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Abstract (word count 247) 

Background/Aims: The NKG2D system is a potent immunosurveillance mechanism 

in cancer based on recognition of the NKG2D ligands expressed on tumour cells by 

activating receptor natural killer group 2, member D (NKG2D) on immune cells. Here, 

we evaluated the expression of NKG2D ligands in HCC, in both humans and mice, 

taking the genomic features of HCC tumours into account. 

Methods: The expression of NKG2D ligands (MICA, MICB, ULBP1 and ULBP2) was 

analysed in large human HCC datasets by Fluidigm TaqMan and RNAseq methods, 

and in two mouse models (mRNA and protein levels) reproducing the features of both 

major groups of human tumours. 

Results: We provide compelling evidence that expression of the MICA and MICB 

ligands in human HCC is associated with tumour aggressiveness and poor patient 

outcome. We also found that the expression of ULBP1 and ULBP2 was associated 

with poor patient outcome, and was downregulated in CTNNB1-mutated HCCs 

displaying low levels of inflammation and associated with a better prognosis. We also 

found an inverse correlation between ULBP1/2 expression levels and the expression 

of β-catenin target genes in HCC patients, suggesting a role for β-catenin signalling 

in inhibiting expression. We showed in HCC mouse models that β-catenin signalling 

downregulated the expression of Rae-1 NKG2D ligands, orthologs of ULBPs, through 

TCF4 binding. 

Conclusions: We demonstrate that the expression of NKG2D ligands is associated 

with aggressive liver tumorigenesis and that the downregulation of these ligands by 

β-catenin signalling may account for the less aggressive phenotype of CTNNB1-

mutated HCC tumours. 
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Lay summary 

The NKG2D system is a potent immunosurveillance mechanism in cancer. The 

expression of NKG2D ligands has been little investigated in HCC. We show here, in a 

large cohort of HCC patients and dedicated HCC mouse model, that the expression 

of NKG2D ligands is associated with aggressive tumorigenesis and downregulated in 

CTNNB1-mutated HCC. We also show that β-catenin signalling downregulates 

NKG2D ligands in mice. 

 

Highlights 

● The expression of MICA and MICB is associated with HCC tumour 

aggressiveness and poor patient outcome. 

● The expression of ULBP1 and ULBP2 is associated with poor patient outcome 

and is downregulated in CTNNB1-mutated HCC and inversely correlated with 

the level of β-catenin target gene expression. 

● Expression of the mouse Rae-1 NKG2D ligand is regulated by β-catenin 

signalling via TCF4 in hepatocytes. 

● The expression of KLRK1 (NKG2D) and ULBP1 is associated with immune 

cell signatures in HCC. 

● Low levels of NKG2D ligand expression in CTNNB1-mutated HCC may 

account for the less inflamed and less aggressive phenotype of these tumours. 
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Introduction 

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death 

and the fifth most common cancer worldwide (1). It is responsible for approximately 

800,000 deaths each year. About 90% of HCCs develop in a background of chronic 

liver disease of various degrees of severity, the induction of fibrosis and/or 

subsequent cirrhosis (2). Nevertheless, in <10% of cases, HCC develops in a healthy 

liver (3,4). The most common risk factors for HCC are infections with hepatotropic 

viruses (HBV, HCV), alcohol consumption, aflatoxin B1 exposure, haemochromatosis 

and metabolic syndrome, which is frequently seen in patients with diabetes and/or 

obesity (4). Cirrhosis, the final stage of chronic liver disease, remains the main risk 

factor for HCC development in Western countries (5). Our understanding of HCC 

pathogenesis has increased steadily over the last 20 years. Functional genomics 

studies have recently provided an accurate picture of the landscape of genetic 

alterations and identified the core pathways deregulated in HCC (6). The most 

prevalent mutations after those of the TERT promoter concern TP53 and CTNNB1 

(5,7) defining two major groups of tumours with specific features. TP53-mutated 

HCCs are aggressive proliferating tumours with high levels of inflammation (hot 

tumours) and genomic instability. Conversely, HCCs with activating mutations of 

CTNNB1 (CTNNB1-mutated HCCs) have a less severe phenotype associated with a 

favourable prognosis and low levels of proliferation and inflammation (cold tumours). 

Treatment options for HCC remain very limited. Most involve multi-targeted tyrosine 

kinase inhibitors, providing little survival benefit over best supportive care (8). The 

major role of the immune system in controlling tumour growth and metastasis 

provides the basis for most cancer immunotherapies. Immune checkpoint blockade, 

based on inhibitors of PD-1 and/or CTLA-4, is considered an exciting perspective for 
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HCC treatment (for review(9)). However, only 25% of HCCs are eligible for 

immunotherapy, as they express markers of an inflammatory response (10). Recent 

findings suggest that CTNNB1-mutated HCCs displaying β-catenin activation are 

associated with immune escape and resistance to anti-PD-1 therapy (11,12). New 

therapeutic strategies based on our understanding of the tumour and its relationship 

with its immune microenvironment are, therefore, urgently required to improve HCC 

treatment. 

With regards to cancer surveillance, the NKG2D-ligand/NKG2D pathway has been 

the subject of intense research in cancer, infection and autoimmunity (13). The 

activating receptor NKG2D, which was discovered more than two decades ago, 

initially on the surface of NK cells, has proved to be a critical player in the immune 

surveillance of cancer. The NKG2D-dependent elimination of tumour cells expressing 

at least one cognate ligand is well documented in both in vitro (14–17) and in vivo 

models of transplanted tumours (18–21). The induction and upregulation of NKG2D 

ligands result from various stress signals, including infection, DNA damage, heat 

shock and hyperproliferation (22,23).  

The expression of NKG2D ligands has been observed in various human cancers. 

These ligands are cell surface proteins structurally related to the major 

histocompatibility complex (MHC). In humans, the two most studied NKG2D ligands 

are MHC class-I-related chain A and B, the MICA and MICB proteins, and the six, 

less studied, unique long 16 (UL-16)-binding proteins (ULBP1-6) (24). Their 

counterparts in mice are the retinoic acid early inducible gene-1 Rae-1〈-∑ 

(orthologous to ULBPs), minor histocompatibility H60a-c and murine UL16-binding 

protein-like transcript (MULT1) proteins. In humans, variable levels of MICA, MICB 

and ULBP1-3 ligand expression have been observed in haematopoietic 
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malignancies, including acute and chronic leukaemias (of lymphoid and myeloid 

origin) (25), and in solid tumours (26–30). Ligand expression is heterogeneous 

between cancer types and individuals. Several studies have highlighted the 

paradoxical relationship between ligand expression and patient outcome. Briefly, high 

levels of cell-surface ligand expression are associated with better disease-free 

survival in colorectal (31), cervical (32) and nasopharyngeal carcinomas (33), but 

with poor prognosis in breast (34), lung (35) and ovarian cancers (36). The 

expression of NKG2D ligands in HCC remains insufficiently explored, as conflicting 

data have been obtained concerning the potentially beneficial or deleterious role of 

NKG2D in HCC(13). 

