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A Continuation Method for Large-Scale Modeling
and Control: from ODEs to PDE, a Round Trip

Denis Nikitin, Carlos Canudas-de-Wit and Paolo Frasca

Abstract—In this paper we present a continuation method
which transforms spatially distributed ODE systems into continu-
ous PDE. We show that this continuation can be performed both
for linear and nonlinear systems, including multidimensional,
space- and time-varying systems. When applied to a large-
scale network, the continuation provides a PDE describing the
evolution of a continuous state approximation that respects the
spatial structure of the original ODE. Our method is illustrated
by multiple examples including transport equations, Kuramoto
equations and heat diffusion equations. As a main example, we
perform the continuation of a Newtonian system of interacting
particles and obtain the Euler equations for compressible fluids,
thereby providing an original solution to Hilbert’s 6th problem.
Finally, we leverage our derivation of Euler equations to solve
a control problem multiagent systems, by designing a nonlinear
control algorithm for robot formation based on its continuous
approximation.

Index Terms—Control of Large-Scale Networks, Multiagent
Systems, PDE

I. INTRODUCTION

OST of the systems we encounter in real life consist of

such a large number of particles that the direct analysis
of their interaction is impossible. In such cases, simplified
continuous models are used, which aggregate the behavior of
large sets of particles and replace them with a continuous
representation. In general, discrete and continuous system
descriptions share many common properties. For instance, a
common theory for discrete and continuous boundary prob-
lems was developed in [1] and properties of continuous wave-
type oscillatory systems were derived as limit case of discrete
systems in [2]. However, even if the discretization procedure
transforming PDEs to ODEs is a widely known and widely
used method, the inverse problem of transforming an ODE
system into PDE is more rarely studied. Our work focuses on
this particular problem, with the aim of filling this gap and
providing a counterpart to the discretization procedure. This
“continuation” procedure can be useful because PDEs provide
a much more compact way of describing the system, which
can be more convenient than the original ODE system.

The idea of replacing a large system with some compact
and simplified representation is widely used, especially for
the ODE systems describing large-scale networks. Probably
the most known approaches of this type are model reduction
techniques that transform a network into a smaller one while
preserving the properties and the dynamics [3], [4], [5], [6].
Apart model reduction techniques, large-scale networks are
studied by mean field methods in case of the all-to-all interac-
tion topology. In this situation the effect of the network on each

D. Nikitin, C. Canudas-de-Wit and P. Frasca are with Univ. Grenoble Alpes,
CNRS, Inria, Grenoble INP, GIPSA-lab, 38000 Grenoble, France.

node is the same, therefore it is enough to use an equation for a
single agent together with parameters of a state of the whole
network, see [7] for a review with application to Kuramoto
networks. The idea of mean field can be further extended to
track not only a single agent’s state, but the whole probability
distribution over all agents’ states in the network. This method
is called population density or probability density approach
[8] and it can be used for example to model large biological
neural networks [9]. Large-scale systems can be also simplified
by studying the approximations to their probability densities,
represented by moments. E.g., in [10], [11] a moment-based
approach was taken to control crowds dynamics. Different
applications and issues of the method of moments are covered
in [12]. Also shape parameters can be used to simplify the
model and describe a shape of the solution as in [13].

Mean field and population density approaches are suitable
in the case when the interaction topology between nodes is all-
to-all. In other cases, the continuous representation of a system
requires more sophisticated tools. A recently emerged theory
of graphons studies graph limits, i.e. structural properties that
the graph possesses if the number of nodes tends to infinity
while preserving interaction topology. Using graphons it is
possible to describe any dense graph as a linear operator on
a continuous space [14]. This method was further used to
control large-scale linear networks [15] and to study sensitivity
of epidemic networks [16]. However, the resulting operator is
non-local and requires the original network to have dense con-
nections: for example, in [17] a dense network of Kuramoto
oscillators was studied using a continuous representation with
integral coupling operator.

In this work we are interested in systems that are spatially
distributed and have a position-dependent interaction, such
as urban traffic, power networks, formations of autonomous
robots, etc. By applying population density method or graphon
theory to such system we would end up with a continuous
model which loses the spatial structure of the problem. The
key idea of our approach is to replace the original spatially
distributed ODE system by a continuous PDE whose state
and space variables preserve the state and space variables of
the original system. We first develop the method for linear
spatially invariant ODEs which transforms them into PDEs
with the help of finite differences. We name this method as a
continuation, since it is exactly opposite to the discretization
procedure. We prove that the continuation converges to the
original system both in the sense of spectrum and in the sense
of their trajectories. Using the formalism of computational
graphs [18], we then extend the method to nonlinear systems
and further to space-dependent systems and systems with
boundaries.
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Figure 1. Proposed framework for control design based on the continuation
method and a continuous representation of the system.

The idea of substituting finite differences with partial deriva-
tives was already used in several particular applications. In
[19] authors derived an LWR traffic PDE model [20] from an
equation for a single car, while [21] derived a PDE model for
the controlled platooning system. Consensus lattice networks
were transformed into PDEs for analysis purposes in [22].
Contrary to these works, we aim at developing a general
transformation method, studying its properties, and applying
it to different kinds of systems.

The advantage of our proposed continuation method is that
it allows to write a PDE which describes the same physical
system as the original ODE network. This description can be
very helpful for both analysis and control purposes. Indeed,
one can use the obtained PDE to design a continuous control
which, being discretized back, results in a control law for the
original ODE system: Fig. 1 illustrates this design framework.

The continuation method has multiple potential applications.
Several of them are being undertaken in the scope of ERC
Scale-FreeBack project: in particular, for analysis of linear
networks and laser chain stabilization [23], for derivation and
control of a general multi-directional 2D urban traffic PDE
model [24], [25], and for synchronization analysis for arrays
of nonlinear spin-torque oscillators [26].

In this paper, we tackle Hilbert’s 6th problem, questioning
how one can rigorously transform a system of interacting
particles into the Euler PDE. We provide our treatment of this
problem using continuation, deriving the Euler PDE from a
system of Newton’s laws for the case of long-range interaction
forces. Further, we show how the method can be applied
to multiagent control, providing a simple control algorithm
to stabilize a robotic formation along the desired trajectory,
performing a maneuver of passing through a window. The
control is derived on a level of a PDE representation and then it
is discretized to be implemented on every agent in accordance
with the scheme in Fig. 1.

We start in Section II by defining a continuation for linear
ODEs, discussing questions of accuracy, convergence and
choice of the particular model. Section III continues to non-
linear models, utilizing the computational graph formalism.
In Section IV the method is extended to much broader class
of systems, including multidimensional or space- and time-
varying systems and also discussing boundary conditions.
Section V is devoted to a derivation of the Euler PDE from a
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Figure 2. System of nodes aligned in 1D line with dynamics given by (1)
with s = —1 and s, = 1.

system of interacting particles. Finally, Section VI applies the
method to control a robotic formation.

II. METHOD FOR LINEAR SYSTEMS

The simplest class of systems for which the transformation
of ODE into PDE can be performed is given by linear ODE
systems corresponding to the dynamics of states of nodes,
which are aligned on the 1D line in space and depend only on
some fixed set of their neighbours. Let the node i € Z have a
state p;(t) € R and a fixed geographical position x; € R such
that for every i the distance between two consecutive nodes in
space is constant, x;+; —x; = Ax (the assumption of Ax being
constant will be relaxed later on). The number of nodes is
assumed to be infinite. Then the systems of our interest take
the form

N
pi(t) =Y ajpiss; (1), 1
=1

where p;(t) denotes time derivative. That is p;(¢) linearly
depends only on N neighbouring nodes shifted by s; € Z for
j€{l,..,N}, and a; € R are the system gains, see Fig. 2.
This type of systems belongs to the class of linear spatially
invariant systems [27], which is a natural class for distributed
control. In the future we will omit writing the dependence on
t whenever this is the only argument of p.

