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Estimating Center of Mass Trajectory in Quiet Standing: a Review

Alice Nicolaï1,2 and Julien Audiffren1,2

Abstract— As falls prevalence increases with the aging of
the population, early detection of balance degradation is of
great importance for efficient prevention and treatment. This
work compares a wide range of state-of-the-art methods to
estimate the trajectory of the center of mass – a key aspect
of postural control quantification. This comparison is done
through multiple complementary metrics over a large dataset,
highlighting the pros and cons of each method as well as the key
influence of the data preprocessing. Additionally, we introduce
several improvements and parameter tunings for these methods
that increase their accuracy or reduce contextual information
requirement.

I. INTRODUCTION

Falls of older adults are considered a major public health
problem [1] due to their severe consequences [2] and their
prevalence – each year more than a third of population 65
years-old and older faces a fall [3]. Therefore, early detection
of balance deterioration is key, as prevention strategies have
shown encouraging results [4]. Since these strategies have
been shown to be more effective when targeted at vulnerable
individuals, accurate quantification of balance control has
attracted significant attention in the recent years.

Quantifying Balance: Balance is achieved through the
complex synergy of many biological systems, including the
visual, proprioceptive, vestibular and central nervous systems
[5] – and is therefore difficult to thoroughly quantify. Postural
control – defined as the capacity to stand still without falling
– is considered an important component of balance [6]
and can be tested to evaluate the risk of falling, through
observational tests or measurements (see e.g. [7]). Postural
control is generally measured by recording the displacement
of the center of pressure (CoP) – the point of application of
the ground reaction forces resultant under the feet [8] – using
a force platform [9]. The resulting signal, usually called a
statokinesigram, describes the movements of the CoP which
are assumed to be the consequences of the neuromuscular
response to control the position of the center of mass (CoM)
[10]. Following this idea, previous works have shown that
the dynamics of both the CoM and the CoP are crucial to
the quantification of postural control [11], [10], [8].

However, while the CoP may be recorded using even
the simplest force platform [12], the CoM location cannot
be directly measured [13]. Therefore, there has been an
increased interest in the recent past on methods that allow
to estimate the CoM position using only force platforms.
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Related Work: The problem of estimating the position
of the CoM during quiet standing is hardly new, and many
approximations have been proposed, the most frequently
used of which are described below.

The pioneering approach consists in the measurement of
the 3D-movements of the body with the tracking of markers
placed on different parts of the body [14]. The latter method,
referred to as the kinematic method or segmental analysis, is
often considered the gold-standard method [15], [16], [17],
[18].

However, this approach suffers from several drawbacks,
including the complexity of the kinematic protocol and
the cost of the sensors. Numerous following studies have
proposed alternative methods to estimate the position of the
CoM directly from the force platforms signals. Two main
families of CoM approximation strategies can be found in
the literature. Methods of the first family use the double
integration of the horizontal ground reaction force to derive
the CoM positions from the CoP trajectory [19], [20]. The
second family does not require the recording of horizontal
ground reaction forces – which is an interesting advantage
considering the increasing popularity of low cost force plat-
forms such as the Wii Balance Board [12] – and instead
embeds the relation between the CoP and the CoM in the
frequency domain to estimate the CoM trajectory [21], [16].

Multiple previous works have compared several of these
methods in order to find the best one [8], [13], [16]. Yet,
those studies generally compare a few of the methods in
the aforementioned families, use varying preprocessing treat-
ments of the signals and evaluate the different estimations
on small populations. Moreover, we think that several of
the parameters could be improved through an optimization
process over a large dataset.

Contributions: In this work we compare a wide range
of state-of-the-art methods designed to approximate the po-
sition of the CoM. We compare all of them to the kinematic
method, which is considered a gold standard for this task
[18]. To evaluate each method, we use an extensive collection
of metrics on a large data set with kinematic and ground
reaction forces of human balance [22] – which contains more
than 500 recordings in multiple conditions. We highlight the
pros and cons of each method and in particular we shed light
on the influence of the pretreatment of the signals, which
is key for forces-based approaches. Finally, we introduce
several improvements and parameter tunings for some of the
commonly used algorithms that either significantly increase
the approximation performance or reduce the quantity of
contextual information required (e.g. biodata).



II. MODEL AND ALGORITHMS

In this section we first describe the state of the art
approaches to estimate the CoM position and discuss the
possible improvements to these methods.

