)′

(σ)eσ/ε +
1

ε
ψ̂(σ)eσ/ε

= ĥ′(σ)(ϕs)′(ĥ(σ))eσ/ε − ϕ̂′(σ)eσ/ε +
1

ε
ψ̂(σ)eσ/ε

= Φ̂(σ)τ̂(σ)(ϕs)′(ĥ(σ))eσ/ε −
1

ε
ψ̂(σ)eσ/ε +

1

ε
ψ̂(σ)eσ/ε

= Φ̂(σ)τ̂(σ)(ϕs)′(ĥ(σ))eσ/ε
(14)
= Φ̂(σ)τ̂(σ)

1

h¯sfi`a˚t
`g − h¯sfi`a˚t

˜l
eσ/ε > 0.

This finishes the proof. �

Concerning the long-time behaviour, we can obtain an explicit form for the steady-state solution for h and
the flow rate, as it is stated in the following straightforward proposition. This steady-state solution will then
be used in the next paragraph, where we derive a well-balanced scheme for the model.

Proposition 4.3 (Steady-state solution). Let us assume that he, ϕe and De are independent from t, and that
the density function Φ depends only on y. Then, for any EoS, Model (2) admits the following steady state:

h∞(y) = he +
1

De

∫ y

0

Φ(x) dx, v∞(t) = De τ
(
h∞(y), ϕ∞(y)

)
, (15)

where ϕ∞ solves the ODE






dφ

dy
=

1

De

Rε

(
h∞(y), φ

)

τ
(
h∞(y), φ

) ,

φ(0) = ϕe.
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Proof. The steady-state system in the conservative form is the following







∂y(̺v) = 0,

∂y(̺vh) = Φ,

∂y(̺vϕ) = ̺Rε(̺, ϕ).

From the first equation we deduce that ̺v is constant in space, so that (̺v)(y) = De for all y ∈ [0;L]. The
second equation becomes ∂yh = Φ

De
with h(y = 0) = he so that h(y) = he +

1
De

∫ y

0
Φ(x) dx. �

4.2. A well-balanced numerical scheme

In previous papers [6, 15], numerical schemes were designed for the 1D 3-Lmnc model based on the method
of characteristics. It was proved to be (temperature) positivity-preserving and second-order in space and time.

In the present paper, there is an additional equation, namely a transport equation for the mass fraction
ϕ. The previous algorithm could have been used coupled to the method of characteristics applied to the new
equation. However another strategy is proposed in the following in order to mimic the theoretical properties
stated in the previous proposition: a well-balanced strategy to recover the asymptotic states (Proposition 4.3).
The idea is to ensure the stability of some numerical steady states that are consistent with the continuous steady
state in the same spirit as what it is done in the framework of hyperbolic equations [23].

Given ∆y > 0 and ∆t > 0, we consider a uniform Cartesian grid { yi = i∆y }0≤i≤N such that y0 = 0 and

yN = L as well as a time discretisation { tn = n∆t }n≥0. Unknowns are collocated at the nodes of the mesh.

We define the initial values v0i = v0(yi) and τ0i = τ0(yi) for i = 0, . . . , N .

The well-balanced property strongly relies on the discrete analog of the following computation

ζ(ϕ)∂yτ = ζ(ϕ)∂y

(
h− q(ϕ)

ζ(ϕ)

)

= ∂yh−
[

q′(ϕ) + τ(h, ϕ)ζ ′(ϕ)
]

∂yϕ

= ∂yh−

[

(q`g − q˜l) + τ(h, ϕ)
(ζ`g − ζ˜l)τ

¯sfi`a˚t
`g τ ¯sfi`a˚t

˜l

(τ ¯sfi`a˚t(ϕ))2

]

∂yϕ

where τ ¯sfi`a˚t(ϕ) is defined by (12).
This discrete property is stated in the following lemma.

Lemma 4.4. By defining

τi =
hi − qi
ζi

, qi = ϕiq`g + (1− ϕi)qℓ, ζi =
ϕiζ`gτ ¯sfi`a˚t

`g + (1− ϕi)ζ˜lτ
¯sfi`a˚t
˜l

τ ¯sfi`a˚t(ϕi)

we have that, for any i,

ζi(τi − τi−1) = hi − hi−1 − (ϕi − ϕi−1)

[

(q`g − qℓ) + τi−1

(ζ`g − ζ˜l)τ
¯sfi`a˚t
`g τ ¯sfi`a˚t

˜l

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕi−1)

]

where we dropped the time superscripts for simplicity, since this property is true for any n.

Proof. Let us expand the right hand side of the claimed equality, using the definitions of τi, qi and ζi:

RHS = ζiτi + qi − ζi−1τi−1 + qi−1 − (q`g − qℓ)ϕi + (q`g − qℓ)ϕi−1 − τi−1(ϕi − ϕi−1)
(ζ`g − ζ˜l)τ

¯sfi`a˚t
`g τ ¯sfi`a˚t

˜l

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕi−1)

.
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Since qj = (q`g − qℓ)ϕj + q˜l, this implies that

RHS = ζiτi − τi−1

[

ζi−1 + (ϕi − ϕi−1)
(ζ`g − ζ˜l)τ

¯sfi`a˚t
`g τ ¯sfi`a˚t

˜l

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕi−1)

]

.

The left-hand side of the claimed equality is equal to RHS if and only if the expression in the brackets is equal
to ζi, that is if and only if

ζi − ζi−1 = (ϕi − ϕi−1)
(ζ`g − ζ˜l)τ

¯sfi`a˚t
`g τ ¯sfi`a˚t

˜l

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕi−1)

.

Let us compute

ζi − ζi−1 =
(ζ`gτ ¯sfi`a˚t

`g − ζ˜lτ
¯sfi`a˚t
˜l )ϕi + ζ˜lτ

¯sfi`a˚t
˜l

τ ¯sfi`a˚t(ϕi)
−

(ζ`gτ ¯sfi`a˚t
`g − ζ˜lτ

¯sfi`a˚t
˜l )ϕi−1 + ζ˜lτ

¯sfi`a˚t
˜l

τ ¯sfi`a˚t(ϕi−1)

=

[

(ζ`gτ ¯sfi`a˚t
`g − ζ˜lτ

¯sfi`a˚t
˜l )ϕi + ζ˜lτ

¯sfi`a˚t
˜l

]

τ ¯sfi`a˚t(ϕi−1)−
[

(ζ`gτ ¯sfi`a˚t
`g − ζ˜lτ

¯sfi`a˚t
˜l )ϕi−1 + ζ˜lτ

¯sfi`a˚t
˜l

]

τ ¯sfi`a˚t(ϕi)

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕi−1)