In this study, we investigated the expression of the NKG2D ligand genes MICA/B and 

ULBP1/2 in a large human HCC dataset and in two mouse models reproducing the 

features of both types of human tumours. 

 

Methods 

Patients and tumour material 

Human liver samples: A series of 354 liver tumour samples, including 10 early 

HCCs, 337 HCCs and seven malignant transformations of HCA (hepatocellular 

adenoma) into HCC (HCC on HCA), were collected from 325 patients treated 

surgically in Europe. The study was approved by the appropriate institutional review 

boards (CCPRB Paris Saint-Louis, 1997, 2004 and 2010, approval number 01-037; 

Bordeaux, 2010-A00498-31) and all patients gave informed consent in accordance 

with French law. All samples were immediately frozen in liquid nitrogen and stored at 

−80 °C. Clinical data, biological and histological parameters are described in the 

supplemental material.  
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Quantitative RT-PCR and RNA-sequencing 

We assessed mRNA levels by quantitative RT-PCR on 354 HCC samples. We 

reverse transcribed 500 ng of total RNA with the High-Capacity Transcription Kit (Life 

Technologies) and assessed gene expression in predesigned TaqMan assays 

(MICA: Hs00741286_m1; MICB: Hs00792952_m1; ATM: Hs01112326_m1; ATR: 

Hs00354807_m1; Life Technologies) on Fluidigm 96 dynamic arrays with the Bio-

Mark Real-Time PCR system. Expression levels (Ct values) were assessed with 

Fluidigm Real-Time PCR Analysis software (4.1.3) and gene expression data were 

expressed by the 2-∆∆Ct method, relative to ribosomal 18S (R18S) and the 

expression level of the corresponding gene in five normal liver samples. Published 

RNA-seq data for 200 tumours were used to evaluate ULBP1 and ULBP2 expression 

in HCC patients (see Table 2) (40,41). The sequencing data reported in this paper 

have been deposited in the EGA (European Genome-phenome Archive) database 

under accession numbers EGAS00001002879, EGAS00001001284 and 

EGAS00001003837. 

 

Mice and HCC induction 

All animal studies were approved by the Ministère de l’Enseignement Supérieur, de 

la Recherche et de l’Innovation (MESRI) and the Direction Départementale des 

Services Vétérinaires de Paris (agreement no. 75-956) and by the Mouse Facility 

Core laboratories (CRC UMRS1138). All mice (strain C57Bl6J) were kept in well-

controlled animal housing facilities and had free access to tap water and food pellets.  

The various HCC mouse models used here to model HCC tumorigenesis (strain 

C57Bl6J) have been described elsewhere (42). Lpk-myc+ transgenic mice, which 

express the c-myc oncogene in the liver under the control of rat L-PK regulatory 



9 

 

regions, developed HCC with Ctnnb1 mutations; we established homogeneous 

groups of these mice consisting exclusively of littermates (43). In our study, the Lpk-

myc+ model is referred to here as the β-catenin mutated HCC model. In this model, 

unlike the intestine, in which the c-myc oncogene is a crucial target of the Wnt 

signalling pathway driving tumorigenesis, studies with a combination of several 

molecular approaches (ChIP-seq, RNA-Seq) showed that c-myc was not a target of 

Wnt signalling in the liver. In this model, c-myc and β-catenin signalling co-operate to 

drive liver carcinogenesis, and all Lpk-c-myc tumours harbour Ctnnb1-activating 

mutations (43). 

Cohorts of male age-matched wild-type (WT) mice received a single intraperitoneal 

injection of diethylnitrosamine (DEN) (Sigma) (25 mg kg-1 body weight) to induce 

HCC, or PBS, at 14 days of age (44). HCC development was studied at 12 to 14 

months in Lpk-myc+ mice and mice with DEN-induced HCC.  

We also analysed Wnt/β-catenin signalling through inducible hepatocyte-specific 

inactivation of the Apc gene, in ApcΔHep (Apc flox/flox, TTR-Cre Tam) mice; the control 

mice in this case were Apc flox/flox, Cre-negative (42,45–47). This model reproduces 

the initial step of β-catenin oncogenesis and is based on tamoxifen-inducible 

hepatospecific inactivation of the tumor suppressor gene adenomatous polyposis coli 

(Apc–/–). All hepatocytes of the liver lobule display aberrant β-catenin activation after 

tamoxifen injection.  The Apc gene was inactivated by a single i.p. injection of 1.5 mg 

tamoxifen (MP Biomedicals, France) in 9- to 12-week-old mice (42,45–47).  

 

Nonparenchymal cell isolation and flow cytometry  

Livers were harvested and the nonparenchymal cell (NPC) fraction was extracted on 

a Percoll gradient, as previously described (42,47).  
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Cells were incubated with anti-CD16/CD32 antibodies (Fcγ III/II receptor, clone 

2.4G2, eBiosciences) before staining with labelled antibodies, according to the 

manufacturer’s recommendations. Cells were subjected to fluorescence-activated cell 

sorting (FACS) analysis with the following antibodies: anti-CD45/Ly5 (30-F11), anti-

TCR chain (H57-597), anti-NK1.1 (PK136), anti-CD4 (RM4-5), anti-CD8α (53-6.7) 

and anti-NKG2D (CX5) antibodies, all purchased from BD Pharmingen/Horizon or 

from eBioscience. CD1d–α-galactosylceramide–loaded (CD1d–α-GalCer-loaded) 

tetramers (APC-labelled) for the identification of invariant NKT cells were provided by 

the NIH Tetramer Core Facility, Bethesda Maryland USA.  Data were acquired with a 

Fortessa FACS flow cytometer (BD Biosciences) and analyzed with FlowJo software 

(Tree Star Inc.).  

 

Preparation of total RNA and quantitative PCR analysis 

Total RNA was extracted from mouse liver tissue or cell lines (AML12 and Hepa1.6) 

with TRIzol (Invitrogen), and 2 µg was used as a template for cDNA synthesis 

(MMLV, Life Technologies). Purified RNA was then reverse-transcribed with the 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-time PCR 

was performed with the Fast Start Quantitative PCR (q-PCR) kit with SYBR 

Luminaris Color HiGreen qPCR master mix (Thermo Fisher Scientific) and specific 

primers. The reactions were performed in 96-well plates in a LightCycler 480 

instrument (Roche) with 40 cycles. We determined the relative amounts of the 

mRNAs studied by the second-derivative maximum method, with LightCycler 480 

analysis software and normalization against 18s rRNA, used as an invariant control 

for all studies. Data are expressed as means ± standard deviation of the mean. The 

statistical significance of differences was assessed in Students t test in Prism 5.0 
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software (GraphPad Software, San Diego, CA). P values <0.05 were considered 

statistically significant. 