Notation: We use m(t) (resp. x(t), m̂(t)) to denote
the position of the CoM (resp. CoP, CoM approximation) in
the horizontal plane at time t. Additionally, m̃f (resp. x̃f
denotes the coefficient associated with frequency f in the
Discrete Fourier Transform (DFT) of m (resp. x). Finally,
Fh(t) represents the projection of the ground reaction force
at time t in the horizontal plane and Fv(t) denotes its vertical
component.

A. Kinematic Method (KM)

This approach uses markers that track the position of
different parts of an individual body. Each part i is considered
a rigid segment in order to deduce its own CoM mi(t). Then,
the global CoM position m(t) is computed as the weighted
average of the CoM of each body part

m(t) =
∑
i

cim
i(t)

where the ci are chosen according to [23].
This is often considered as the method of reference [15],

[16], [17], [18] since the sensors involved in the markers
tracking generally have great accuracy (≤ 0.1 mm). There-
fore, and following previous works [16], we will compare the
other methods to the kinematic technique to evaluate their
performances.

B. Force Integration (FI)

These methods derive the position of the CoM from the
double integration of its acceleration – deduced from the
horizontal ground reaction force using Newton’s second law.
Formally,

m̂(t) = m0 +

∫ t

s=0

(
ṁ0 +

∫ s

r=0

Fh(r)

M
dr

)
ds (1)

where M is the weight of the subject. Therefore it requires
the knowledge of the initial position m0 and speed ṁ0 of
the CoM. Two main techniques are used to compute those
initial conditions [13].

1) Global Second Integral (Global SI): This approach
[19] estimates the initial constants of (1) by using a rough
approximation of the CoM E(t), which is defined as:

E(t) = x(t) +
h(t)

Fz(t)
Fh(t) (2)

where h(t) is the height of the CoM at time t. m0, ṁ0 are
chosen to minimize∫

t

‖m̂(t)− E(t)‖22 dt

by using a least square regression.

2) Zero-point-to-Zero-point Double Integration (ZZDI):
One of the main difficulty of Global SI is that (2) requires
the knowledge of h(t). To circumvent this problem, an other
method to compute the initial conditions is proposed in
[20]. This approach uses the assumption that the CoM and
the CoP are at the same location on one horizontal axis if
and only if the component of the ground reaction force on
this axis equals zero. Then, the CoM position between two
such successive intersection points ti, ti+1 is computed as
the double time integration of the horizontal forces, where
the constants of integrations are chosen such that x and m̂
coincide in both ti and ti+1. It should be noted that in
this method the initial conditions change in each interval
[ti, ti+1], where (1) becomes:

m̂(t) = x(ti) +

∫ t

s=ti

(
ṁti +

∫ s

r=ti

Fh(r)

M
dr

)
ds

with

ṁti =
1

ti+1 − ti

(
x(ti+1)− x(ti)−

∫ ti+1

s=ti

∫ s

r=ti

Fh(r)

M
dr ds

)

As Fh is rarely exactly zero, we determined zero-crossings
by searching for points where the horizontal force curve
switches from negative to positive values as proposed in [20].

C. Frequency-Based Estimation (FBE)

This family of methods relies on the relation between the
CoP and the CoM in the frequency domain. Indeed, the
CoM average position is supposed to be close to the CoP
average position and only high frequency components of
the two trajectories are assumed to differ significantly [24],
[16]. Following this idea, the CoM DFT is derived from the
CoP DFT by using different variations of the low pass filter
principle, which states that the ratio of m̃f to x̃f should be
a decreasing function of f .

1) Traditional low-pass filters: Two classical version of
the low-pass filter have been considered in the literature: m̂t

is obtained from xt using either a Cutoff or a second order
butterworth low-pass filter (LPF). Commonly used thresholds
are 0.4, 0.5 and 0.75 Hz [16], [18].

2) Low-pass filter derived from anthropometric data
(LPFA): A tuned version of the LPF approach has been
proposed by [25], [21] that relies on the idea of a natural
body frequency [25]. In this model, the ratio between m̃f

and x̃f is set as

m̃f = ϕCOP→COM
f × x̃f

with

ϕCOP→COM
f =

gh

gh+ (h2 + CH2)(2πf)2
, (3)

where g is the gravity constant, h is the average height of the
CoM during the recording, H is the height of the individual
and C is a constant that depends on the axis (C = 5.72e−2

for the medio-lateral axis, C = 5.33e−2 for the anterio-
posterior axis) [26].