= (ϕi − ϕi−1)
(ζ`g − ζ˜l)τ

¯sfi`a˚t
`g τ ¯sfi`a˚t

˜l

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕi−1)

which finishes the proof. �

Let us now introduce the numerical scheme







hn+1
i − hni

∆t
+ vni

hni − hni−1

∆y
= Φτni , (16a)

ϕn+1
i − ϕn

i

∆t
+ vni

ϕn
i − ϕn

i−1

∆y
= Rn+1,n+1

i , (16b)

vn+1
i − vn+1

i−1

∆y
=

1

ζn+1
i

Sn+1
i , (16c)

where

τni =
hni − qni
ζni

, ζni =
ϕn
i ζ`gτ

¯sfi`a˚t
`g + (1− ϕn

i )ζ˜lτ
¯sfi`a˚t
˜l

τ s(ϕn
i )

, (17a)

qni = ϕn
i q`g + (1− ϕn

i )qℓ, ϕs(hn+1
i ) = max

(

min

(

hn+1
i − h¯sfi`a˚t

˜l
h¯sfi`a˚t
`g − h¯sfi`a˚t

˜l
, 1

)

, 0

)

, (17b)

Rn+1,n+1
i =

1

ε

(
ϕs(hn+1

i )− ϕn+1
i

)
, Sn+1

i = Φ−
Rn+1,n+1

i

τn+1
i

[

(q`g − qℓ)− τn+1
i−1

(ζ`g − ζ˜l)τ
¯sfi`a˚t
`g τ ¯sfi`a˚t

ℓ

τ s(ϕn+1
i )τ s(ϕn+1

i−1 )

]

. (17c)

Observe that since Equation (16b) can be stiff for small values of ε, the source term is discretised implicitly.
This does not induce longer computational costs, since the equation is linear in ϕ and can be solved explicitly.
The CFL condition is thus only related to the transport equation (16a) for h.



12 TITLE WILL BE SET BY THE PUBLISHER

Proposition 4.5. Scheme (17) is at order 1 (in space and time) and well-balanced in the sense that it preserves
the numerical steady state satisfying for any 0 ≤ i ≤ N

vi
τi

=
v0
τ0

= De, (18)

hi − hi−1

∆y
=

Φ

De
, (19)

which is consistent with the properties of the continuous steady state given in Proposition 4.3. More precisely,
if for any i, (vn+1

i , hn+1
i , ϕn+1

i ) = (vni , h
n
i , ϕ

n
i ), then (vni , h

n
i , ϕ

n
i )i satisfies (18)-(19).

Proof. Assume that (vni , h
n
i , ϕ

n
i ) = (vn+1

i , hn+1
i , ϕn+1

i ). Dropping the time indexes, the scheme becomes

vi(hi − hi−1) = ∆yΦτi, (20a)

vi(ϕi − ϕi−1) = ∆yRi, (20b)

vi − vi−1 =
∆y

ζi
Si. (20c)

We first prove (18), which is equivalent to proving

vi(τi − τi−1) = τi(vi − vi−1).

Using successively the equations on v, h and ϕ of the scheme (20), we have

ζiτi(vi − vi−1)
(20c)
= ∆ySiτi = ∆yΦτi −∆yRi

[

(q`g − qℓ)− τi−1

(ζ`g − ζ˜l)τ
¯sfi`a˚t
`g τ ¯sfi`a˚t

ℓ

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕi−1)

]

(20a)
= vi(hi − hi−1)−∆yRi

[

(q`g − qℓ)− τi−1

(ζ`g − ζ˜l)τ
¯sfi`a˚t
`g τ ¯sfi`a˚t

ℓ

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕi−1)

]

(20b)
= vi(hi − hi−1)− vi(ϕi − ϕi−1)

[

(q`g − qℓ)− τi−1

(ζ`g − ζ˜l)τ
¯sfi`a˚t
`g τ ¯sfi`a˚t

ℓ

τ ¯sfi`a˚t(ϕi)τ
¯sfi`a˚t(ϕn+1

i−1 )

]

= ζivi(τi − τi−1) by Lemma 4.4.

We then prove (19):

hi − hi−1

∆y

(20a)
= Φ

τi
vi

(18)
=

Φ

De
.

�

Remark 4.6. Let us observe that (20b) induces that

ϕi − ϕi−1

∆y
=

1

De

Ri

τi

thanks to (18), which is consistent with the ODE in Prop. 4.5.

Notice that a similar strategy can be adapted to the 3-Lmnc model for which the steady state is completely
known (see Appendix A).
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4.3. Semi-analytical steady state solution

To evaluated the well-balanced property of the presented scheme in the numerical tests, we have to compute
a steady state solution. We apply Proposition 4.3 to compute asymptotic solution:

• the enthalpy h∞(y) is given by (15);
• we compute the mass fraction ϕ∞ by solving the Cauchy problem







dφ

dy
=

1

De

Rε

(
h∞(y), φ

)

τ
(
h∞(y), φ

) ,

φ(0) = ϕe,

with an explicit Runge-Kutta scheme at order 6 (with 7 stages) on a very fine grid using 51 201 points;
• we can then compute the velocity v∞ using the EoS:

v∞(y) = Deτ(h
∞(y), ϕ∞(y)) = De

h∞(y)− q(ϕ∞(y))

ζ(ϕ∞(y))
.

4.4. Numerical simulations

4.4.1. Thermodynamic parameters

In the following numerical tests we use a stiffened gas law to close with parameter values chosen as in [30]:

γ˜l = 2.35 γ`g = 1.43

cv,˜l = 1.816× 103 J ·K−1 · kg−1 cv,`g = 1.040× 103 J ·K−1 · kg−1

q˜l = −1.167× 106 J ·K−1 q`g = 2.030× 106 J ·K−1

m˜l = −3.2765× 104 J ·K−1 · kg−1 m`g = −3.3265× 104 J ·K−1 · kg−1

so that

cp,˜l = γ˜lcv,˜l = 4.268× 103 J ·K−1 · kg−1 cp,`g = γ`gcv,`g = 1.4874× 103 J ·K−1 · kg−1.

With p∗ = 1.55× 107 Pa, we also obtain

ζ˜l = 1.768× 109 Pa ζ`g = 5.155× 107 Pa.

By solving g˜l(T, p∗) = g`g(T, p∗), we find T ¯sfi`a˚t = 654.651K so that

τ ¯sfi`a˚t
˜l = 1.581× 10−3 m3 · kg−1 τ ¯sfi`a˚t

`g = 1.889× 10−2 m3 · kg−1

h¯sfi`a˚t
˜l = 1.627× 106 J ·K−1 h¯sfi`a˚t

`g = 3.004× 106 J ·K−1.

4.4.2. Constant Φ test case

In the first test, we investigate the ability of our model to deal with two-phase flows with non-instantaneous
phase transition (ε = 1.0× 10−1).

