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BRENIER-SCHRODINGER PROBLEM ON COMPACT
MANIFOLDS WITH BOUNDARY

DAVID GARCIA-ZELADA AND BAPTISTE HUGUET

Abstract

We consider the Brenier-Schrédinger problem on compact manifolds with boundary.
In the spirit of a work by Arnaudon, Cruzeiro, Léonard and Zambrini, we study the
kinetic property of regular solutions and obtain a link to the Navier-Stokes equations
with an impermeability condition. We also enhance the class of models for which
the problem admits a unique solution. This involves a method of taking quotients
by reflection groups for which we give several examples.

Keywords: Brenier-Schrodinger, entropy, manifold with boundary, reflected Brownian mo-
tion, Navier-Stokes equations.

1 Introduction

In mechanics, there are two classical dual descriptions of every phenomenon. The first
one is Newton’s laws of motion (or Hamilton’s equations). They characterise the evolution
of a system by differential equations. The second one is the principle of least action. It
characterises the motion as the minimiser of a functional constructed from the kinetic
and the potential energy. Applied to the evolution of perfect fluids, the first approach
leads to the Euler equations while the second approach sees the evolution as a geodesic
in the space of volume preserving diffeomorphisms and it was developed by Arnold [5]. A
relaxation of this problem was proposed by Brenier [10] where, instead of seeking a flow,
he looks for a measure on the space of trajectories. His new problem is the minimisation
of an average kinetic energy. The incompressibility constraint (i.e., volume preserving
condition) becomes a constraint on the marginals and the final endpoint condition becomes
an endpoints measure constraint. Brenier showed the accuracy of his problem by relating
the solutions of the Euler equations with the solutions of his problem.

The problem treated in this article is the Brenier-Schridinger problem. This has been
introduced in [I] as a perturbation of Brenier’s problem where the kinetic energy to be
minimised is defined using a stochastic notion of velocity. This notion of velocity allows us
to think the problem as an entropy minimisation under marginal and endpoint constraints
and allows us to use convex optimisation approaches. It has been studied by several authors
[2, B, 16, [7, 8, 9, 19]. In the present article, we study this problem on compact manifolds
with boundary and we work on the following two questions.

e The first one is the kinetics of the solutions. While Brenier’s problem is linked to the Eu-
ler equations, the Brenier-Schrodinger problem is linked to the Navier-Stokes equations
for which the viscosity term is a perturbation of the Euler equations. We prove that the
backward stochastic velocity of a regular solution of the Brenier-Schrodinger problem
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is a solution of the Newtonian part of the Navier-Stokes equations. This generalises to
compact manifolds with boundary the result of [3] on the Euclidean space and the tori.
The main difference in our framework is the behavior of the solutions at the boundary.
This can be found in Section [2.

e The second question is about the existence of a solution. We give a necessary and
sufficient condition for the existence of a unique solution to the incompressible Brenier-
Schrodinger problem on homogeneous spaces. This generalises the result given for the
tori in [3]. Moreover, we develop a method to transport this result to quotients by
reflection groups. Finally, we mention an additional example on the Euclidean space in
a non-incompressible setting. These results can be found in Section 3]

Let us describe the model. From now on, we fix a compact Riemannian manifold M
with boundary M, interior M and normalised Riemannian volume measure vol , i.e., such
that vol(M) = 1. In the present article, we are interested in a minimisation problem in
the set P(Q2) of probability measures on the path space

Q = {we MU 4 is continuous},

which is endowed with the compact-open topology. This minimisation problem will be
related to the reflected Brownian motion on M (restricted to the time interval [0, 1]). This
is the Markov process (Bt)te[o,u whose generator is the Laplacian on M with a properly
chosen domain. More precisely, it satisfies that, for every C? function f : M — R such
that df, - v, =0 at every x € OM,

150 = 5 [ Af(E)ds

is a martingale with respect to the filtration 0((ﬁs)se[o,t})- See also [4] for an equivalent
formulation, also recalled in Section [} Let us call R € P(Q), the law of the reflected
Brownian motion on M whose initial position follows the law vol and R* € P(2), the law
of the reflected Brownian motion on M whose initial position is z € M.

The object to be minimised is the so-called relative entropy whose general definition
is the following. For any measurable space F, the relative entropy of a probability mea-
sure 1 € P(FE) with respect to a probability measure v € P(F) is

H(plv) = [Eplogpdv

if dp = pdr and H(u|v) = oo if p is not absolutely continuous with respect to v.

Now, let 7 be a measurable subset of [0, 1], (u)ie7 a family of probability measures
on M indexed by T and m € P(M x M). We are interested in minimising H(Q|R) among
all @ € P(2) with the following constraints. For any ¢ € T, we ask that Q; = u;, where @,
is the image measure (or pushforward) of @ by the canonical map X; : w € Q +— w(t) € M.
Additionally, we ask that Qg1 = m, where (Qo; is the image measure of () by the endpoints
map (X, X1) 1w € Q> (w(O),w(l)) € M x M. This minimisation problem is called the
Brenier-Schriodinger (or Brédinger, or Bredinger) problem, it will be denoted by in
this article and can be summarised as follows.

H(Q|R) — min, @ € P(Q), [Qr = p, Yt € T], Qo1 = . (BS)

2
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It is a strictly convex problem with convex constraints. Then, the problem (BS) admits a
unique solution if and only if there exists @) € P(£2) such that Q; = p, forallt € T, Qo = 7
and H(Q|R) < oc.

A particular case is the incompressible Brenier-Schrédinger problem, denoted by .
This is the case where T = [0, 1], u = vol for every ¢t € [0,1] and = has both marginals
equal to vol.

H(Q|R) — min, Q € P(Q), [Q; = vol, ¥t € [0,1]], Qo1 = . (iBS)

We give some examples where a solution to (iBS)) exists in Section
A particular class of solutions to (BS]) are introduced in [3]. By using the dual max-
imisation problem, they have shown that if P € P(Q2) can be written as

dP(X) = exp (n(Xo,Xl) +360.(X,) + /T (X)) dt) dR(X)

seES

for some bounded measurable n : M x M — R, p: T xM — Rand 0 : Sx M — R, then P
is a solution of for the set 7 U S and the marginals y; = B;. In fact, [3] describes
the general form of a solution by relating the dual maximisation problem and the primal
minimisation problem. The existence of such solutions is proved in [8] in the particular
case of discrete problems, i.e for 7 = (). In Section , we show that solutions of this form
that are regular, in a sense to be precised there, give rise to solutions of the Navier-Stokes
equations.

Let us summarise this article. In Section [2, we present the result on the description
of regular solutions of via the Navier-Stokes equations. In Section , we present the
results on the existence of solution of on compact manifolds and a non-incompressible
version on R” defined there. In Section , we develop the Girsanov theory to define
the velocity of solutions. This makes a link between entropy minimisation and kinetic
energy minimisation, see Remark [£.4] In Section [5, we give the proof of the kinetic results
from Section [2} Finally, Section [6] Section [7] and Section [§ are dedicated to the proofs of
the results about the existence from Section B

2 Results on the kinetics behavior

Let 7 be an open subset of [0, 1] which is a finite union of intervals and let S be a finite
subset of (0,1) such that 7 NS = (). Following [3], we say that P € P(Q) is a reqular
solution of (BS) if it can be written as

dP(X) = exp (n(XO, X1)+ ) 0(X) + /rpr(XT) d?“) dR(X). (2.1)

seS

for some regular enough functions n: M x M - R, p: T xM - Rand 0 :5 x M — R.
The regularity is such that all equations in the theorem below makes sense (C? would be
enough, for instance, but we are not interested in attaining the least possible regularity).
As already explained, from a dual-primal problem argument explained in [3], a regular
solution is an actual solution of .