 

Immunohistochemistry 

Tissues were fixed by incubation in 4% formalin overnight at 4 °C, and were then 

embedded in paraffin wax. For immunohistochemistry, liver sections (5 µm) were 

deparaffinised. Antigen retrieval was performed by incubating liver sections in Tris-

based buffer (Vector Laboratories) in a microwave at 850 Watts for 20 min after 

boiling. Tissue sections were blocked by incubation with the Avidin/Biotin blocking kit 

(Vector Laboratories) for 15 min each at room temperature and with normal horse 

serum (2.5%) for 20 min at room temperature. Tissue sections were then incubated 

overnight at 4 °C with the anti-Rae1 pan-specific antibody (R&D AF1136) at a 

concentration of 10 µg/mL or with antibodies directed against glutamine synthase 

(BD Transduction Laboratories, clone 6, 1/400). Endogenous peroxidase was 

blocked by treating the sections with 3% hydrogen peroxide for 20 min at room 

temperature. Tissue sections were incubated with biotinylated anti-goat IgG antibody 

(1:250 dilution, Vector Laboratories, CA, USA) for 30 minutes. Specific binding was 

detected with the ABC reagent (Vector Laboratories) and DAB (Vector Laboratories) 

and the slides were counterstained with haematoxylin.  

 

TCF4 ChIP-sequencing 

The ChIP protocol was adapted from a previous study (48), as previously described 

(49). The ChIP-seq data were deposited under accession number GSE35213 in the 

Gene Expression Omnibus database. β-catenin and TCF-4 binding to the Rae 
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promoter, relative to the immunoglobulin isotype control, was assessed on the basis 

of SYBR green fluorescence, with the following oligonucleotides: FW- 

GACTTTCCACAAACGCACAA, Rev-GAAACTGCCCCGTTACCAC designed 

according to the sequence of the TCF-4 peak identified upstream from the Rae-1 

gene. 

Editing of Ctnnb1 Exon 3 with CRISPR-Cas 9 technology 

We purchased the murine hepatocyte cell line AML12 cell line from ATCC-CRL-

2254™. AML12 cells were cultured in DMEM/F-12 (1:1) + GlutaMAX, supplemented 

with 10% heat-inactivated fetal calf serum (FCS) and antibiotics. The exon 3 region of 

CTNNB1 was deleted with CRISPR-Cas9 technology, leading to an activation of 

beta-catenin signalling in the cells.  Clones with deletions of exon 3 were selected on 

puromycin and were passaged more than 10 times. Cells were harvested and 

collected for RNA extraction, as described above. 

Silencing of Ctnnb1 by a siRNA strategy in Ctnnb1-mutated Hepa1.6 cells 

Hepa 1.6 cells (ATCC, CRL-1830) harbouring Cttnb1-activating mutations were 

cultured in DMEM supplemented with 5% heat-inactivated FCS. They were plated at 

a density of 300,000 cells per well and transfected one day later with 20 nM small-

interfering RNA (siRNA) against β-catenin (QiagenSI00942039) or a control siRNA 

(Dharmacon D-001210-01-05) in the presence of Lipofectamine 2000 (Thermo Fisher 

Scientific). Molecular analyses were performed 72 h post transfection. Total RNA was 

extracted with TRIzol® reagent (Thermo Fisher Scientific), as described above.  

 

Statistical analysis 
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Data were visualized and statistical analyses were performed with PRISM software 

(GraphPad Software, Inc., La Jolla, CA) and R software version 3.5.1 (R Foundation 

for Statistical Computing, Vienna, Austria. https://www.R-project.org) with the 

Bioconductor package. Comparisons of continuous variables between two or more 

groups were performed with Mann-Whitney tests. Correlations between continuous 

variables were assessed by Pearson’s correlation tests if both variables were 

normally distributed and the assumptions of linearity and homoscedasticity were 

respected, or by Spearman's rank correlation tests. All tests were two-tailed and P-

values < 0.05 were considered significant. 
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Results 

The expression of the NKG2D ligands, MICA and MICB, in human HCC is 

associated with tumour aggressiveness and poor patient outcome 

We investigated the possible association of MICA and MICB expression with specific 

clinical features of HCC, by RT-qPCR analyses assessing the expression of these 

genes in 354 patient samples (37). We first determined the expression levels of these 

genes by diagnosis, as follows: early HCC (N=10), HCC emerging from HCA (HCC 

on HCA; N=7) and HCC (N=337), with normal liver (NL) samples (N=5) as a control 

(Fig. 1A). We found that both MICA and MICB were significantly more strongly 

expressed in early HCC and HCC/HCA than in NL (N=5). Moreover, both MICA and 

MICB were more strongly expressed in HCC than in early HCC and HCC on HCA 

(Fig. 1A). We also checked that the levels of expression of the MICA and MICB were 

were positively correlated (R=0.677, p<0.0001) suggesting that these two genes 

located in the HLA class I region of chromosome 6 are co-induced during liver 

tumorigenesis (Fig. S1A). We then evaluated the expression of MICA and MICB in 

HCC as a function of Edmondson-Steiner grade criteria, distinguishing four specific 

liver cancer stages and depicting tumour cell differentiation. We found that the 

expression of both MICA and MICB was positively associated with tumour grade and 

low levels of differentiation (Fig. 1B, Fig. S1B). These ligands are known to be 

regulated principally at the transcriptional level (23). 

Finally, we used a five-gene molecular score to predict the outcome of patients with 

HCC (50), identifying two groups of HCC: P1, corresponding to HCC with a good 

prognosis and P2, corresponding to HCC associated with bad prognosis and early 

tumour recurrence. Interestingly, HCC patients with poor outcomes displayed the 

highest levels of expression of both MICA and MICB (Fig. 1C).  
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Collectively, our data show that the expression of the NKG2D ligands MICA and 

MICB in human HCC is associated with tumour aggressiveness and poor patient 

outcome. 

 

The NKG2D ligands MICA and MICB are less strongly expressed in HCCs 

displaying chromosomal stability 

We investigated whether the expression of MICA/B was associated with specific 

genetic alterations, by evaluating MICA and MICB expression as a function of the 

molecular classification of human HCCs (51). This classification distinguishes three 

groups, G1 to G3, characterised by aggressive HCC tumours with high levels of 

chromosomal instability and TP53 mutations (51,52), and three groups, G4 to G6, 

associated with a better prognosis, chromosomal stability and a well-differentiated 

tumour phenotype. CTNNB1-mutated HCCs belong to groups G5-G6 and have no 

inflammatory infiltrates. We found that the expression levels of both MICA and MICB 

were significantly lower in HCC samples from groups G4 to G6 than in samples from 

groups G1 to G3 (Fig. 2A). 