The power density is set constant in space and time and equal to Φ = 170× 106 W ·m−3. The boundary
and initial conditions are h0(y) = he(t) = 1.455 65× 106 J ·K−1 < h¯sfi`a˚t

˜l , v0(y) = ve(t) = 0.4m · s−1, so that

De = 269.6m · kg · s−1 ·m−3 and ϕ0(y) = ϕe(t) = 0 . With these parameters, the domain [0;L] with L = 4.2m
is initially filled with liquid. With these constant values, we can apply the algorithm presented at Section 4.3
to compute a semi-analytic asymptotic solution.
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Figure 1. h, ϕ and v for constant Φ

Figure 1 displays numerical results at instants t = 0 s (blue) and t = 7.5 s (red) and the steady solution
(magenta dotted) for the enthalpy h, the mass fraction ϕ and the velocity v. At this last time the solution has
already reached the asymptotic regime. The (green dotted) line represents the solution when the mixture is at
instantaneous equilibrium (i.e. ϕ = ϕs(h)). The computation is performed on a grid with 101 points and the
CFL constant is equal to 0.99. At final time we have

max
i

∣
∣
∣
vi
τi

−De

∣
∣
∣

De
= 5.06× 10−15, max

i

|hi − h∞(yi)|

h∞(yi)
= 6.3× 10−15,

which means that the scheme is well-balanced even with few points. Moreover, we observe

ϕs(hi)− ϕi ∈ [0; 0.183],

thus the relaxation term remains positive according to the Proposition 4.2.
On the first and second plots (enthalpy and mass fraction) we indicated the points y ¯sfi`a˚t˜l and y ¯sfi`a˚t`g where the

enthalpy is equal to h¯sfi`a˚t
˜l and h¯sfi`a˚t

`g respectively. We remark that, for y > 2.455m, the fluid is still a mixture (i.e.

0 < ϕ < 1) even if h(y) > h¯sfi`a˚t
`g , which enlightens the influence of the time ε delaying the mass transfert between

the phases. Notice that, in the context of the 4-Lmnc model, it is not crucial to identify if the mixture is a pure
phases (ϕ = 0 or 1) or if there is a small fraction of the other phase, since the definition of the iso-Tp mixture
also describes pure phases continuously (cf. Remark 2.1). This is a remarkable difference with respect to the
closure law of the 3-Lmnc model, and constitutes a major benefit of the 4-Lmnc model, since it is less sensitive
to small errors in determining the parameters. On the other hand, it is difficult to approach numerically where
the pure phase appears in the 4-Lmnc model, since the mass fraction comes near 1 very slowly and rounding
errors can lead to a large error on the position of the interface.

4.4.3. Sinusoidal Φ test case

In the second test, we consider a space-dependent constant in time power density function equal to

Φ(y) =

(

1 + sin

(
6

π
Ly

))

Φ∗

with Φ∗ = 170× 106 W ·m−3.
The boundary and initial conditions, the domain and ε are the same as for the test of Section 4.4.2.
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Figure 2. h, ϕ and v for sine-like Φ

As previously, Figure 2 displays numerical results at instants t = 0 s (blue) and t = 7.5 s (red) and the steady
solution (magenta dotted) for the enthalpy h, the mass fraction ϕ and the velocity v. At this last time the
solution has already reached the asymptotic regime. The (green dotted) line represents the solution when the
mixture is at instantaneous equilibrium (i.e. ϕ = ϕs(h)). The computation is performed on a grid with 201
points and the CFL coefficient is equal to 0.99. At final time, the scheme satisfies again the well-balanced
property and the positivity of Rε:

max
i

∣
∣
∣
vi

τi
−De

∣
∣
∣

De
= 8.22× 10−15, max

i

|hi − h∞(yi)|

h∞(yi)
= 3.90× 10−3, ϕs(hi)− ϕi ∈ [0; 0.204].

5. The instantaneous relaxation regime

As we already stated, the 4-Lmnc model describes a two-phase flow under the assumption of instantaneous
mechanical and thermal equilibrium (but the two-phases will in general not be at chemical equilibrium). In this
section we wish to derive the 3-Lmnc model [6], where the phase change is instantaneous, as the instantaneous
relaxation limit of the above 4-Lmnc model. The relaxation term deals with phase change and forces the phases
towards chemical equilibrium.

We first recall the equations governing the 3-Lmnc model and its closure law (isothermal, isobar and iso-
chemical potential equation of state). We then study the relaxation limit of the 4-Lmnc model towards the
3-Lmnc model, and we finally introduce an asymptotic-preserving numerical scheme for the 4-Lmnc model.

5.1. Systems of equations

In a non conservative formulation, the 3-lmnc and the 4-lmnc models can be written as follows.
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4-Lmnc

• Unknowns: h, ϕ, v.
• EoS: (h, ϕ) 7→ τ(h, ϕ) (iso-Tp EoS of §2.2).
• Governing equations:







∂yv = S(h, ϕ)

∂th+ v∂yh = Φτ(h, ϕ)

∂tϕ+ v∂yϕ = 1
ε (ϕ

s(h)− ϕ)

(21)

where

S(h, ϕ) def= Φ
∂τ

∂h

∣
∣
∣
∣
ϕ

+
Rε(h, ϕ)

τ(h, ϕ)

∂τ

∂ϕ

∣
∣
∣
∣
h

.

3-Lmnc

• Unknowns: h, v.
• EoS: h 7→ τ s(h) (iso-Tpg EoS of §5.2).
• Governing equations:

{

∂yv = S
s(h)

∂th+ v∂yh = Φτ s(h)
(22)

where

S
s(h) def= Φ(τ s)

′
(h).

Remark 5.1. Observe that for any EoS, the steady-state enthalpy is the same for Models (21) and (22), but
it is not the case for other variables. However, even if the steady-state enthalpy is the same, the position of the
phases boundaries is not necessarily the same (as noted in the previous numerical test at §4.4.2). Although the
computation of y ¯sfi`a˚tκ (solution of h∞(y) = h¯sfi`a˚t

κ ) allows to determine the location of phase change in the 3-Lmnc

model, it is not the case in the 4-Lmnc model, since we can have, at some point y, both h∞(y) > h¯sfi`a˚t
`g and

ϕ∞(y) < 1: in this model, enthalpy and mass fraction are independent, and only the mass fraction determines
the composition of the fluid.

5.2. Iso-Tpg equation of state for a mixture

We recall that p = p∗, thus we drop the dependence on p in the description of the equation of state. We
proved in [6, 15] that the EoS at saturation reads as follows, given T ¯sfi`a˚t, h¯sfi`a˚t

κ , τ ¯sfi`a˚t
κ , as described in Section 2.1.

