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Abstract.	This	paper	presents	a	new	method	for	solving	rank-one	multivariate	

regression	problems,	providing	a	solution	that	maximizes	the	sum	of	squared	

correlations	of	the	one-dimensional	fitted	pattern	with	the	target	variates.	The	

suitability	of	the	method	and	the	consistency	of	the	estimator	are	formally	proved	and	

experimentally	tested.	In	particular,	it	is	shown	that	the	estimate	converges	not	only	as	a	

function	of	the	number	of	items,	but	also	as	a	function	of	the	number	of	target	variates.	

An	equivalent	conventional	reduced-rank	regression	case	is	identified,	and	it	inherits	

the	convergence	properties	of	the	new	approach.	Application	programs	in	

Matlab/Octave	code	are	provided	and	numerical	examples	using	artificial	data	as	well	as	

real	data	are	presented.	

	

Key	words.		multi-target	linear	regression;	multi-output	linear	regression;	reduced	rank	

multivariate	regression;	regression	coefficient	estimator	consistency		

	

	 	



	 3	

	

1.	Introduction	

		 In	this	paper,	we	consider	the	following	maximization	problem.	Given	a	random	

sample	of	m	items,	a	set	of	n	explicative	variables	(typically	item	attributes),	and	a	set	of	

d	target	variates	(typically	observation	data),	let	Ξ	∈	Rm×n	be	the	matrix	of	regressors,	

and	let	Θ	∈	Rm×d	be	the	target	matrix.	Consider	the	matrix	X	∈	Rm×n	whose	columns	are	

those	of	Ξ	centred	on	their	mean,	and	the	matrix	T	∈	Rm×d	whose	columns	are	those	of	Θ	

centred	on	their	mean	and	normalized	to	1.	Then	find	w	∈	Rn	such	that:	

w	=	arg	maxv∈Rn	Σk=1..d		r2(Xv,	Tk),		 	 	 	 	 (1)	

where	Tk	is	the	kth	column	of	T,	and	r(x,	y)	is	the	Pearson	correlation	coefficient	

between	vectors	x	and	y.	Note	that	one	can	as	well	use	Ξ	and	Θ	in	(1)	instead	of	X	and	T,	

without	changing	the	result	since	squared	correlations	are	invariant	to	linear	transforms	

of	the	variables.	This	is	a	multiple	linear	regression	problem	if	n>1,	and	it	is	a	multi-

target	linear	regression	problem	if	d>1.	Note	that	in	the	multi-target	case,	only	one	

linear	combination	of	regressors	(Xw)	is	fitted	to	all	the	target	variates,	which	is	called	a	

“rank-one	multi-target	linear	regression”,	and			in	the	present	case	is	also	“one-

dimensional”	since	the	solution	is	a	simple	vector.	This	is	different	from	the	common	

practice	where	one	fits	regressors	to	each	target	variate	independently	of	other	ones.	

Thus,	the	question	here	is	not	simply	to	know	in	what	measure	the	considered	

regressors	can	account	for	each	target	variate,	but	rather	to	know	what	the	target	

variates	have	in	common	that	the	regressors	can	account	for.	This	type	of	approach	is	

known	as	“multi-target	linear	regression”,	“multi-output	linear	regression”,	or	

“multivariate	linear	regression”,	and	the	“rank-one”	qualifier	refers	to	the	fact	that	this	

corresponds	to	a	particular	case	of	the	more	general	“reduced-rank	regression”	
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approach	[1,	19,20],	where	one	estimates	matrices	of	regression	coefficients	of	various	

ranks.	

	 The	rank-one,	one-dimensional	case	is	of	special	interest	in	a	number	of	

situations.	For	instance,	one	can	need	to	estimate	a	unique	vector	of	regression	

coefficients	allowing	combining	a	given	set	of	predictive	variables	in	order	to	predict	

new	target	variates	and	possibly	using	new	items.	Such	a	generalization	process	is	

common	in	machine-learning,	however,	it	can	also	be	useful	to	build	reusable	regressors	

in	the	context	of	data	analysis.	Another	important	application	field	in	neurosciences	is	

the	regression	analysis	of	electrophysiological	data	such	as	electroencephalograms	

(EEG),	in	particular	event	related	potentials	(ERP),	where	one	uses	stimulus	and/or	

participant	characteristics	to	explain	a	sequence	of	electrophysiological	responses	at	

various	cortical	(scalp)	locations	[17,	27].	Using	a	classical	multiple	regression	

technique,	one	can	observe	significant	fits	at	various	locations	and	time	delays	in	the	

EEG,	while	the	electrophysiological	response	patterns	are	actually	very	different	at	these	

various	locations	and	latencies.	Using	a	rank-one,	one-dimensional	multi-target	

regression	avoids	such	a	situation	by	fitting	only	what	is	common	in	the	various	target	

response	patterns,	possibly	with	different	strengths	and	signs.	

	 Non-linear	multi-target	regression	methods	are	common	in	machine-learning	

studies	[3],	while	linear	multi-target	regression	methods	have	been	more	particularly	

investigated	in	the	framework	of	multivariate	data	analysis	[1,	4,	5,	19,	20,	26,	29].	As	

mentioned	above,	the	problem	(1)	closely	relates	to	the	rank-one	case	of	the	well-known	

reduced-rank	regression	(commonly	abbreviated	“RRR”)	approach	[19,	20].	Several	

variants	of	the	reduced-rank	regression	have	been	proposed	[26],	and	recent	studies	

often	focus	on	the	determination	of	an	optimal	rank	for	the	matrix	of	regression	

coefficients	[6,	14,	21].		
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	 In	the	present	study,	however,	we	a	priori	fix	this	rank	to	one,	and	we	

concentrate	on	certain	convergence	properties	that	are	relevant	for	the	targeted	

applications,	in	particular	the	convergence	of	the	regression	coefficients	estimate	as	a	

function	of	the	number	of	target	variates.	The	convergence	as	a	function	of	the	number	

of	items	is	known	[26,	section	2.5],	however	the	convergence	as	a	function	of	the	

number	of	targets,	independently	of	the	number	of	items,	has	not	been	studied	(to	our	

knowledge),	and	it	is	commonly	assumed	that	n+d	≤	m,	see	[26,	p.	3].	We	will	not	retain	

this	assumption,	letting	d	grow	freely,	and	we	will	define	a	particular	rank-one	multi-

target	regression	method	that	is	quite	simple	and	allows	us	to	easily	derive	the	desired	

convergence	properties.	We	also	provide	indications	for	the	implementation	of	this	tool,	

and	a	ready	to	use	Matlab/Octave	code	program	for	applications.	Finally,	the	method	

and	the	convergence	properties	are	tested	on	numerical	examples.	

	 	T’	denotes	the	transpose	of	T,	and	X(1,2,3)	denotes	any	{1,2,3}-inverse	of	X,	such	as	

the	unique	{1,2,3,4}-inverse	of	Moore-Penrose	[2],	or	possibly	some	fast	computation	

{1,2,3}-inverse	(Theorem	5	from	[9]),	for	instance.	It	can	be	useful	to	remember	the	four	

Penrose	equations	for	the	generalized	inverse	matrices.	Let	M(k)	denote	a	{k}-inverse	of	

the	matrix	M,	then:	

	 MM(1)M	=	M,		M(2)MM(2)	=	M(2),	(MM(3))’=	MM(3),	(M(4)M)’=	M(4)M.	

We	will	also	use	the	Kronecker	(or	tensor)	product,	denoted	A⊗B,	of	matrices	A	and	B,	

and	the	column-wise	vectorization,	denoted	vec(A),	of	a	matrix.	The	notation	[xi]i=1..n	

corresponds	to	a	column	vector	of	n	components	(the	xi’s).	
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2.	Problem	solution	

2.1.	One-dimensional	solution	

Theorem	1.	Problem	(1)	is	equivalent	to	the	maximal	eigen-element	problem:	

XX(1,2,3)TT’y	=	λmax	y,		with	||y||	=	1,		

and	the	solution	of	problem	(1)	is:		

w	=	X(1,2,3)y,		 with	 Σk=1..d		r2(Xw,	Tk)	=		λmax.	

	

Proof.	Given	a	vector	v∈Rn,	the	kth	component	of	the	vector	T’Xv	is	equal	to:	

		 <	Xv,	Tk	>	=	||	Xv	||	r(Xv,	Tk),	

thus	

v’X’TT’Xv	=	||	Xv	||2	Σk=1..d		r2(Xv,	Tk).		 	 	 	 	 (2)	

As	a	consequence,	problem	(1)	is	equivalent	to:	

w	=	arg	maxv∈Rn	v’X’TT’Xv,	subject	to		v’X’Xv	=	1,																									 	 (3)	

which,	at	first	glance,	is	a	quadratically	constrained	quadratic	programming	problem.	