A. Motivating Example: Transport Equation

We start by considering the most simple ODE system of
class (1) which has spatial dependence:

. 1
pi= o (Pix1—pi) - ()

Comparing with (1), here N =2, a; = 1/Ax, a = —1/Ax,
s1 =1 and s, = 0. This equation describes a transport of some
quantity along the line, and is usually referred as a Transport
ODE. Equation (2) often comes as a result of a discretization
process applied to another equation,

ap _dp
W(Z‘,X)—a([,X). (3)

This equation belongs to a class of PDEs, which is usually
thought to be more difficult class of equations to study than
ODEs. However, equation (3) describes a perfect transport of
information with finite propagation speed along the line, which
can be studied much more easily in PDE form than in ODE,
as it perfectly conserves the form of a solution, performing



only a shift along the line as time increases. We will refer to
this equation as a Transport PDE.

Equation (2) can be obtained from (3) by the discretiza-
tion process, which has been a well-established mathematical
tool. Nevertheless, up to now there was no strict procedure
describing a general process which could render equation (3)
from (2). In the next subsections we explore more how the
discretization procedure is defined for linear systems and how
it should be inverted to obtain a continuation process.

B. Discretization

The discretization of PDEs is usually performed by a
finite difference method, where the partial derivatives are
approximated by finite differences. For example, in the case of
Transport ODE dp/dx ~ (p;y+1 — p;) /Ax. This approximation
is valid when Ax is small. Indeed, assuming that the solution
to PDE is given by a smooth function p(x) and using Taylor
series, we can write

) 9°p Ax?
Pi+1:P(xi+1):P(xi)Jr&*iAxJF?pier “4)

where all partial derivatives are calculated in x;. Thus, sub-
tracting p; and dividing by Ax, we get

dp [1 9%p Ax
F [Ax (pit1 —Pz)] o2 @)

which means that the residual belongs to the class O(Ax) of
all functions which go to zero at least as fast as Ax.
Accuracy can be further increased by taking different stencil
points where the function is sampled. For example, writing
Taylor series for p;_; and subtracting it from (4), we get

33p Ax?

% = ﬁ (Pit1—pPi-1)
Thus, using stencil points {i —1,i+4 1} to approximate the first-
order derivative in the point i the obtained residual belongs to
the class O(sz), which means that this discretization of the
Transport PDE is accurate to the second order.

In general, if one wants to approximate a linear combination
of derivatives up to order N — 1 with coefficients ¢ in point i
using N stencil points {i+s1,i+s2,...,i+sy} in form

NL kg N
Ckop = ) AjPits; )
kg(’) oxk FZ’I J J

where coefficients d; are unknown, one can define S € RN*N

with elements Sj = s’j‘. and ¢ € RY with elements ¢, =
& k!/AxF and solve a linear system

a=S"'ec. (8)

Equation (8) can be trivially obtained by writing Taylor series
for all points pjiy,...0i+sy and summing them in a linear
combination as in (7).

C. Continuation

Essentially the same process can be applied to the equation
(1) to get the PDE version. For every term in the summation
in (1) we can write

d 92p Ax%s?
p(x)+ Sows; + SE— ©)
Thus, assume we state the problem of finding the PDE
approximation of (1) in form

Pits; = P (Xivs;) =

N d k Jk

Ax* 0%p
Y aipivs; = Y, a—— 5 (10)
e TE T kD oxk
where d is the highest order of derivative (order of continua-
tion) we want to use. Then the vector of unknown coefficients
¢ can be found by substitution of (9) in (10):

N

=Y ajsh Vke{0,..,d}. (11)
j=1
Once (11) is solved, we write the PDE approximation to (1):

ap ¢ A9
y(fax) —kg(,)ckﬁﬁ(tvx)-

As an example, applying (11) to the Transport ODE (2) renders
coefficients ¢cop =0 and ¢, = 1/Ax for all k > 0, and choosing
d =1 we obtain the Transport PDE (3).

Procedures (8) and (11) look very similar from the algebraic
point of view, however they are qualitatively different in the
way how the problem is formulated and how we should
interpret their results. The discretization procedure tries to
find the best approximation to a continuous function p and
its derivatives. What is most important, the discretization step
Ax is usually an adjustable parameter which can be set by
a system engineer arbitrarily small to satisfy the desired
performance. Instead, when the original system is given by the
ODE, the nodes have fixed locations, thus Ax is a true constant
representing properties of an underlying physical system and
it cannot be changed by an engineer.

12)

D. Convergence of continuation

It is clear that the higher order of continuation is taken, the
better the original ODE operator (1) is approximated by the
PDE (12). It is possible to study the convergence properties by
shifting the problem to the frequency domain using the Fourier
transform. In the following we first perform a frequency
analysis, then derive a bound on solutions’ deviation, and
finally discuss stability properties of the PDE approximation.

1) Spectral analysis: For simplicity and without loss of
generality assume in this section Ax = 1. Let us define a(x) as

N
a(x) = Zajé(x+sj),

Jj=1

13)

where 0(x) is the Dirac delta function. Further, assume that
the state p;(#) of (1) was sampled from some integrable
function p;(¢) := p(¢,x;). Then, equation (1) is equivalent to
the following system with convolution

P (1.2) = (axplt.)(x). (14)



Use now the Fourier transform, defined as

F{fH@) = [ feodx

for any integrable function f(x) and for any frequency ® €
R. It is known that the Fourier image of a convolution is a
multiplication. Therefore the system (14) is just

5)

(16)

where .% {a} (@) was found by direct calculation of Fourier
transform. We can interpret (16) in sense of operator spectrum.

Definition 1. A spectrum of a bounded linear operator T is
the set of points A € C for which T — A1 do not have inverse
that is a bounded linear operator, i.e. it is not bijective.

We then introduce a bounded operator 7 over integrable
functions such that Tp = (axp(t,-))(x) is a right-hand side of
the original ODE system (14). Finding its spectrum is equiva-
lent to finding A such that for some v(x) there is no solution to
(axp(t,))(x)—Ap(t,x) = v(x). Taking Fourier transform one
arrives at (& {a}(w)— A1) F{p}(t,0) = F {v}(w), which
clearly has no solution for .# {v}(w) # 0 if and only if
A = % {a}(w) for some w. Therefore we just showed that
the spectrum of T is parametrized by the image of .7 {a} (®).
In fact, this result is well-known, since the system (1) on an
infinite line belongs to the class of Laurent systems, whose
spectrum is known to be (16), see [28].

Let us calculate the spectrum of the right-hand side of
the continualized system (12). Denote the state of (12) as
pe(t,x). If p¢(z,x) is sufficiently smooth and its derivatives
are integrable, we can recover their Fourier images by

akpc o .
7P (0) = (0) 7 () (1,0).
Therefore (12) is read in frequency domain as
dF {p°
%( 0) = 7 {c} ()7 () (. 0),
d (17)
F {c} (o Z
Substituting (11), we can rewrite .% {c} (@) in (17) as
Nl (ism)
7 {c}(o Z oy - (18)

Now, comparing (18) with (16), it is clear that (18) uses the
first d 41 terms of the Taylor expansion of the exponential in
(16). Since the exponential function is analytic on the whole
complex plane, we have just proven the following result:

Theorem 1. The spectrum of the PDE operator (12) converges
to the spectrum of the original ODE operator (1) pointwise
as d — oo.

2) Convergence of solutions: Define now a Discrete-Time
Fourier Transform (or DTFT, although taken along the coor-
dinate axis) for an infinite sequence f, for n € Z as

2{f} (@ Z fueT ™ e [—mn].

n=—oo

19)

We can use Theorem 1 to prove that the sampled trajectory of
the PDE converges to the solution of the ODE as d increases:

Theorem 2. Ler p;(t) := pi(t) — p¢(t,x;) be a deviation be-
tween the original and the continualized systems’ solutions at
the nodes’ positions. Assume that at initial time

7{p}(0,0) =7 {p} (0, )
0=7{p}(0,0)

Vio| <«
(20)
Viw| > 7,

which defines the initial state of the PDE with respect to the
original ODE. Then for ¥t > 0

1 (t)]|2 < eRemart (et — where

1)lp(0 )sz,

Z| ||7Z'S]‘ |7TS .
G+

2

Re Aqx = max Re.Z {a} (o),

lo]<7

In particular, ||p(t)||p —0 as d — oo .