Now, let us introduce some further notation and comments before stating the results.

Forward regular solution. We will say that a regular solution P is a forward regular

3
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solution of (BY]) if, for every x € M, the function ¥ : [0,1] x M — R given by

d)tz(Z) = IOgERz

eXp (77(377 Xl) + Z GS(XS) + pr(Xr) d’l") ‘ Xy = Z:| (22)

seSn(t,1] (]

is C?in z € M and C' in t € [0,1]\ S such that the function and its space first derivatives
are (jointly) cadlag in ¢. The times in S are sometimes called shock times. These are the
times where ¢ — 7 (z) is discontinuous. On the other hand, the times in 7 are called
reqular times. The function p can be thought of as a pressure field while the functions 6,
can be thought of as shock potentials.

Backward regular solution. We will say that a regular solution P is a backward regular
solution of (BS)) if the time reversal of P is a forward regular solution. Equivalently, P is
a backward regular solution of (BS|) if, for every y € M, the function ¢¥ : [0,1] x M — R
given by

©i(2) = log Egy

€Xp (U(Xl, y) + Z QS(XI—S) + pr(Xl—r) d?") ‘ Xt = Z] (23)

s€SN[0,1—t) T0[0,1-¢)

is C?in z € M and C' in ¢t € [0,1]\ S such that the function and its space first derivatives
are (jointly) cadlag in t.

Disintegration by the final position. We will be interested in the family (ﬁy)yeM of
probability measures on () that satisfy

P= / lsydPl(y) and PY {we Q:w(l)=y}) =1 for every y € M. (2.4)
M

These can be thought of as the conditional laws of P given the final position and are
uniquely defined except for x on a set of Fy-measure zero.

Logarithm. Suppose that P has finite entropy with respect to R. We will use the notion
of stochastic velocity (or mean derivative) of P introduced initially by Nelson in [I§] for
real processes. A presentation of the generalisation to manifold can be found in [14]. Recall
that there exists an open set N of T M that contains the zero section and such that the
exponential map exp : N'— M is well-defined and its restriction exp, : NN T,M — M is
a diffeomorphism onto an open subset U(xz) C M. Then, for x € M and y € U(x), define

70 = log,(y)

as the unique element of N'NT, M such that exp(a@) = y. Since P is absolutely continuous
with respect to R, we can see that, for any t, X; ¢ 0M for P-almost every X since this
also happens for R-almost every X. The random times

.1
=g inf{h <0: X, s € U(Xy) for every s € [h,0]} (2.5)

are strictly negative. They allow us to define mean derivatives in a manifold.

Covariant derivative and Laplacian. We denote by V, the covariant derivative in the
direction of u and by O the (negative definite) de Rham-Hodge-Laplace operator. More
precisely, if 0 the adjoint of the exterior differential from the space of one-forms to the
space of two-forms, then the de Rham-Hodge-Laplace operator on one forms is defined

4
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as —(dd + dd). The operator [J we need is obtained if we think vector fields as one-forms
by using the metric.

Navier-Stokes equations. By the Navier-Stokes equations on M, we refer to the differ-
ential system of unknown (v, p), together with an initial condition vy,

1
(@ + Vvt) Vs = 5[’7}15 — th, t e [0, 1),

div(v) = 0, te0,1),

(v(z),v,) =0, z € 0M,
where v, is the inward-pointing unit normal to z. Remark that our viscosity %D differs
from [2] where the Laplace operator on vector field is the divergence of the deformation

tensor. However, in flat spaces, where Ricci curvature vanishes, both Laplace operators
coincide.

Now, we are ready to state one of our main results, which is a generalisation of the Euclidean
and tori results [3, Theorem 5.4].

Theorem 2.1 (Backward stochastic velocity and the Navier-Stokes equations). Suppose P
is a backward regular solution of (BS|) with associated function @. Then, for Pi-almost
every y, there exists a measurable function called the backward stochastic velocity

W [0,1] x Q= TM

such that t szt (w) is left-continuous and has right limits for every w € Q and such that
for every t € [0, 1] we have that, for P-almost every X,

o1 —
hlg(% ﬁElgy [ Xt X

Let U/ (z) = =Vpi_,(2). Then, for Pi-almost every y € M,

X[t,l]} = Uzi (X)

T)yt: U/(X;) P-almost surely.

Moreover, for P; almost every y € M, the time-dependent vector field UY satisfies

1
(0 + Vo) UY = SOV = Lr(t)Vpe, tE€[0,1)\S,
Uty+ - Uty - Vet, t E S, (2 6)
<Uy(z)7 Vz> = 07 z € 8M,
U = -V(n(-v)), t=0.

The first equation in is the Newtonian part of the Navier-Stokes equations while
the second equation describes the evolution at the shock times. The third equation tells us
the behavior at the boundary of the domain, it says that the stochastic velocity satisfies
the impermeability condition. The fourth is the initial condition of the problem. Never-
theless, the velocity does not seem to satisfy any continuity equation. The same approach
on forward velocity results on a time reversed Navier-Stokes equation (or Navier-Stokes
equation with negative viscosity) which is stated in Corollary

A continuity equation is satisfied for a combination of averaged forward and backward
velocities, v and v. These are defined by

T (2) = Ep [X%j T (2) =Ep | 00

X, = z] and

X, = z} , (2.7)

bt
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where v, and v} are defined in Theorem [2.1] and Corollary . They are also shown to be

measurable in x and y respectively in these results. The current velocity is defined as
1
Vew = 5(?@ +vy), vt € [0, 1] (2.8)

and it satisfies the following continuity equation which generalise [3 Theorem 5.4].

Theorem 2.2 (Continuity equation). Assume that (BS) admits a forward and backward
reqular solution P. Then v., satisfies

8t,ut -+ diV(,LLt'Ucu) = O, YVt € T (29)

Actually, this result is not particular to bi-regular solutions, nor to solution. In fact,
the proof uses only that P is a semi-martingale measure with finite entropy with respect
to the reflected Brownian motion. There, the average velocity shall be defined using the
drift given by Girsanov theorem, more precisely, by applying Theorem to P and R
instead of P* and R*. This equation has to be understood in distribution sense, i.e., for
all f € C™(M) and every t € [0, 1],

o)+ [ (v ds = 0. (2.10)

In the incompressible case (iBS)), where p; = vol, the continuity equation becomes the
incompressibility condition div(v.,) = 0. Nevertheless, v, does not satisfy the Navier-
Stokes equations.