Setting	z	=	Xv,	one	can	reformulate	problem	(3)	as:	

y	=	arg	maxz∈Rm	z’TT’z,		subject	to	||z||	=	1,	and	XX(1,2,3)z	=	z,	 	 (4)	

where	the	last	constraint	expresses	that	z	must	belong	to	the	range	of	X,	and	thus	there	

exists	v	such	that	Xv	=	z,	that	is	v	=	X(1,2,3)z.	The	matrix	XX(1,2,3)	is	an	orthogonal	

projector,	it	is	idempotent	(equal	to	its	square)	and	symmetric	[2].	

We	can	now	solve	problem	(4)	using	the	solution	of	the	maximal	eigen-element	problem	

of	Theorem	1:	

with	||y||	=	1,	

XX(1,2,3)TT’y	=	λmax	y			
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⇒			λmax	XX(1,2,3)y		=	XX(1,2,3)XX(1,2,3)TT’y		=	XX(1,2,3)TT’y					

⇒			y		=		XX(1,2,3)y		 	 	 	 	 	 	 	 (5)	

⇒			y’TT’y		=			y’XX(1,2,3)TT’y		=		λmax	y’y		=		λmax		 	 	 	 (6)		

On	the	other	hand,	using	(5):	

y		=		XX(1,2,3)y		⇒		w	=	X(1,2,3)y		⇒		y	=	Xw			

⇒	w’X’TT’Xw	=		Σk=1..d		r2(Xw,	Tk)	=		λmax	,		 	 (using	(2)	and	(6))	

which	completes	the	proof.		☐	

	

2.2.	Practical	considerations	

	 In	practice,	there	are	various	ways	of	solving	the	maximal	eigen-element	problem	

of	Theorem	1.	However,	given	that	we	need	only	the	dominant	eigenvalue	and	the	

corresponding	eigenvector,	while	the	problem	m×m	matrix,	say	A	=	XX(1,2,3)TT’,	can	be	

huge	if	the	number	m	of	items	is	very	large,	it	is	preferable	to	use	a	suitable	method	

based	on	Krylov	subspaces	and	Arnoldi	iterations	[23,	30].	However,	even	in	this	case,	

the	computation	of	the	m×m	matrix	A	can	be	too	heavy.	Fortunately,	the	computational	

complexity	can	be	lowered	exploiting	the	fact	that	the	number	n	of	regressors	is	usually	

not	very	large.	

	 First,	we	note	that	in	several	{1,2,3}-inverse	matrix	computation	methods,	X(1,2,3)	

can	be	written	as	X(1,2,3)=HX’,	where	H	is	a	symmetric	n×n	real	matrix.	For	instance	one	

can	find	an	H	matrix	for	computing	the	Moore-Penrose	inverse	of	X	in	[8],	while	

Theorem	5	from	[9]	provides	an	H	matrix	for	computing	another	type	of	{1,2,3}-inverse.	

The	first	thing	to	do	is	to	compute	the	matrix	H	for	the	chosen	type	of	{1,2,3}-inverse	of	

X,	which	is	usually	a	reasonable	cost	operation.	Eigenvalue	methods	based	on	Krylov	
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subspaces	use	only	matrix-vector	products,	avoiding	matrix-matrix	products	that	are	

very	expensive	in	the	case	of	huge	matrices.	This	principle	can	be	extended	to	the	

computation	of	the	problem	matrix	itself,	given	that	this	matrix	is	used	only	in	matrix-

vector	products.	Let	z	denote	the	vector	in	a	matrix-vector	product	to	be	computed:	

Az	=	XX(1,2,3)TT’z	=	X(H(X’(T(T’z)))).	 	 	 	 (7)	

This	way,	the	computation	includes	only	matrix-vector	products,	and	the	possibly	huge	

matrix	A	is	in	fact	never	computed.	

	 One	can	also	note	that	the	sign	of	the	solution	vector	w	depends	on	the	sign	of	the	

eigenvector	y,	and	thus	it	is	arbitrary.	This	determines	arbitrarily	the	signs	of	the	

correlation	coefficients	of	Xw	with	the	columns	of	T,	thus	the	sign	of	w	can	possibly	be	

modified	in	order	to	satisfy	various	criteria	for	the	application.	For	instance,	one	can	

choose	the	sign	of	the	largest	correlation,	or	the	sign	of	the	subset	of	correlations	having	

the	same	sign	and	the	greatest	sum	of	squares.	

	

2.3	Associated	least-squares	solution	

	 Well-known	methods	such	as	the	reduced-rank	regressions	do	not	use	a	

correlation	criterion	to	be	maximized	as	in	(1),	but	various	weighted	least-squares	

criteria	to	be	minimized	[19,	20].	Contrarily	to	the	correlation,	the	quadratic	error	is	not	

invariant	to	linear	transformations	of	the	variates,	thus	in	order	to	minimize	it	in	the	

rank-one	case,	the	one-dimensional	solution	of	Theorem	1	is	not	sufficient,	and	it	must	

be	weighted	with	a	specific	coefficient	while	a	specific	bias	coefficient	must	be	append	

for	each	target	variate.	Fortunately,	given	the	one-dimensional	solution	w	of	Theorem	1,	

the	required	coefficients	are	very	easy	to	compute.	Let	µΞ	∈	Rn	denote	the	row	vector	of	

Ξ	column	means,	let	µΘ	∈	Rd	denote	the	row	vector	of	Θ	column	means,	and	let	Y	be	the	
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matrix	Θ	whose	columns	have	been	centred	(but	not	normalized),	then	we	must	first	

solve:	

	 	 	 		b'	=	arg	minv∈Rd	||	Xwv’	-	Y	||2	,	

where	||	.	||	denotes	the	Frobenius	norm.	The	solution	is	simply	the	vector:	

	 	 	 		b’	=	(Xw)’Y/||	Xw	||2	.	

The	row	vector	µ	∈	Rd	of	bias	coefficients	is	given	by:	

	 	 	 		µ	=	µΘ	-	µΞ(wb’).	

	Finally,	the	matrix	of	least-squares	regression	coefficient	B	∈	R(n+1)	×	d	is	given	by:	

	 	 	 B	=	[µ’,	(wb’)’]’,	

where	[.	,	.]	here	denotes	the	concatenation	operator.	The	approximation	of	Θ	is:	

	 	 	 	Θ*	=	[1m	,	Ξ	]B,	

and	the	mean	square	error	(MSE)	that	will	be	used	in	certain	numerical	test	is:	

	 	 	 MSE	=	||	Θ*	-	Θ	||2	/	(md).	

	 Note	that	the	coefficients	in	b	not	only	change	the	norm	of	the	regression	

coefficient	vectors,	but	they	can	also	change	their	sign	independently	for	each	variate.	As	

a	result,	if	one	computes	the	correlations	between	the	columns	of	Θ*	and	those	of	Θ,	all	

these	correlations	have	the	same	positive	sign,	while	possible	opposite	behaviors	of	

different	target	variates	are	hidden.	This	is	harmful	for	applications	using	correlation	

statistics,	thus	in	this	case	the	correlations	must	be	computed	between	the	one-

dimensional	approximation	Xw	and	the	columns	of	Θ	(or	equivalently	of	T),	which	

preserves	the	magnitude	of	the	correlations	as	well	as	the	correlation	sign	variations.	

	 Note	also	that	a	similar	problem	occurs	in	usual	reduced-rank	regression	

methods,	where	the	regression	coefficients	are	always	in	matrix	form,	even	in	the	rank-
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one	case.	This	requires	applying	a	sign	correction	procedure	when	one	needs	to	use	

correlation	statistics.	

	

3.	Relation	with	the	usual	R2	statistic	

	 A	squared	Pearson	correlation	coefficient	whose	one	of	the	arguments	is	a	linear	

combination	of	regressors,	as	in	(1),	is	similar	to	a	squared	multiple	correlation	

coefficient,	and	it	is	equal	to	the	well-known	R2	statistic	if,	and	only	if,	the	linear	

combination	of	regressors	is	optimal	in	the	least-squares	sense:	

uk	=	arg	minv∈Rn	||	Xv	-	Tk	||2	,		1≤k≤d	,			 	 	 	 	 (8)	

	which	has	solutions	of	the	form	uk	=	X(1,2,3)Tk.	In	this	case,	the	set	of	optimal	regression	

coefficients	is	an	n×d	matrix	U	=	X(1,2,3)T,	with	one	column	of	regression	coefficients	per	

target	variate.	This	provides	the	maximum	possible	value	to	each	R2(X,	Tk),	k	=	1..d.		