Fig. 1: Example of the trajectories of the CoM estimated by the Kinematic, the Optim-Fusion and the Fixed-LPFA methods.
(Up) medio-lateral axis (ML), (down) antero-posterior axis (AP).

Contribution: LPFA with fixed coefficient (Fixed-LPFA):
We can rewrite (3) as:

ϕCOP→COM
f =

1

1 + γf2
, (4)

where γ only depends on several biodata constants of the
individual. Moreover, γ does not vary greatly (3.75 ≤ γ ≤
5.1) when computed over all the individuals contained in
[22]. Following this remark, we propose a modification of
the LPFA method, called Fixed-LPFA, where we set γ = 4.2
– a constant independent of the individual, which appears to
produce the best overall performance (see Section III).

3) Moving Average Filter (Boxcar): This method com-
putes the CoM position as the average of the CoP points
that are close in time [16]. Formally,

m̂(t) =
1

2δ

∫ t+δ

t−δ
x(s)ds

where δ > 0 is the window radius, a parameter of the model.
In their work, [16] have compared the values 0.16, 0.25, 0.62
and 0.75 for δ.

D. Fusion

The fusion approach, discussed in [27], attempts to over-
come the drawbacks of the force integration methods by
merging those methods with frequency-based methods, us-
ing the idea that the low frequency (resp. high frequency)
movements of m should be similar to the low frequency
(resp. high frequency) movement of x (resp. m̂ZZDI, the force
integration approximation of m presented in Subsection II-
B.2). Formally, given a frequency threshold τ , the DFT of

m is computed as follows :

m̃f =

{
x̃f if f < τ

m̃ZZDI
f otherwise

In their work, [27] proposed τ = 0.5 Hz as the most efficient
threshold.

III. EXPERIMENTAL EVALUATIONS

A. Dataset
We start by briefly describing the dataset used in this

study, and we refer the reader to [22] for an in-depth
presentation. The database contains 49 individuals, including
22 elderly individuals (60 years old and older) and 27 young
individuals (38 years old and younger), including a large
range of postural control profiles (such as the presence of
disability or disease). Each individual was recorded 12 times,
standing still for 60 seconds, under different conditions (open
eyes, closed eyes, with or without a foam). Each acquisition
was recorded using A) two OPT400600-1000 AMTI force
platforms to track the CoP position and the ground reaction
forces and B) a Raptor-4 motion analysis system using 12
infrared cameras to track the position of 42 markers and
compute the position of the CoM. All the data where filtered
with a low-pass Butterworth filter with a 10 Hz cutoff
frequency, fourth order, and zero lag. In order to compare
the CoM predicted by the different methods, we used all the
CoP/CoM pairs of the database indiscriminately, as we are
only interested in the CoP/CoM dynamics independently of
the individual balance quality. The influence of the individual
impairments and acquisition conditions are discussed in
Section IV.



TABLE I: Mean error (± standard deviation) of the Global SI and ZZDI approximations with respect to the kinematic
method, using the Pos metric, depending on the high-pass thresholds used for both the CoM and the forces signal.

High-pass on forces (Hz) High-pass on CoM (Hz) ZZDI Global SI

0.1 0 8.13e−02 (±1.22e−01) 4.54e−01 (±2.45e−01)
0.25 0 8.56e−02 (±1.23e−01) 5.24e−01 (±2.85e−01)
0.1 0.2 6.32e−02 (±4.69e−02) 3.31e−01 (±1.78e−01)
0.25 0.2 6.30e−02 (±4.72e−02) 1.71e−01 (±1.11e−01)

TABLE II: Mean error (± standard deviation) of the approximations of the FI family with respect to the KM, using the
different metrics. Optim-Fusion denotes the algorithm with τ = 0.3 Hz instead of 0.5 Hz.

Metrics ZZDI Optim-Fusion Fusion

Pos 8.56e−02 (±1.23e−01) 7.59e−02 (±1.24e−01) 1.29e−01 (±1.37e−01)
Spd 3.01e−03 (±1.47e−03) 1.40e−03 (±1.21e−03) 4.06e−03 (±2.15e−03)
VarX 1.69e−02 (±4.21e−02) 1.83e−02 (±4.53e−02) 5.45e−02 (±9.22e−02)
VarY 3.58e−02 (±4.98e−02) 3.44e−02 (±4.73e−02) 7.67e−02 (±1.01e−01)
Rad 5.55e−02 (±5.03e−02) 4.96e−02 (±5.06e−02) 8.94e−02 (±6.91e−02)
Ellips 3.60e−01 (±5.91e−01) 3.71e−01 (±5.94e−01) 1.21e+00 (±1.75e+00)

TABLE III: Mean error (± standard deviation) of each approximations of the FBE family with respect to the KM, using the
different metrics. The Butterworth filter and Optim-Boxcar were used with the parameters described in Subsection III.C.