• The specific volume in the 3-Lmnc model is given by

τ s(h) =
h− qs(h)

ζs(h)
=







τ˜l(h) =
h− q˜l
ζ˜l

, if h ≤ h¯sfi`a˚t
˜l ,

τ ¯sfi`a˚t(h) =
h− q ¯sfi`a˚t

ζ ¯sfi`a˚t
, if h¯sfi`a˚t

˜l < h < h¯sfi`a˚t
`g ,

τ`g(h) =
h− q`g

ζ`g
, if h ≥ h¯sfi`a˚t

`g ,

where3

ζs(h) =







ζ˜l = cp,˜l
T ¯sfi`a˚t
τ ¯sfi`a˚t
˜l
, if h ≤ h¯sfi`a˚t

˜l ,

ζ ¯sfi`a˚t def=
h¯sfi`a˚t`g −h¯sfi`a˚t

˜l
τ ¯sfi`a˚t`g −τ ¯sfi`a˚t

˜l
, if h¯sfi`a˚t

˜l < h < h¯sfi`a˚t
`g ,

ζ`g = cp,`g
T ¯sfi`a˚t
τ ¯sfi`a˚t`g

, if h ≥ h¯sfi`a˚t
`g ,

3Given notations from [6], we have ζs(h) = β(h, p∗)/p∗.
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qs(h) =







q˜l, if h ≤ h¯sfi`a˚t
˜l ,

q ¯sfi`a˚t def= h¯sfi`a˚t
κ − τ ¯sfi`a˚t

κ ζ ¯sfi`a˚t =
h¯sfi`a˚t
˜l τ ¯sfi`a˚t`g −h¯sfi`a˚t`g τ ¯sfi`a˚t˜l

τ ¯sfi`a˚t`g −τ ¯sfi`a˚t
˜l

, if h¯sfi`a˚t
˜l < h < h¯sfi`a˚t

`g ,

q`g, if h ≥ h¯sfi`a˚t
`g .

• The mass fraction in the 3-Lmnc model is given by (14).
• Temperature in the 3-Lmnc model is expressed by

T s(h) =







Tℓ(h) =
τ˜l(h)
τ ¯sfi`a˚t
˜l

T ¯sfi`a˚t, if h ≤ h¯sfi`a˚t
˜l ,

T ¯sfi`a˚t, if h¯sfi`a˚t
˜l < h < h¯sfi`a˚t

`g ,

T`g(h) =
τ`g(h)

τ ¯sfi`a˚t`g
T ¯sfi`a˚t, if h ≥ h¯sfi`a˚t

`g .

• The coefficient cp is not defined in the iso-Tpg equation of state, since

1

cp
=
∂T s

∂h

∣
∣
∣
∣
p

,

which is equal to zero in the mixture at saturation.

To study the relaxation of the 4-Lmnc towards the 3-Lmnc system, we first compare the equations of state
of the iso-Tp and the iso-Tpg mixtures.

Proposition 5.2 (Iso-Tp vs iso-Tpg mixtures). Although ζ(ϕ¯sfi`a˚t(h)) 6= ζ ¯sfi`a˚t and q(ϕ¯sfi`a˚t(h)) 6= q ¯sfi`a˚t, the following
relations hold

τ(h, ϕ¯sfi`a˚t(h)) = τ ¯sfi`a˚t(h) = τ ¯sfi`a˚t(ϕ¯sfi`a˚t(h)), T (h, ϕ¯sfi`a˚t(h)) = T ¯sfi`a˚t.

Proof. Since q(ϕ¯sfi`a˚t(h)) and ζ(ϕ¯sfi`a˚t(h)) depend on h while q ¯sfi`a˚t and ζ ¯sfi`a˚t are constant then q(ϕ¯sfi`a˚t(h)) 6= q ¯sfi`a˚t and
ζ(ϕ¯sfi`a˚t(h)) 6= ζ ¯sfi`a˚t.

Since ϕ¯sfi`a˚t(h) def=
h−h¯sfi`a˚t

˜l
h¯sfi`a˚t`g −h¯sfi`a˚t

˜l
, we have 1− ϕ¯sfi`a˚t(h) =

h¯sfi`a˚t`g −h

h¯sfi`a˚t`g −h¯sfi`a˚t
˜l

, and thus

τ(h, ϕ¯sfi`a˚t(h)) =
h− q(ϕ¯sfi`a˚t(h))

ζ(ϕ¯sfi`a˚t(h))

=

(

h−
h− h¯sfi`a˚t

˜l
h¯sfi`a˚t
`g − h¯sfi`a˚t

˜l
q`g −

h¯sfi`a˚t
`g − h

h¯sfi`a˚t
`g − h¯sfi`a˚t

˜l
q˜l

)
h−h¯sfi`a˚t

˜l
h¯sfi`a˚t`g −h¯sfi`a˚t

˜l
τ ¯sfi`a˚t
`g +

h¯sfi`a˚t`g −h

h¯sfi`a˚t`g −h¯sfi`a˚t
˜l
τ ¯sfi`a˚t
˜l

h−h¯sfi`a˚t
˜l

h¯sfi`a˚t`g −h¯sfi`a˚t
˜l

(h¯sfi`a˚t
`g − q`g) +

h¯sfi`a˚t`g −h

h¯sfi`a˚t`g −h¯sfi`a˚t
˜l

(h¯sfi`a˚t
˜l − q˜l)

=
(h− h¯sfi`a˚t

˜l )τ ¯sfi`a˚t
`g + (h¯sfi`a˚t

`g − h)τ ¯sfi`a˚t
˜l

h¯sfi`a˚t
`g − h¯sfi`a˚t

˜l
=

h−
h¯sfi`a˚t
˜l τ ¯sfi`a˚t`g +h¯sfi`a˚t`g τ ¯sfi`a˚t˜l

τ ¯sfi`a˚t`g −τ ¯sfi`a˚t
˜l

h¯sfi`a˚t`g −h¯sfi`a˚t
˜l

τ ¯sfi`a˚t`g −τ ¯sfi`a˚t
˜l

=
h− q ¯sfi`a˚t

ζ ¯sfi`a˚t
= τ ¯sfi`a˚t(h).
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Moreover, since ϕ¯sfi`a˚t(h) def=
h−h¯sfi`a˚t

˜l
h¯sfi`a˚t`g −h¯sfi`a˚t

˜l
=

τ ¯sfi`a˚t(h)−τ ¯sfi`a˚t˜l
τ ¯sfi`a˚t`g −τ ¯sfi`a˚t

˜l
then, by definition (12) of τ ¯sfi`a˚t(ϕ)

τ ¯sfi`a˚t(ϕ¯sfi`a˚t(h)) = ϕ¯sfi`a˚t(h)τ ¯sfi`a˚t
`g + (1− ϕ¯sfi`a˚t(h))τ ¯sfi`a˚t

˜l =
τ ¯sfi`a˚t(h)− τ ¯sfi`a˚t

˜l
τ ¯sfi`a˚t
`g − τ ¯sfi`a˚t

˜l
τ ¯sfi`a˚t
`g +

τ ¯sfi`a˚t
`g − τ ¯sfi`a˚t(h)

τ ¯sfi`a˚t
`g − τ ¯sfi`a˚t

˜l
τ ¯sfi`a˚t
˜l = τ ¯sfi`a˚t(h).