However,	in	the	case	of	a	multi-target	regression	(1),	there	is	only	one	vector	w	of	

regression	coefficients,	and	we	must	clarify	the	relation	of	w	with	the	columns	of	U.	With		

w,	λmax	and	y	as	in	Theorem	1,	we	have	the	following	result:	

	

Lemma	1.	Set	U	=	X(1,2	,3)T,	and	c	=	(λmax)-1	T’y	,	then:	

	 	If	λmax	>	0,	then	w	=	Uc,	

	 	 	

Proof.		Using	the	maximal	eigen-element	of	Theorem	1,	we	have:	

XX(1,2,3)TT’y	=	λmax	y		⇒		XX(1,2,3)Tc	=	y			

⇒		X(1,2,3)	XX(1,2,3)Tc	=	X(1,2,3)y	=	w.	

On	the	other	hand,	since	X(1,2,3)	is	a	{2}-inverse,	we	have:	
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X(1,2,3)	XX(1,2,3)Tc	=	X(1,2,3)Tc	=	Uc,		

and	thus	Uc	=	w	,	which	proves	Lemma	1.	☐ 	

	

Corollary	1.		R2(X,	Tk)	=	r2(Xuk	,	Tk)	≥		r2(Xw,	Tk),		k	=	1..d	.	

	

Proof.	The	inequality	in	Corollary	1	results	from	the	fact	that	the	linear	combination	Uc	

of	the	columns	of	U	in	Lemma	1	is	not	necessarily	optimal	in	the	least	squares	sense	for	

the	target	variates	considered	individually.	☐	

	

A	consequence	of	this	is	that	the	distribution	of	the	squared	correlations	in	the	multi-

target	case	(d>1)	does	not	reduce	to	the	distribution	of	the	well-known	R2	statistic,	and	

thus	the	F-test	associated	with	the	R2	statistic	[7]	is	not	suitable	to	test	the	null	

hypothesis	of	the	r2	statistics	in	this	case.	

	

Lemma	2.		ck	=	r(Xw,	Tk)	/	(Σj=1..d		r2(Xw,	Tj)),		k	=	1..d.	

Proof.	This	is	straightforward:	

	 	 c	=	(λmax)-1	T’y		=		(Σj=1..d		r2(Xw,	Tj))-1T’Xw		

	 	 	 =	[r(Xw,	Tk)]k	=	1..d	/	(Σj=1..d		r2(Xw,	Tj)).	☐	

	

4.	Statistical	significance	of	the	multi-target	regression	correlation	coefficients	

4.1	Computing	p-values	

	 As	we	have	seen	in	Section	3	(Corollary	1),	one	cannot	use	significance	tests	

associated	with	usual	multiple	correlation	coefficients	to	test	the	significance	of	multi-
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target	correlation	coefficients.	Given	that	usual	parametric	tests	are	not	suitable,	we	will	

turn	to	robust	distribution-free	methods	such	as	permutation	tests.	

	 One	knows	that,	in	order	to	build	a	valid	permutation	test,	it	is	necessary	and	

sufficient	to	have	exchangeable	observations	under	the	null	hypothesis	[15,	16,	22].	It	is	

usually	the	case	of	the	items	in	regression	problems,	and	in	particular	in	problem	(1).	As	

we	shall	see	in	section	5.1,	the	used	statistical	model	allows	the	kth	target	variate	to	be	

written	as:	

	 	 Tk	=	αkXω	+	ξk	,		 k=1..d		

where	αkXω		is	the	regression	part	(αk	∈	R,	ω	∈	Rn),	and	ξk	∈	Rm	is	the	residual	whose	

components	are	assumed	to	be	independent	and	identically	distributed	(with	mean	0	

and	variance	σ2),	which	implies	that	these	residue	components	are	exchangeable.	On	the	

other	hand,	the	null	hypothesis	for	the	kth	target	variate	is:	

	 	 H0:	αk	=	0.	

Thus,	under	the	null	hypothesis,	the	linear	relation	of	the	target	with	the	regressors	

vanishes,	and	it	remains	only	the	exchangeable	residue	components	(one	per	item).	

	 Exploiting	this,	one	can	use	the	data	to	perform	repeated	Monte-Carlo	

simulations	to	generate	a	large	sample	from	the	distribution	of	multi-target	r2	statistics	

under	the	null	hypothesis.	As	we	have	seen,	if	the	null	hypothesis	is	true,	all	possible	

pairings	of	the	regressors	values	with	the	target	variates	values	are	equally	likely	to	

occur.	Thus	it	suffices	to	repeatedly	randomly	permute	the	rows	(items)	of	the	matrix	X	

of	regressors,	or	equivalently	(but	not	simultaneously),	to	repeatedly	randomly	permute	

the	rows	of	the	target	matrix	T,	then	to	compute	and	store	the	resulting	multi-target	r2	

statistics.	Note,	however,	that	the	r2	distributions	associated	to	the	different	target	

variates	are	not	necessarily	the	same,	and	we	must	consider	a	specific	distribution	for	
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each	target	variate.	The	estimated	p-value	for	the	kth	r2	statistic	is	the	proportion	of	r2	

statistics	in	the	kth	permutation	test	distribution	that	are	greater	or	equal	to	the	kth	r2	

statistic	obtained	without	permutation.	

	 In	order	to	solve	problem	(1)	for	each	permutation,	let	P	be	a	random	

permutation	matrix	of	order	m,	then	(7)	becomes:	

Apz	=	PXX(1,2,3)P’TT’z	=	Xp(H((Xp)’(T(T’z)))),	 with	Xp	=	PX	 	 (9a)	

or	alternatively:	

Apz	=	XX(1,2,3)PTT’P’z	=	X(H(X’(Tp((Tp)’z)))),	 with	Tp	=	PT	 	 (9b)	

Note,	however,	that	in	practice	one	simply	permutes	the	rows	of	X	or	of	T	using	an	index	

permutation	operator	(what	is	denoted	Xp	or	Tp),	not	products	with	permutation	

matrices	that	would	be	computationally	heavy.	This	procedure	(with	the	option	(9b))	is	

implemented	in	Matlab/Octave	code	as	the	function	“MTRegPV”	listed	in	the	Appendix.	

In	addition,	the	listed	function	“MTRegLS”	computes	the	associated	least-squares	

solution	if	necessary.	

	

4.2	Controlling	for	the	Family	Wise	Error	Rate	

	 When	the	number	d	of	target	variates	is	large,	there	is	a	potential	problem	of	test	

inflation	that	requires	a	control	procedure.	A	priori,	the	target	variates	are	related	in	

some	way,	and	the	dependences	of	tests	can	be	of	any	type.	So	we	must	use	a	method	

not	requiring	restrictive	hypotheses	on	the	dependences	of	the	tests.	This	is	the	case	of	

methods	derived	from	Bonferroni’s	correction,	in	particular	the	Family	Wise	Error	Rate	

(FWER)	control	of	Holm-Bonferroni	[18].	The	FWER	can	be	controlled	using,	for	

instance,	the	p-values	computed	by	permutation	tests	as	described	in	Section	4.1.	The	

FWER	control	procedure	is	implemented	in	Matlab/Octave	code	as	the	function	“Holm”	
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listed	in	the	Appendix,	and	it	is	optionally	called	by	the	function	“MTRegPV”	if	the	input	

argument	“fwerc”	of	“MTRegPV”	is	set	to	a	strictly	positive	value.	

	

5.	Statistical	model	and	consistency	of	the	estimator	

5.1	Statistical	model	

	 As	usually	described	in	mathematical	statistics	handbooks	(e.g.	[25]	pp.	237-

257),	the	multiple	linear	regression	model	could	be	summarized	as:	

	 	 Tk	=	Xυk	+	εk	,		 k=1..d	 	 	 	 	 (10)	

where	υk	∈	Rn	is	the	true	vector	of	regression	coefficients	for	the	kth	target	variate,	and	

εk	∈	Rm	is	a	vector	of	residues.		

One	usually	retains	the	following	hypotheses:	

H1:		E(εk)	=	0,	

H2:		E(εk	εk’)	=	σ2Im,	

where	E	is	the	expected	value	operator,	and	Im	the	identity	matrix	of	order	m.	

Proving	the	consistency	of	the	estimators	also	requires	the	additional	hypothesis:	

H3:	rank(X)	=	n,	

which	supposes	that	m>n,	and	the	n	regressors	are	linearly	independent.	

	 In	what	concerns	the	multi-target	linear	regression	model,	it	is	exactly	the	same	

as	above,	except	that	the	regression	coefficients	must	be	decomposed	as:	

	 	 υk	=	αkω	+	δk,				k=1..d	 	 	 	 	 	 (11)	

where	ω	∈	Rn	is	the	true	vector	of	regression	coefficients	common	to	the	d	target	

variates,	αk	=	ω’	υk/(ω’ω)	is	the	projection	coefficient	of	υk	on	ω,	and	δk	∈	Rn	is	the	

residual	rejection	vector	of	the	kth	target	variate.		
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Substituting	(11)	in	(10),	one	obtains:	

	 Tk	=	X(αkω	+	δk)	+	εk	=	αkXω	+	(Xδk	+	εk)	=	αkXω	+	ξk	,	k=1..d	 	 (12)	

where	the	quantity	Xδk	is	transferred	from	the	regression	to	the	residue.		