Proof. First of all, by definition (19) of DTFT it is clear that
2{a} (w) = F {a} (o), where the former is taken for the
sequence ¢; in (1) and the latter is taken for the function a(x) in
(13). Since the right-hand side of (1) represents a convolution
of p;(t) with the sequence a;, we can use this equality and
write the evolution of the DTFT image of p; as

2700} o) = 7 0} @)9 15} ()

Further it is easy to show (see e.g. [29]) that the sampling
of p¢(x,7) induces periodization on its Fourier image:

(22)

f FA{p-(t,x)} (0+27n).

n=—o0

2{p*(t,x)} (@) =

By (20) and by (17) .# {p°} (¢, ) =0 for |@| > m,¢t > 0, which
means that 2 {p(t,x;)} (0) = .7 {p°(t,x)} (0) for || < 7.
Therefore, the DTFT of p;(¢) is

7{p}(t,0):=2{p}(t,0) = F{p°} (1, 0)

Let us now use Parseval’s identity for DTFT, see [28]:

Vo € [—n, .

]‘@{ﬁ}(l,m)‘zda). (23)

-7

= 1
IpIIE= Y o0 =5

i=—oo

The integral is taken over the bounded interval of frequencies
since the transformed sequence is discrete.

One can now notice that (17) and (22) are just scalar linear
time-invariant ODEs for each @, thus it is possible to write
their explicit solutions as

7{p}t,®
F{p}t, 0

) _ ej‘ {a}(®
) _ eﬁ{c}

@{p}(o ),
F{p}(0,0).



Using the condition (20) on initial conditions 2 {p}(0,®) =
F{p°}(0,m) V|w| < w we write the Fourier image of p;(¢):

7{p}(1,0) = (7O — FHON) 7 {p} (0,0) =
:ef{a}m)z(]_e(/{ c}o)-F{a}(o )@{p}(o )

which holds V|w| < m. Inserting (24) in (23) and using
Holder’s inequality we get

9{c

V3
~ 1 2
IpOIR < 5 [ |20} 0.0)[ do x
-

(25)
« max leZ @ @17 o ax [ — o(Fle}@) -0
lo|<m lo|<m
The first term is HP(O)lez Further, max|q|<z eZad(o)y | —

e*Rednat  Thus we will concentrate on the third multiplier.

Let z=u+iv be any complex number Then by [30]-(3.8.23)
we can write |e*— 1|2 < (e el — 1) This bound increases with

1 — o(FlcH@)=F{a}(w))

max

2 2
mmax < (eyl— 1)

for any y > max|y|<z |F {c} (®) — F {a} (®)|. We can find
the lowest bound on ¥ denoted as 7}, using the definitions of
F{a}(w) and Z {c} (o) in (16) and (18). Namely,

7o) ()~ F (@)= Yo, ¥ L0 <
j=1  k=d+1 : 26)

N +oo (l)k wd+1 (Dk

SNTPIE \Z|AW' e

and the last summation is just el/®l. Finally, since (26)
increases with |@|, we can substitute the maximal value
|o| = 7 and thus obtain 9, as in (21). Finally the bound (21)
is recovered by taking square root of (25).

The final statement of the theorem can be proven if one
notices that ¥y — 0 as d — oo, which leads to (e*' —1) =0
as d — oo for any fixed 1 > 0. O

Remark 1. Condition (20) means that the continuous system
should be initialized with the low-frequency continuation of
the original ODE initial state. Note that this can always be
done since (20) uniquely determines the Fourier image of
p¢(0,x). For example an initial state pp = 1 and p; =0 for
i# 0 results in Z{p}(®) =1 which by (20) sets p¢(0,x) =
sinc(7x). Moreover, bound (21) at r = 0 ensures that p;(0) =0,
therefore the continuation coincides with the ODE initial state.

3) Stability analysis: We can now turn to the discussion
of stability of the PDE. Due to the simple nature of scalar
equations (16) and (17) we can say that the system (16) is
stable if and only if Re.# {a} (®w) < 0V € R, otherwise it is
unstable. Note, this definition would not hold in a more general
case of vector-valued states p;, but in (1) a scalar node state
is assumed. A simple corollary of Theorem 2 can be derived:

Corollary 1. If Re% {a} (®w) < ReAdys < 0V € R, then
1P (®)||;2 — 0 as t — oo for all high enough d.

,\W\%& 1

Figure 3. Left: spectrum for the Transport ODE (27) €' — 1 (blue circle)
together with spectrums of the continuations up to the order 6, including
(28). As d increases, spectrums converge to the blue circle, however for
some orders (such as 4 or 5) they can become unstable. Right: Schematic
picture of an artificial instability for high order d. Although the continuation
(blue) coincides with the original solution (red) at the nodes’ positions, high-
frequency components can be unstable.
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Proof. Indeed, for high enough d we have ¥; < —ReAuqy,
which means that (21) is bounded by an exponential
eReAnac 1)l ) a5 £ — oo 0

Note that although Theorem 2 states the convergence of
sampled trajectories, in Theorem 1 the convergence of spec-
trums is not uniform. Moreover, the spectrum (16) is an
image of the unit circle and thus is a compact set, while the
spectrum (18) for any d is a polynomial and thus unbounded.
This can lead to an undesirable effect which we call an
artificial instability, meaning that the tails of the image of
the polynomial (18) happen to lie in the positive complex
half-plane, as in the left panel of Fig. 3 for d =4 or 5.
Essentially this means that the PDE becomes unstable on high
frequencies, see the right panel of Fig. 3. We can though
induce several corollaries from Theorems 1 and 2 which can
help in understanding stability properties of the obtained PDE.

Corollary 2. If the original ODE (1) is unstable, there exists
D > 0 such that for all d > D the continualized system (12)
will also be unstable.

Proof. Since the original system is unstable, there exists @y
such that Re.# {a} (ay) > 0. Now, by Theorem 1 there exists
D >0 such that for all d > D Re.% {c} () > 0. O

Corollary 3. PDE (12) with an odd order of continuation d
has the same stability properties as a PDE with the order of
continuation d — 1.

Proof. All odd terms in the spectrum (18) are purely imagi-
nary and thus have no impact on the stability. O

Corollary 4. Artificial instability is introduced when the last
even term in the PDE (12) has ¢, > 0 if k=4m or ¢; <0 if
k=4m+2 for some m € Z*.

Proof. Attificial instability comes if the term of the polyno-
mial (18) with the highest even power is positive, which leads
to a positive real part of the spectrum on high frequencies. Pos-
itivity of the highest even term is equivalent to the statement
of the corollary since i*" =1 and i*"*?> = —1 forme Z*. O



We show the spectrum convergence on the Transport ODE

Pi = Pix1— Pi- 27
With Ax = 1, the continuation of (27) is:
ap 41 9kp
bl - - 2
o 1Y) k; K1k ) 28)

Spectrum of (27) equals ¢/® — 1 by (16), which is depicted
as a blue circle in the left panel of Fig. 3 together with the
spectrums of the continuations up to the order d = 6. It is clear
that as the order increases, the approximations become better.
The original Transport ODE is stable. Moreover, it has an
intrinsic diffusion in it, which can be captured by the con-
tinuation of the second order. However, the continuations of
orders 4 and 5 are unstable. It happens because of an artificial
instability as described in Corollary 4, since ¢4 =1 > 0. In
general all stable continuations of the Transport ODE are given
by the orders {1,2,3,...,4m+2,4m+3,...} for all me Z™.
Theorems 1 and 2 say that increasing order of continuation
leads to the more correct capture of the behavior of the original
ODE. From the practical point of view, however, low-order
PDEs capture low frequency effects very well, while high
orders can cause artificial instability. Moreover, lack of tools
for control and analysis of high-order PDEs makes impractical
their derivation. Therefore it usually makes sense to stick to
the orders d = 1 or d = 2, which are chosen in [19], [23], [25]
and which will be used in examples throughout this paper.