We also studied MICA and MICB expression levels as a function of the presence or 

absence of prevalent mutations (TERT, TP53, CTNNB1) within the landscape of 

genetic alterations of HCC (5,53). We found that TP53-mutated HCCs had 

significantly higher levels of MICA/B expression than non-mutated HCCs (Fig. 2C). 

The expression of these genes did not differ significantly between HCCs with and 

without CTNNB1 or TERT mutations (Fig. 2C, Fig. S1A respectively). 

Finally, as tumours with TP53 mutations are known to display chromosomal instability 

leading to high levels of DNA damage, we investigated the relationship between the 

expression of MICA/B and expression of the ATM/ATR genes, two master regulators 
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of the DNA damage response known to regulate the expression of NKG2D ligands 

(23). 

We found a positive correlation between the levels of expression of the MICA/B and 

ATM/ATR genes (Fig. S2B). Our data show that MICA/B are more strongly 

expressed in HCCs with TP53 mutations and chromosomal instability, and that their 

expression is correlated with that of DDR-related genes. 

 

The expression of ULBP1/2 ligands in human HCCs is weaker in tumours with 

stable chromosomes than in those displaying chromosomal instability and is 

associated with CTNNB1 mutation status 

We extended our analysis to the expression of ULBP ligands, which have been little 

studied in HCC. We investigated whether the expression of ULBPs had 

characteristics in common with the expression of MICA/B, by comparing the 

expression of ULBP1 and 2 according to our previous RNAseq dataset with the 

molecular classification of human HCCs (40). As for MICA/B, we found that the 

expression levels of the ULBP1 and ULBP2 genes were correlated (R=0.49, 

p<0.0001) (Fig. S3A). Moreover, although not significant, the expression levels of 

both ULBP1 and 2 tended to be higher in HCC tumours with lower levels of 

differentiation and higher grades (Fig. S3B, C). 

Using the five-gene molecular score predicting the outcome of patients with HCC 

(50), we found that HCC patients with poor outcomes displayed the highest levels of 

expression for both ULBP1  and ULBP2 (Fig. 3A). Moreover, the level of expression 

of these genes was significantly lower in groups G4 to G6 than in HCCs displaying 

chromosomal instability (groups G1 to G3) and was lower than that in normal livers 

(Fig. S4A). An analysis of the expression of ULBP1/2 in HCC samples as a function 



17 

 

of mutational status showed that ULBP1/2 expression levels were significantly higher 

in HCCs with TP53 mutations than in HCCs without such mutations (Fig. 3B), but 

that there was no significant difference between HCCs with and without TERT 

mutations, as for MICA/B (Fig. S4B). Interestingly, ULPB1/2 expression levels were 

significantly lower in HCCs with CTNNB1 mutations, suggesting that β-catenin 

signalling may downregulate the expression of ULBP1/2 ligands (Fig. 3B). Consistent 

with these observations, we found that ULBP1 expression was inversely correlated 

with the expression levels of three positive β-catenin target genes: GLUL, LGR5 and 

TBX3 (Fig. 3C). 

Collectively, these findings indicate that the level of expression of ULBP1/2 ligands in 

human HCCs is higher in tumours with TP53 mutations and lower in those with 

CTNNB1 mutations, suggesting that β-catenin signalling downregulates the 

expression of these genes. 

 

CTNNB1-mutated HCCs in mice have low levels of NKG2D ligand expression 

We investigated the molecular mechanisms regulating the expression of NKG2D 

ligands in two mouse models of liver tumorigenesis reproducing the features of the 

two major groups of human HCCs. The diethylnitrosamine (DEN)-induced HCC 

model mimics aggressive unstable tumours displaying preferential Ras mutation and 

without Ctnnb1-activating mutations (44), whereas the Lpk-myc+ model mimics HCC 

tumours with Ctnnb1 mutations and stable chromosomes (42,43,47). We evaluated 

the level of expression of NKG2D ligands in these models. Consistent with human 

data, we found that mRNA levels for the mouse NKG2D ligands (Rae-1δ, Rae-1ε, 

human ULBP orthologs) were strongly upregulated in aggressive HCCs relative to 

control livers without tumours (Fig. 4A). However, as in human HCC, the expression 
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of these ligands was strongly downregulated in HCCs with Ctnnb1 mutations, 

suggesting a role for beta-catenin signalling in this downregulation (Fig. 4A). 

Furthermore, the NKG2D (Klrk1) receptor was significantly upregulated on 

lymphocytes (in terms of the percentage of cells expressing this receptor and the 

expression level per cell) in HCCs with Ctnnb1 mutations relative to DEN-induced 

HCCs (Fig. S5). 

 
We performed additional investigations with the Apc-KO mouse model (ApcΔHep), in 

which the beta-catenin pathway is activated in all hepatocytes (without Ctnnb1 

mutation) (42,45,46). We found that mRNA levels for NKG2D ligands (Rae-1δ, Rae-

1ε) were significantly downregulated in ApcΔHep livers relative to livers in which beta-

catenin signalling was not activated (Fig. 4B). We validated our observations at the 

protein level, by immunohistochemical staining of Rae-1 on paraffin-embedded liver 

sections. We found that Rae-1 ligands were not expressed in specific areas in which 

beta-catenin signalling was turned on (stained for glutamine synthase, a target of 

beta-catenin) in control livers (Fig. 4C). Rae-1 ligands were expressed in 

hepatocytes, except for those surrounding the pericentral vein (constitutive activation 

of beta-catenin signalling), absent from hepatocytes in which Apc was knocked out 

and in tumour hepatocytes with Ctnnb1 mutations, but expressed in HCCs without 

mutations affecting beta-catenin (DEN-induced HCC).  

Collectively, these data strongly suggest that beta-catenin signalling downregulates 

the expression of Rae-1 NKG2D ligands in hepatocytes. 

 

Beta-catenin inhibits Rae-1 NKG2D ligands by binding to TCF4 on the Rae1-

promoter 
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We investigated the molecular mechanisms of beta-catenin-mediated Rae1 

downregulation, by performing ChiP-Seq experiments on purified primary 

hepatocytes displaying beta-catenin activation (Apc-KO, ApcΔHep) and control 

hepatocytes (GSE35213) (Fig. 5A). Beta-catenin has no DNA-binding domain. The 

ChIP-seq experiment was therefore performed with an antibody against the preferred 

partner of beta-catenin in hepatocytes, TCF4 (49). The Chip-seq data showed a 

significant induction of TCF4 binding to the Rae-1 promoter region in hepatocytes 

displaying beta-catenin activation (Apc-KO mouse model, ApcΔHep) than in control 

hepatocytes (Fig. 5A). We confirmed this enrichment in TCF-4 binding upstream 

from the Rae-1 promoter by ChIP-qPCR on another panel of ApcΔHep hepatocytes 

(Fig. 5A). These molecular data demonstrate that beta-catenin directly inhibits the 

expression of Rae-1 NKG2D ligands through binding to TCF4 on the Rae-1 promoter 

in hepatocytes. 

