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The ability to enhance light-matter interactions by increasing the energy stored in optical resonators is inherently dependent on the
resonators’ coupling to the incident wavefront. In practice, weak coupling may result from resonators’ irregular shapes and/or the
scrambling of waves in the surrounding scattering environment. Here, a blind and non-invasive wavefront shaping technique pro-
viding optimal coupling to resonators is presented. The coherent control of the incident wavefront relies on the lengthening of delay
times of waves efficiently exciting the resonator. Using a modal approach, the optimality of the proposed technique is proven and its
limitations are quantified. The proposed concept is demonstrated in microwave experiments by injecting in-situ optimal wavefronts
that maximize the energy stored in high-permittivity dielectric scatterers and extended leaky cavities embedded in a complex envi-
ronment. The introduced framework is expected to find important applications in the enhancement of light-matter interactions in
photonic materials as well as to enhance energy harvesting.

1 Introduction

Light incident upon a photonic resonator can be efficiently trapped by a long-lived mode if the light’s
frequency is within a narrow interval around the resonance. Since the energy stored in the resonator is
proportional to the light’s dwell time [1, 2, 3, 4], light confinement in photonic resonators constitutes an
important mechanism to enhance light-matter interactions, for instance, to generate non-linear optical
effects. Photonic resonators can take the form of optical microcavities [5, 6, 7, 8], nanocavities [9, 10] or
Anderson-localized modes in disordered crystals [11, 12, 13], to name a few examples, and are also cru-
cial to boost the absorption rate in light harvesting schemes [14, 15, 16, 17]. However, coupling light in-
cident from the far-field to an optical resonator is a major challenge in many practical scenarios where
(i) the resonator’s shape is unknown or irregular and/or (ii) the resonator is embedded in a complex scat-
tering environment. The latter completely scrambles the incident wavefront such that its coupling to the
resonator, and consequently the energy storage, is dramatically reduced.
To counteract the effects of this scrambling, many wavefront shaping (WFS) techniques have been de-
veloped within the last decade that rely on tailoring the wavefront incident on a complex medium to co-
herently control wave propagation within the medium [18, 3]. In its simplest form, WFS may enhance
energy storage in a point-like resonator embedded in a complex medium by focusing the wave field on its
location. To determine how the incident wavefront should be shaped, such schemes must access in some
way information about the wave field at the resonator’s location. To circumvent the need for direct field
measurements, a number of proposals indirectly obtain this information by implanting a guide-star at
the target location [19, 20], by creating a virtual guide-star with multi-wave approaches [21, 22], by re-
lying on a non-linear response at the target position [23, 24] or on a parametric variation of the target
[25, 26, 27, 28].
None of these approaches enables blind and non-invasive focusing on the target. If, however, the target
is known to be resonant, an alternative approach to couple energy into an embedded resonator without
relying on any of the above-described conditions, and moreover also applicable to extended resonators, is
related to the impact of the resonator’s presence on the dwell time of waves that interacted with it. The
Wigner-Smith time-delay operator (WSO) provides a blind and non-invasive tool to determine an incom-
ing wavefront that optimizes the delay time [29, 30, 31, 32, 33, 34]. As long as the resonator’s quality
factor is clearly superior to that of the surrounding medium, the eigenstate of the WSO associated with
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the largest delay time may strongly increase the energy stored in the resonator [4]. Note that our blind
and non-invasive approach sharply differs from Refs. [27, 28] which leverage a generalized version of the
Wigner-Smith operator in which the frequency is replaced by a local parameter of the target (position,
orientation, refractive index, ...) that has to be altered in-situ to determine the wavefront to be injected.
Here, we begin by theoretically proving the optimality of injecting the first time-delay eigenstate to cou-
ple waves to a resonator embedded within a scattering medium. Then, we experimentally demonstrate
the technique in the microwave domain: By injecting the optimal wavefronts in-situ, we observe a corre-
sponding enhancement of the stored energy for a dielectric cylinder as well as for an extended leaky cav-
ity, each embedded in a complex scattering environment. Finally, we quantify the technique’s limitations
when the quality factors of resonator and medium become comparable.