	 Concerning	the	multi-target	case,	while	H3	remains	unchanged,	we	must	modify	

H1	and	H2	in	the	following	way.	Define	the	global	residue	ξ	 ∈	Rmd	as:	

	 	 ξ	=	vec(ξ1,	ξ2,	…,	ξd)	.	

This	is	the	residue	associated	to	the	target	vector	t	=	vec(T).	Modify	the	hypotheses	as:	

H1:	E(ξ)	=	0	,	

H2:	E(ξ	ξ’)	=	σ2Imd	.	

The	new	versions	of	the	hypotheses	imply	the	old	ones.	In	addition,	the	new	version	of	

H2	supposes	that	the	target	variates	are	linearly	independent	at	the	population	level.	

	 Note	that	ω	is	not	defined	if	the	distribution	of	αk’s	concentrates	on	zero	(δ(0)	

Dirac	distribution).	In	this	case,	all	multi-target	correlations	are	random,	but	not	

necessarily	zero	(except	if	all	target	variates	are	orthogonal	to	all	regressors).	In	such	a	

case,	we	say	that	the	regression	problem	(1)	is	“insubstantial”.	

	

Definition.	We	say	that	the	multi-target	regression	problem	(1)	is	“not	insubstantial”	if	

there	exists	a	population	parameter	ω	∈	Rn	and	a	sample	of	d	coefficients	{αk	;	k=1..d},	as	

defined	in	(11),	belonging	to	a	population	whose	probability	distribution	does	not	

reduce	to	the	Dirac	distribution	on	zero	δ(0).	This	implies	that	a	non-zero	proportion	of	

the	coefficient	population	has	a	non-zero	value.	

	

	 Intuitively,	this	means	that	the	considered	regressors	are	not	completely	

irrelevant	for	the	considered	population	of	target	variates.	
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5.2	Consistency	of	the	estimator	

Theorem	2.	Under	the	hypotheses	H1-H3,	consider	w	∈	Rn	as	defined	in	Theorem	1,	αk	

and	ω	as	defined	in	(11),	and	assume	that	the	problem	(1)	is	not	insubstantial.	Then:		

	(i)	 	 E(w)	=	ω,	

(ii)	 	 limd→∞	E(	||	w	-	ω	||2	)	=	0.	

If	in	addition	the	regressor	variates	have	finite	moments	of	order	1	and	2,	then:	

(iii)	 	 limm→∞	E(	||	w	-	ω	||2	)	=	0.	

	

Proof.	After	H3,	X	is	of	full	column	rank,	thus	all	{1,2,3}-inverses	of	X	are	equivalent,	and	

one	can	simply	consider	X†	=	(X’X)-1	X’.	

Let	c	∈	Rd	be	defined	as	in	Lemma	1,	t	=	vec(T)	∈	Rdm,	and	define	M	∈	Rdm×n	as:	

	 	 M	=	(c’)†	⊗	X.	

Then	consider	the	following	linear	least	squares	system:	

	 	 Mv	≈	t		⇔		v	=	M†	t	=	(c’	⊗	X†)	vec(T)	=	X†Tc	=	w.	

Thus,	if	the	vector	c	is	given,	then	we	can	transform	(1)	into	an	equivalent	linear	least	

squares	system	of	matrix	M	and	single	target	t.		

H1	implies	that	E(t)	=	Mω,	and	one	has:	

	 	 E(w)	=	(M’M)-1	M’E(t)	=	(M’M)-1	M’Mω	=	ω,	

which	proves	(i).		

Moreover,	let	Σ(w)	denote	the	covariance	matrix	of	w,	then,	given	H2:	

	 Σ(w)	=	(M’M)-1	M’(σ2I)[	(M’M)-1	M’]’	=	σ2	(M’M)-1	M’M(M’M)-1	=	σ2	(M’M)-1	,	
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for	some	variance	σ2	of	the	residues.	

Now,	since	E(w)	=		ω,	we	have:	

		 	 E(	||	w	-	ω	||2	)	=	Trace(Σ(w))	=	σ2	Trace((M’M)-1).	

Using	Lemma	2,	one	easily	verify	that	(c’)†	=	[r(Xw,	Tk)]k	=	1..d	,	and	thus:	

	 	 (M’M)-1	=		(((c’)†	⊗	X)’((c’)†	⊗	X))-1		=	((Σj=1..d		r2(Xw,	Tj))X’X)-1			

	 				 	 =		(Σj=1..d		r2(Xw,	Tj))-1	(X’X)-1.	

This	implies	that:	

	 	 E(	||	w	-	ω	||2	)	=	σ2	Trace((X’X)-1)/	(Σj=1..d		r2(Xw,	Tj)),	 	 (13)	

where	the	numerator	does	not	depend	on	d,	and	the	denominator	(=	λmax)	tends	to	

infinity	as	d	tends	to	infinity,	because	the	problem	(1)	is	not	insubstantial,	by	hypothesis,	

thus	the	number	of	non-zero	coefficients	αk’s	tends	to	increase	proportionally	to	d	and	

the	resulting	sum	of	squared	correlations	tends	to	infinity.	This	proves	(ii).	

	 Given	that	the	regressors	are	centred,	X’X/m	is	a	convergent	estimator	of	the	true	

covariance	matrix	V	of	the	regressor	variates,	which	is	regular	after	H3.	Thus:	

	 	 limm→∞	X’X/m	=	V			⇒	

	 	 limm→∞		(X’X/m)-1	=	V-1			⇒	

	 	 limm→∞		m(X’X)-1	=	V-1			⇒	

	 	 limm→∞	Trace((X’X)-1)	=	limm→∞	Trace(V-1)/m	=	0.	

Substituting	this	in	(13),	one	obtains	(iii),	which	completes	the	proof	of	Theorem	2.	☐	

	

Remark.	As	noted	in	section	2.2,	the	sign	of	the	eigenvector	y	in	Theorem	1	is	arbitrary,	

that	is,	if	y	is	a	solution,	then	–y	is	also	a	solution.	As	a	result,	the	sign	of	w,	the	sign	of	c	
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(Lemma	1),	and	the	sign	of	the	correlations	(Lemma	2)	are	also	arbitrary.	Now,	

considering	the	unknown	vector	ω	as	the	asymptotic	solution	of	problem	(1),	it	is	clear	

that	the	sign	of	ω	is	also	arbitrary.	This	indeterminacy	is	lifted	in	the	above	proof	

because	the	vector	c	is	used	in	the	calculation	of	the	matrix	M,	thus	the	sign	of	ω	is	

implicitly	the	sign	corresponding	to	that	of	c	and	to	that	of	w.	

	 Note	that	(13)	shows	how	and	why	increasing	the	number	of	correlated	linearly	

independent	target	variates	(d)	enhances	the	convergence	of	the	estimator	(w).		

	 Now,	if	rank(X)	<	n	,	for	instance	because	m	≤	n,	then	H3	is	not	met	and	

Theorem	2	does	not	apply.	However,	Theorem	1	remains	valid	and	the	method	still	

works,	but	the	estimator	is	generally	biased	since	E(w)	=	M(1,2,3)E(t)	=	M(1,2,3)Mω	,	which	

is	usually	different	from	ω	when	M	is	not	of	full	column	rank.	

	

6.	Relation	with	reduced-rank	regression	methods	

	 Let	X	∈	Rm×n	and	Y	∈	Rm×d	be	the	centred	columns	versions	of	the	regressor	and	

target	matrices,	respectively,	and	let	T	∈	Rm×d	be	the	normalized	columns	version	of	Y,	as	

previously.		

	

Definition	1.	Set	sk	=	a||	Yk	||	,	k=1..d,	for	any	fixed	real	a>0.	Then	define	S	∈	Rd×d	as	the	

diagonal	matrix	whose	diagonal	elements	are	the	sk	‘s,	k=1..d.	

	

Theorem	3.	

The	following	rank-one	reduced-rank	regression	problem	with	S-2	weighting:	

	 find	v	∈	Rn,	and	q	∈	Rd	that	minimize	Trace{(Xvq’	–	Y)S-2(Xvq’	–	Y)’}	

can	be	solved	using	Theorem	1	since	it	is	equivalent	to	:	
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		 (i)			find	v	∈	Rn	that	maximizes	v’X’TT’Xv,	subject	to		v’X’Xv	=	1,	

	 (ii)		then	set		q’	=	(Xv)’Y	.	