3 Results on the existence of solutions

Let M be a homogeneous compact Riemannian manifold, i.e., one where the isometries act
transitively. We consider the incompressible Brenier-Schrodinger problem (iBS|). We may
write explicitly the dependence on 7 and M by (iBS)),, .

Theorem 3.1 (Existence for homogeneous spaces). The (iBS) M. Problem on a homoge-
neous compact manifold M admits a unique solution if and only if H(m|vol ® vol) < co.

We will show that the property of existence of solutions is preserved under nice quo-
tients. Our setting will be the following. Suppose that M is a connected compact Rie-
mannian manifold (without boundary) and that G is a finite group of isometries of M.
For x € M, consider the stabiliser group G, = {g € G : g(z) =z}, and the induced sub-
group G, = {dg, € O(T, M) : g € G} of the orthogonal group of T, M. Let R, be the
set of reflections in G, i.e., T € G, belongs to R, if and only if {u € T,M : Tu = u} has
codimension one as a subspace of T, M.

Definition 3.2 (Reflection group). We shall say that G is a reflection group (of isometries)
if G, is the group generated by R, for every x € M.

We will be interested in the set N = M /G which has a topological structure induced
by the quotient map ¢ : M — N. Suppose that G is a reflection group. We shall make
of N a manifold with corners. But first, let us recall the definition.

6
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Definition 3.3 (Manifold with corners). Let N be a Hausdorff second countable topological
space and let n > 0 be a positive integer. Suppose that we have a family {@r}ren of
homeomorphisms

QOA:UACN—)V)\C [0,00)"

where Uy (respectively V) is an open subset of N (respectively of [0,00)"). We say that
the family (px),c, @ a smooth atlas with corners if

UUs=N
AEA

and, for every p,v € A\,
$u° 0, (U NUy) = 0 (UuNU,)

has a smooth extension to an open subset of R™. We will refer to (N, (¢x),cs) @S a manifold
with corners.

It will be useful to have in mind triangles (and squares) as the prototypical examples,
the smooth atlas being given by the set of all diffeomorphisms from an open subset of
the triangle (or square) to the open subsets of [0,00)". The notions of tangent bundle,
Riemannian metric, Levi-Civita connection and stochastic differential equations can be
carried over to manifolds with corners.

Lemma 3.4 (Quotient differentiable structure). Suppose that G is a reflection group of
isometries of M. Then,

N = M/G has a (unique) structure of a Riemannian manifold with corners

such that, for every x € M, there exists a neighborhood U C N of q(x) together with an
isometric immersion s : U — M that is a local inverse of q, i.e., such that

qos(z) =z for every x € U.

We fix some notation about the boundary of N. The set of points that, by some
chart ¢y, correspond to points of the (topological) boundary of [0, 00)™ C R™ will be called
the boundary and will be denoted by ON. The points that correspond to the singular
points of the boundary of [0,00)™ will be called the corner points and the set consisting
of them will be denoted by CN. A boundary point x that is not a corner point will be
called a regular boundary point and there is a well-defined unit inward-pointing normal
vector v, € T, N at x. The complement of 0N, called the interior of N, will be denoted
by N.

We will be interested on the reflected Brownian motion on these manifolds. Similarly to
the case of manifolds with boundary, the reflected Brownian motion on N is a continuous
stochastic process (5¢),cp;) on N\ CN that satisfies the following condition. For every C?
function f: N — R such that df, - v, = 0 at every regular boundary point x, we have that

FX0) — /Ot Af(X,)ds

is a martingale with respect to the filtration o((5s) 0 4)-

Theorem 3.5 (Existence for quotients). Let N be the quotient of M by a reflection group
and denote by q : M — N its quotient map. Let m be a probability measure on M x M
with both marginals equal to vol and such that H(mw|vol ® vol) < co. Then,

7
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(iBS)arx admits a solution = (iBS))n,(gxq).~ admits a solution.

Moreover, if (iBS)n . admits a solution for every m with finite entropy, then (iBS)y7
admits a solution for every m with finite entropy.

We end this section with a more exotic example. Let 2 the space of paths from [0, 1]
to M = R"™. Choose any probability measure y € P(R™) and let R be the Brownian motion
whose initial position has law y. We are looking to the following problem

H(P|R) — min; [P, = N'(0,1/4id), vt € [0,1]], Poy = , (BS,)

where 7 is a probability measure on M?2. Through this example, we intend to challenge
the assumptions of compactness and incompressibility.

Theorem 3.6 (Existence for Gaussian marginals). The Brenier-Schréodinger problem
admits a unique solution if and only if H(mw|Rp) < 0.

4 Girsanov theorem

This section contains a version of Girsanov theorem which is a translation to a manifold
setting of the results from [I7]. This will make a link between entropy and kinetic energy
and will be useful for the proof of Theorem and Theorem 2.2

We need to use a different but equivalent description of the reflected Brownian motion.
Consider any vector field v : M — T'M such that v|gy is the inward-pointing unit normal
vector field. By using an embedding of M into an Euclidean space, we may construct
a smooth family (o,)zep of linear maps o, : R? — T, M such that o,0f = idp, . By
smooth we mean that the map o : M x R? — T'M defined by o(x,w) = o,(w) is smooth.
The reflected Brownian motion on M can be defined as a semi-martingale (3;)¢cp,1 on M
that solves the following Skorokhod problem. There exists a Brownian motion in R” and
a non-decreasing process (L;)se(o,1) such that

1
B, = o(8)AW, + vs,dL, and /0 1,,(3,)dL, = 0.

More information can be found in [4]. We may notice that the process L is the local
time of 8 at OM and that g is a reflected Brownian motion in the sense defined in the
introduction, Section [I]

Now, we are interested in the description of solutions whenever they exist. Recall
that R denotes the law of (5;):co,1) whose initial position follows the law vol. Since the
reference measure R is a semi-martingale measure, the classical Girsanov theory implies
that a solution P of (BS) will also be a semi-martingale. Moreover, using the finite entropy
condition, we have stronger boundedness properties on the Girsanov velocity vector field.
Theorem and Theorem below are adaptations of results from [I7] to a manifold
setting. They use a variational viewpoint of the entropy to improve Girsanov theorem
under a finite entropy condition. We give here sketches of the proofs and objects in a
manifold language. For a wider view, see [17] for the R™ setting and [I5] for manifolds.
Let B be the drift, defined on 1-form valued processes by

t

Bi(ar,w) = / (as(ws), 10,) AL (), (4.1)

0
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where oy € T'(T*M) for all t € [0,1] and w € . Notice that, since L is a function of
bounded variation uniquely defined except for a set of R-measure zero, B from is
also uniquely defined except for a set of R-measure zero. Let A be the quadratic variation
defined on bilinear form valued processes by

Ao = | (Te(hy(ws) ) ds, (4.2)

where hy € T(T*M®T*M) for all ¢t € [0,1]. Here (Tr(h)) denotes the contraction of h using
the Riemannian metric, so that is well-defined everywhere and not just almost ev-
erywhere. With this notation, the measure R satisfies the martingale problem MP (B, A),
i.e., R is the unique probability measure such that

MY = J(X0) = F(X0) = Bildf) — 5 AdHessf),

is an R-local martingale for every f € C*(M). We denote by dX its It6 derivative and
by d2 X the martingale part of dX with respect to R (see [12, Definition 7.33]). Both are
infinitesimal vector fields. The problem MP(B, A) implies that

dX; = dffLXt + dB;, R-almost surely,
and
d[X, X]; = dA;, R-almost surely.