III. METHOD FOR NONLINEAR SYSTEMS

Finite differences give us a complete tool for linear sys-
tems, but for nonlinear systems they should be applied in
composition with nonlinearities. Using an additional concept
of computational graph it is possible to elaborate the case of
general nonlinear ODE systems.

As in the previous case we assume without loss of generality
that the nodes are equally spaced along the 1D line, a node i
having a state p; and a position x;. Then the general nonlinear
ODE with space dependence takes form of

pi = F(Pi+s1 » Pitsys "'7pi+SN)~
We further assume that the function F is continuous.

(29)

A. Computational graph

In 1957 Kolmogorov [31] showed that every multidimen-
sional continuous function can be written as a composition of
functions of one variable and additions. This work laid the
basis for the neural networks function approximation.

Here we will use this idea and assume that the function
F is given in the form of computational graph (see [18] for
example). This is a directed acyclic graph, every node of which
represents a one-dimensional function, applied to a weighted
sum of inputs coming to this node. We assume that the leaves
of this graph are the states of the system p;;; and the root
node computes the resulting value of F.

As an example of the computational graph consider

pi = sin(p; 1 — pi) — sin(p; — pi—1) (30)
which is a system of Kuramoto oscillators coupled on a ring.
The computational graph for (30) is presented in Fig. 4.

N
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Figure 4. Computation graph for the system (30). Similar subgraphs are
outlined by dashed rectangles of the same color. Possible choices of sinus
subgraph’ positions are written in the corners of blue rectangles.

B. Similar subgraphs and their positions

Now let us introduce an original notion of similar sub-
graphs. Subgraph is a computational graph which computes
subexpression of the original computational graph. Every node
in a computational graph serves as the root of a subgraph
computing expression defined in this node. The leaf nodes are
also the subgraphs “computing” themselves.

Definition 2. We call two subgraphs similar if

1) they serve as an input to the same node,
2) they differ only in the positions of the leaf nodes, and
this difference can be represented by a single shift.

This is an equivalence relation, therefore we can speak about
equivalence classes which we call sets of similar subgraphs.

For example, in Fig. 4 there are three sets of similar
subgraphs:

1) pi—1 and p; for the left sinus node,

2) p; and p;4+; for the right sinus node,

3) sin(p; — pi—1) and sin(p;+1 — p;) for the root node,
because they differ by a single shift which equals 1.

Finally we will define a position of a subgraph:

Definition 3. Position of a subgraph is defined as a coordinate
in space where the expression of this subgraph is calculated.

The leaf nodes by definition are the states of the system,
thus their positions are uniquely specified. For example for the
leaf node p;;+; in Fig. 4 we say that its position is i+ 1.

The root node by definition has a position i, since it is
exactly the position of the left-hand side term in (29). We
will define the positions of other subgraphs as the average
of their leaves’ positions. Note that in general there is some
freedom in the definition of the subgraphs’ positions, with the
only constraint that similar subgraphs should differ by a single
shift, but we will omit this for simplicity.

Since the position of a subgraph represents a position on the
line, it is natural to have non-integer position values, although
the leaf nodes and the root have only integer positions. As
an example, defining the position as an average, in Fig. 4 the
node sin(p;; — p;) has its position i+ 1/2.



C. Continuation to a nonlinear PDE

When system (29) is expressed in a form of computational
graph with similar subgraphs being found and their positions
being defined, one can perform a continuation procedure
described in section II-C to obtain a PDE.

Continuation should be performed recursively, starting from
the leaves. Each set of similar subgraphs by definition is used
in their common ancestor node as a linear combination of
equivalent elements shifted by some distance. Continuation
of this linear combination by (10) replaces a set of similar
subgraphs by a weighted sum of partial derivatives of subex-
pressions, calculated at the position of the ancestor node.

Let Ax = x;;1 —x; be a distance between two neighbouring
nodes. Elaborating example (30) and using d = 1 for each set
of subgraphs, we perform the continuation in three steps:

. . d
1) sin(pj+1 —p;)) — sin Axa—i(xiJrl/z) ,
. . ap
2) sin(p;—pi—1) — sin Axg(x,»_l/z) ,
3) sin qp—sini_1p  — Axa sin.
which finally gives a nonlinear PDE representation of (30):

ap 0 ap
y(t,x) = A)Ca s (Axax(t,x)> .

To obtain higher-order PDE approximations it makes sense
to specify the desired order of the equation ¢ and then get rid
of all the terms which consist of composition of derivatives of
combined order higher than d.

€2y

IV. EXTENSIONS

Until now we discussed systems with nodes which were
uniformly placed on the infinite 1D line and which had
common space-independent dynamics. The method can be
extended to include more classes of systems.

o Periodic spatially invariant systems [27] can be tackled
by choosing different index spaces. We can assume that
the positions x € S belong to the unit circle and indices
i € Z\nZ form a ring of integers modulo n, where n
is the number of states of the original ODE. Since any
function on S can be mapped to a periodic function on
R, the analysis in Sections II and III remain the same.

« Multidimensional systems can be accounted for by as-
suming that a position of a node p; is described by x; € R"
and taking multidimensional Taylor expansion at (9).

« Time dependence can be introduced into system gains
both for ODEs and for PDEs with continuation being
performed independently for all #. This allows to use the
method for time-varying systems and switching networks.

In the following subsections we will explore how the
method can be extended to include systems with space de-
pendence or nonuniform placing and systems with boundaries.
Further we introduce a concept of PDE with index derivatives
which can be applied to systems whose states coincide with
the positions in space, for example particle systems. Finally,
all kinds of systems are covered by the general continuation
algorithm presented in the end of this section.

A. Space-dependent and non-uniform systems

Let us now look at the linear system (1) with one important
difference: the system gains aj, the shifts s; and the number
of neighbours N become space-dependent:

Ni

Pi =Y aijPirs;- (32)
j=1

Notice that equation (32) describes in fact any linear system.

Now one can perform a continuation (11) at every point x;
up to the order d and obtain a PDE (12) with space dependent
gains cj;. This means that we know the gains ¢ at the points
with coordinates x;, which can be seen as a sampling of some
function ¢ (x) at points x;.

Non-uniform placing of nodes can be tackled in the same
way. Indeed, assuming distance x;;; —x; can be arbitrary, con-
tinuation can be performed by defining c;; = Z?il ajj (xH_SU —
x;)¥ instead of (11).

We can now perform either an interpolation or an approx-
imation based on this sampling. In the first case we seek for
ck(x) such that ci(x;) = cy, while in the second case it is
enough to satisfy this relation approximately. In either case,
the resulting continuation of (32) is given by

d d 1 9%
L= Y ew0) 5 52 0.

k=1

(33)

For nonlinear systems the continuation can be performed
if computational graphs for every node compute the same
dynamics. We can formalize it with the following property:

Definition 4. We say that two computational graphs have the
same structure if
1) their root nodes compute the same expression,
2) any child subgraph of the root node of the first graph
has the same structure with some child subgraph of the
root node of the second graph and vice versa.

This definition, formulated through recursion, essentially
means that the order of nonlinearities which is hidden in two
computational graphs should coincide, see Fig. 5.

@ () ) @ ()
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Figure 5. Illustration of two computational graphs having the same structure.

Finally, a continuation of a nonlinear ODE system can
be performed if all the computational graphs computing the
dynamics for all states p; have the same structure. Indeed,
in this case it is possible to perform a continuation for any
set of similar subgraphs for each node as in the linear case
of (32)-(33). Moreover, by Definition 4 these sets of similar
subgraphs for different positions serve as inputs to the same
nonlinearities, therefore a unique PDE with space-dependent
coefficients can be obtained.