Conversely,	let	Q	∈	Rn×d	be	the	matrix	of	regression	coefficients	provided	by	the	rank-

one	RRR	with	S-2	weighting,	and	let	Qk	be	its	kth	column,	1≤k≤d,	then:	

	 (iii)		v	=	±	Qk/||	XQk	||	.	

	

Proof.	First,	suppose	that	one	knows	v,	then	the	solution	of:	

	 arg	minq	∈	Rd		Trace{(Xvq’	–	Y)S-2(Xvq’	–	Y)’}	=	arg	minq	∈	Rd		||	(Xvq’	–	Y)S-1	||2	

is	simply	given	by:	

	 q’	=	(Xv)’Y/||	Xv	||2	=	(Xv)’Y,	

which	proves	(ii).	

Next,	one	must	determine	v.	One	has:	

	 minv,q		Trace{(Xvq’	–	Y)S-2(Xvq’	–	Y)’}	=	minv,q		Trace{	S-1(Xvq’	–	Y)’(Xvq’	–	Y)	S-1}	=	

	 minv,q		Trace{	S-1qv’X’Xvq’S-1	-	S-1Y’Xvq’S-1		-	S-1qv’X’YS-1		+	S-1Y’YS-1	}	=	

	 minv		Trace{	S-1||	Xv	||-2	Y’Xv	||	Xv	||2	v’X’Y	||	Xv	||-2S-1		

	 	 	 -	S-1Y’Xvv’X’Y	||	Xv	||-2S-1		-	S-1||	Xv	||-2Y’Xvv’X’YS-1		+	S-1Y’YS-1}	=		

	 minv		Trace{S-1||	Xv	||-2Y’Xvv’X’Y	S-1		-	2	S-1||	Xv	||-2Y’Xvv’X’YS-1		+	S-1Y’YS-1}	=		

	 minv		Trace{	S-1Y’YS-1		-		||	Xv	||-2S-1Y’Xvv’X’YS-1}	=	

	 minv		Trace{	a-2T’T	-		a-2||	Xv	||-2T’Xvv’X’T}	=	

	 minv		Trace{	a-2TT’	-		a-2||	Xv	||-2v’X’TT’Xv}	,	

whose	solution	is	given	by:	

	 arg	maxv	∈	Rn	(v’X’TT’Xv),		subject	to	||	Xv	||2	=	1,	
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which	is	similar	to	(i)	and	to	equation	(3),	and	thus	can	be	solved	using	Theorem	1.	

	Finally,	if	Q	=	vq’,	then	all	columns	of	Q	are	collinear	to	v,	while	the	constraint	||	Xv	||	=	1	

implies	(iii).	Note,	however,	that	the	solution	sign	is	always	arbitrary.	☐	

	

Corollary	2.	The	consistency	properties	stated	in	Theorem	2	for	the	method	of	Theorem	

1	also	apply	to	the	rank-one	reduced-rank	regression	with	a	weight	matrix	of	type	S-2.	

	

Proof.	This	immediately	follows	from	Theorem	3	since	the	two	considered	methods	are	

equivalent.	☐	

	

7.	Computational	tests	

7.1	Generating	artificial	data	

	 Using	artificial	data	allows	us	to	know	the	exact	solution	of	problems	and	thus	to	

compare	the	results	provided	by	various	methods	with	the	exact	ones.	In	the	present	

case,	we	use	the	following	model	to	generate	each	column	of	the	target	matrix.		

Tk	=	αkXω	+	βkb	+	γkgk,					k=1..d		 	 	 	 (14)		

where	X	∈	Rm×n	is	the	matrix	of	regressors,	ω	∈	Rn	is	the	vector	of	exact	regression	

coefficients,	b	∈	Rm	with	b’X=0	is	a	shared	factor	not	accountable	for	by	the	regression,	

and	gk	∈	Rm	is	a	random	Gaussian	component	of	mean	0.	The	column	vectors	Xω,	b,	and	

gk	have	unit	norms	and	the	real	coefficients	αk,	βk,	and	γk	are	such	that	αk2	+	βk2	+	γk2	=1.		

Varying	αk	allows	one	to	approximately	control	the	kth	exact	correlation	value	r(Xω,	Tk),	

but	this	one	must	be	precisely	computed	afterwards.	
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7.2	Typical	observations	

	 We	used	(14)	to	generate	data	with	m=300,	n=30,	d=30,	the	αk’s	were	uniformly	

sampled	in	various	intervals,	and	the	βk’s	were	set	to	zero,	the	γk’s	providing	the	

complements	to	the	αk’s.	We	studied	the	multi-target	regression	r-values,	computed	

with	the	“MTRegPV”	function	listed	in	the	Appendix,	and	the	classical	multiple	

regression	R	values,	as	functions	of	the	exact	r	values.	The	statistical	significance	was	

established	at	the	risk	α	=	0.05,	using	classical	parametric	F-tests	for	the	exact	r’s	and	

the	multiple	regression	R’s,	while	we	used	permutation	tests	as	described	in	section	4.1	

for	the	multi-target	regression	r-values.	The	FWER	control	was	not	used	for	the	basic	

studies,	but	it	was	controlled	afterwards.	

	 Figure	1	shows	a	typical	result	with	the	αk’s	sampled	in	the	interval	[-0.4,	0.7].	As	

one	can	see,	the	multi-target	r-values	(rMT)	were	very	close	to	the	exact	r	values	(rexact),	

with	a	regression	line	of	equation	rMT	≈	1.0077	rexact	–	0.0007,	(fit	r	=	0.9999).	The	

correlation	of	the	multi-target	regression	coefficients	w	with	the	exact	coefficients	ω	was	

r=0.9925.	In	what	concerns	the	classical	multiple	regression	R,	one	can	see	that	it	

substantially	overestimated	the	exact	positive	correlations,	as	well	as	the	absolute	value	

of	negative	ones	(remember	that	the	R	coefficient	is	not	signed).	There	were	25	

significant	exact	correlation	coefficients,	22	significant	multi-target	correlation	

coefficients,	and	18	significant	multiple	regression	R	coefficients,	without	FWER	control.	

After	FWER	control,	it	remained	respectively	22,	16,	and	16	significant	coefficients.	

	 The	results	presented	in	Figure	2	were	obtained	with	the	αk’s	sampled	in	the	

interval	[0,	0],	that	is,	all	coefficients	were	random.	In	this	case,	significant	coefficients	

are	type	I	errors.	Without	FWER	control,	2	exact	correlation	coefficients	were	significant	

(6.7%)	at	the	0.05	risk,	only	1	multi-target	correlation	coefficient	was	significant	(3.3%),	



	 22	

and	3	multiple	regression	R’s	were	significant	(10%).	With	FWER	control,	there	was	no	

longer	significant	coefficient.	

	

	

	
	

Figure	1.	Multi-target	linear	regression	r	coefficients	and	classical	multiple	regression	R	

coefficients	as	 functions	of	 the	exact	 r	 coefficients.	The	data	were	generated	using	 the	

model	(14)	with	αk	∈	[-0.4,	0.7],	βk	=	0,	k=1..30.	The	α–risk	was	set	to	0.05	and	there	was	

no	FWER	control.	
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Figure	2.	Multi-target	linear	regression	r	coefficients	and	classical	multiple	regression	R	

coefficients	as	 functions	of	 the	exact	 r	 coefficients.	The	data	were	generated	using	 the	

model	 (14)	with	αk	=	 0,	βk	 =	 0,	k=1..30.	 The	α–risk	was	 set	 to	 0.05	 and	 there	was	 no	

FWER	control.	

	

7.3	Effect	of	the	number	of	target	variates	

	 In	order	to	see	how	the	number	of	target	variates	and	the	number	of	items	

influence	the	regression	accuracy	in	the	framework	of	the	data-generating	model	(14),	

we	varied	the	parameter	d	from	8	to	128	(in	powers	of	2),	the	parameter	m	∈	{160,	

320},	while	the	other	parameters	were	set	to	n=24,	αk	∈	[-0.4,	0.7],	βk	=	0,	k=1..d,	and	the	

α-risk	was	set	to	0.05.	For	each	number	of	target	variates	and	of	items,	we	generated	
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and	analysed	100	independent	random	data	sets,	comparing	the	obtained	regression	

coefficients	(w)	with	the	exact	ones	(ω),	and	comparing	the	multi-target	r	coefficient	

values	together	with	their	significance	to	those	of	the	exact	r	coefficients.	

Instead	of	being	arbitrarily	chosen,	the	sign	of	w	was	determined	in	such	a	way	that	

w’ω	≥	0.	Then	the	accuracy	of	w	was	measured	by	the	error	norm	||	w	-	ω	||.		