For the version of Girsanov theorem we are interested in, we will use the space G of
measurable functions g : [0, 1] x Q — T*M such that g,(w) € 15, M for every t € [0, 1] and
for every w € ). For any probability measure () on €2, we define the semi-norm on G

1/2
%*Mdt} = Eq [A(g®g)]"”.

1
oo =Eo | [ lo

Identifying functions by using the semi-norm ||.||g, we define the Hilbert spaces

G(Q)={9€G:|gllg <+oo} and H(Q)={g € G(Q): gadapted}.

Adapted means here that, for every ¢t € [0,1], the map w — ¢(t,w) is measurable with
respect to the completion of o((Xs)sep,g) using the Brownian motion law R, where the
map X, : Q — M is the projection map X (w) = w;.

The following result is Girsanov theorem for the family (P*),cps of probability measures
on {2 that satisfy

P = / P*dPy(x) and P*({weQ:w(0)=2z})=1 forevery z € M.
M
By taking a time reversal, it would tell us something about the family (JSy)ye u, defined
in (2.4), but we will not use this until later.

Theorem 4.1 (Girsanov theorem). Let P be such that H(P|R) < oo. Then, for Py-almost
every x € M, the probability measure P* is the law of a semi-martingale and there exists
an adapted process (* € H(P*) such that

PP e MP(B+B*,A) and B*=A((*®-).
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Remark 4.2. In other words, P®-almost surely, dX; = d2" X; + dA;(¢* ® +) + vx,dLi(X),
where the P®-martingale part is equal to dI" X; = df" X, — dA;(¢* ® ).

Proof. Due to the chain rule for the entropy [I1, Theorem C.3.1]
H(PIR) = H(Py|Fo) + | H(P|R")dPy(x).

we have that H(P*|R") < oo for Py-almost every x € M.
For h € H(P?®), we would like to define the processes N" by

t
Nth:/ (he, dT°X,), 0 <t < 1. (4.3)
0

If h € H(P%) N H(R?), the process N" can be defined by (4.3). Its stochastic exponen-
tial E(N") = exp(N" — L[N" N"]) is a positive local martingale, so that it is a super-
martingale and

0 < Eg[E(N")] < 1. (4.4)

For h € H(P") NH(R"), let u be the function u : w € Q — N} — J[N" N"];. The
variational definition of the entropy, known as the Donsker-Varadhan variational formula,
implies that

Eps[u] —logEg:[e"] < H(P*|R") < +00.

Using (4.4)), we have that
Ep:[u] < H(P*|R").

Then, since Ep= “Nh7 Nh]l} = ”hH?J(Px) is finite, we have
h T | PT 1 2
Repeating the same calculation with —h and Ah for A > 0, for all h € H(P*) N H(R")
\2
A[Ep: [N]| < H(P*IR") + ZlIBlgpe. (4.5)

If [|h||g(p=y # 0, we can take A = 2H(Px|R’f)||h||§(1Pz) and obtain

[Epe [N}]| < \/2H(P7|R*) || Bl g(pe).

Letting A — oo in (4.5), this inequality remains valid if ||h|gpsy = 0. So the linear
form h +— Ep:[N]'] is continuous on H(P?) N H(R*). This set is dense in H(P%) since it
contains the dense set of stair processes

h:(t,w) €0, I]XQHZ (Xe)hilys, 1,
=1
with & € N, (h)1<i<r € R" and S; < T; < S;41 stopping times. So, h — Ep:[N}'] extends
linearly in a unique continuous way to H(P®). By Riesz representation theorem, there
exists a process (¥ € H(P*) dual to this linear form, i.e

[ arar x| = ee [ [ anaaie o).

P;U

In conclusion, under P, X is a semi-martingale with quadratic variation A and drift B +B.
O

10



BRENIER-SCHRODINGER PROBLEM ON COMPACT MANIFOLDS WITH BOUNDARY

We remark that using the classical Girsanov theory we could only have proved that, P*-
almost surely, A;((* ® ) < +00. From now on, ¢ will be identified, as a vector field, with
the drift B, = Ai(¢* ® +). We show in Section that it is the Nelson forward stochastic
velocity of P*.

Léonard’s approach to Girsanov theory also gives us an expression of the density of P*
with respect to R in terms of (*. This will be essential for the proof of Theorem [2.1

Theorem 4.3 (Density in terms of velocity). With the notation of Theorem for Py-
almost every x € M, the density of P is given by

dp* ! xr P* 1 ! (|2

e = gy e ([ (G X - 5 G as)
Sketch of the proof. The proof is divided in three parts. Firstly, we prove a change of

measure formula for stopped processes. This is the following well-known argument. We
define the sequence (oy)g>1 of stopping times by

o =1inf{t € [0,1] : A, (" ® (") > k},

where, since we are thinking on subsets of [0, 1], we use the convention that the infimum
of the empty set is 1. These stopping times localise the semi-martingale

t
Nt:/ (C*,dR X)), 0<t < 1.
0

Let R% denote the law of X.,,, when X follows the law R* and let £(N),, denote the
stochastic exponential of NV at the time o). Hence, the measure Q = E(N),, R%* is a prob-
ability measure satisfying the martingale problem MP((B + E).Agk, A./\gk). As a second
step, using the additional assumption that P is equivalent to R, we prove the theorem.
Here, the key argument is a uniqueness property satisfied by the reflected Brownian mo-
tion: R? is the unique measure in MP(B, A) absolutely continuous with respect to R”
starting from Ry. Property gives us the density of P?¢. The equivalence assumption is used
to have o — +00 R*-a.s and obtain the density of P*. We finish with a regularisation
argument. The measure PY = (1 — 2)P* 4+ 2 R” is equivalent to R” and converge to P” in
a sufficiently strong sense to obtain the result at the limit. O

Remark 4.4 (Entropy and kinetic energy). The proof of Theorem also works for P
and R instead of P* and R*. As a consequence, we would obtain that if H(P|R) < oo,
1 1
H(PIR) = H(RolRo) + SEp | [ G112 dt]

where ¢ can be seen as a forward stochastic velocity as in by using P instead of P”.
This formula for the entropy makes a parallel between the Brenier problem, as the minimi-
sation of a classical kinetic energy, and Brenier-Schriodinger problem, as the minimisation
of a stochastic kinetic energy in Nelson’s sense. The advantage of an entropy formulation
of the problem is the convex optimisation tools.

5 Proof of the Navier-Stokes equations and the con-
tinuity equation

This section will be devoted to the proof of Theorem [2.1]and Theorem [2.2] To prove Theo-
rem we will first prove its ‘forward velocity’ counterpart in Corollary . Following [3],

11
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the idea is to compare the density obtained from Theorem [4.3] and the density from the
definition of a regular solution ([2.1)). This is done in the following lemma. We recall that ¢*
is the one obtained in Theorem [l

Lemma 5.1 (Comparison of densities). Suppose that P is a regular solution of (BS).
Then, for Py-almost every x € M and for every t € [0, 1],

@ 1
(¢raf" x,) — 5 1C2||” dt = 1s(t)6; + pedt + dyp®(X,), P*-almost surely.