Remark 2. In theory, it is possible to satisfy Definition 4
for any nonlinear system formulated through computational
graphs. Indeed, assume two computational graphs have two
different root node expressions, denoted as F(-) and G()
respectively. Then we can artificially create a new common
root node which will compute 1-F(-)+0-G(-) for the first
graph and O F(-) +1-G(-) for the second. Thus we can
satisfy the first condition of Definition 4, and recursively
applying this idea one can transform any pair of computational
graphs into the pair which has the same structure. However,
if the computational graphs of the system are too different in
different points, it can make no sense to represent a system as
a PDE, since it means that the dynamics of different parts of
the system has nothing in common.

B. Boundary conditions

Imagine there is a Heat PDE defined on an interval
x € [0, +oo), that is there is a boundary in the point
x =0. Assume also a Dirichlet boundary condition is supplied,
namely the state on the boundary is fixed to some a € R:

2

dp _dp
Z(WC)— W(WC),

If the Heat Equation (34) is discretized in stencil points
{i—1,i,i+ 1}, the result is

. 1
pi=13 (Pi-1—2pi +Pit1)-

p(1,0)=a. (34)

(35)

Assume that there exists ip = 1 such that x;;—; = 0. The
equation for the state p; can be obtained by the discretization
of the boundary value problem (34):

p1 = (a—2p1 +p2) /AP,

Now imagine the system (34) is obtained by the continuation
process from the system (35). We can notice that states
of (35) are governed by the same dynamics except for the
boundary state p;. The question is how to recover the boundary
conditions (34) of the PDE from the dynamics of p; in (36).

This indeed can be done if one assumes that there exists
a “ghost cell” po such that it has no dynamics, but is
algebraically connected with adjacent states. With a proper
definition of po the equation for p; can be represented in
the same way as for other states (35) and thus has the same
continuation (34). For example, the algebraic equation for
po representing (35)-(36) is po = a, which can be directly
continualized, obtaining the boundary condition in (34).

This procedure can be generalized to any ODE system and
any type of boundaries: once the states near the boundaries
change their dynamics with respect to the general governing
equation, this change can be represented by “ghost cells”
with algebraic dependences on the “real” states. Continualizing
these algebraic equations leads to the boundary conditions for
the obtained PDE.

(36)

C. PDE with index derivatives

Usually PDEs have derivatives written with respect to the
time and space variables, thus their physical meaning is in the

function continuously varying in time and space. However, in
general no one prevents us from writing a PDE with respect
to some other variables.

Assume a physical system is given by a set of interacting
agents, with agents being indexed by an integer index i € Z (a
general multiindex space Z" can also be used). Let an agent i
have a state p;. The index variable i is by definition discrete.
However we can make an assumption that in between of two
agents with consecutive indexes i and i+ 1 there is a continuum
of virtual agents having state varying from p; to p;+;. Denoting
this continuously varying index by M € R we can say that the
state of the system p is a continuous and smooth function
p(t,M) with the property p(¢,i) = p;(¢). This definition of M
coincides with the definition of Moskowitz function used to
describe the number of vehicles passed through a fixed point
in traffic modeling [32].

Once the index variable is continuous, we can think about
it as a new space variable. Thus it is possible to use a
continuation described in previous sections, where the distance
between two consecutive agents is obviously AM = 1. The
derivatives of the state with respect to the index can be
obtained by continuation, for example p;; —p; — dp/IM.

PDEs with index derivatives are very useful in multi-
agent setups, when states of the agents are represented by
their positions. Examples include traffic systems [19] with
agents being cars, or systems of interacting particles and robot
formations which will be discussed in the following sections.

D. Algorithm for general continuation procedure

The general continuation procedure for different kinds of
systems can be summarized in the Algorithm 1. It checks for
boundedness and space-dependency of the system and uses
nonlinear continuation based on computational graphs. In case
of multi-agent systems indices are treated as space coordinates.
Linear systems are also covered by the algorithm since their
computational graph is trivial.

V. DERIVATION OF THE EULER EQUATIONS

In the beginning of the XX century Hilbert posed his
6th problem, where he suggested to develop a rigorous way
leading from the atomistic view to the laws of motion of
continua. In particular, the problem can be formulated as a
derivation of Euler equations for compressible fluids from the
Newton’s dynamics of individual particles.

For the most famous case of particles interacting through
collision the Boltzmann equation was developed, describing
evolution of the joint position-velocity probability distribution
of particles. The method of how to transform individual’s
dynamics into Boltzmann equation is based on the Boltzmann-
Grad limit [33], assuming velocities of colliding particles
being independent. The following transformation from the
Boltzmann equation to the Euler equations uses either Hilbert
or Chapman-Erskog expansions with space contration limits
[34], [35], Grad moments [36] or the method of invariant
manifolds [37].

Another situation arises when the particles interact through
long-range forces. In this case the Vlasov equation can be



Algorithm 1: General continuation procedure

Input: System of ODEs, d

if system consists of moving agents then
| treat indices as coordinate space; // sec IV-C

end

if system has boundaries then // Sec IV-B
create ghost cells on boundaries such

that inner nodes become homogeneous;

end
if system is space-dependent then
for each node do
build computational graph;
end
find the most general structure
of the computational graph;

for each node do
adjust computational graph such that it has

the same structure with others;
continuation();
end
approximate PDE coefficients
by space-dependent functions;

// Sec IV-A

else
build computational graph;
continuation ();

// same for all
end

Procedure continuation ()

Input: Computational graph of ODE, d

for each node in graph, starting from leaves, do
for each group of children with similar

subgraphs do // Sec III
compute PDE coefficients by (11) using d;
replace group by PDE;

end
end

used instead of the Boltzmann equation to describe the joint
position-velocity probability distribution. The derivation of
the Euler equations from the Vlasov equation was performed
in [38] using space-contracting limit. In particular it was
shown that the resulting system has zero temperature, i.e. the
velocities of individual particles coincide with the velocity
field. However, due to the space contraction the particular form
of the potential function was lost and the obtained pressure was
just a square of the density.

Here we present a derivation of Euler equations directly
from individual’s dynamics using the continuation method
described in previous sections. Contrary to other works, we do
not use any kind of limits and we use only one assumption on
the isotropy of the space. The assumption requires that for any
particle its nearest neighbours are distributed around uniformly
in every direction, which can be seen as a counterpart to the
molecular chaos hypothesis for the standard derivation of the
Boltzmann equation.

A. System of particles

It is assumed that the fluid consists of small particles
interacting with each other, with every particle following
simple Newton laws. We will study the system with n space
dimensions, and the particles are assumed to have unit mass.

We further assume that there is an interaction between each
pair of particles which is given by a force

Tk =xl1) = (i = x) 9 (Il = x1),
(37)
thus the force acts along the line connecting two particles
with the smooth magnitude f depending only on the distance
between particles. For simplicity we also define a function
¢(s) = f(s)/s representing the scaled magnitude. We will
consider an infinite number of particles and an infinitely large
space, therefore we should assume that the cumulative force
on any particle is finite. In particular for an equally distributed
grid this implies that the magnitude of the force should satisfy

x,'ij

Flxi—x:) =
(xt x}) Hxi_xjH

—+o0
/s"*‘f(s)ds <o VYe>0,

€

(38)

thus the interaction should be fast-decaying.

We then need to enumerate all particles. For this we will
use multiindex i € Z". Now let us write the dynamics of a
particle with multiindex i using the second Newton’s Law:

Xj = Vi,
Vi =Y F(Xi—Xitq), (39)
q70

where the summation is performed among all multiindices ¢ in
7"\ {0}, since all the particles interact with each other. Both
the position x; and the velocity v; are vectors in R".

B. Derivation in the Euclidean space

Treating the coordinate x; as a state and using the idea
written in section IV-C we define a multiindex function M(z, x)
which is the inverse function of the coordinate: M(t,x;) :=i.
Likewise, x(¢,i) = x;(t) and thus x(r,M(t,x)) =x Vx € R".