Finally, for the temperature, we can compute

T (h, ϕ¯sfi`a˚t(h)) =
τ(h, ϕ¯sfi`a˚t(h))

τ ¯sfi`a˚t(ϕ¯sfi`a˚t(h))
T ¯sfi`a˚t =

τ ¯sfi`a˚t(h)

τ ¯sfi`a˚t(h)
T ¯sfi`a˚t = T ¯sfi`a˚t.

�

Figure 3 displays the iso-Tp and the iso-Tpg EoS with parameters of the Section 4.4.1.

5.3. Convergence of the 4-lmnc model towards the 3-lmnc model

In the following proposition, we relate the 3-Lmnc system to the 4-Lmnc one, as its limit when ε→ 0.

Proposition 5.3. Let (vε, hε, ϕε) be a solution of (21) with Rε(h, ϕ) = 1
ε (ϕ

s(h) − ϕ), and (v, h) a solution

of (22). Provided that the equations of state satisfy that τ
(
h, ϕs(h)

)
= τ s(h), then (vε, hε, ϕε) −−−→

ε→0
(v, h, ϕs(h)).

Proof. Let us expand any variable of Model (21) as fε = f (0) + εf (1) +O(ε2). At order ε−1, we get

ϕ(0) = ϕs(h(0)).

Moreover, at order ε0, we have from (2c)

∂tϕ
(0) + v(0)∂yϕ

(0) = (ϕs)′(h(0))h(1) − ϕ(1), (23)

and from (2b)

∂th
(0) + v(0)∂yh

(0) = τ(h(0), ϕ(0))Φ. (24)

Since we obtained ϕ(0) = ϕs(h(0)) and assumed that τ(h, ϕs(h)) = τ s(h), we get exactly the second equation
of (22) for h(0).

Further, we compute

∂yv
(0) = Φ

∂τ

∂h

∣
∣
∣
∣
ϕ

(h(0), ϕ(0)) +
∂τ

∂ϕ

∣
∣
∣
∣
h

(h(0), ϕ(0))
(ϕs)′(h(0))h(1) − ϕ(1)

τ(h(0), ϕ(0))

(23)
= Φ

∂τ

∂h

∣
∣
∣
∣
ϕ

(h(0), ϕ(0)) +
∂τ

∂ϕ

∣
∣
∣
∣
h

(h(0), ϕ(0))
∂tϕ

(0) + v(0)∂yϕ
(0)

τ(h(0), ϕ(0))

= Φ
∂τ

∂h

∣
∣
∣
∣
ϕ

(h(0), ϕ(0)) +
∂th

(0) + v(0)∂yh
(0)

τ(h(0), ϕ(0))
(ϕ¯sfi`a˚t)′(h(0))

∂τ

∂ϕ

∣
∣
∣
∣
h

(h(0), ϕ(0))

(24)
= Φ

(

∂τ

∂h

∣
∣
∣
∣
ϕ

(h(0), ϕ(0)) + (ϕs)′(h(0))
∂τ

∂ϕ

∣
∣
∣
∣
h

(h(0), ϕ(0))

)

= Φ
dτ

dh

(

h(0), ϕs(h(0))
)

.

The assumption on the EoS leads to
∂yv

(0) = Φ(τ s)′(h(0)),

which is exactly the first equation of (22) for v(0). This concludes the proof. �
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(a) h 7→
1

ζ(ϕs(h))
vs h 7→

1
ζs(h)

(b) h 7→ q(ϕs(h)) vs h 7→ qs(h)

(c) h 7→ τ(h, ϕs(h)) vs h 7→ τs(h) (d) h 7→ T (h, ϕs(h)) vs h 7→ T s(h)

Figure 3. Iso-Tp vs Iso-Tpg EoS

Remark 5.4. The requirement τ
(
h, ϕs(h)

)
= τ s(h) is in particular satisfied for the EoS we chose (see Propo-

sition 5.2).

5.4. An asymptotic-preserving numerical scheme for the 4-lmnc model

In this section, an asymptotic-preserving strategy is proposed to be able to simulate the 4-lmnc model in
stiff regimes (small values of ε) with a reasonable computational cost. The scheme relies on a time splitting
between the relaxation step (stiff, thus implicit) and the transport one (explicit). It is inspired by the standard
asymptotic-preserving approach introduced by Jin [27].
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Let us consider the following semi-discrete (in time) scheme







h∗ = hn +∆tΦ τ(hn, ϕn),

ϕ∗ = ϕn +
∆t

ε
(ϕs(h∗)− ϕ∗),

D(vn+1) =
Φ

ζ(ϕ∗)
+

1

τ(hn, ϕn)

ϕs(h∗)− ϕ∗

ε
A(hn, ϕn, ϕ∗),

hn+1 = h∗ −∆t vn+1D(h∗)

ϕn+1 = ϕ∗ −∆t vn+1D(ϕ∗)

(25a)

where

A(hn, ϕn, ϕ∗) = −
1

ζ(ϕ∗)ζ(ϕn)

[

(qg − qℓ)ζ(ϕ
n) + (hn − q(ϕn))

ζ(ϕ∗)− ζ(ϕn)

ϕ∗ − ϕn

]

(25b)

is an approximation of ∂ϕτ and D(·) is any discretisation of ∂y·.

As for the previous scheme, since the second equation of (25a) can be stiff for small values of ε, the source
term is discretised implicitly. Again, this does not induce longer computational costs, since the equation is
linear in ϕ and can be solved explicitly. The CFL condition is thus only related to the transport equation on
the enthalpy at speed v (two last equations of (25a)).

Assume that the discrete linear operator D satisfies the requirements

• for f ∈ R
N such that fi = O(ε) for all i, then D(f)i = O(ε);

• for f ∈ R
N such that D(f)i = O(ε) for all i and f0 = 0, then fi = O(ε);

• D(cst) = 0.

Proposition 5.5. Under the previous assumption, scheme (25) is weakly asymptotic-preserving, in the sense
that its numerical solution is an O(ε)-approximation of the numerical solution to the scheme







h
∗
= h

n
+∆tΦ τ s(h

n
),

D(vn+1) =
Φ

ζs
,

h
n+1

= h
∗
−∆t vn+1D(h

∗
).