We used two different cellular systems to confirm that Rae-1 ligand expression was a 

negative target of β-catenin signalling: a non-mutated hepatocyte cell line (αML) and 

a hepatoma cell line (Hepa1.6) harbouring activating Ctnnb1 mutations. We first 

edited exon 3 of the β-catenin gene with CRISPR-Cas9 technology in αML cells, to 

activate β-catenin signalling. A significant downregulation of Rae-1 ligands (Rae-1δ, 

Rae-1ε) was observed in β-catenin-activated αML cells relative to control αML cells, 

supporting the conclusions drawn from the ChIP-seq analysis (Fig. 5B). We then 

performed a siRNA experiment on the Hepa1.6 cell line, in which we showed that 

Rae-1δ expression was upregulated when β-catenin was silenced. 

Overall, we provide strong evidence in both humans (ULBP1/2) and mice (Rae-1) 

that the expression of NKG2D ligands is significantly weaker in HCCs with CTNNB1 
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mutations, revealing a downregulation of these NKG2D ligands by beta-catenin 

activation. 

 

Expression of the NKG2D receptor and ULBP1 is associated with the presence 

of inflammatory cells in HCC 

Given that NKG2D ligands were upregulated in aggressive inflamed HCCs and that 

ULBP1/2 was downregulated in CTNNB1-mutated HCC with low levels of 

inflammation, we investigated whether there was a relationship between the NKG2D 

system and inflammatory status in humans, as recently reported in mice (54). We 

monitored the expression of KLRK1 (NKG2D receptor) in our cohort of HCC patients. 

We found that KLRK1 was more strongly expressed in HCC samples displaying 

lymphocytic inflammation (Fig. 6A). Moreover, using MCP counter analysis to 

determine the nature of inflammatory infiltrates within the tumour microenvironment, 

we found a strong association between KLRK1 expression and  endothelial cell and 

immune population signatures (B cells, T cells, cytotoxic cells, myeloid dendritic cells, 

neutrophils and NK cells). We also found a weak association between ULBP1 

expression and these immune populations, except for NK cells. 

Thus, the expression of both the ligands and receptor of NKG2D is associated with 

immune cell signatures in liver tumours, consistent with the notion that the NKG2D 

system is intrinsically coupled to inflammation in HCC (54). 
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Discussion 

The worldwide incidence of HCC is similar to patient mortality, highlighting the poor 

prognosis of this cancer. Therapeutic options for HCC remain limited. Immunotherapy 

has yielded spectacular results for other solid tumours (breast, melanoma, prostate, 

lung), that were previously incurable (55–57). Immunotherapy strategies for HCC are 

currently being investigated, but the results have been poor (58). Original ways of 

counteracting HCC progression are, therefore, urgently needed. 

In this study, we investigated the expression of NKG2D ligands (human MICA/B, 

ULBP1/2 and murine Rae-1) in both human and mice HCCs. These ligands are 

known to be involved in tumour immunosurveillance, and this work took the genomic 

features of liver tumours into account for the first time. Our work provides compelling 

evidence to suggest that the expression of NKG2D ligands is associated with 

aggressive liver tumorigenesis and that the level of expression of these ligands is 

lower in HCCs displaying chromosomal stability (G4/G5/G6) than in those displaying 

chromosomal instability (G1/G2/G3). We also found that ULBP1/2 expression was 

specifically downregulated in HCCs with CTNNB1 mutations relative to normal liver, 

and that the level of ULBP1/2 expression was inversely correlated with the level of 

expression of β-catenin target genes. We provide clear evidence, at the molecular 

level, in mouse models, for the downregulation of Rae-1 ligands, the orthologs of 

ULBPs, by beta-catenin. We found that expression of the NKG2D receptor and the 

ULPB1 ligand was associated with the presence of immune cell signatures, 

suggesting an intricate link with the inflammation status of the HCC tumor. 

We show here, for the first time, that the level of expression of MICA/B and ULPB1/2 

is higher in HCCs associated with a poor prognosis and early tumour recurrence 

(within two years of resection) (50,59). NKG2D ligands can be shed into the 
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bloodstream, and the presence of their soluble form in patient serum samples has 

been associated with poor prognosis for other cancers (60). The levels of these 

ligands in the blood could therefore be used as a marker of disease progression for 

HCC patients. 

We show here that NKG2D ligands are more strongly expressed in group G1/G2/G3 

HCCs. These HCCs are aggressive tumours with high levels of inflammation (hot 

tumours) (6,52). Chronic inflammation in the liver creates a permissive environment 

favouring HCC development. Indeed, it underlies aggressiveness by enhancing 

cellular proliferation, angiogenesis and tumour invasiveness (61). Inflammatory 

signals in the peritumoural tissue of HCC patients have been shown to be associated 

with a poorer prognosis and tumour recurrence (62–65). 

Using the DEN-induced HCC mouse model, Sheppard et al. (13,54), provided 

genetic evidence of a deleterious role of the NKG2D system, which has sustained 

tumour-promoting effects (54). Indeed, they showed that the engagement of the 

NKG2D receptor by its cognate ligands increased the recruitment of inflammatory 

cells in the liver, increasing tumour aggressiveness (54). Our data show that the 

expression of the NKG2D receptor and ULBP1 is associated with the presence of 

inflammatory cells in human HCC tumours and with specific immune cell signatures 

corresponding to various populations, from lymphocytic to myeloid immune cells. 

In our two mouse models of HCC, the proportion of NKG2D-expressing immune cells 

and the level of NKG2D expression were higher in HCCs with Ctnnb1 mutations than 

in DEN-induced HCCs. Based on these data, and given the almost total extinction of 

NKG2D ligand expression in HCCs with Ctnnb1 mutations, we propose that immune 

cells express higher levels of NKG2D receptors at their surface to facilitate the 

sensing of very small amounts of ligands.  
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We suggest that the activation of the NKG2D system contributes to a strong 

inflammatory response, exacerbating liver tissue damage and underlying HCC 

aggressiveness and poor patient outcome. 

The immune response to NKG2D ligand expression should therefore be investigated 

further, to identify innovative targets for HCC treatment.  

HCCs with CTNNB1 mutations are characterized by an absence of inflammatory 

infiltrates (cold tumours) (10,11,66). Indeed, recent data for analyses of the 

immunological landscape of HCCs have highlighted the existence of a specific group 

of HCCs expressing markers of immune responses referred to as the “immune class” 

and excluding HCCs with CTNNB1 mutations (10). However, the molecular basis of 

this lack of inflammation in tumours with CTNNB1 mutations remains a matter of 

debate. Nevertheless, it has recently been shown that oncogenic beta-catenin 

activation in melanoma tumours inhibits T-cell infiltration (67). We suggest here that 

the low levels of NKG2D ligands in tumours with CTNNB1 mutations and the 

demonstration that beta-catenin signalling partly inhibits NKG2D ligands may account 

for the less inflamed and less aggressive phenotype of these tumours. 