Proof. The idea of the proof is to compare two expressions of the density of P* with respect
to R*, the first given by Theorem and the second by the definition of a regular solution.
On the one hand, from Theorem the density is

dp* 1 )
= e ([ G g [ i) e

Then we restrict the density to F; = 0((Xu)ueo,q) by using that

ft] |
For all ¢ € [0, 1] we have

dFPg L
04 _ / aPe Xy — 7/ 212 g ) P
dR[mO’t} exXp ( <CS ’ M S 2 Jo ”Cs H S, a.s.

On the other hand, from the definition of a regular solution, we know that P has the
form (2.1)). By disintegration, for Ry-almost every = € M,

APy [dP”"
x — =R* x
dRs,, dR

dp* )
S (a(x,xo £ 000 + [ nix) dt) Reas

seS

Then, conditioning with respect to F; and using the Markov property of R*,

= =[Ep: |exp 77(:13,X1)+205(X8)+/ pr(X,) dr || F
dR[IO,t] seS T
- 0y(X, / (X,)d
exp (2 (Xs) + - (X7) 7“)
X Epe [exp <77(x,X1) + ZGS(XS) + pr( X)) dr) ]-"t]
s>t TNt1]

= exp ( Z es(Xs) + /Tﬁ[(),t] pr(Xr) dr + wf(Xt>) ) R*-a.s.

s€S,s<t

(%)

8o,

and conclude.

We confront both expressions for

12
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Theorem 5.2 (Hamiltonian equation for the potential). Assume that P is a forward reg-
ular solution of (BS|). Then, for Py-almost every x € M, the function ¥ defined by (12.2))
is a classical solution of

1
V) — - = =0y, tes, (5.1)
<v¢f<z)7yz> :07 ZG@M,
wlx:n(xv'L tzl,

which is a second-order Hamiltonian equation.
Moreover, for Py-almost every x € M,

¢ = VUi (Xy), dt @ P*-almost surely.

Proof. According to Theorem 4.1} we have d2" X, = df' X, — ¢, dt, P*-almost surely. By
Lemma [5.1] for Py-almost every z € M and for all ¢ € [0, 1],

T ].
A7 (X0) = (G5 X0) + (G = X)) dt = L(8)6,(Xo), P-almost suly.

On the other hand, since 9* is regular enough, the semi-martingale (¢*(X¢)):c[0,1) satisfies
the It6 formula. For all t € [0, 1], we have

vy (Xp) =[7 — V)(X0) + (Ver(Xe), diy X ) + (VeF(X), ¢7) dt
V(XL vy, ) AL + (;A + at) VE(X)dE Pr-as.

The Doob-Meyer decomposition of a semi-martingale allows the following identifications
using the previous equations.

G = Vyi(Xe), dt @ dP*(X)-a.s.
— Ls(1)0:(Xe) = [0f — ¢ ](Xa), dP*(X)-a.s.
1 1
SIGIE = B0 = (VU (X0).67) + (54 +01) 07X, dt@dPas
(Vibr (Xo), vx, ) Lo (Xe) =0, dL(X) ® dP*(X)-a.s.
We complete the proof by using the covering property of X under P* so that
G = Vi (Xy), dt ® dP*(X)-a.s.,
—0u(z) = [vi — ¥ ](2), teS,zeM,
1 1
(38+8) vr) + S IVU P + 1r(p() =0, tE0,D\S,z€ M,
<V¢$(z)7 Vz> =0, z € OM.

O

The function ¥* plays the role of a scalar potential of (*. The previous theorem tells us
that, in fact, the randomness for (* can be thought of as coming only from the position X;.
Recall that V denotes the covariant derivative and [J denotes the de Rham-Hodge-Laplace
operator —(dd + dd) by identifying vector fields with one-forms. Using the notation of
Section [ define the random times

1
T = 5 sup {h>0: Xy, € UXy) for every s € [0, h]}

which are strictly positive.

13
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Corollary 5.3 (Forward stochastic velocity). Suppose that P is a forward reqular solution
of (BS). Then, for Py-almost every x € M, there exists a measurable function

V0,1 x Q= TM

such that t —"v, (w) s right-continuous and has left limits for every w € Q and such that
for every t € [0,1] we have that, for P*-almost every X,

r—

1
lim B p- | X Xi | Xpo] ="00(X). (5.2)

h—0t

Let V& = Nf. Then, for Py-almost every x € M,

0y =VF(X,), P*-almost surely.

Moreover, for Py almost all x € M, the time-dependent vector field V* satisfies

1
(O + V=) V* = = OV~ 1r(O)Vp, tE€[0.D\S,
VE—VE = -V, tes,
<V$(z)v Vz> =0, z € 0M,

Vi =V (n(-,2)), t=1.

Proof. Theoremtells us that, P*-almost surely, dX; = d2" X;+(*dt+vx,dL;. Moreover,
we know by Theorem [5.2] that we may choose a version of (* that is cadlag in ¢. Applying
[t6’s formula to the logarithm log7 and taking the hmlt by using the right-continuity of ¢*
we show that the limit defining v, exists and that v (X) = ¢* = V¢#(X,). The rest
is a consequence of Theorem |5 - 5.2 by taking the gradient of and using that (dd + 0d)
commutes with the exterior derivative d. O

Now we are ready to give the proof of Theorem

Proof of Theorem [2.1. There is a strong link between zvj, the forward stochastic velocity
obtained in Corollary [5.3, and the backward stochastic velocity to be obtained here. This
is achieved through the time reversal transformation. Let rev : 2 — €2 be the time reversal
transformation defined by rev(w); = wy_;. Let P* = rev, P be the pushforward of P by the
map rev. Then, the limit defining the forward stochastic velocity is related to the sought
limit for the backward stochastic velocity by

A AP*
vy =—"v,_, orev, (5.3)

P~
where v denotes the forward stochastic velocity associated to P*. We just need to
notice that P* satisfy the requirements of Corollary Since the reference measure R is
reversible, we have rev, R = R so that ({2.1]) becomes

4P () = exp (i (%0, X0) + 32 02060 + [ piCx0 ) ance),
SES*

where n*(x,y) = n(y,z), S* = {1—s:5€ 8}, 0 =0, T"={1l—t:teT}

and pf = p;_;. The function ¢ from (2.2 for P* equals the function ¢ from (2.3) for P or,

more precisely,

©i(2) = log Egy

SES* 5>t TNJE1]

exp (n*(y,Xl) + > 60X+ pr(X,) dr) | X = z] :

14
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We may conclude by Corollary and ([5.3)).
O

Now we give the proof of Theorem 2.2 Notice that we will not use the regularity of
the solution. In particular, there are no 7, p and 6 involved.

Proof of Theorem[2.9. Let f € C*°(M), and 0 < ¢ < 1. On one hand, we have that
P(f) = Ep[f(Xy)]
= | Ep[f(X0)dR(a)

:/ Epz{ (2) +/t df,””z?s>ds+;/OtAf(Xs)ds+/Ot<df,yxs>dLs] dPy(z)
— Ry(f +/ (dfv +;Af> ds +Ep /;(df,uxs)dLs}.