Now let us write a property of inverse function of mul-
tiindex as M(t,x(t,M)) =M VM € R", where the space for
multiindices is continuous by the assumption in section IV-C.
Taking the time and the index derivatives, we obtain the
following very useful relations on Jacobians:

dM  JM dx

o Taxa 0
M dx
oxom " @D

Equation (40) can be seen as a PDE where the function
M depends both on ¢ and x. Recalling that the multiindex
is assumed to be continuous, we can further utilize the first
equation of (39) written in a form Jx(¢t,M)/dtr = v(t,M),
substitute it in (40) and obtain the following equation on the
multiindex evolution:

M _ M, M) = M

ot ox ox u(t,x),

(42)



where the velocity function u(z,x) = v(t,M(t,x)) is defined as
a velocity of a particle at some given point in space. Finally,
taking the derivative with respect to space, we obtain

Jd (oM  d (oM
az(ax)_ ax<ax”>'
The Jacobian matrix aaM (t,x) represents a compression
tensor, which measures how close are neighbour particles with
respect to different directions in the euclidean space. Evolution
of this Jacobian in the euclidean space is described by the
matrix PDE (43), which is essentially a transport equation with
flow velocity given by u(t,x).

Now we approach the second equation in (39). It would be
desirable to transform it in such a way that we could obtain an
evolution equation for the flow velocity u(z,x). First of all, let
us rewrite the second equation of (39) in a way more suitable
for continuation, namely

Vi=— Z (F (xitg —xi) — F (x;
q>0

(43)

- xi—t])) ) (44)

where the summation is performed among all multiinidices
which are greater than zero in lexicographical order, i.e. the
first nonzero element of g should be positive.

Now we use the continuation of order 1 on a multidimen-
sional system such that

ox ox
M (taxi+q/2) q, Xi—Xi—q — M (tvxi—q/Z) q,
which means that (44) becomes

—_— (F (20) () )
l q>0 oM i+q/2 oM i—q/2

Applying the continuation further to the forces, we obtain

JoF
Ficgn = 3y

Xitqg —Xi —

(t,x1)q.

D

Fi+q/2 -

Thus (44) transforms into

o= S (e (|5
ot = oM
where we used a definition of the force (37).

Now, we state the following result:

Proposition 1. For any q € Z" and for any smooth scalar field
@ the following identity holds:

i ()] -
(S S o) (- (5o 53 )

where V denotes a row vector of derivatives with respect to x.

T ox T (46)

oM

Proof. First, for convenience denote the left-hand side as a
vector Q:

d [ ox 0
Q:=aM<an)q ax( q¢>

(47)

Also define h = (dx/dM)q. Expanding d(h¢)/dx, we get

3¢ 799"

Qh ox

Now, for any & € R”
V. (hh') = (Zhl S+ Ihi o

—hq) ' =2+ —h¢ (48)

h:
i+ Thie ).,
l l

which means that

(V- (rh"))" = ?h—i— (V-h)h. (49)
Therefore the transpose of (48) is
or = ¢hhT+V (hh")p — (V-h)hT ¢. (50)
Since for any matrix J and for any scalar field o
V~(aJ):3—zJ+(V~J)a (51)

we can simplify (50) as Q7 = V- (hhT ¢) — (V-h)hT ¢. The
result of the proposition follows by substituting 4 and noticing
that V- ((dx/dM)q) = (V- (dx/IM))q. O

Proposition 1 allows us to rewrite (45) as being dependent
only on the euclidean space divergences and the inverse of
the compression tensor dM /dx. To finalize the derivation of a
complete set of equations, recall the definition of the velocity
field u(z,x) = v(¢t,M(t,x)). Taking the time derivative:

du _ dv n dv dM
ot dt oM ot’
which by (42) is
du dv oM dv

o oM ax T ar
This equation can be simplified by du/dx = dv/dM-9dM/dx.
Finally, substituting (45) and (46) and combining the result
with (43) we obtain a system
d [(dM d (M
8t(8x> &x(ax“>’
du du ox sox’
o o qg;) v (8qu oM ¢> (52)
Jx 8x !
where ¢ = ¢ ([|(9x/aM)q]]).

The system (52) has 12 states in 3-dimensional space, 9 for
dM/dx (t,x) and 3 for u(t,x). It resembles the famous Grad
13-moment system [36], which extends the Euler equations
by considering directional-dependent pressure tensor. The last
state of the Grad 13-moment system is the inner energy, which
does not appear in (52). The reason for this is that we derive
a continuous interaction term explicitly from the interaction
forces, which is possible only if the forces are defined by
long-range potentials. As it was shown in [38], expressing
a system with long-range potentials by the Euler equations
leads to the solution with zero temperature, therefore the inner
energy becomes functionally dependent on the velocity field
and its evolution equation can be omitted.



C. Dimensionality reduction

It appears that in some special cases it is possible to reduce
the system (52) by considering only one scalar characteristic
of a compression in any space point instead of the whole
compression tensor.

Indeed, we define a density as a determinant of the com-
pression tensor, p(¢,x) := det(dM/dx)(z,x). Not only the
compression tensor itself, but also its determinant satisfies
(43). This nontrivial fact holds because the compression tensor
is the Jacobian, and the proof is given in Lemma 1 in the
Appendix. Therefore from (43)

ap

5=V (pu). (53)

This equation is the first of the complete set of Euler equations.

Unfortunately, the second equation of (52) depends on the
whole compression tensor and thus it cannot be described
only by the means of density. This is reasonable since in
general the system can have different pressures in different
directions in response to different compressions. Therefore
in order to simplify the system we need to assume that the
compression can be represented by a single number, i.e. that
it is compressed equally in all directions.

Assumption 1 (Isotropy). Compression tensor M /dx(t,x) is
isotropic (equal in all directions), thus it can be represented
as a rotation matrix multiplied by a scalar.

This assumption looks restricting at first glance, but for the
infinitely large system with infinitely many particles the system
indeed “’looks the same” in all directions at every point, thus
we can say it is isotropic.

Assumption 1 has long-lasting implications. Define (¢, x) :=
A(dx/dM(t,x)), since all the eigenvalues are equal. This vari-
able, called specific distance, represents an average distance
between two neighbouring particles at point x. By definition
of the density p = [™". Further, H%q” = [||q||. Breaking
the summation in (52) in a sum of all possible lengths r of
multiindex vectors, we can rewrite the summation term as

ox o ox T
rZZE,N lV ¢(rl)aM Z (a9") 727
lai=r 1)
o [ v-(2) ¢ @n ||
om) = oM ||
llqll=r

Proposition 2. Given r such that r2 €N, the summation over
all outer products of multiindices of a length r is proportional
to the identity matrix, i.e. there exists B(r) such that

Y 9" =

q>0
llqll=r

(55)

Proof. First of all, we will show that all nondiagonal elements
in (55) are zero. Indeed, for any positive ¢ its contribution
to kj-th element of matrix (55) is given by grg;. But for
any k # j we can pick g such that it equals g except

Jmax(k,j) = —Ymax(k,j)- In this case g is also positive and thus
is included into the summation, while the contribution to & j-th
element of (55) has opposite sign. Therefore all nondiagonal
elements of (55) are zero.