2 Theory

2.1 Wigner-Smith time-delay operator

The delay time of waves travelling through the medium carries key information about non-cooperative
resonant inclusions. By identifying the wavefront that maximizes the delay time between incoming and
outgoing waves, the time-delay signature of an embedded resonators can be leveraged to optimally excite
the resonator and store energy within its volume. The delay time of outgoing waves Eo = S(ω)Ei for an
incoming wavefront Ei is formally given by [4]

τ(ω,Ei) = −i
E†o

∂Eo

∂ω

||Eo||2
= −i

E†iS
†(ω)∂S(ω)

∂ω
Ei

E†iS
†(ω)S(ω)Ei

. (1)

The scattering matrix S(ω) gives the fullest account of transmitted and reflected field coefficients be-
tween the channels coupled to the system. For systems with flux-conservation, the scattering matrix is
unitary, S†S = 1, so that for a normalized incoming wavefront the definition in Eq. 1 coincides with the
delay time τ(ω,Ei) = E†iQ(ω)Ei found using the WSO [35, 1, 36, 37]

Q(ω) = −iS−1(ω)
∂S(ω)

∂ω
. (2)

The WSO generalizes the phase derivative of the transmission amplitude giving the delay time of waves
in 1D systems [38] to multi-channel systems. The eigenvalues of Q(ω) verifying q†iQ(ω) = τiq

†
i are known

as the proper delay times. They are real and give well-defined delay times obtained upon using the eigen-
vectors of Q(ω) as incident wavefronts: τi = τ(ω, qi). An eigenstate of the operator Q(ω) is referred to as
time-delay eigenstate (TDE) since injecting this state into the system will result in a specific time delay
Re[τ ], where tau is the eigenvalue associated with the eigenstate. The eigenvector associated with the
largest proper delay time hence provides the incoming wavefront optimizing the delay time and the opti-
mal energy stored within the medium [4].
The generality of the scattering-matrix formalism implies that our technique does not depend on the
spatial arrangement of the channels; it can be used equally well with an array of channels or an ensem-
ble of randomly placed channels, both in 2D and 3D systems. However, in many experimental setups,
energy can only be injected through a subset of channels on one side of the medium. The WSO is then
constructed from a measurement of the transmission matrix (TM) t(ω) or reflection matrix (RM) r(ω).

t(ω) and r(ω) are non-unitary matrices so that the corresponding WSOs, Qt(ω) = −it−1(ω)∂t(ω)
∂ω

and

Qr(ω) = −ir−1(ω)∂r(ω)
∂ω

, respectively, are non-Hermitian with complex eigenvalues τ̃i. Neverthless, the
real part of τ̃i gives the frequency derivative of a scattering phase related to a delay time [39, 34]. The
imaginary part of τ̃i reflects the variation of transmitted or reflected intensities with frequency.
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2.2 Optimality
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Figure 1: (a) Schematic of experimental setup. The waveguide’s top plate is removed to show the interior. The projected
intensity map shows the blind focusing on an embedded resonator achieved by injecting the first TDE of the RM. (b,c)
Spectra of the real part of the time-delay eigenvalues τ̃n(ω) (b) and intensity at the dielectric resonator’s location mea-
sured upon injecting in-situ the TDEs at f0 = 13.58 GHz (the first TDE’s eigenvalue peaks at f0, see black dashed line)
(c). (d,e) Spatial distribution of energy density of the first (d) and second (e) TDE. These maps are obtained via a two-
dimensional interpolation of the field measurements on a grid of holes with spacing of 8 mm in the vicinity of the resonator
(see Supporting Information for technical details).

2.2 Optimality

For the example of Qr(ω) we now demonstrate using a modal perspective that the TDE with the largest
eigenvalue is the optimal wavefront for maximal coupling to an embedded resonator. The quasi-normal
modes (referred to as mode in the following) are the eigenfunctions φm(r) that are solutions of the wave
equation with outgoing boundary conditions. The modes are associated with spectral resonances charac-
terized by complex eigenfrequencies ω̃m = ωm − iΓm/2 with central frequency ωm. The linewidth Γm is
inversely proportional to the modal decay rate 2/Γm or equivalently to its quality factor Qm = 2ωm/Γm.
We analyze the TDEs of Qr(ω) near the resonance with the resonator’s nth mode. We decompose r(ω)
into a superposition of a background contribution, r0(ω), and a resonant modal term with Lorentzian
lineshape expressed as rn(ω) = −iWn[ω − ω̃n]−1W T

n , so that r(ω) = r0(ω) + rn(ω). The vector Wn

is the projection of the corresponding eigenfunction φn(r) onto the channels. Since rn(ω) is a matrix of
rank one, the Sherman–Morrison formula [40] yields r−1(ω) = r−10 (ω) − [r−10 (ω)rn(ω)r−10 (ω)]/[1 + κ(ω)],
where κ(ω) = Tr(r−10 (ω)rn(ω)). Using that ∂rn(ω)/∂ω = −rn(ω)/(ω − ω̃n), straightforward algebraic
manipulations yield the expression of the WSO at the resonance ω = ωn