Further studies are required to determine whether re-expressing Rae-1 ligands in 

Ctnnb1-mutated mouse HCCs could convert these cold tumours into potentially 

aggressive hot HCCs. 
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Figure legends and tables 

 

Table 1: Details of the cohort of HCC patients (354) studied in Fluidigm experiments 

(e.g. MICA/MICB). 
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Table 2: Details of the cohort of HCC patients (200) for whom RNA-sequencing data 

were available for the analysis of ULBP1 and ULBP2 expression. 

 

Fig. 1. MICA and MICB expression is upregulated during human HCC 

development and strongly associated with tumour grade. 

 

(A) The levels of mRNA for NKG2D ligands (MICA and MICB) were assessed in 

normal liver (NL) (N=5), early HCC (hepatocellular carcinoma) (N=10), HCC on HCA 

(hepatocellular adenoma) (N=7), and HCC (N=337). The fold-change (log2) in gene 

expression is presented relative to the level of expression in normal liver. The black 

lines correspond to the mean values in normal liver. The significance of differences in 

expression was assessed in Mann-Whitney tests: non-significant, ns; *P<0.05; 

***P<0.001. 

(B) The levels of mRNA for NKG2D ligands (MICA and MICB) were determined in 

HCCs classified according to Edmondson-Steiner grade. Grade I = very well 

differentiated; Grade II = moderately differentiated, Grade III = poorly differentiated; 

Grade IV = undifferentiated HCC. The fold-change (log2) in gene expression is 

presented relative to the level of expression in normal liver. The black lines 

correspond to the mean values. The significance of differences in expression was 

assessed in Mann-Whitney tests: non-significant, ns; *P<0.05; **P<0.01; ***P<0.001. 

(C) The levels of mRNA for NKG2D ligands (MICA and MICB) were determined in 

normal liver (NL) (N=5) and in HCC, with a five-gene molecular score used to predict 

the outcome of patients. P1 (N=226) and P2 (N=127). The fold-change (log2) in gene 

expression is presented relative to the level of expression in normal liver. The black 

lines correspond to the mean values. The significance of differences in expression 

was assessed in Mann-Whitney tests: non-significant, ns; *P<0.05; ***P<0.001. 

 

Fig. 2. The expression of MICA and MICB is strongly upregulated in group 

G1/G2/G3 HCCs and is weaker in group G4/G5/G6 HCCs displaying 

chromosomal stability 
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(A) The levels of mRNA for NKG2D ligands (MICA and MICB) were assessed in 

normal liver (NL) (N=5), G1/G2/G3 (N=112), and G4/G5/G6 (N=232) HCCs. The fold-

change (log2) in gene expression is presented relative to the level of expression in 

normal liver. The black lines correspond to the mean values. The significance of 

differences in expression was assessed in Mann-Whitney tests: non-significant, ns; 

**P<0.01; ***P<0.001. 

(B)  The levels of mRNA for NKG2D ligands (MICA and MICB) were assessed in 

HCCs with (N=61) and without (N=277) TP53 mutations, and in HCCs with (N=166) 

and without (N=260) CTNNB1 mutations. The fold-change (log2) in gene expression 

is presented relative to the level of expression in normal liver. The black lines 

correspond to the mean values. The significance of differences in expression was 

assessed in Mann-Whitney tests: non-significant, ns; ***P<0.001. 

 

Fig. 3. The expression of ULBP1 and ULBP2 is specifically downregulated in 

groups of HCCs with stable chromosomes. 

 

(A) The levels of mRNA for NKG2D ligands (ULBP1 and ULBP2) were assessed in 

normal liver (NL) (N=3) and in HCC, with a five-gene molecular score used to predict 

patient outcome. P1 (N=87) and P2 (N=94). The fold-change (log2) in gene 

expression is presented relative to the level of expression in normal liver. The black 

lines correspond to the mean values. The significance of differences in expression 

was assessed in Mann-Whitney tests: non-significant, ns; *P<0.05; ***P<0.001. 

(B) The levels of mRNA for NKG2D ligands (ULPB1 and ULBP2) were assessed in 

HCCs with (N=128) and without (N=72) TP53 mutations, and in HCCs with (N=60) 

and without (N=140) CTNNB1 mutations. The fold-change (log2) in gene expression 

is presented relative to the level of expression in normal liver. The black lines 

correspond to the mean values. The significance of differences in expression was 

assessed in Mann-Whitney tests: *P<0.05, **P<0.01,  ***P<0.001. 

(C) Correlation between the levels of mRNA for ULBP1 and ULBP2 and those for 

GLUL, LGR5 or TBX3 in human HCC samples (N=354). Single values were plotted 

and Pearson’s product-moment correlation coefficient was determined. Statistical 

significance was assessed in Student’s t-test. 
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Fig. 4. Expression of the Rae-1 δ and Rae-1 ε NKG2D ligands is strongly 

downregulated in HCCs displaying β-catenin activation 

 

(A) The levels of mRNA for NKG2D ligands (Rae-1 δ and ε) were assessed by real-

time RT-qPCR on DEN-induced HCC (N=9), HCCs with β-catenin mutations (N=8) 

and control liver (N=7). Gene expression was normalized against 18s rRNA for each 

sample. Data are expressed as the mean ± SEM, with significance determined in 

Mann-Whitney tests: *P<0.05; **P<0.01 ***P<0.001. 

(B) The levels of mRNA for NKG2D ligands (Rae-1 δ and ε) were assessed by real-

time RT-qPCR in ApcΔHep livers (N=14) and control liver (N=11). Gene expression 

was normalized against 18s rRNA for each sample. Data are expressed as the mean 

± SEM, with significance determined in Mann-Whitney test:  non significant, ns; 

**P<0.01. 

(C) Paraffin-embedded liver sections obtained from ApcΔHep, DEN-induced HCCs, 

HCCs with β-catenin mutations (Lpk-myc+) and control livers were stained for 

glutamine synthase (GS) and Pan-Rae-1. Scale bars: 100 μm. 

 

Fig. 5. The expression of the Rae-1 δ and Rae-1 ε NKG2D ligand genes is 

directly inhibited by β-catenin signalling 

 

(A) Genomic environment of the Rae-1 gene (UCSC Genome Browser) and ChIP-

seq peaks at the Rae-1 promoter. The crude reads for the ChIP-seq analysis of 

ApcΔHep and control livers against TCF4 (data deposited under accession number 

GSE32513 in the Gene Expression Omnibus database). qPCR was performed to 

amplify the Rae-1 promoter. The data are expressed as the mean ± SEM, with 

significance assessed in Mann-Whitney tests: **P<0.01. 