Further, all diagonal elements of (55) are equal. This can be
proven by analogous argument. Indeed, we can take a positive
g and look at the elements g7 and 3. Then ¢ which is equal
to g except for g = sgn(qx)|g;| and G; = sgn(q;)|qk| is also
positive, but swaps the contributions between k-th and j-th
diagonal elements. Thus all the contributions to the diagonal
elements are equal. Finally,

Tr Y q¢" = Y q"q=r"#q=nB(r),
g>0 >
lqll=r llgll=r

(56)

where #,q denotes the number of positive multiindices g with
length r and we define B(r) = r?/n-#,q. It is worth noticing
that by [39] the average approximate behaviour of the number

of positive multiindices g with length r is #,q o< 7"~ ! as r —
+oo, thus B(r) o< 1. O
By Assumption 1
dx ox 7’
— = =L 57
oM oM o7

Using Proposition 2 and (57), (54) becomes

T T
Y B(r (6(rDIPI) — (1) (v- (aa;;) (% )]

r2eN
The value inside of the square brackets can be simplified
further. Indeed, by (51) it is possible to inject density inside,
which gives

T T
V- (po(r)P1) — %;’q)(rnzwww (V' ((%) ;7); ﬂ

1 ox\ ox T !
=3 {V- (PO (P1) = 9(r) (v- (o5) o )] |

Finally, the second term in the square brackets appears
to be zero, since Lemma 2 in the Appendix proves that

1
p

P 5 %T = 0. Using this Lemma and the fact that
V- (po(r)I’I) = V(p¢(rl)I?), we can define the pressure:
P=Y B(r)po(r) Zﬁ I=rfr). (58)
r2eN r2eN

Note that the pressure is well-defined since the sum is con-
vergent by the property (38). With this definition, the system
(52) together with (53) turns into the famous Euler equations:

0
L~ V- (pu),

59)
u__ou VP! (
o ox' p -

Therefore the following theorem was proven:

Theorem 3. There exists a valid continuation process which
leads from the Newtonian system (39) to the Euler equations
(59) under the assumption that the system is locally isotropic
in every point in space.



Remark 3 (Non-complete interaction topologies). In the origi-
nal ODE system (39) we assumed that an interaction exists
between every pair of particles, i.e. that the topology of
interactions is all-to-all. In general in order to obtain (39)
it would be sufficient to use any topology for which the
isotropy required in Assumption 1 is possible. The difference
in topologies would modify the definitions of density P(t,x)
in (58).

For example, for the grid topology with equations given by

Xi = Vi,
- n (60)
b= 8 (Pl —e) Pl 520).

k=1

where ¢; denotes the k-th basis vector of R”, the continuation
renders the same Euler equations (59) with the pressure given

by P = f(1)/I"".

VI. CONTROL OF ROBOTIC SWARM

In this section we will demonstrate how the continuation
method described above can help in the analysis and design
of control laws for large-scale systems. We will do it by using
an example of a robotic swarm, i.e. a formation of robots
whose goal is to follow some desired trajectory while passing
through obstacles and preserving relative agents’ positions.

Control of robotic formations is an extensively studied topic,
see recent reviews [40], [41]. However most of the methods
rely on the graph-theoretic properties of interaction topology
and on simple linear controllers to provide stability. A PDE
approach was taken in [42] where the Euler PDE with diffusion
terms was used to model the flocks of birds. The authors
proposed a PDE to describe the behaviour of agents and
analyzed it to study a symmetry breaking which leads to a
coherent movement of birds. Similar PDE model was used
to control 3D agent formation with 2D disc communication
topology via backstepping in [43]. Lattice-based spatially-
invariant models for platooning were considered in [44], [45],
where stability properties of infinite systems were studied in
various space dimensions.

Works mentioned above which use PDE representations of
multi-agent systems just assume a PDE model, which can
be justified by a limiting case of the infinite number of
agents. Contrary, we will base our analysis on the continuation
procedure, rigorously introducing a PDE to describe a finite
formation of drones. We will study this PDE and recover a
nonlinear local control law which, being applied to the agents,
forces the whole formation to follow the desired density
profile.

A. Continuation and PDE Control

Let us start from a system of drones having double integra-
tor dynamics:

Xi=1T;. (61)

Here x; € R" is a position of the i-th drone in n-dimensional
space and 7; € R" is a control we want to design. The
drones are enumerated with multiindices i € Z". Define v; = ;.
Similarly to the previous section we introduce multiindex

function M(z,x) such that M(t,x;) =i and then perform a
continuation. The resulting system is

0
aifz_v(pu)a
(62)
du_ _ou +7(x,1)
FTE MG

where 7(¢,x) = 7(¢t,M(t,x)) is a continuation of the control 7;.

Now let us formulate a desired system which will be used
as a reference which the real formation should converge to.
Given a velocity profile uy(x), we define the desired density
pa(t,x) to follow this velocity profile. Essentially this means
“desired agents” have single-integrator dynamics. Note that in
general u; can be dependent on time but we don’t consider it
for simplicity of writing.

Thus we assume the desired system is governed by

% ==V (pata)-

Our goal is to derive 7(,x) such that p — p,. First, direct
calculations from (62) and (63) lead to the following systems
in terms of flows (pu) and (pyuy):

(63)

a(P“) — _V . (pu)u_p%u_kpf(x’t)’
ot dx (64)
3(131;‘(1) ==V (pgua)ug-

Define the deviation from the desired density p = p —p,. Then
the second-order equation for the deviation is
’p d
th =V [V (pu)u—V - (pgug)ug +Pa:M—PT(XJ)] :
In order to cancel the nonlinear terms, define now the control
T as
_ du

1
T= xu—i—;[V(pu)u—V-(pdud)ud—i— 65)
+ 0t(paua — pu) + BV (pa—p)"

)

where o and 3 are some positive gains. Then the equation for
the density deviation transforms into

2 ~ ~

P __op

or? ot

This equation is a wave equation with damping and thus it is

asymptotically stable if p = 0 on the boundary of the domain

[46]. Choosing a desired system such that p; = 0 on the

boundary and using a continuation of p such that p =0 on

the boundary ensures satisfaction of the boundary condition.

+BV?3p. (66)

B. Discretization of the control

Formula (65) for PDE (62) is local by its nature, but it
should be discretized to be implemented on every agent of the
original ODE (61). One particular discretization is described
next.

First of all, for the agent i define a matrix G; as a discretiza-
tion of the compression tensor:

ox
[Gl]] = (xi+ej _xi—ej)/z ~ W(t,xi),

J

(67)



where e; is the j-th unit basis vector and [G;]; represent the
Jj-th column of G;. The matrix G; depends on the positions of
2n neighbouring agents of the i-th agent, thus the interaction
topology is a lattice. In the same way as G; we define a matrix
W; representing a velocity Jacobian:

du

Vifej)/ aM (t,xi).

Now we can write formulas for all terms inside of (65)
depending on the real system:

(Wilj = (Vite; — (68)

du du oM
1). au 8M pp MNWG Vi,
du; oM &
2). Voau=Y =2 w1671,
Z aM axj ];1[ ]j [ ]J (69)
3). p~ 1/detGi,
4). Vp=—p*V(detG;) ~ —pszfl,

oM
where the gradient of the determinant detG; should be com-
puted according to the determinant formula, using second
derivatives of the positions discretized similarly to (67):

d%x
8M iOMy (xi,1) (xi+e-f+ek T Xivejep = Xitej—e _xi—e_i+ek)/4a
d°x
B (Xist) R Xige; — 2Xi +Xi—e;-
J

Since the gradient of the determinant depends on the second
derivatives, in total each agent requires information about the
velocities of its 2n neighbouring agents and the positions of
its 2n> neighbouring agents, including diagonal ones.

Finally, substituting (69) into (65), the formula for the
control action 7; appears as

WG+ Y WG - i+
j=1
79 (detG;) " (70)
L v oM

+detG; [ocpdud + (ﬁ[ — udug)VpdT — pd(V . ud)ud} .

C. Boundary conditions

For the system (66) to converge to zero proper boundary
conditions should be used. Namely, the continuation should
be chosen such that p = 0 outside of the formation. As it
was shown in IV-B, boundary conditions for PDE correspond
0 “ghost agents” in the ODE case. In particular, information
about neighbour agents is used in (67) and (68). Therefore
specifying boundary conditions means specifying positions
Xite; and velocities Vite; for the nonexisting agents.

Proposition 3. Assume agent i—e; is a ghost agent. Then
(71
i]j by (68).

Xie; = 3Xi — 2ige;,  Viee; = 2Vi = Vige;

ensures Pi—.; =0 and a correct computation of (W,

Proof. Choice (71) for velocities is natural, since being sub-
stituted in (68) this leads to an approximation of the velocity
gradient based solely on the i and i+ e; agents.