Metrics LPFA Butterworth Filter Fixed-LPFA Optim-Boxcar

Pos 6.61e−02 (±1.21e−01) 8.43e−02 (±1.26e−01) 6.50e−02 (±1.21e−01) 8.83e−02 (±1.25e−01)
Spd 1.32e−03 (±1.09e−03) 2.21e−03 (±1.55e−03) 1.30e−03 (±1.08e−03) 3.79e−03 (±2.41e−03)
VarX 1.91e−02 (±3.95e−02) 2.13e−02 (±5.08e−02) 1.69e−02 (±3.77e−02) 1.74e−02 (±4.36e−02)
VarY 4.77e−02 (±6.05e−02) 3.95e−02 (±5.16e−02) 4.33e−02 (±5.70e−02) 3.32e−02 (±4.71e−02)
Rad 4.60e−02 (±4.88e−02) 5.55e−02 (±5.29e−02) 4.43e−02 (±4.84e−02) 5.75e−02 (±5.17e−02)
Ellips 4.71e−01 (±6.24e−01) 4.54e−01 (±7.77e−01) 4.06e−01 (±5.50e−01) 3.34e−01 (±5.56e−01)

B. Preprocessing

Preprocessing, and in particular band-pass filters, are an
essential component of the signals analysis. Different filter
strategies have been proposed in past works, ranging from
no filtering at all [19], to very restrictive filtering [28]. In
our experiments, we observed that the choice of the cutoff
frequency for Fh had significant influence on the SI approx-
imations performance (see Table I). As ZZDI appeared to
outperform Global SI in most settings and to be more robust
to the choice of the preprocessing, we chose to use ZZDI
instead of Global SI in the following experiments.

We chose to apply a high-pass filter on Fh with a 0.25
Hz cutoff frequency to remove accumulated integral error as
in [27] and no filter on the CoM and the CoP trajectories in
addition to the low-pass already applied to the dataset.

C. Tuning Parameters

In addition to the values suggested by their respective
authors, we tested a range of parameters around them and
selected the ones minimizing the mean norm of the difference
between the positions of the true CoM and the one estimated.
• τ = 0.3 Hz instead of 0.5 Hz for Fusion

• 0.45 Hz and 0.5Hz for the cutoffs of the second order
low-pass Butterworth filter for the medio-lateral and the
antero-posterior axes.

• δ = 0.6s for the Boxcar model

D. Metrics: Comparing CoM approximations

In this experiment, we compare the CoM computed by
all the approximations methods – using both the optimized
and the recommended parameters – to the KM. In order to
evaluate the pros and cons of the various approaches, we
use a wide range of metrics defined below (mt, m̂t and xt
denote respectively the KM CoM, the approximate CoM and
the CoP).

• The mean norm of the difference between the positions
of m̂t and mt (Pos) (unit: cm)

• The mean norm of the difference between the speeds of
m̂t and mt (Spd) (unit: cm.s−1)

• The mean of the absolute differences between the norms
of deviation from the mean of m̂t and mt (Rad) (unit:
cm)

• The difference of the 95 % confidence ellipse and both
the medio-lateral and antero-posterior variances (three



measures of the static balance quality [29]) between m̂t

and mt (resp. Ellips, VarX, VarY) (unit : cm2)
The result of the different metrics are presented in Table

II for the Force Integration (FI) family and Table III for the
Frequency-Based Estimation (FBE) family. Overall, the FBE
methods appeared to have the best performances, and Fixed-
LPFA outperformed the other algorithms in most metrics,
though by a slim margin. Figure 1 shows the trajectories of
the CoM approximations generated by the two best methods
(Fixed-LPFA and Optim-Fusion).

IV. DISCUSSION

Pros and cons of KM: While frequently considered
the most accurate method, KM involves also the most
time consuming acquisition protocol, and requires expensive
sensors. Moreover the choice of the KM as the reference
estimation for the CoM is arguable. Indeed, recent works
have questioned the superior accuracy of the KM technique
[17], namely due to errors in biodata measurements [13].
Previous papers have suggested that the combination of
multiple approximations can produce a more reliable model
[30].