On the other hand, for Pj-almost every y € M, under the reversed law PY*, X is a semi-

_p* L~ N
martingale with drift %0 dt + vdL* where the relation between v’ and v is given by (/5.3])
and Ly(X) = Lj_,(X*) for all t € [0, 1], where X* = rev(X). We have

Epy-[f(X1- t)]
1—t 1—t 1—t

= Epe |7 +/ (Wdf, % (X)) ds + = / Af(X ds+/ <df,yxs>dL;(X)}
0
1

B |f +/ Wan ds+f/ Af X*)ds+/ <df,yXS>dL’;_s(X)}
t
1

e [f) - [ar e as e [ A s+ gz xe)].

Hence, by disintegration along P;, we have that

P(f) = Ep[f(X14)]
:/ Epu[f(X1-¢)] dPi(y)

_ P +/ ( Ty (X)) + Af)dHEPUtl(df,uXS)dLs].

Before differentiating, we need to show that the terms with local time are regular enough.
For € > 0, we denote 0° M the e-tubular neighbourhood of M. We have

1 t
/(df vx.) dLs —hm—/ (Af, vx ) x.coe s ds.

e—0 2¢

Then, we obtain

Ep [ / (df, vx. dL} / lim 2Ep [(df, vy ) Lx,con] ds
0

e—0 g

hm P((df, V) lgenr) ds

0 e=0¢

"2
:5/0 Bs df71/>)7

where P, denotes the normalised surface measure associated to P,. It follows that, for
all t € [0, 1],

OP(f) = P((Vy,df) + ;Af) + Py((v,df)) = P(vs,df) - *Af) Py((v,df)). (54)

Since P is a satisfies P, = p; for every t € T, the proof is complete. O
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6 Proof of the existence on homogeneous spaces

In this section we prove Theorem The proof is inspired by [3] which is, in turn, inspired
by [10]. The idea is to find a path measure @ of finite relative entropy and satisfying the
marginal conditions. The candidate for such a measure is

Q= [ RCIXo=, X1z = 2 X1 = y) o(dadzdy) (6.1)

with o(dzdzdy) = w(dzdy)vol(dz) belongs to P(M?3). Tt extends the result in [3] of
existence on the torus, using the same property of invariance of the Brownian motion and
the Riemannian volume, under isometries.

Proposition 6.1 (Constraints and entropy). The path measure Q) satisfies the marginal
and endpoint constraints

P, =wvol,Vt € [0,1] and Py =m.
In addition, if H(m|vol ® vol) < oo then H(Q|R) < 0.
Proof. First, remark that, since R is a Markov measure, we have

R('|Xo = $7X1/2 =z,X1= y) = R(X[o,l/Q] : |X0 = $,X1/2 = Z)
X R(X[l/Q,l] c "Xl/g = Z,Xl = y)

Now, let us check the endpoint constraints. For measurable subsets A and B of M,

Qu(Ax B)=Q(Xo€ A, X, € B)
= / R(Xo € AlXy =2,X1)2 = 2)R(Xy € B| X1/ = 2, X, = y) o(dwvdzdy)

= [ 1a@)1s(y) o(drdzdy)
=0(Ax M x B)
=m(A X B).

So Qo1 = 7. Then, we prove that @), is invariant under isometries for all ¢. Let ¢ € [0, 1/2]
and let f be a bounded measurable function on M. We have

/ fdQy = / Er [f(Xt) ‘XO =x,X12 = Z} o(dzdzdy)
M M3
= /M2 Er {f(Xt) ‘XO =2, X0 = Z} vol(dx)vol(dz).

For every isometry g of M, using the invariance in law of the Brownian motion and the
invariance of the Riemannian volume measure under isometry, we have that

/Mf 0gdQ: = / Er {f o g(Xy) ‘Xo =x,X1) = z} vol(dz)vol(dz)
= Xt) ‘Xo =g(x), X1)2 = g(z)} vol(dz)vol(dz)

= Xt) ‘Xo =, X0 = z} vol(dx)vol(dz)
= / fdQy.
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Since wvol is the unique probability measure on M that is invariant under isometries (see,
for instance, [I3 Proposition 476C]), we obtain @); = vol. The result is obtained, mutatis
mutandis, for ¢ € [1/2,1]. Then, @) satisfies the marginal constraint.

We have now to prove that H(Q|R) < co. Denote

Qo1 =Q(Xo €, X1p€-, X1 €)

and Q™Y = Q(-|Xo = z,X1/2 = 2, X1 = y), and similarly for R. We have, by using the
chain rule for the entropy [11, Theorem C.3.1],

H(Q|R) = H(Qo,1/2,1|Ro1/2,1) + /M3 H(Q™Y|R™) Qo1 /2,1 (dzdzdy)
— H(0|Ro1/21)
— H(001|Ro1) + /M2 H(o™|RY,) 01 (ddy)

H

(nlFor) + | H(vol|R}}y) n(drdy).

where Rgfz/’z is the law at time ¢ = 1/2 of the Brownian bridge between z at time ¢ = 0
and y at time t = 1. By definition of the relative entropy, we have

. dwol
H(vol|[R{%,) = /M log (dRm;,) vol(dz).
1/2

We denote by p the heat kernel on M. We have

dR;% ( _ p1/2($= Z)p1/2(27 y)
dvol pi(z,y) ‘

This quantity is continuous in z, y and z. As M is compact, the density can be bounded
uniformly in the three variables. So the relative entropy H(Q|R) is finite if and only
if H(m|Ro1) is finite which, since the density of Ry; with respect to vol ® vol is continuous
and strictly positive, is equivalent to H (7|vol ® vol) < 0. O

The homogeneity of M seems to be important to show that, at a fixed time, the law of
the Brownian bridge between two independent uniformly distributed random variables is
the uniform measure vol. It is not clear and it would be interesting to understand if this
holds or not on a non-homogeneous space.

Proof of Theorem[3.1 By Proposition [6.1] if the entropy of 7 is finite, there exists a mea-
sure () that satisfies the constraints of the problem and has finite entropy with respect
to H. We conclude by the strict convexity of the entropy and the convex constraints.

On the other hand, if @) is the unique solution then, in particular, ()g; has finite entropy
with respect to Ry;. Since Ry, has a continuous and strictly positive density with respect
to vol ® vol, we also have that H(Qo|vol ® vol) < oo. O

7 Proof of the existence for quotient spaces

The goal of this section is to prove Theorem |[3.5/and to give some examples of the existence
of solutions to the Brenier-Schrodinger problem. Theorem |3.5| describes a relation between
the Brenier-Schrodinger problem on compact Riemannian manifolds and on some quotients

17
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S

==

Figure 1: A path in the torus. Figure 2: The projected path in the rectangle.

of these. For instance, we want to see the n-hypercube as a quotient of a flat n-dimensional
torus (see Figure (1| and [2| where the reflections are along the dotted lines) or a positively
curved n-ball as a quotient of the n-sphere.