(B) The levels of mRNA for NKG2D ligands (Rae-1 δ and ε) were assessed by real-

time RT-qPCR in CRISPR-Cas9 exon 3 β-catenin-activated αML cells and CRISPR-

Cas9 rosa control αML cells. Gene expression was normalized against 18s rRNA for 

each sample. The data are expressed as the mean ± SEM, with significance 

assessed in Mann-Whitney tests: *P<0.05; **P<0.01. 
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Fig. 6. Expression of the NKG2D receptor and ULBP1 is associated with the 

presence of inflammatory cells in HCC 

 

(A) The levels of mRNA for KLRK1 were assessed in HCC tumors with (Yes; N=28) 

and without (No; N=91) lymphocytic infiltrates. The fold-change (log2) in gene 

expression is presented relative to the level of expression in normal liver. The black 

lines correspond to the mean values. The significance of differences in expression 

was assessed with Mann-Whitney tests: *P<0.05, **P<0.01, ***P<0.001. 

(B) Corrplot showing Spearman’s rank correlations between the expression levels of 

KRLK1, ULBP1, ULPB2 and those of the endothelial, B-cell, T-cell, cytotoxic cell, 

myeloid dendritic cell, neutrophil and NK cell signatures found in RT-qPCR data for 

HCC samples. Red circles indicate significant positive correlations. Blue circles 

indicate negative correlations. The intensity of the color indicates the magnitude of 

the rho correlation coefficient. P values are shown at the bottom of each cell. 

 



Figure 1

Re
la

tiv
e 

M
IC

A 
m

RN
A

le
ve

ls

Re
la

tiv
e 

M
IC

B 
m

RN
A 

le
ve

ls

-2

0

2

4

6
* ns

*

*
*

***

-4

-2

0

2

4

6

8

*

ns* ns

*

***

Re
la

tiv
e 

M
IC

A 
m

RN
A

le
ve

ls

NL
(N=5)

Early
HCC

(N=10)

HCC on 
HCA
(N=7)

Early HCC

HCC on HCA

Normal liver (NL)

Re
la

tiv
e 

M
IC

B 
m

RN
A

le
ve

ls

MICA MICB

HCC
(N=337)

HCC

NL
(N=5)

Early
HCC

(N=10)

HCC on 
HCA
(N=7)

HCC
(N=337)

-4

-2

0

2

4

6

8

**

ns* *
**

***

-4

-2

0

2

4

6

8
* ns

*

*
*

***

I
(N=25)

II
(N=138)

III
(N=155)

IV
(N=30)

I
(N=25)

II
(N=138)

III
(N=155)

IV
(N=30)

Edmonson-
Steiner grade

II

III

I

IV

A

B
MICA MICB

Patient 
outcome

P2

P1

Normal liver (NL)

Re
la

tiv
e 

M
IC

A 
m

RN
A

le
ve

ls

Re
la

tiv
e 

M
IC

B 
m

RN
A 

le
ve

ls

NL
(N=5)

P1
(N=226)

P2
(N=127)

NL
(N=5)

P1
(N=226)

P2
(N=127)

MICA MICB

-4

-2

0

2

4

6

8

*** ***
***

-2

0

2

4

6
*** ***

***

C



A

Re
la

tiv
e 

M
IC

A 
m

RN
A

le
ve

ls

NL
(N=5)

G1-G2-G3
(N=112)

G4-G5-G6
(N=232)

HCC with 
Chromosomal 
Instability
HCC with 
Chromosomal 
Stability

Normal liver (NL)

Re
la

tiv
e 

M
IC

B 
m

RN
A 

le
ve

ls

NL
(N=5)

G1-G2-G3
(N=112)

G4-G5-G6
(N=232)

MICA MICB

-4

-2

0

2

4

6

8

**

******

-2

0

2

4

6

*** ***
***

MICA MICB

Re
la

tiv
e 

M
IC

A 
m

RN
A 

le
ve

ls

Re
la

tiv
e 

M
IC

B 
m

RN
A 

le
ve

ls
Mutated

Non-mutated

NM
(N=277)

M
(N=61)

NM
(N=277)

M
(N=61)

TP53

-4

-2

0

2

4

6

8

***

-2

0

2

4

6

***

Re
la

tiv
e 

M
IC

A 
m

RN
A 

le
ve

ls

Re
la

tiv
e 

M
IC

B 
m

RN
A 

le
ve

ls

Mutated

Non-mutated

CTNNB1

NM
(N=260)

M
(N=166)

NM
(N=260)

M
(N=166)

-4

-2

0

2

4

6

8

ns

-2

0

2

4

6

ns

Figure 2

B



B

Mutated

Non-mutated

Mutated

Non-mutated

TP53

CTNNB1

ULBP1 ULBP2

NM
(N=140)

M
(N=60)

NM
(N=140)

M
(N=60)

0.0

0.5

1.0

1.5

**

0.0

0.5

1.0

1.5

2.0

2.5

*

0.0

0.5

1.0

1.5

2.0

***

0

1

2

3

***

NM
(N=128)

M
(N=72)

NM
(N=128)

M
(N=72)

UL
BP

1 
m

RN
A

le
ve

ls

UL
BP

2 
m

RN
A

le
ve

ls

UL
BP

1 
m

RN
A

le
ve

ls

UL
BP

2 
m

RN
A 

le
ve

ls

C

ULPB1

ULPB2

GLUL LGR5 TBX3

●●●

●

●
●

●

● ●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●●

● ●
●

● ●●

●

●●

●

●

●
● ●●● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

● ●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●● ● ●●●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●0.0

0.5

1.0

1.5

2 4 6 8

GLUL

U
LB

P
1

R: −0.335
P−value: 0

●
●

●

●

●
●

●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

0

1

2

2 4 6 8

GLUL

U
LB

P
2

R: −0.159
P−value: 0.045

● ●●

●

●
●

●

● ●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●●

● ●
●

● ●●

●

● ●

●

●

●
● ●● ● ●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

● ●

● ●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●● ● ● ●●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●0.0

0.5

1.0

1.5

0 1 2 3 4

LGR5

U
LB

P
1

R: −0.344
P−value: 0

●
●

●

●

●
●

●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

0

1

2

0 1 2 3 4

LGR5

U
LB

P
2

R: −0.321
P−value: 0

●●●

●

●
●

●

● ●

●

●

● ●●
●

●

●

●

●

●

●

●

●
● ●

● ●
●

●●●

●

● ●

●

●

●
●●● ● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●● ● ●●●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●0.0

0.5

1.0

1.5

0 1 2 3 4 5

TBX3

U
LB

P
1

R: −0.385
P−value: 0

●
●

●

●

●
●

●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

0

1

2

0 1 2 3 4 5

TBX3

U
LB

P
2

R: −0.18
P−value: 0.022

R: -0.335
P-value< 0.0001

R: -0.344
P-value< 0.0001

R: -0.385
P-value< 0.0001

R: -0.159
P-value: 0.045

R: -0.321
P-value< 0.0001

R: -0.18
P-value: 0.022

Figure 3

Patient 
outcome

P2

P1

Normal liver (NL)