Proof. Let us denote δ⋆1 = h⋆ −h
⋆
, δ⋆2 = ϕ⋆ −ϕs(h

⋆
) and δ⋆3 = v⋆ − v⋆, for any value of the superscript ⋆. First,

we have

δ∗1 = hn − h
n
+Φ∆t

(

τ(hn, ϕn)− τ s(h
n
)
)

= δn1 +Φ∆t(δn1 C1 + δn2 C2), (26)

where we used a Taylor expansion of τ (which is a C1 function with respect to h and ϕ), and the constants C1
and C2 are given by

C1 =

∫ 1

0

∂τ

∂h

(

h
n
+ σ(hn − h

n
), ϕs(h

n
) + σ

(
ϕn − ϕs(h

n
)
))

dσ,

C2 =

∫ 1

0

∂τ

∂ϕ

(

h
n
+ σ(hn − h

n
), ϕs(h

n
) + σ

(
ϕn − ϕs(h

n
)
))

dσ.

We then notice that

ϕ∗ − ϕn =
∆t

ε
(ϕs(h∗)− ϕ∗)

=
∆t

ε
(ϕs(h∗)− ϕs(hn) + ϕs(hn)− ϕs(h

n
) + ϕs(h

n
)− ϕn + ϕn − ϕ∗),
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=⇒ ϕ∗ − ϕn =
∆t/ε

1 + ∆t/ε
(ϕs(h∗)− ϕs(hn) + ϕs(hn)− ϕs(h

n
) + ϕs(h

n
)− ϕn)

Further, the equation on h∗ and the definition of ϕs(h) lead to

ϕs(h∗) = ϕs(hn) +
Φ∆tτ(hn, ϕn)

hs`g − hs˜l
.

Hence

ϕ∗ − ϕn =
1

1 + ε/∆t

(

Φ∆tτ(hn, ϕn)

hs`g − hs˜l
+

δn1
hs`g − hs˜l

− δn2

)

,

which implies that

ϕs(h∗)− ϕ∗ =
ε

∆t
(ϕ∗ − ϕn) =

ε/∆t

1 + ε/∆t

(

δn1 +Φ∆tτ(hn, ϕn)

hs`g − hs˜l
− δn2

)

. (27)

Consequently

δ∗2 = ϕ∗ − ϕs(h
∗
) = ϕ∗ − ϕs(h∗) + ϕs(h∗)− ϕs(h

∗
) (28)

(27)
= −

ε/∆t

1 + ε/∆t

(

δn1 +Φ∆tτ(hn, ϕn)

hs`g − hs˜l
− δn2

)

+
δ∗1

hs`g − hs˜l
. (29)

Moreover, we have
ϕ∗ − ϕn

∆t
=
ϕ∗ − ϕn

h∗ − hn
h∗ − hn

∆t
=
ϕ∗ − ϕn

h∗ − hn
Φτ(hn, ϕn).

Hence
1

τ(hn, ϕn)

ϕs(h∗)− ϕ∗

ε
= Φ

ϕ∗ − ϕn

h∗ − hn
.

Notice that qg − qℓ =
q(ϕ∗)−q(ϕn)

ϕ∗−ϕn . Therefore

A(hn, ϕn, ϕ∗)

τ(hn, ϕn)

ϕs(h∗)− ϕ∗

ε
= −

Φ

h∗ − hn
q(ϕ∗)− q(ϕn))ζ(ϕn) + (hn − q(ϕn))(ζ(ϕ∗)− ζ(ϕn))

ζ(ϕ∗)ζ(ϕn)

= Φ
1

h∗ − hn

[
hn − q(ϕ∗)

ζ(ϕ∗)
−
hn − q(ϕn)

ζ(ϕn)

]

= Φ
τ(hn, ϕ∗)− τ(hn, ϕn)

h∗ − hn
.

Moreover
1

ζ(ϕ∗)
=
τ(h∗, ϕ∗)− τ(hn, ϕ∗)

h∗ − hn
,

so that, using both previous equalities,

D(vn+1) = Φ
τ(h∗, ϕ∗)− τ(hn, ϕn)

h∗ − hn
.

Now, using again a Taylor expansion of τ with respect to ϕ, we deduce from (27)

τ(h∗, ϕ∗) = τ
(
h∗, ϕs(h∗)

)

︸ ︷︷ ︸

=τs(h∗)

−
ε/∆t

1 + ε/∆t

(

δn1 +Φ∆tτ(hn, ϕn)

hs`g − hs˜l
− δn2

)

C3,
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where

C3 =

∫ 1

0

dτ

dϕ
(h∗, ϕs(h∗) + σ(ϕ∗ − ϕs(h∗))) dσ.

Likewise

τ(hn, ϕn) = τ
(
hn, ϕs(hn)

)

︸ ︷︷ ︸

=τs(hn)

+(ϕn − ϕs(hn))C4 = τ s(hn) +

(

δn2 −
δn1

hs`g − hs˜l

)

C4,

with

C4 =

∫ 1

0

dτ

dϕ
(hn, ϕs(hn) + σ(ϕn − ϕs(hn))) dσ.

Hence

D(vn+1) = Φ
τ s(h∗)− τ s(hn)

h∗ − hn

−
Φ

h∗ − hn

[

ε/∆t

1 + ε/∆t

(

δn1 +Φ∆tτ(hn, ϕn)

hs`g − hs˜l
− δn2

)

C3 +

(

δn2 −
δn1

hs`g − hs˜l

)

C4

]

.

Recalling that τ s(h) = (h− qs)/ζs and D(vn+1) = Φ/ζs,

D(δn+1
3 ) = −

1

ε+∆t

[

ε
ΦC3

hs`g − hs˜l
+

(

δn1
hs`g − hs˜l

− δn2

)

ε(C3 − C4)/∆t− C4
τ(hn, ϕn)

]

, (30)

where we used the first equation of (25a).
Then, the second part of the splitting is computed as

δn+1
1 = hn+1 − h

n+1
= h∗ − h

∗
−∆tvn+1D(h∗) + ∆tvn+1D(h

∗
)

= δ∗1 −∆t
[

vn+1D(δ∗1) + δn+1
3 D(h

∗
)
]

. (31)

Likewise:

δn+1
2 = ϕn+1 − ϕs(h

n+1
) = ϕ∗ − ϕs(h

∗
)−∆tvn+1D(ϕ∗) + ∆tvn+1 D(h

∗
)

hs`g − hs˜l

= δ∗2 −∆t
[
δn+1
3 D(ϕ∗) + vn+1D(δ∗2)

]
, (32)

since D(h
∗

)
hs`g−hs

˜l
= D

(
ϕs(h∗)

)
due to the properties of the operator D.

We can now the conclude the proof. Let us assume that δn1 = O(ε) and δn2 = O(ε). Then

• Equation (26) shows that δ∗1 = O(ε).
• Equation (28) coupled to the previous point implies that δ∗2 = O(ε).
• From (30), we have that D(δn+1

3 ) = O(ε) and thus δn3 = O(ε) since v0 = v0 = ve.
• The previous points and (31) induce that δn+1

1 = O(ε)
• Finally (32) leads to δn+1

2 = O(ε).