We begin by giving a proof of the existence of the Riemannian structure on a quotient
by a reflection group. This is similar to what happens on R"™ where the theory of reflection
groups is well-known (see, for instance, [16]).

Proof of Lemma (3.4 The topological structure of N = M/G is induced by the quotient
map q: M — N. Given a reflection group G, we shall make of N a manifold with corners
in the following way. Let y € N and take any x € M with ¢(x) = v.

If G, = {e} then there exists an open neighborhood V' of z such that gV NhV =0
for every g # h in G. Since ¢ is open and ¢|y is injective and continuous we have
that q|y : V' — ¢(V) is an homeomorphism and we can assume that (by taking a smaller V'
if necessary) V' is diffeomorphic to an open subset of (0,00)". This gives an atlas to the
open set of points that can be written as ¢(z) with G, = {e}. We can even define a metric
on this open set with the help of these ¢|y .

If G, # {e} we consider the exponential map

exp,  WCT,M—=V CM

on an open neighborhood W of 0 € T,M invariant under G, such that exp,|w is a
diffeomorphism onto its image V. Moreover, by choosing V' small enough we assume
that gV NV =0 for every g ¢ G,. Since

gexp,(w) = exp,(dg,w) (7.1)

for g € G, and w € T, M, the open set V is invariant under G,. Equation (7.1)) tells us
that the action of G, on W (as G, ) is isomorphic to the action of G, on V. Then, we only
need to understand

W/G,.

But, since G, is a reflection group, we know that 7, M /G, can be identified with a par-
ticular fundamental domain of the action of G, on 7T,M, called closed chamber (see [16,
Section 1.12]), and, in particular, it has a structure of a manifold with corners so that W/G,
inherits this structure. Using exp, we have given to the open set V/G, ~ ¢(V') the struc-
ture of a manifold with corners. In fact, if C C T,M is a closed chamber, we have
identified exp,(C' N W) with ¢(V). The latter identification gives a Riemannian metric
to (V') which is completely characterised by the isometric properties required for q.

O

We will also need the following standard lemma whose proof we recall.
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Lemma 7.1 (Fundamental domain). Let G be a finite group of isometries of M. Then,
there exists an open subset V of M such that

o« gVNAV =0 for every g # h in G and

geG

-vol(]\/[ UgV):O.

Proof. Let x € M such G, = {e} and define the set
V={yeM:VgecG\{e} d(z,y) <d(gr,y)},

where d is the distance function on the Riemannian manifold M. Since G is a group of
isometries we have that

h ={y e M : Vg e G\{h}, d(hz,y) <d(gz,y)}.
We only need to see that, for £ # ¢ in M,

vol {y € M : d(&,y) = d((,y)} = 0.

This is true since the map y — d(§,y) — d((, y) is smooth and regular outside the cutlocus
of £ and ( and since every cutlocus has vol-measure zero.
]

Notice that, in particular, for every g € G and = € gV the group G, contains only the
identity so that ¢|,v is an isometry onto its image. There is an intuitive relation between
a Brownian motion on M and on its quotient by a reflection group.

Lemma 7.2 (Brownian motion under quotients). Suppose that G is a reflection group of
isometries of M. Let {B}}i>0 be a Brownian motion on M starting at x € M. Then
{q(B}) }1>0 does not touch the corner points almost surely and

{q(Bf) }1>0 is a reflected Brownian motion on M/G.

Proof. The fact that ¢(By) does not touch the corner points is a result of the following
facts. The set ¢~ '(CN) is a finite union of submanifolds of dimension less or equal than n—2
and the Brownian motion By almost surely does not touch submanifolds of dimension less
or equal than n — 2.

Now, for every € > 0, we consider the e-neighborhood of the corner points,

N.={x € N: d(x,y) <e for somey € CN}.

Let f: N — R be a smooth map such that df,v, = 0 at every regular boundary point x
and consider

F=foq
which can be seen to be C? on M \ ¢ '(CN). Let ¢ > 0 and let F* : M — R be a C?
function on M that coincide with F outside of NV.. Then,

t
Fe(BY) — /o AF¢(BY)ds is a martingale
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with respect to the filtration (Bf),c( so that, if

T.=inf{t>0: Bf € ¢ " (M)},

we have that AT
F(Bi\r.) — /0 AF(BY)ds is also a martingale.

By using that
AF = (Af)oq

we have proved that

tAT:

fla(Binr.)) — /0 Af(q(BY))ds is a martingale

with respect to the filtration given by G; = o/((B{)¢(o4)- In particular, since it is adapted to
the filtration given by F; = o((q(BY)) o) and since F; C Gy, it is also a martingale with
respect to this filtration. Finally, since ¢(B}) does not touch CN, we can see that T, 1 oo
as € | 0 which completes the proof.

O

In the rest of this section and for notational simplicity we denote by o, instead of vol, the
normalised volume measure on M, and by &, the normalised volume measure on N = M/G.
Let R be the law of the Brownian motion on M whose initial position has law o and let R
be the law of the reflected Brownian motion on N whose initial position has law 6. We
have the following result.

Lemma 7.3 (Image of the reversible Wiener measure). Denote by q(R) the image measure
of R by the map induced by q from C([0,1], M) to C([0,1], N). Then,

q(R) = R.

Proof. By Lemma 7.2 g(R) is the law of the Brownian motion on N whose initial position
is distributed according to g,o, the image measure of ¢ by ¢. It is enough, then, to notice
that ¢,c = 6. By Lemma , 0 =Y ,eG 0lgv, so that

0.0 = . (Z 0\gv) = g (olgv)-

geG geqG

We have that
7 (q(M \ Ugea gV))=0. (7.2)

since the measure of AN is zero and, on the complement of ¢~ !(ON), the map ¢ is smooth
so that the image of a set of measure zero has also measure zero. Since ¢|,1 is an isometry
onto its image we have that

¢« (0]yv) = volume measure on N,
where we have used ((7.2)) which says that 6 (N \ ¢(¢gV)) = 0. We obtain
¢.0 = card(G) (volume measure on N)

which, after normalising, concludes the proof. O
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We are ready to give the proof of Theorem [3.5

Proof of Theorem[3.5. As in the previous lemma, we use the notation o, instead of vol, for
the normalised volume measure on M, and denote by &, the normalised volume measure
on N =M/G.

Let us prove the first assertion of Theorem [3.5] Let @ be a probability measure
on C([0,1], M) such that Qo = 7, Q; = o for every ¢t € [0,1] and H(Q|R) < oo. We

need to find a probability measure Q on C([0,1], N) such that Qqy = (¢ X q).7, Qy = & for
every t € [0,1] and H(Q|R) < co. Notice that

H(q(Q)|q(R)) < H(Q|R) < .

Since ¢(()) satisfies the marginal assumptions and since q(R) = R, the proof is completed
by taking @ = q(Q).