Parameters tuning: In our experiments, we found that
the best parameters for Boxcar, Butterworth and Fusion were
different from the recommended values, and that optimizing
the parameters lead to a significant increase in accuracy.
However, the differences of values may be due to some
hidden statistical properties of the respective datasets, there-
fore this observation should be reproduced in other datasets
before drawing any conclusion.

Pros and cons of force integration methods: Compared
to KM, FI methods do not require tracking markers and
instead rely on the measurement of the ground reaction force
in addition to the CoP trajectory. Nevertheless, FI methods
performances appeared to be particularly dependent on the
preprocessing choice. Among FI methods, Fusion appears to
consistently outperform the others, in particular with tuned
threshold parameter.

Pros and cons of frequency-based methods: FBE meth-
ods, except for LPFA, only require the recording of the CoP
trajectory to compute the CoM approximation and still show
good performance when compared to FI methods. This is a
sizeable advantage, as it can be used together with low cost
force platforms such as the Wii Balance Board. In contrast
LPFA requires the recording of the height of the center of
mass, which is not easily to acquire. Fixed-LPFA appears
to avoid this issue while producting best accuracy in most
metrics.

Signal preprocessing: It is important to note that the
performances of the methods can be sensitive to preprocess-
ing as shown in Table I. Therefore the experiments should
be reproduced with other choices of preprocessing to lead to
robust conclusions.

V. CONCLUSION

The alternative methods of the kinematic gold standard
approximation of the center of mass, mostly based on force

platforms, show interesting performances and require lower
sensors cost and less time consuming protocols. In particular,
Fixed-LPFA performs the best in most metrics in our results,
while only requiring the recording of the center of pressure
trajectory; therefore this method seems to be a tool of choice
to estimate the CoM position and is a promising direction
for further study.

REFERENCES

[1] “Important facts about falls,” Centers for Disease Control and Preven-
tion, Tech. Rep., 2017.

[2] D. A. Sterling, J. A. O’connor, and J. Bonadies, “Geriatric falls:
injury severity is high and disproportionate to mechanism,” Journal of
Trauma and Acute Care Surgery, vol. 50, no. 1, pp. 116–119, 2001.

[3] M. E. Tinetti, “Preventing falls in elderly persons,” New England
journal of medicine, vol. 348, no. 1, pp. 42–49, 2003.

[4] M. Van Diest, C. J. Lamoth, J. Stegenga, G. J. Verkerke, and
K. Postema, “Exergaming for balance training of elderly: state of
the art and future developments,” Journal of neuroengineering and
rehabilitation, vol. 10, no. 1, p. 101, 2013.

[5] R. J. Peterka and M. S. Benolken, “Role of somatosensory and
vestibular cues in attenuating visually induced human postural sway,”
Experimental brain research, vol. 105, no. 1, pp. 101–110, 1995.

[6] P. P. Perrin, C. Jeandel, C. A. Perrin, and M. C. Bene, “Influence
of visual control, conduction, and central integration on static and
dynamic balance in healthy older adults,” Gerontology, vol. 43, no. 4,
pp. 223–231, 1997.

[7] I. Melzer, N. Benjuya, and J. Kaplanski, “Postural stability in the
elderly: a comparison between fallers and non-fallers,” Age and
ageing, vol. 33, no. 6, pp. 602–607, 2004.

[8] D. Lafond, M. Duarte, and F. Prince, “Comparison of three methods
to estimate the center of mass during balance assessment,” Journal of
biomechanics, vol. 37, no. 9, pp. 1421–1426, 2004.

[9] M. Piirtola and P. Era, “Force platform measurements as predictors of
falls among older people–a review,” Gerontology, vol. 52, no. 1, pp.
1–16, 2006.

[10] O. Caron, T. Gélat, P. Rougier, and J.-P. Blanchi, “A comparative
analysis of the center of gravity and center of pressure trajectory path
lengths in standing posture: an estimation of active stiffness,” Journal
of Applied Biomechanics, vol. 16, no. 3, pp. 234–247, 2000.

[11] L. Baratto, P. G. Morasso, C. Re, and G. Spada, “A new look at
posturographic analysis in the clinical context: sway-density versus
other parameterization techniques,” Motor control, vol. 6, no. 3, pp.
246–270, 2002.

[12] R. A. Clark, A. L. Bryant, Y. Pua, P. McCrory, K. Bennell, and
M. Hunt, “Validity and reliability of the nintendo wii balance board
for assessment of standing balance,” Gait & posture, vol. 31, no. 3,
pp. 307–310, 2010.