�
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Figure 4. Asymptotic-preserving behaviour of the scheme

5.5. Numerical simulations in both the non-instantaneous and instantaneous regimes

5.5.1. Asymptotic-preserving behaviour of the scheme

In this section, we illustrate numerically the good behaviour of the numerical scheme (25). Let us set the
discretisation parameter ∆y = 2.1× 10−2. The CFL condition is equal to 0.99. Since the velocity remains less
than 10 in this test case, the time step ∆t is always greater than 2.1× 10−3, independently of the value of ε.

Les us define the following three constants:

h∗ = 1.01h¯sfi`a˚t
˜l = 1.6433× 106 J ·K−1, v∗ = 1m · s−1, ϕ∗ = ϕs(h∗).

The boundary conditions are of course equal for the 3-lmnc and 4-lmnc models

• he,3(t) = he,4(t) = h∗,
• ve,3(t) = ve,4(t) = v∗,
• ϕe,3(t) = ϕe,4(t) = ϕ∗.

In order to assess the asymptotic-preserving behaviour of the scheme, we choose different initial conditions for
the two systems

• h03(y) = h∗, ϕ
0
3(y) = ϕ∗,

• h04(y) = (1 + y/10)h∗, ϕ
0
4(y) = ϕs(h04(y)/2).

Let us emphasise that for the 4-lmnc model, we also chose “ill-prepared” initial conditions (in the sense that
ϕ0
4 6= ϕs(h04)). The power density is set constant in space and time and equal to Φ = 170× 106 W ·m−3. With

these parameters, the domain [0;L] with L = 4.2m is initially filled with a mixture in both cases.

We compare the solutions computed with the 4-lmnc and the 3-Lmnc models for different values of the
relaxation parameter ε, from 10−2 to 10−7. Figure 4 displays the L2 norm of the relative error between these
solutions in semi-log-y scale for t ∈ [0 s; 2.5 s] for the enthalpy h (left), the mass fraction ϕ (center) and the
velocity v (right). We see that the scheme has actually the behaviour of a relaxed asymptotic-preserving scheme,
meaning that even if the initial conditions are not the same between the two models, after some time the solution
of the 4-lmnc model converges to the solution of the 3-lmnc model up to an error of order ε.

Figure 5 displays the error calculated at time t = 2.5 s for the enthalpy h, the mass fraction ϕ and the velocity
v as a function to of ε in loglog-scale. We see that the scheme is at order 1 in ε for all variables.

5.5.2. Spatial coupling of the two regimes

In this section, we investigate the spatial coupling of non-instantaneous and the instantaneous regimes,
and compare qualitatively the results with a classic compressible test case (coupling spatially HRM and HEM
models). To this end, we chose a similar physical setting as in [4]. More precisely, we set L = 80m, which
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Figure 5. Convergence in ε of the asymptotic-preserving scheme

represents a part of the coolant circuit containing the core on the left half of the domain. The power density is
thus located in the region 18m ≤ y ≤ 23m, and is set in this region to the constant value Φ = 75× 106 W ·m−3.
The computation is done on a coarse grid, and the discretisation parameter is ∆y = 0.4. The CFL condition is
equal to 0.99, and in this test case, the time step ∆t is always greater than 0.03.

Concerning the thermodynamical parameters, it is well-known that the values computed in [30] are not
adapted to PWR simulations. In [15], we showed the drawbacks related to these values for the pressure interest
p∗ = 155 bar (compared to experimental values [31]), and we introduced a new strategy to compute an incomplete
EoS which is exact at saturation and rich enough to close the 3-Lmnc model. Here another complete set of
parameters is computed by fitting to experimental data around a reference point adapted to PWR simulations.
First, we take h¯sfi`a˚t

κ , τ ¯sfi`a˚t
κ and T ¯sfi`a˚t from NIST experimental values at p = p∗: T

¯sfi`a˚t = 617.939K and

τ ¯sfi`a˚t
˜l = 1.682 43× 10−3 m3 · kg−1 τ ¯sfi`a˚t

`g = 9.810 65× 10−3 m3 · kg−1

h¯sfi`a˚t
˜l = 1.629× 106 J ·K−1 h¯sfi`a˚t

`g = 2.596× 106 J ·K−1.

Then, we choose to set cp,κ to the values of [30]:

cp,˜l = 4.268× 103 J ·K−1 · kg−1 cp,`g = 1.4874× 103 J ·K−1 · kg−1.

Finally, according to (6), we set ζκ = cp,κ
T ¯sfi`a˚t
τ ¯sfi`a˚tκ

and qκ = h¯sfi`a˚t
κ − ζκτ

¯sfi`a˚t
κ :

ζ˜l = 1.567× 109 Pa ζ`g = 9.369× 107 Pa

q˜l = −1.008× 106 J ·K−1 q`g = 1.677× 106 J ·K−1.

The boundary conditions are given by

• he(t) = 1.653× 106 J ·K−1,
• ve(t) = 10m · s−1,
• ϕe(t) = 0.025.

The initial conditions are set equal to the boundary conditions.
In order to mimic the resolution of HEM and HRM models on either side of a coupling interface, we set the

relaxation time ε as

ε(y) =

{

1 if y < 40m,

10−10 if y > 40m.
(33)
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(a) 1− ϕ for ε = 1 (b) 1− ϕ for ε(y) of (33) (c) 1− ϕ for ε = 10−10

Figure 6. Liquid mass fraction at final time for different values of ε (in blue the area where
Φ 6= 0; the dashed line corresponds to the discontinuity of ε)

On Figure 6, we plot the liquid mass fraction 1 − ϕ at final time t = 3 s, as well as the one for ε = 1 in
the whole domain and the one for ε = 10−10 in the whole domain. The asymptotic-preserving scheme handles
perfectly the coupling, without having to determine artificial boundary conditions on the coupling interface.
Moreover, we can observe the influence of the mass transfer relaxation time when ε = 1. Of course, comparisons
with compressible test cases are limited to low Mach number regimes, where no shock waves appear.

6. Conclusion

In this paper, we derived the low Mach number approximation of a 4-equation HRM system, with equality
of velocities, pressures and temperatures between phases. This model takes into account a relaxation term
allowing the exchange of mass between phases through a given characteristic time. In order to describe properly
the thermodynamics of the fluid, we derived an equation of state for the model, and compared it with the one at
saturation (used in the 3-lmnc model). One particularly important feature of this equation of state is the fact
that it is not defined piecewise, avoiding discontinuities leading to large numerical errors due the approximation
of the physical parameters.