The	accuracy	of	the	estimated	r	coefficients	was	measured	using	their	“discrepancy”	(D)	

from	the	exact	r-values:	

D(rMT,	rexact)	=	maxk=1..d	|rMT(k)	–	rexact(k)|	.		

The	obtained	statistical	significance	(at	the	.05	level)	was	also	compared	to	that	of	the	

exact	coefficients	without	FWER	control.	We	computed	the	“significance	agreement”	

defined	as	the	proportion	of	target	variates	for	which	both	the	estimate	and	the	exact	

coefficient	lead	to	the	same	conclusion	(significant	or	non-significant).	

		 Table	1	shows	the	averages	over	100	tests	of	these	accuracy	measures	as	

functions	of	the	number	of	target	variates	and	of	the	number	of	items.	The	average	sums	

of	squared	correlations	(λmax)	and	the	average	computation	times	(in	seconds)	for	the	

multi-target	regressions	are	also	reported	(for	Matlab	9.4	on	Mac	OS	X	10.11.6).	For	each	

performance	measure,	a	one-factor	standard	analysis	of	variance	was	performed	to	test	

the	effect	of	the	number	of	target	variates	(d).	The	obtained	significances	are	reported	in	

the	last	column	of	Table	1.	As	one	can	see	in	Table	1,	regardless	of	m,	both	the	w	error	

and	the	rMT	discrepancy	significantly	decreased,	converging	towards	0,	while	the	

significance	agreement	converged	towards	1,	as	the	number	of	target	variates	increased.	

In	the	same	time	both	λmax	and	the	computation	time	increased.	As	expected,	the	

accuracy	of	the	estimates	was	better	with	320	items	than	with	160	items.	
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Table	 1.	 Variation	 of	 the	 averages	 (over	 100	 tests)	 of	 the	 accuracy	measures	 for	 the	

multi-target	linear	regression,	as	functions	of	the	number	of	target	variates	(d)	and	the	

number	 of	 items	 (m).	 The	 data	 were	 generated	 using	 the	 model	 (14)	 with	 n=24,	

αk	∈	[-0.4,	0.7],	βk	=	0,	k=1..d.	The	α–risk	was	set	to	0.05	and	there	was	no	FWER	control.	

	
	
	
Number	of	target	variates:	

	
d	=	8	

	
d	=	16	

	
d	=	32	

	
d	=	64	

	
d	=128	

d	effect	
significance	

m	=	160,	n	=	24	

λmax		

||	w	-	ω	||	

rMT	discrepancy	from	exact	r	

Significance	agreement	

Computation	time	(seconds)	

m	=	320,	n	=	24	

λmax		

||	w	-	ω	||	

rMT	discrepancy	from	exact	r	

Significance	agreement	

Computation	time	(seconds)	

	

1.3427	

0.0248	

0.0510	

0.7100	

1.3125	

	

1.2844	

0.0114	

0.0213	

0.7925	

1.7061	

	

2.3426	

0.0184	

0.0391	

0.7712	

1.3591	

	

2.2700	

0.0089	

0.0183	

0.8675	

1.8999	

	

4.3936	

0.0134	

0.0298	

0.8419	

1.7974	

	

4.2678	

0.0064	

0.0147	

0.9187	

2.2446	

	

8.3685	

0.0101	

0.0234	

0.8858	

2.1251	

	

8.2755	

0.0047	

0.0110	

0.9402	

2.9617	

	

16.542	

0.0069	

0.0182	

0.9083	

2.7400	

	

16.333	

0.0034	

0.0091	

0.9625	

3.9808	

	

p	<	.0001	

p	<	.0001	

p	<	.0001	

p	<	.0001	

p	<	.0001	

	

p	<	.0001	

p	<	.0001	

p	<	.0001	

p	<	.0001	

p	<	.0001	

	
	

	 Table	2	shows	the	averages	over	100	tests	of	the	accuracy	measures	as	functions	

of	the	number	of	target	variates	and	of	the	number	of	regressors.	Large	values,	greater	

than	the	number	of	items,	have	been	selected	for	the	number	of	targets.	One	of	the	two	

numbers	of	regressors	is	greater	than	the	number	of	items,	resulting	in	a	violation	of	the	

hypothesis	H3.	As	one	can	see	in	Table	2,	regardless	of	n,	both	the	w	error	and	the	rMT	

discrepancy	significantly	decreased	as	the	number	of	target	variates	increased.	

However,	we	a	priori	know	that	in	the	case	where	n>m	the	estimator	is	biased,	resulting	

in	a	non-zero	error	limit.	We	also	observe	in	this	case	that	the	significance	agreement	is	

quite	bad	and	does	not	improve	as	d	increases.	
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Table	 2.	 Variation	 of	 the	 averages	 (over	 100	 tests)	 of	 the	 accuracy	measures	 for	 the	

multi-target	linear	regression,	as	functions	of	the	number	of	target	variates	(d)	and	the	

number	 of	 regressors	 (n).	 The	 data	were	 generated	 using	 the	model	 (14)	with	m=64,	

αk	∈	[-0.4,	0.7],	βk	=	0,	k=1..d.	The	α–risk	was	set	to	0.05	and	there	was	no	FWER	control.	

	
	
	
Number	of	target	variates:	

	
d=64	

	
d=128	

	
d=256	

	
d=512	

	
d=1024	

d	effect	
significance	

m	=	64,	n	=	24	

λmax		

||	w	-	ω	||	

rMT	discrepancy	from	exact	r	

Significance	agreement	

Computation	time	(seconds)	

m	=64,	n	=96		(H3	violation)	

λmax		

||	w	-	ω	||	

rMT	discrepancy	from	exact	r	

Significance	agreement	

Computation	time	(seconds)	

	

8.9186	

0.0310	

0.0606	

0.7142	

1.6418	

	

9.5619	

0.0918	

0.1051	

0.4330	

1.7699	

	

17.535	

0.0220	

0.0473	

0.7303	

1.8679	

	

18.154	

0.0836	

0.0782	

0.4264	

2.0180	

	

34.421	

0.0158	

0.0361	

0.7438	

2.5013	

	

34.960	

0.0817	

0.0592	

0.4361	

2.6552	

	

68.511	

0.0109	

0.0256	

0.7495	

3.4486	

	

68.885	

0.0796	

0.0428	

0.4348	

3.5967	

	

136.40	

0.0077	

0.0191	

0.7501	

5.8270	

	

137.02	

0.0750	

0.0331	

0.4332	

6.0494	

	

p	<	.0001	

p	<	.0001	

p	<	.0001	

p	<	.0001	

p	<	.0001	

	

p	<	.0001	

p	<	.0001	

p	<	.0001	

p	<	.25,	ns	

p	<	.0001	

	
	
	 	 Globally,	all	these	observations	perfectly	illustrate	Theorem	2.	In	

summary,	one	can	say	that	in	order	to	obtain	a	good	rank-one	estimate,	one	must	use	as	

many	items	and	target	variates	as	possible,	while	always	having	a	number	of	items	

greater	than	the	number	of	regressors	and	using	linearly	independent	regressors.	We	

also	know	that	the	target	variates	must	be	correlated	but	linearly	independent	at	the	

population	level.	For	instance,	it	is	intuitively	clear	that	if	one	artificially	increases	the	

number	of	targets	by	repeating	many	times	the	same	small	set	of	variates,	this	provides	

no	more	information,	and	there	is	no	reason	that	this	improves	the	convergence.	Note	

however	that,	at	the	data	sample	level,	the	target	vectors	(T	columns)	cannot	be	linearly	



	 27	

independent	if	the	number	of	targets	is	greater	than	the	number	of	items,	but	this	does	

not	prevent	the	convergence,	as	illustrated	in	Table	2.	

	

7.4	Comparison	with	reduced-rank	regressions	on	controlled	rank	artificial	data	

	 In	this	section,	we	compare	the	behaviour	of	the	proposed	rank-one	regression	

method	with	that	of	conventional	reduced-rank	regression	methods,	on	rank-one	and	

rank-three	artificial	data.	The	data	were	generated	using	a	random	615×24	matrix	of	

regressors	and	a	random	24×100	coefficient	matrix	whose	rank	was	controlled	(using	

the	singular	value	decomposition)	to	be	1	or	3.	Target	variates	were	obtained	

multiplying	the	regressors	by	the	coefficient	matrix	and	adding	Gaussian	noise.	An	

available	Matlab	implementation	of	Izenman’s	reduced-rank	regression	(RRR)	was	used	

to	test	alternative	methods	[24].	We	used	the	rank-one	RRR	and	the	5-folds	cross-

validation	optimized	rank	RRR,	both	with	the	S-2	weight	matrix,	the	identity	weight	

matrix	(I),	and	the	cov(Y)-1	weight	matrix	(“canonical”).	