1

Qr(ωn) = Qr0(ωn) +
r−10 (ωn)rn(ωn)

1 + κ(ωn)

[
2

Γn

−Qr0(ωn)
]
. (3)

Qr0(ωn) is the WSO applied to the background contribution. The contribution associated with the res-
onator Qn(ωn) = 2r−10 (ωn)rn(ωn)/[Γn(1 +κ(ωn))] is also a rank one matrix. The left eigenvector of Qn(ω)

which verifies q†1Qn(ωn) = τ̃1q
†
1 is given by q1 = W ∗

n/||Wn||. q1 therefore provides maximal excitation of
this mode [41]. The associated eigenvalue is τ̃1 = (2/Γn)[κ(ωn)/(1 + κ(ωn))].
We now assume that the modes can be separated into two categories: (i) short-lived modes (small qual-
ity factors) of the surrounding environment with eigenfunctions which extend throughout the system and

1See Supporting Information for technical details details on the radiofrequency chain, on the proof of Eq. (3), for a demonstration of selective
focusing on two resonators, and for additional numerical simulations.
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weakly interact with the resonator; and (ii) long-lived modes spatially localized on the resonator whose
quality factors significantly exceed those of the first category. The parameter κ(ωn) = −2W T

n r
−1
0 Wn/Γn

depends on the system of interest but can be evaluated in absence of absorption and for a complete con-
trol on the channels coupled to the system, in which case r−1 = r†. The Sherman–Morrison formula
gives κ(ωn)/(1 + κ(ωn)) = Tr(r†rn). Using the orthogonality between the resonator’s mode φn and the
background’s modes φm6=n (see Supporting Information), we obtain κ(ωn) = −2 and τ̃1 = (4/Γn), which
is the contribution of a mode at resonance to Tr(Q) [42, 43]. When the resonator’s contribution 4/Γn

is larger than the first eigenvalue of Qr0(ωn), the first eigenstate of Qr(ωn) coincides with the eigenstate
of Qn(ωn) and injecting the left eigenvector q1 of Qr(ωn) provides maximal excitation of the resonator.
In the last section, we quantitatively discuss limitations of our approach that arise for systems for which
the linewidths associated with background modes are smaller than Γn.