P pi+€j :pi+2€j2171
=i o—o—
o/
Pi—e

j:()/
~ =2 1 I
O t t

-xi—e_/' -xi

xH—Ej xl‘+2€j

Figure 6. Left boundary of the system (61) with control (70). Agent i is on
the boundary, the position of the “ghost agent” i —¢; is chosen such that p
linearly goes to zero at x;;.

For the position we want that the compression tensor (67)
“feels” that the drone i is on the border. For this we can use
such an approximation that the density near the border will
linearly diminish to zero, see Fig. 6. Namely, let us look at 1D
case and fix i-th agent to be on the left border, with p;—, =0
for the ghost agent. Assume further that the distance between
each pair of existing agents is constant and equal to /. Then
Pite; = [~!. Define an unknown distance s := x; —Xi—¢;. Then
asking for a linear dependency of a density on position, we
have necessarily

o lpi—ej +Spi+ej - S
b I+s ()’
But by (67) p; =2/(I+s), which immediately gives the answer

5 =21, or Xi—¢; = Xi +2(x; —x,-+ej), which is (71). O

Proposition 3 finalizes the formulation of the boundary
conditions and thus the correct implementation of (70).

D. Numerical Simulation

To demonstrate the control policy (70) we performed a
numerical simulation of a cubic formation of 512 drones in 3D
space. The goal was to reach a cubic formation, fly through a
window and restore the cubic formation after the maneuver.

Assume the center of the window is placed at the point
(x0,0,0), and the formation should fly through it starting from
the origin. The desired velocity field uy(x,y,z) able to fulfill
the task was constructed as

_x)?
ug, =1, uq, =0.05 atan(x —xp)e” 100 y|z,

where y|z denotes y or z, see the left panel of Fig. 7 for
the streamlines projected on the x-y plane. For simplicity the
desired system (63) was simulated by first-order integrators
following the desired velocity profile, and the density py(x,?)
was interpolated between agents.

Both the desired system (63) and the real system (61) were
simulated for the cubic formation of 8 x 8 x 8 drones using
Euler method. The initial positions for the real system were
multiplied by 2 in comparison to the desired system and a
uniform noise U(—2,2) was added. The control gains were
chosen as o =3 and 3 = 100. The convergence of the real
density to the desired one is shown on the right panel of Fig. 7
and snapshots of the simulation are presented in Fig. 8. It
is clear that the real formation, being heavily disturbed in
the beginning, converges to the desired shape in less than
5 seconds and then follows the desired pattern, successfully
passing through the window.
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Figure 7. Left: streamlines of the desired velocity field uy(x,y). Right:
convergence of the L, norm of the density deviation.

REFERENCE ACTUAL

Time: 0.0 Time: 0.0

Time: 1.0 Time: 1.0

Time: 5.0 Time: 5.0

Time: 20.0 Time: 20.0

Time: 30.0 Time: 30.0

Time: 45.0 Time: 45.0

Figure 8. Simulation of drones flying through window. Rows correspond
to times ¢ = {Os, 1s,55,20s,30s,45s}. Left column, reference: desired system
(63), governed by single integrators. Right column, actual: heavility perturbed
real system (61) with control (70) which converges to the desired one.

VII. CONCLUSION

We presented a general process of transformation of ODE
systems into their PDE counterparts, defining the continuation
to be valid if the original ODE system could be obtained from
the PDE version by a correct discretization. We further showed
that the spectrum of PDE converges to the spectrum of ODE.
The continuation method was then elaborated for many classes
of systems including nonlinear, multidimensional and space-
and time-varying. Based on this method, new continuous
models can be derived and further utilized for analysis and
control purposes.

As an example we used the continuation to show how the
Euler equations for compressible fluid can be derived from
the newtonian particle interactions, providing more intuition
into Hilbert’s 6th problem. The same continuation was then
used to describe a robot formation flying through window. We
developed a control algorithm to stabilize a desired trajectory
based on a continuous representation of the formation. This
algorithm is distributed as every robot requires information
only about neighbouring robots.

APPENDIX

Lemma 1. Let J(t,x) € R"™" be the Jacobian matrix of
function M(t,x). Let J(t,x) satisfies the dynamic equation
aJ  d(Ju)
ot ox
where u = u(t,x) is some vector field. Then the determinant
detJ satisfies the same equation:

; (72)

8det]__i
ot Ox

Proof. First of all let us rewrite (72) for one element J; of
the matrix J:

i <
o axk ; P
" aJ

_ L
= ij )
=1 Bxk

where we used the fact that J = dM/dx. Now let us recall
the definition of the determinant: detJ =Y ;sgn(o) 1 Jo,.i,
where o is a permutation of the set {1,2,...,n} and Y is taken
over all possible permutations, with sgn(c) being the sign of
the permutation. Take the time derivative and substitute (74):

- (detJ] -u). (73)

i,_%_
1 ”8xk

= (74)

xkax j

JddetJ JGk’ n
5 = Loen(o) Y St T Joi=
c i=1,i#k
u Ao, k du;|l (75)
O » J
——— SgIl '+J6,'7 JO’,-,‘
; o ; ax]' ko axk i:II;'Iyék '

We will investigate two parts of (75), corresponding to the two
terms inside the square brackets. For the first term we have

~ ¥ Ysenlo Z

j=10 j i=

ddetJ "
dx

ox; j.H JGN:?Z ox;

i#k Jj=1

ajo'k‘k n L adetJu o
j=—
1,i



The second term is a little more tricky:

L Xoen(o) $ g 52 1 = —des £ 5
j=lc = X Hiyék
n n n

- Zzsgﬂ Z Joy.j ax H Jo, i
=te k=1k#j k =1tk

Here we split the summation over k into the term with
k = j and all other terms. The former immediately gives the
determinant multiplied by the divergence of the vector field,
where the latter sum over all other terms is zero. Indeed,
imagine a permutation & such that it is equal to ¢ except
0; and oy are swapped. Then the sign of & is opposite to the
sign of o. Further, since the product Jg, jJg; j is the only way
in which o} and o; enter the formula, the absolute value does
not change with the change of permutation. Therefore for each
J,k and for each permutation there exists a permutation which
cancels them out. Finally, substitution of the nonzero terms of
the last equations into (75) leads to (73). O

Lemma 2. Let dx/dM be isotropic, ie. represented
by a scalar multiplied by a rotation matrix, and let

p = det(dM/dx). Then
ox\ ox '
V.o ) 22
<” 8M> oM
Proof. Define A = A(dM/dx), thus p = A". By isotropy,
ﬁ —)12 37M7
oM dx
and therefore, by using (51), the left-hand side of (76) is
29M") oM
dx dx
M\ oM
dx dx
Now let us investigate the first term more closely. Taking the
divergence and looking at j-th element, we see that

(76)

v A" A=

(77)

a2t

="V :
A ox

oM™\ oM I*M" oM
— | = . 78
dx dx | . Z ‘ dx2 dx; (78)
J
Now, by isotropy
oM™ oM oM™ oM
—— =—=0Vj#k =22 79
8xj axk ]?é ’ (9 Xk axk (79
Taking the derivative of the multiplication of basis vectors:
9 (omTom\ _, om "om 50)
(9)61' axk z?xk 8xj8xk 8xk’
but at the same time the value under the derivative is A% by
(79), therefore
d (oMToM\ 09A2 I
— | — — | ==—=21A—. (81)
8)61‘ axk axk ax]' 8xj

Then, taking the derivative of multiplication of different basis
vectors with j # k, by (79) we obtain zero:

9 (om"om
8xk

2m aM omT I’M

8x/ E 3xj3xk 8xk 3xj Bxk

which by equality of (80) and (81) means that for j # k

M Tom oA
ax]‘.

oM oM __
axj' 8x,% B

In the case of j =k by equality of (80) and (81) we have
M oM . 9A

Iom o 82

=7 (83)
8)@ 8xj ax]
Combination of (82) and (83) means that (78) is
oM™\ om dAr
—_— | = = A—. 84
ox ox | (2-n) dx; (84
J
Finally, substituting (84) in (77) gives zero. O]
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