For the 4-lmnc model, we were able to prove some results on the analytical steady-state solution, as well
as positivity properties on the unknowns and the relaxation term. A well-balanced scheme has been designed,
which preserves the properties of a steady-state solution for any value of the relaxation parameter (thus being
possibly far from the explicit steady-state solution of the 3-lmnc model). This allows in particular to be
extremely accurate on the flux conservation, as well as one the slope of the enthalpy. A similar scheme is also
given in Appendix for the 3-lmnc model.

Finally, we studied the formal convergence of the 4-lmnc model towards the 3-lmnc one, when the relaxation
parameter ε tends to zero. An asymptotic-preserving scheme has also been derived, for which we proved and
observed numerically that it provides, after some time iterations, a numerical solution close to the one of the
3-lmnc model up to an error of order ε. This scheme can be particularly useful for the coupling of spatial
regions where the unrelaxed 4-equation model is needed with spatial regions where the 3-equation HEM model
may be used (instantaneous relaxation of the chemical potentials).

A natural extension of this paper will be to investigate the low Mach number models that can be obtained from
the hierarchy of models mentioned in the introduction, with possible disequilibria in pressures, temperatures,
chemical potentials and velocity. This shall be the topic of further works.

Appendix A. A well-balanced numerical scheme for the 3-lmnc model

A 1D numerical scheme for System (22) has been developed in [6]. The scheme, based on the method of
characteristics, is at order 2 in space but it is not well balanced: the numerical steady solution does not satisfy
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v = Deτ
s(h) at the discrete level. In this appendix we present a new 1D numerical scheme for the 3-lmnc model

which is well-balanced, based on the same approach as the well-balanced scheme introduced in Section 4.2 for
the 4-lmnc model.

Let us consider the numerical scheme







hn+1
i = hni −

∆t

∆y
vni (h

n
i − hni−1) + Φ∆tτ s(hni ). (34a)

vn+1
i = vn+1

i−1 +Φ×







y∗˜l − yi−1

ζ˜l
+
yi − y∗˜l
ζ ¯sfi`a˚t”mffl

if hn+1
i−1 ≤ h¯sfi`a˚t

˜l ≤ hn+1
i ,

y∗`g − yi−1

ζ ¯sfi`a˚t”mffl
+
yi − y∗`g

ζ`g
if hn+1

i−1 ≤ h¯sfi`a˚t
`g ≤ hn+1

i ,

∆y

ζs(hn+1
i )

otherwise,

(34b)

where τ s(h), ζs(h) and qs(h) are defined in Section 5.2 and

y∗˜l
def=

h¯sfi`a˚t
˜l − hni

hni − hni−1

∆y + yi, y∗`g
def=

h¯sfi`a˚t
`g − hni

hni − hni−1

∆y + yi.

Proposition A.1. Scheme (34) is at order 1 (in space and time) and well-balanced in the sense that it preserves
the numerical steady state satisfying for any 0 ≤ i ≤ N

vi
τ s(hi)

=
v0

τ s(h0)
= De, (35)

hi − hi−1

∆y
=

Φ

De
. (36)

which is consistent with the properties of the continuous steady state given in [6]. More precisely, if for any i,
(vn+1

i , hn+1
i ) = (vni , h

n
i ), then (vni , h

n
i )i satisfies (35)-(36).

Proof. Assume that the scheme converges in large time, so that (vn+1
i , hn+1

i ) = (vni , h
n
i ) and let us thus drop

the time indices. Thus (34a) becomes:

vi(hi − hi−1) = τ s(hi)∆yΦ, (37)

and (34b) remains unchanged. In order to prove that the scheme is well-balanced, we have to recover at the
discrete level the fact that v/τ = De and ∂yh = Φ/De, that is

vi
τ s(hi)

=
v0

τ s(h0)
= De,

hi − hi−1

∆y
=

Φ

De
.

We first observe that,

• if hi−1 ≤ h¯sfi`a˚t
˜l ≤ hi, by using the definition of y∗˜l , we have

y∗˜l − yi−1

ζ˜l
+
yi − y∗˜l
ζ ¯sfi`a˚t”mffl

=
∆y

hi − hi−1

[

h¯sfi`a˚t
˜l − hi−1

ζ˜l
+
hi − h¯sfi`a˚t

˜l
ζ ¯sfi`a˚t”mffl

]

=
∆y

hi − hi−1

[

h¯sfi`a˚t
˜l − q˜l + q˜l − hi−1

ζ˜l
+
hi − q ¯sfi`a˚t + q ¯sfi`a˚t − h¯sfi`a˚t

˜l
ζ ¯sfi`a˚t”mffl

]
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=
∆y

hi − hi−1

[

τ ¯sfi`a˚t
˜l − τ s(hi−1) + τ s(hi)− τ ¯sfi`a˚t

˜l

]

=
∆y

hi − hi−1
[τ s(hi)− τ s(hi−1)] ;

• if hi−1 ≤ h¯sfi`a˚t
`g ≤ hi, by using the definition of y∗`g , we have

y∗`g − yi−1

ζ ¯sfi`a˚t”mffl
+
yi − y∗`g

ζ`g
=

∆y

hi − hi−1

[
h¯sfi`a˚t
`g − hi−1

ζ ¯sfi`a˚t”mffl
+
hi − h¯sfi`a˚t

`g

ζ`g

]

=
∆y

hi − hi−1

[
h¯sfi`a˚t
`g − q ¯sfi`a˚t + q ¯sfi`a˚t − hi−1

ζ ¯sfi`a˚t”mffl
+
hi − q`g + q`g − h¯sfi`a˚t

`g

ζ`g

]

=
∆y

hi − hi−1

[

τ ¯sfi`a˚t
`g − τ s(hi−1) + τ s(hi)− τ ¯sfi`a˚t

`g

]

=
∆y

hi − hi−1
[τ s(hi)− τ s(hi−1)] ;

• otherwise, hi and hi−1 are in the same phase, thus ζs(hi) = ζs(hi−1), so that

∆y

ζs(hi)
=

∆y

ζs(hi) [τ s(hi)− τ s(hi−1)]
[τ s(hi)− τ s(hi−1)] =

∆y

hi − hi−1
[τ s(hi)− τ s(hi−1)] .

We can conclude that, in any case, equation (34b) is equivalent to

vi − vi−1 = Φ
∆y

hi − hi−1
[τ s(hi)− τ s(hi−1)] . (38)

We can thus prove the two well-balanced properties. We first compute

vi − vi−1

τ s(hi)− τ s(hi−1)

(38)
= Φ

∆y

hi − hi−1

(37)
=

vi
τ s(hi)

hi − hi−1

hi − hi−1
=

vi
τ s(hi)

which implies (35). Further,
hi − hi−1

∆y

(37)
= Φ

τ s(hi)

vi

(35)
= =

Φ

De
,

which completes the proof.
�
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