3 Experimental Demonstration

3.1 Coupling to a single resonator

Having established the theory, our first experiment demonstrates optimal focusing on a single high-Q
dielectric cylinder with a permittivity ε ∼ 37 [44], embedded in a complex environment. As shown in
Figure 1, the latter is a quasi-two-dimensional multimode waveguide (in the considered frequency range)
that is filled with 30 randomly placed low-Q scatterers (teflon cylinders, diameter 5 mm, ε ∼ 2.07).
One waveguide end is covered with absorbing foam to mimic open boundary conditions while an array
of N = 8 coax antennas is located at the other end. The radiofrequency chain including IQ-modulators
behind each antenna is designed to allow simultaneously the in-situ injection of waves with tailored am-
plitude and phase profile and the reception of the return signals (see Supporting Information for details).
These unique capabilities make this microwave setup an ideal candidate for a proof-of-concept demon-
stration.
First, we measure the reflection matrix r(ω) associated with the antenna array between 13 and 14 GHz
and calculate the WSO Qr(ω). A peak is observed in Figure 1(b) at f0 = 13.58 GHz on the spectrum of
the real part of the first eigenvalue τ̃1. The delay time τ̃1(ω0) reaches 21.5 ns. This corresponds to a res-
onator’s Q-factor of Qm ∼ 917. τ̃1(ω0) clearly dominates the other contributions that do not exceed 16
ns at f0. The measured average delay time over the frequency range is 〈τ〉 = 13.7 ns. Second, we inject
in-situ the normalized left eigenvector q1 of the WSO corresponding to the largest delay time at f0. To
measure the spatial distribution of the intensity, we scan the excited field in the scattering medium with
a minimally invasive antenna inserted via small holes in the waveguide’s top plate. The result shown in
Figure 1(d) evidences strong focusing at the resonator’s location. Relative to the average intensity at
that location for the other eigenvectors, the intensity is enhanced by a factor of η = 10.2. This enhance-
ment is close to its expected value in random media related to the number incoming channels N by, η =
N = 8. We also inject the other TDEs into the system. The obtained intensity distribution for the sec-
ond TDE is shown in Figure 1(e), the other field maps are provided in the Supporting Information. The
intensity at the resonator’s location is slightly stronger than for the surrounding background as a con-
sequence of the resonator’s high Q-factor, but the incoming wavefront does not result in a proper focal
spot. This is confirmed by spectra of the intensity at the resonator’s location for the first seven TDEs in
Figure 1(c).
In Figure 2 we benchmark the achieved focusing intensity with our blind non-invasive scheme against
the optimal value attainable with an invasive phase-conjugation scheme. Our proposed scheme achieves
90 % of the maximum achievable intensity obtained by phase-conjugating the field coefficients between
the channels and the scanning antenna inserted via the hole above the resonator [45]. We attribute the
slight difference to the non-homogeneous energy density distribution within the resonator.
We now compare the focused intensity to the first and last reflection eigenchannels in Figure 2. In the
single scattering regime, the first eigenchannel of the matrix r†(ω)r(ω), known as the time-reversal oper-
ator, would also provide focusing on the strongest scatterer, here, the resonator [46]. However, the cor-
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3.2 Coupling to an extended resonator
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Figure 2: Comparison of the focused intensity using a phase-conjugation technique (black line), the first TDE (blue line),
the first (red dashed line) and last (black dashed line) reflection eigenchannels and its average over 100 random incoming
wavefronts.
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Figure 3: Energy storage in an embedded extended leaky cavity resonator (Lc = 104 mm, Wc = 152 mm). (a,b) Spectra
of the delay time (a) and energy stored within the cavity (b) for the first TDE, the first transmission eigenchannel and an
average over 200 random incoming wavefront. (c,d) Energy density distributions within the medium at 11.34 GHz for the
first TDE (c) and the first transmission eigenchannel (d), respectively. (e,f) Spatial distribution for the first TDE (e) and
the mode at resonance (f) obtained in simulation for the same geometry.

respondence fails in the multiple scattering regime as mainly the first scatterers located between the an-
tennas and the resonator are excited [47]. We also observe that the intensity on the resonator remains
small if the last eigenchannel corresponding to minimal reflections is excited. For systems with perfectly
controlled openings, minimizing the outgoing intensity coherently enhances absorption within the medium
[48, 49, 50, 51] so that the scatterers with largest Q-factors and hence largest absorption rates may be
preferentially excited [52]. However, we control only a small fraction of incoming and outgoing channels
since the system is fully opened at the right side. The eigenchannel with minimal reflection is therefore
mainly associated with an increase of transmission from left to right.

3.2 Coupling to an extended resonator

We now consider extended resonators with dimensions greater than the diffraction limit. Identifying the
wavefront that optimally couples to extended resonators, here a rectangular leaky cavity with aluminum
walls and an opening of 25 mm ∼ 1.05λ at 11.5 GHz, is non-trivial even without a surrounding scatter-
ing medium. At the same time, to demonstrate the versatility of our approach, we now work with t(ω)
rather than r(ω). To that end, we replace the absorbing foam on one end of the waveguide with another
array of N = 8 antennas. We place small pieces of absorbing material in front of the metallic walls be-
tween all neighboring antennas to prevent the waveguide from having strong internal reflections (see also
discussion below).