[13] D. Lenzi, A. Cappello, and L. Chiari, “Influence of body segment
parameters and modeling assumptions on the estimate of center of
mass trajectory,” Journal of biomechanics, vol. 36, no. 9, pp. 1335–
1341, 2003.

[14] M. Saini, D. Kerrigan, M. Thirunarayan, and M. Duff-Raffaele,
“The vertical displacement of the center of mass during walking: a
comparison of four measurement methods,” Journal of biomechanical
engineering, vol. 120, no. 1, pp. 133–139, 1998.

[15] J. Eng and D. Winter, “Estimations of the horizontal displacement
of the total body centre of mass: considerations during standing
activities,” Gait & Posture, vol. 1, no. 3, pp. 141–144, 1993.

[16] B. J. Benda, P. O. Riley, and D. E. Krebs, “Biomechanical relationship
between center of gravity and center of pressure during standing,”
IEEE Transactions on Rehabilitation Engineering, vol. 2, no. 1, pp.
3–10, 1994.

[17] M. A. Thirunarayan, D. C. Kerrigan, M. Rabuffetti, U. Della Croce,
and M. Saini, “Comparison of three methods for estimating vertical
displacement of center of mass during level walking in patients,” Gait
& Posture, vol. 4, no. 4, pp. 306–314, 1996.

[18] H. M. Schepers, E. H. Van Asseldonk, J. H. Buurke, and P. H.
Veltink, “Ambulatory estimation of center of mass displacement during
walking,” IEEE Transactions on Biomedical Engineering, vol. 56,
no. 4, pp. 1189–1195, 2009.

[19] T. Shimba, “An estimation of center of gravity from force platform
data,” Journal of biomechanics, vol. 17, no. 1, pp. 59–60, 1984.



[20] V. M. Zatsiorsky and D. L. King, “An algorithm for determining
gravity line location from posturographic recordings,” Journal of
biomechanics, vol. 31, no. 2, pp. 161–164, 1997.

[21] O. Caron, B. Faure, and Y. Brenière, “Estimating the centre of gravity
of the body on the basis of the centre of pressure in standing posture,”
Journal of biomechanics, vol. 30, no. 11-12, pp. 1169–1171, 1997.

[22] D. A. Dos Santos, C. A. Fukuchi, R. K. Fukuchi, and M. Duarte, “A
data set with kinematic and ground reaction forces of human balance,”
PeerJ, vol. 5, p. e3626, 2017.

[23] P. De Leva, “Adjustments to zatsiorsky-seluyanov’s segment inertia
parameters,” Journal of biomechanics, vol. 29, no. 9, pp. 1223–1230,
1996.

[24] R. Chan, “A method for estimating center of mass from forceplate
data during quiet standing,” in [Engineering in Medicine and Biology,
1999. 21st Annual Conference and the 1999 Annual Fall Meetring of
the Biomedical Engineering Society] BMES/EMBS Conference, 1999.
Proceedings of the First Joint, vol. 1. IEEE, 1999, pp. 516–vol.

[25] Y. Brenière, “Why we walk the way we do,” Journal of motor
behavior, vol. 28, no. 4, pp. 291–298, 1996.

[26] P. Rougier, C. Burdet, I. Farenc, and L. Berger, “Backward and for-
ward leaning postures modelled by an fbm framework,” Neuroscience
Research, vol. 41, no. 1, pp. 41–50, 2001.

[27] M. Brodie, A. Walmsley, and W. Page, “Fusion integration: Com
trajectory from a force platform,” Journal of Applied Biomechanics,
vol. 23, no. 4, pp. 309–314, 2007.

[28] O. Levin and J. Mizrahi, “An iterative model for estimation of the tra-
jectory of center of gravity from bilateral reactive force measurements
in standing sway,” Gait & posture, vol. 4, no. 2, pp. 89–99, 1996.

[29] R. J. Doyle, E. T. Hsiao-Wecksler, B. G. Ragan, and K. S. Rosengren,
“Generalizability of center of pressure measures of quiet standing,”
Gait & posture, vol. 25, no. 2, pp. 166–171, 2007.

[30] H.-M. Maus, A. Seyfarth, and S. Grimmer, “Combining forces and
kinematics for calculating consistent centre of mass trajectories,”
Journal of Experimental Biology, vol. 214, no. 21, pp. 3511–3517,
2011.