NL
(N=3)

P1
(N=87)

P2
(N=94)

NL
(N=3)

P1
(N=87)

P2
(N=94)

ULBP1 ULBP2A

0

2

4

6

8

****

ns

ns

0

2

4

6

8

10

ns **

ns

UL
BP

1 
m

RN
A

le
ve

ls

UL
BP

2 
m

RN
A

le
ve

ls



Re
la

tiv
e 

le
ve

ls
of

 R
AE

-1
 ε

m
RN

A

Control liver
(N=7)

DEN-induced 
HCC
(N=9)

β-catenin-
mutated HCC

(N=8)

Control liver
(N=7)

DEN-induced 
HCC
(N=9)

β-catenin-
mutated HCC

(N=8)

Re
la

tiv
e 

le
ve

ls
of

 R
AE

-1
 δ

m
RN

A

DEN-induced HCC

β-catenin- mutated HCC

Control liver

0

5

10

15

*****

*

0

5

10

15

20

*

*

***

Apc KO mouse 
model

Re
la

tiv
e 

le
ve

ls
of

 R
AE

-1
 δ

m
RN

A

Re
la

tiv
e 

le
ve

ls
of

 R
AE

-1
 ε

m
RN

A

Control Liver
(N=11)

Apc KO
(N=14)

Activation of β-catenin
signalling specifically in 

all hepatocytes

0.0

0.5

1.0

1.5

2.0

2.5

**

0.0

0.5

1.0

1.5

2.0

2.5

**

Control Liver
(N=11)

Apc KO
(N=14)

A

B

C

RAE-1 δ RAE-1 ε

αG
S

αR
A

E-
1

Control Liver Apc KO β-catenin-mutated 
HCC

DEN induced HCC

Figure 4

RAE-1 δ RAE-1 ε



Control

APC-KO

Control liver Apc KO
Re

la
tiv

e 
TC

F4
 b

in
di

ng
/in

pu
t

RAE-1 
promoter

A

B In vitro validation

αML cell line

+ CRISPR-Cas9
β-catenin exon 3 excision

αML control
+ CRISPR-Cas9 rosa

β-catenin-activated 
αML

R
el

at
iv

e 
m

R
N

A
le

ve
ls

of
 R

A
E-

1 
δ

αML control β-catenin-
activated 

αML

αML control β-catenin-
activated 

αML

R
el

at
iv

e 
m

R
N

A
le

ve
ls

of
 R

A
E-

1 
ε

Figure 5

TCF4 ChIP-seq

C In vitro validation

HEPA 1.6 cell 
line

+ scramble siRNA

+ β-catenin siRNA

HEPA 1.6 
control

β-catenin-KO 
HEPA 1.6

R
el

at
iv

e 
m

R
N

A
le

ve
ls

of
 R

A
E-

1 
δ

HEPA 1.6 
control

β-catenin-KO 
HEPA 1.6



Figure 6

Spearman R 
coefficent

P= NS P= NS P= NS P= NS P= NS P= NS P= NS

P= NS P= 0.004 P= 0.004 P= 0.025 P= 0.005 P= 0.028 P= NS

P= 0.0003 P< 0.0001 P< 0.0001 P< 0.0001 P< 0.0001 P= 0.0002 P< 0.0001

A

B

No
(N=91)

Yes
(N=28)

K
LR

K
1 

m
R

N
A

le
ve

ls

KLRK1

Presence of 
lymphocytic infiltrates

Yes

No



Variables Data available Numbers (%), Median 

(Min-Max) 
Analysis per patient (n=325) 

Age (years) 

Gender (Male) 

Hepatitis B 

Hepatitis C 

High alcohol intake 

Metabolic syndrome 

Without etiology 

AFP<20 ng/mL 

324 64 (18-90) 

324 267 (82,4%) 

323 63 (19,5%) 

324 68 (21%) 

324 147 (45,4%) 

321 50 (15,6%) 

324 43 (13,3%) 

306 129 (42,2%) 

Analysis per tumor (n=354) 

Histological Diagnosis Early HCC 354 10 (2,8%) 

HCC on 

HCA 

7 (2%) 

HCC 337 (95,2%) 

Metavir score (fibrosis 

of non-tumor liver) 

F0-F1 354 114 (32,2%) 

F2-F3 86 (24,3%) 

F4 154 (43,5%) 

G1-G6 G1 353 26 (7,4%) 

G2 39 (11,1%) 

G3 47 (13,3%) 

G4 125 (35,4%) 

G5 70 (19,8%) 

G6 46 (13%) 

Edmondson III-IV 348 185 (53,2%) 

WHO Good 348 106 (30,5%) 

Medium 194 (55,7%) 

Bad 48 (13,8%) 

5-gene score Good 353 226 (64%) 

Bad 127 (36%) 

TERT promoter mutations 

CTNNB1 mutations 

TP53 mutations 

338 214 (63,3%) 

339 125 (36,9%) 

347 61 (17,6%) 

 

 



LICA-FR (n=200)
Variable	 		 n	 Total (%)

Age	(years)	 median	[min-max]	 200	 64	(18-94)
Gender	 Male	 200	 157	(79%)	

E1ology	

Alcohol	 198	 72	(36%)	
HepaDDs	B	 200	 52	(26%)	
HepaDDs	C	 198	 31	(16%)	
Metabolic	Syndrome	 196	 39	(20%)	
Without	known	eDology	 199	 25	(13%)	

Fibrosis	stage	
F1-F2	

200	
92	(46%)	

F2-F3	 45	(22.5%)	
F4	 63	(31.5%)	

Edmonson	grading	
I-II	

200	 59	(30%)	
III-IV	 139	(70%)	

G1G6	(Boyault	S.	et	al.,	Hepatology	
2007)	

G1	

197	

24	(12%)	
G2	 28	(14%)	
G3	 50	(25%)	
G4	 40	(20%)	
G5	 31	(16%)	
G6	 24	(12%)	

WHO	(differenDaDon)	
good	

177	
32	(18%)	

medium	 106	(60%)	
weak	 39	(22%)	

5	gene	score	(Nault	JC	et	al.,	
Gastroenterology	2015)		

P1	
181	 87	(48%)	

P2	 94	(52%)	
TERT	altera*ons	 Mutated	 198	 101	(51%)	
CTNNB1	altera*ons	 Mutated	 200	 60	(30%)	
TP53	gene	altera*ons	 Mutated	 200	 72	(36%)	



NKG2DL

Oncogenic StressOncogenic Stress

Chromosomal	Instability Chromosomal	Stability

p53

NKG2DL

High	Inflammation Mild Inflammation

β-catenin

HCC
Low aggressiveness

HCC
High	aggressiveness