	 Table	3	reports,	for	each	case,	the	sum	of	squared	correlations	( Σr2),	the	mean	

squared	error	(MSE),	the	obtained	solution	rank,	and	the	Bayesian	Information	Criterion	

(BIC).	The	BIC	is	commonly	used	as	a	model	selection	criterion	[26,	28],	while	the	model	

having	the	lowest	BIC	must	be	preferred.	

	 As	one	can	see	in	Table	3,	the	new	method	(noted	“MTR”)	and	the	rank-one	RRR	

with	S-2	weighting	have	exactly	the	same	performance	(as	expected	from	Theorem	3).	

For	rank-one	data,	these	methods	provided	the	maximum	sum	of	squared	correlations,	

while	the	minimum	MSE	was	obtained	with	the	identity	weighting,	which	also	resulted	

in	the	minimum	BIC.	For	rank-three	data,	the	optimized	rank	RRRs	detected	the	

appropriate	rank,	leading	these	methods	to	the	best	performance,	including	the	BIC.	
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Table	3.	Numerical	test	on	artificial	data	with	m=615,	n=24,	d=100,	and	the	actual	rank	
of	the	true	regression	coefficient	matrix	is	1	or	3.	The	compared	methods	are	the	MTR	
(Theorem	1),	the	rank-one	RRR	or	the	5-folds,	cross	validated	rank	(CV-rank)	RRR,	both	
with	the	S-2	weight	matrix,	the	identity	weight	matrix	(I),	and	the	cov(Y)-1	weight	matrix	
(Canonical).	The	table	reports	the	sum	of	squared	correlations	( Σr2),	the	mean	squared	
error	(MSE),	the	obtained	solution	rank,	and	the	Bayesian	Information	Criterion	(BIC).	
	
	

	 Actual	rank	=	1	 Actual	rank	=	3	
Method	  Σr2	 MSE	 rank	 BIC	  Σr2	 MSE	 rank	 BIC	
MTR	
Rank-1	RRR:	
				S-2	weight	
				I	weight	
				Canonical	
CV-rank	RRR:	
				S-2	weight	
				I	weight	
				Canonical	

22.7174	
	

22.7174	
22.7039	
22.7148	

	
22.7174	
22.7039	
22.7148	

6.2106	
	

6.2106	
6.2095	
6.2110	

	
6.2106	
6.2095	
6.2110	

1	
	
1	
1	
1	
	
1	
1	
1	

1.8483	
	

1.8483	
1.8481	
1.8484	

	
1.8483	
1.8481	
1.8484	

28.9348	
	

28.9348	
28.8590	
28.9297	

	
42.8318	
42.7966	
42.8187	

6.9650	
	

6.9650	
6.9569	
6.9643	

	
5.6069	
5.6035	
5.6084	

1	
	
1	
1	
1	
	
3	
3	
3	

1.9629	
	

1.9629	
1.9618	
1.9629	

	
1.7891	
1.7885	
1.7894	

	
	

7.5	Comparison	with	reduced-rank	regressions	on	real	data	

	 In	this	section,	we	compare	the	performance	of	the	same	methods	as	in	the	

previous	section,	but	on	a	real	data	regression	problem	whose	actual	rank	is	a	priori	

unknown.	The	data	are	z-scores	of	speeded	naming	latencies	of	615	printed	French	

words,	provided	by	100	human	participants.	These	data	were	previously	studied	in	[11,	

12].	The	purpose	here	is	to	study	the	direct	effect	of	the	orthographic	form	of	the	words	

on	the	naming	latencies.	In	order	to	do	this,	we	need	a	suitable	numerical	representation	

of	the	character	strings	that	could	be	used	as	a	multidimensional	regressor.	A	possible	

numerical	coding	of	character	strings	has	previously	been	proposed	in	[10]	as	the	

output	layer	of	artificial	neural	networks	for	handwriting	recognition,	and	was	also	used	

in	[27]	as	a	multidimensional	orthographic	regressor	to	analyse	cerebral	event	related	

potentials	(EEG/ERP)	in	a	printed	word	naming	task.	The	coding	principle	is	as	follows.	
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	 Consider	 an	 alphabet	 of	N	 symbols	 {s1,	s2,	 ...,	 sN},	 for	 instance	 the	26	 lower-case	

letters	of	the	Roman	alphabet.	The	coding	associates	to	each	symbol	of	the	alphabet	one	

component	of	a	real	vector	(c1,	c2,	...,	cN).	Let	χ	be	a	symbol	string	of	L	characters,	one	first	

determines	the	"symbol	position	bits"	as	bk,i	=	1	 if	the	symbol	si	appears	at	rank	k	 in	χ,	

else	one	has	bk,i	=	0.	Then	the	components	of	the	orthographic	code	are	given	by:	

	 	 	 ci(χ)	=		(Σk=1..L	bk,i	2-k)p		,		i=1..N,	0	<	p	≤1,													(15)	

where	 p	 is	 a	 free	 parameter	 (we	 use	 p=1/3).	 Such	 a	 numerical	 code	 unequivocally	

represents	 the	corresponding	character	string	and	 it	 can	always	be	decoded	back	 into	

this	string.	

	 The	necessary	alphabet	for	describing	the	615	experimental	words	had	only	24	

letters	since	“k”	and	“w”	are	very	rare	in	French,	and	these	two	letters	never	appeared	in	

the	corpus.	Moreover,	the	used	words	did	not	include	letters	with	diacritic	marks.	Thus	

the	regressor	matrix	was	a	615×24	real	matrix	of	numerical	string	codes	(15).	

	 One	can	observe	in	Table	4	that	the	rank-one	RRR	with	identity	matrix	weighting	

provided	the	same	performance	as	those	of	the	MTR	and	the	rank-one	S-2	weighted	RRR.	

This	is	because	the	data	are	z-scores,	thus	all	columns	of	the	target	matrix	have	the	same	

norm	and	the	identity	matrix,	in	this	case,	is	also	a	S-2	matrix.	Optimized	rank	RRRs	

detected	a	rank-two	case,	however,	the	BIC	suggests	that	the	best	choice	is	in	fact	the	

MTR	model	and	its	equivalent	rank-one	RRRs.	In	other	words,	the	improvement	of	the	

MSE	does	not	compensate	the	increase	of	model	complexity	with	rank-two	solutions,	

and	these	observations	finally	suggest	that	a	rank-one	model	is	the	most	suitable.	In	fact,	

one	knows	that	this	type	of	data	is	essentially	described	by	a	general	rank-one	model,	

but	with	an	additional	small	amount	of	non-random	idiosyncratic	effect	that	could	

explain	the	detected	rank-two	solution	[13].	A	common	practice	is	to	calculate	the	
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average	response	vector	over	all	participants,	and	then	to	fit	this	vector	with	a	linear	

combination	of	regressors,	using	an	ordinary	multiple	regression.	Doing	this,	one	

implicitly	assumes	an	underlying	model	where	the	αk’s	in	(12)	are	equal	for	all	

participants,	which	is	possibly	unrealistic	and	can	lead	to	problematic	results.	Using	the	

multi-target	regression	avoids	this	drawback	and	can	provide	a	much	better	solution.	

	

Table	 4.	 Comparison	 of	 7	multivariate	 regression	methods	 on	 the	 analysis	 of	 real	 z-
scores	 of	 naming	 latencies	 of	 m=615	 printed	 words,	 by	 d=100	 human	 participants,	
regressed	 on	 numerical	 orthographic	 codes	 of	 the	words	with	n=24	 components.	 The	
100	correlation	coefficients	provided	by	MTR	(Theorem	1)	and	equivalent	methods	are	
in	the	range	[0.1306,	0.5044]	and	significant	at	the	0.05	level,	with	a	mean	r	of	0.3225.	
	
	
Method	  Σr2	 MSE	 rank	 BIC	
MTR	
Rank-1	RRR:	
				S-2	weight	
				I	weight	
				Canonical	
CV-rank	RRR:	
				S-2	weight	
				I	weight	
				Canonical	

10.9564	
	

10.9564	
10.9564	
10.1679	

	
11.7183	
11.7183	
11.4674	

0.8890	
	

0.8890	
0.8890	
0.8969	

	
0.8814	
0.8814	
0.8839	

1	
	
1	
1	
1	
	
2	
2	
2	

-0.0956	
	

-0.0956	
-0.0956	
-0.0868	

	
-0.0825	
-0.0825	
-0.0797	

	

	

7.6	Observing	the	estimator	convergence	with	real	data	

	 With	real	data,	such	as	those	used	in	the	previous	section,	one	does	not	know	the	

exact	solution.	However	one	can	exploit	the	fact	that	if	two	independent	estimates	

converge	on	the	same	solution,	then	they	also	converge	on	each	other.	The	idea	here	is	

that	if	the	used	real	data	fulfil	the	assumptions	of	Theorem	2,	then	one	should	observe	

the	predicted	convergence	as	a	function	of	d	and	as	a	function	of	m.	
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	 Using	the	regressors	and	the	behavioural	data	of	section	7.5,	we	repeatedly	

sampled	pairs	of	independent	random	samples	of	d	=	10,	20,	30,	40,	or	50	participants,	

we	computed	the	regression	solution	(Theorem	1)	for	each	of	the	two	samples	(w1	and	

w2),	and	the	Euclidean	distance	between	these	two	solutions.	This	was	repeated	100	

times	for	each	modality	of	d,	and	a	standard	analysis	of	variance	was	performed	on	the	

solution	distances.	In	addition,	the	same	was	done	not	varying	d	but	the	number	m	of	

items,	with	m	=	61,	122,	183,	244,	or	305.	The	results	are	reported	in	Table	5,	where	one	

can	clearly	observe	the	convergence	as	a	function	of	d	and	as	a	function	of	m.	