Now, to prove the second assertion we need to write 7 as ¢,m for some nice 7. For
this, we shall use Lemma . Since H(7|Rg1) < oo we have that H(#]|6 ® §) < co. In
particular, 7 gives measure zero to N X N\ ¢(U) x ¢(U). For every (g,h) € G x G, consider
the map

(qlgv % qla) ™" q(U) x q(U) = gU x hU
and consider the measure
Ton = (algv X qlpw)] ' 7
which satisfies
(q X Q)*ﬂ—g,h =,

Nevertheless, it does not satisfy the marginal conditions. Notice that, if

agn = (qlgu ¥ qth)*_l (6x6) and o,= (q|gU)*_1 o

then
2
agh = |GI" (0 X 0) |guxpy  and oy = |G|o|e.
Moreover, the first marginal of 7, is 0, and its second marginal is 0. Then, if we define

1
"I e

(g,h)EGXG

™

we may notice that the first and second marginals of 7 are o and that
(g X q)sm = T.
We can also find its entropy by integrating and obtain that
H(rlo®o)=H(7|o ® ).

Since H(m|o ® o) < oo if and only if H(m|Ry) < oo and H(7|¢ ® &) < oo if and only
if H(7|Rp1) < oo we may conclude.
[

We consider now some simple examples of quotient spaces where Theorem holds.
Almost all of these will be quotients of the flat two-dimensional torus which we define now.
Let u and v be two linearly independent vectors of R?. We will denote by T, the manifold

Tu. = R*/{au+bv:a,b € Z}

endowed with the Riemannian metric induced by R?. We begin by describing two examples
that are actual two-dimensional manifolds with boundary (without corners).
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Example 7.4 (Cylinder). Suppose that v and v are orthogonal. The map

{au+ Bv: (a,B) € [0,1*} = {au + v : (o, B) € 0,1)%}
zu+yv— zu+ (1 —yv

induces an isometry of T, , and the quotient space is isometric to the cylinder
{z € C: 27|z| = |ul|} x [0, |v]/2].
Example 7.5 (Flat Mobius strip). Suppose that |u| = |v|. The map

{au+Bv: (a,B) € 0,1*} = {au+ v : (o, B) € [0,1]%}
TU + Yv — Yyu + v

induces an isometry of T, and the quotient space is isometric to the flat Mébius strip
[0, [Ju+ vll/2] x [0, [Ju = vl| /2]/ ~

where ~ is the identification of the vertical sides in opposite directions. Figure[d shows a
representation of the torus and the considered isometry is the reflection along the dotted
diagonal. Figure [f] shows the canonical representation of the flat Mébius strip as part of
(four times) the representation of the torus.

P —

Figure 3: The Mdobius strip as a quotient. Figure 4: The Mobius strip.

The next four examples are two-dimensional manifolds with corners.

Example 7.6 (Rectangle). Suppose that u and v are orthogonal. The maps

{au+ Bv: (a, B) € 0,1} —= {au+ Bv : (o, B) € [0,1]*}
xu+yv— zu+ (1 —y)v

and

{au+Bv: (o, B) € [0,1*} — {au+ v : (o, B) € [0,1]%}
zu+yv— (1 —z)u+yv

generate a reflection group of isometries of T, ., and the quotient space is isometric to
[0, |ul/2] % [0, ]v]/2].
Example 7.7 (Isosceles right triangle). A 45° right triangle can be seen as a quotient of

a square by a reflection along its diagonal. Using the previous example, we can also see it
as a quotient of a torus (see Figure @

22



BRENIER-SCHRODINGER PROBLEM ON COMPACT MANIFOLDS WITH BOUNDARY

_:

Figure 5: A rectangle as a quotient of the torus.

S

.:

Figure 6: A 45° triangle rectangle as a quotient.

Example 7.8 (Equilateral triangle). If 2u - v = ||lul|||v||, the torus T, can be seen as
a quotient of an hexagon identifying opposite sides as in Figure []. Then, if we consider
the group generated by the reflections along the dotted lines in Figure [] we can obtain an
equilateral triangle as a quotient space.

Example 7.9 (60° right triangle). A 60° right triangle can be seen as a quotient of the
equilateral triangle by a reflection. Using the previous example we can see it also as a
quotient of a torus.

Finally, as n-dimensional cases we consider the following examples.

Example 7.10 (n-hyperrectangle). Let ay,...,a, > 0 and let uy,...,u, be orthogonal
vectors in R™ such that ||u;]| = a; for any i € {1,...,n}. We may consider the flat n-
dimensional torus

T =R"/{myuy + - - + mpu, : my,...,my, € Z}

and the group generated by the reflections induced by the family (indexed by i € {1,...,n})
of maps

{aqur + -+ apuy s a; €[0,1]} = {aquy + - - + apuy, - oy € [0,1]}

n
Z Tl > Z zrug + (1 — x)u;.
k=1 ki

The quotient of T™ by this group is a n — hyperrectangle with lengths a,/2, ..., a,/2.
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Figure 7: An equilateral triangle as a quotient of the torus.

Example 7.11 (Curved n-ball). Consider the n-dimensional sphere
S" ={(21,...,Tpp1) ER™ |2 P+ + |2 [P = 1}
The quotient of S™ by the map
S — 8"
(1, ooy Ty Tpgr) > (T1y 0oy Ty —Tg1)

1s a curved n-ball.

8 Proof of the existence for the Gaussian case

We consider the following path measure
Q = /]u3 R(‘XO =, X1/2 =z, Xl — y) W(dxdy)'}/l/z;(dZ),

where 7,2 denotes the density of A(0,0?1id). This measure is the analogue of (6.1]).

Proposition 8.1 (Constraints and entropy: Gaussian case). The measure Q) satisfies the
endpoints and marginal constraints Qo1 = © and Q; = N(0,1/41d) for every t € [0,1]. If
H(m|Ro1) < oo then H(Q|R) < occ.

Proof. The steps and arguments of the proof are the same as in Section [6] Firstly, as in
the proof of Proposition [6.1] the endpoint condition Qo = 7 is obviously satisfied. Then,
for t € [0,1/2], we have

Qr = /M2 Ry(+|Xo = 2, X1/2 = 2) 11/4(dx)y1/4(d2)

where R (/| Xo = ,Xy/2 = %) is the law, at time ¢ of a Brownian bridge on [0, 1/2]
between z and z. It is a normal distribution N ((1 — 2t)x + 2tz,¢(1 — 2t)). So Q; is a
normal distribution and we have that

(1 —2t)Y +2tZ +\Jt(1 = 2)W ~ @,
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where Y, Z ~ N(0,1/4id) and W ~ N(0,id) are independent random variables. It follows

that @, = N(0,1/4id) for all ¢t € [0,1/2] and for all ¢ € [0, 1] with the same argument.

It remain to verify the entropy condition. As in the symmetric space case, we have

H(Q|R) = H(x|Ro)) + /M H(yayal R2Y) m(dvdy).

Using the heat kernel in M, we have :

]
de/Q ) = 62<Z’x+y)_%‘$_y‘2,
d’Yl/4
And then, the entropy is
. 1
H(71/4]R1}’2) = §|$ - y|2

So we have that
HQIR) < HixlRo) + [ Loyl n(dedy)
< H(xlRo) + [ (@® +y?) n(dady)
< H(r|Ro) + z/M 2 71 4(d)
< Hm|Ro)) + 5

which completes the proof

]

Proof of Theorem[3.6. It follows the proof of Theorem but now using Proposition

instead of Proposition
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