	

Table	 5.	 Average	 distance	 of	 two	 independent	 estimates	 of	 the	 regression	 coefficient	
vector	 w	 (from	 Theorem	 1),	 as	 a	 function	 of	 the	 number	 d	 of	 target	 variates	
(participants),	 and	 of	 the	 number	 m	 of	 items	 (words).	 The	 regressors	 are	 the	 24	
dimensions	of	a	numerical	orthographic	 code	 (15),	 and	 the	 target	data	are	z-scores	of	
printed	word	naming	times.	Each	test	was	repeated	100	times,	and	a	standard	analysis	
of	variance	was	performed	for	each	factor	(d	and	m).	
	
	

m=615,	d:	 10	 20	 30	 40	 50	 d	effect	

||	w1	–	w2	||	 0.1046	 0.0784	 0.0637	 0.0535	 0.0492	 p	<	.0001	

d=100,	m:	 61	 122	 183	 244	 305	 m	effect	

||	w1	–	w2	||	 0.7853	 0.5401	 0.4101	 0.3223	 0.2605	 p	<	.0001	

	
	

8.	Conclusion	

	 We	have	defined	a	new	method	for	solving	multivariate	linear	regression	

problems,	with	only	one	shared	vector	of	regression	coefficients.	This	way,	only	what	is	

common	to	the	target	variates	is	fitted	while	the	sum	of	squared	correlations	of	the	

fitted	pattern	with	the	target	variates	is	maximized.	This	is	equivalent	to	a	rank-one	
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variant	of	Izenman’s	reduced	rank	regression	method	[19,	20],	with	a	weighting	

proportional	to	a	diagonal	inverse-variance	matrix.	However,	the	formulation	of	the	new	

method	allowed	us	to	derive	certain	new	convergence	properties	of	interest	for	practical	

applications.	In	particular,	one	clearly	shows	how	and	why	the	estimation	of	the	

regression	coefficients	converges	as	a	function	of	the	number	of	target	variates,	as	well	

as	a	function	of	the	number	of	items.	Of	course,	these	consistency	properties	also	

concern	the	equivalent	rank-one,	reduced-rank	regression	method,	however,	we	don’t	

know	whether	or	not	the	convergence	as	a	function	of	the	number	of	target	variates	

concerns	other	RRR	approaches.	A	ready	to	use	Matlab/Octave	code	program	is	

provided	for	practical	applications,	and	numerical	tests	on	artificial	data	as	well	as	on	

real	data	fully	corroborated	the	formal	statements.		
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Appendix.	Matlab/Octave	code	of	useful	functions	(for	academic	use	only)	

	

function [sr2,psr2,r,p,s,w] = MTRegPV(X,T,fwerc,a) 
% Multi-Target Multiple Linear Regression 
% For m items, n regressors, and d target variates 
% p-values are computed by permutation test 
%             Input arguments: 
% X: m x n matrix of regressors 
% T: m x d matrix of target variates 
% fwerc: control the FWER (1) or not (0) 
% a: chosen alpha risk (default: a=0.05) 
%             Output arguments: 
% sr2: sum of squared correlations 
% psr2: p-value of sr2 (by permutation test) 
% r: d x 1 vector of r estimates 
% p: d x 1 vector of p-values (by permutation test) 
% s: d x 1 significance vector (1=signif., 0=n.s.) 
% w: n x 1 vector of regression coefficients 
% ------------------------------------------------- 
[m,n]=size(X); [mt,d]=size(T); 
if mt ~= m, error('Matrix dimension error'); end 
if nargin<4, a=0.05; end 
if (nargin<3) || (fwerc<=0) 
    np=max(ceil(1/a),1000); 
else 
    np=max(ceil(d/a),1000); 
end 
if np>10000 
warning(['number of permutations = ',num2str(np)]); 
end 
for j=1:n 
    X(:,j)=X(:,j)-mean(X(:,j));  % centre X columns 
end 
for k=1:d          % centre and normalize T columns 
    T(:,k)=T(:,k)-mean(T(:,k)); 
    T(:,k)=T(:,k)/norm(T(:,k)); 
end 
H = pinv(X'*X);              % compute the solution 
perm = (1:m); 
MVfcn = @(x) X*(H*(X'*(T(perm,:)*(T(perm,:)'*x)))); 
[y,sr2] = eigs(MVfcn,m,1); 
w = H*(X'*y);                         % then Xw = y 
r = (y'*T)'; 
v2=[sum(r(r>=0).^2),sum(r(r<0).^2)];  % sign choice 
if v2(1)<v2(2) 
    w=-w; 
    r=-r; 
end 
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Dr2 = zeros(np,d);       % permutation test of H0's 
Dsr2 = zeros(np,1); 
Dr2(1,:)=(r.^2)'; Dsr2(1)=sr2; 
for t=2:np 
    perm = randperm(m); 
    MVfcn = @(x) X*(H*(X'*(T(perm,:)*(T(perm,:)'*x)))); 
    [yp,sr2p] = eigs(MVfcn,m,1); 
    rp = yp'*T(perm,:); 
    Dr2(t,:) = rp.^2; Dsr2(t)=sr2p; 
end 
p=zeros(d,1);                % p-values computation 
for k=1:d                     
    p(k) = sum(double(Dr2(1,k)<=Dr2(:,k)))/np; 
end 
psr2 = sum(double(Dsr2(1)<=Dsr2))/np; 
if fwerc>0 
    s = Holm(p,a); 
else 
    s = double(p<=a); 
end 
end 
  
 
function S=Holm(P,a) 
% Holm-Bonferroni control of the Family-Wise Error Rate 
% P: matrix of p-values; a: chosen alpha risk 
% S: matrix of significance (1= significant, 0= n.s.) 
d=size(P); P=P(:); n=length(P); 
[P,I]=sort(P); h=a./(n-(1:n)'+1); 
k=find(P>h,1,'first'); 
if isempty(k) 
    S=ones(n,1); 
else if k==1 
        S=zeros(n,1); 
    else 
        S(I)=double((1:n)'<k); 
    end 
end 
S=reshape(S,d); 
end 
	

function [B,mse]=MTRegLS(Xi,Th,w) 
% Compute the least-squares solution associated with the 
%    output of the MTRegPV function 
%             Input arguments: 
% Xi: m x n matrix of regressors 
% Th: m x d matrix of target variables 
% w: n x 1 vector of regression coefficients provided 
%    by the function MTRegPV(Xi,Th) 
%             Output arguments: 
% B: (n+1)x d matrix of rank-one regression coefficients 
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% mse: global mean squared residual error 
% ------------------------------------------------------ 
[m,n]=size(Xi); [m1,d]=size(Th); 
if m~=m1, error('Different numbers of items'); end 
mux=mean(Xi); mut=mean(Th); 
X=Xi-ones(m,1)*mux; Y=Th-ones(m,1)*mut; 
y=X*w; v=y'*Y/(y'*y); 
B=w*v; mu=mut-mux*B; B=[mu;B]; 
ThA=[ones(m,1),Xi]*B;                 % Th approximation 
er2=(Th-ThA).^2; mse=mean(er2(:));    % Residual error 
end 
	

Random	example	of	use:	

>>	m=10;	n=5;	d=4;	X=rand(m,n);	T=rand(m,d);	fwerc=0;	a=0.05;	

>>	[sr2,psr2,r,p,s,w]	=	MTRegPV(X,T,fwerc,a);	

>>	[sr2,psr2]	

ans	=	

				0.9600				0.7470	

>>	[r,p,s]	

ans	=	

			-0.2784				0.7950									0	

				0.9015				0.0100				1.0000	

				0.2301				0.8540									0	

				0.1299				0.8260									0	

>>	w'	

ans	=	

				0.0539			-0.4747				0.7709			-0.5842			-0.9033	

	
	

__________________________________________________	
	
	