We compute the TDEs by applying the WSO to the TM, Qt = −it−1(ω)∂t(ω)
∂ω

. We obtain the correspond-
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3.3 Limitations
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Figure 4: Delay time and energy stored within an extended cavity (Lc = 56 mm, Wc = 72 mm, 15 mm aperture) for the
first TDE. The insets show intensity distributions of the TDE at f0 = 11.905 GHz and f0 = 11.98 GHz.

ing energy density distributions displayed in Figure 3, this time by analytically injecting the eigenvectors
of the WSO into a second transmission matrix linking the input ports to grid positions within the sam-
ple. We calculate the energy stored within the resonator for each TDE, Un(ω), by integrating the field
intensity over the surface of the resonator. The variation of U1(ω) with frequency is seen in Figure 3(b)
to be highly correlated (similarity coefficient 0.68) with the variation of the real part of τ̃1(ω). The delay
time and the energy stored within the cavity for the first TDE are enhanced relative to their averages for
random illuminations, with maximal factors of 6.25 and 5.71 at 11.68 GHz.
The enhancement of the stored energy relative to random wavefronts shown in Figure 3(b) is confirmed
by the energy density distribution in Figure 3(c). In contrast to the first eigenchannel of t†(ω)t(ω) for
which the wave follows scattering paths around the cavity (see Figure 3(d)), the wave in the first TDE
is seen to strongly penetrate into the cavity with a spatial distribution reminiscent of a regular cavity’s
eigenfunction. As shown in our theoretical analysis, the incoming wavefront indeed maximally excites
the resonant mode at its resonance. We confirm the correspondence between the first TDE and the mode
at resonance in numerical simulations reproducing the experimental setup: the spatial distributions in
Figure 3(e,f) are in excellent agreement within the resonator. In our simulations, the energy stored in
the resonator with the first TDE reaches 99.5% of its optimal value.

3.3 Limitations

Finally, we consider the limitations of our blind-focusing technique. We assumed up to now that the
eigenvalue associated with the resonator (4/Γn) is larger than the maximal delay time associated with
the surrounding medium so that the peaks in the first eigenvalue of the WSO can be identified as a sig-
nature of the resonator. However, for resonators associated with delay times smaller than the maximal
delay time of the environment, Eq. (3) demonstrates that the first TDE corresponds to the first eigen-
state of the background contribution Qr0(ω) which will not excite the resonator. To quantify this limita-
tion, we assume that the proper delay times τ of the surrounding environment can be described by a dis-
tribution P (τ). Maximal excitation of the resonator hence requires that 4/Γn > max(τ). For a chaotic
cavity without resonant inclusion, P (τ) has a finite support with an upper bound τ+ which scales lin-
early with the average delay time 〈τ〉 as τ+ = (3 +

√
8)〈τ〉 [36, 53, 54]. In a chaotic cavity with M fully

coupled channels, 〈τ〉 = τH/M , where the Heisenberg time τH is the inverse of the average level spacing:
τH = 1/∆. Our focusing technique is hence efficient as long as 4/Γn � 〈τ〉. This was the case in Fig-
ure 3 for which we estimate 〈τ〉 ∼ 3.5 ns. In a diffusive slab with mean free path ` and thickness L � `,
P (τ) also exhibits an upper bound τ+ which scales as τ+ ∼ L2/(c0`) [55, 4] so that the limits of our tech-
nique are quantitatively known, too.
To illustrate limitations in high-Q environments, we reduce the size of the cavity placed in the middle of
the waveguide (see Figure 4). We also remove the pieces of absorbing foam between neighboring anten-
nas at the two waveguide ends so that internal reflections appear between the openings due to metallic
boundary conditions. The regular shape of the waveguide closed at both ends results in very long-lived
modes not associated with the resonant target. In an integrable cavity, the distribution of proper delay
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times decays algebraically for τ � 〈τ〉 and does not exhibit a cutoff as in chaotic cavities [56]. 〈τ〉 in-
creases to 6.7 ns and we observe in Figure 4 that a direct mapping between peaks in τ̃1 and an enhance-
ment of the energy stored within the resonator is no longer possible. The peak given by τ̃1 ∼ 32 ns at
f0 = 11.98 GHz still corresponds to a peak of U1(ω). However, the first TDE at f0 = 11.905 GHz with
τ̃1 ∼ 53 ns corresponds to a long-lived mode trapped between the waveguide’s top and bottom bound-
aries which very weakly penetrates into the cavity resonator. The delay time of this mode largely ex-
ceeds the delay time associated with the resonator at this frequency. Overall, the correlation between
the spectra of τ̃1 and U1(ω) is now only 0.33.

4 Conclusion

To summarize, we experimentally demonstrated optimal blind and non-invasive focusing on a resonant
inclusion in a complex scattering environment by controlling delay times of transmitted and reflected
waves in a multi-channel system. For the case of multiple resonant targets, we describe an example of
selective focusing on two resonators in the Supporting Information; a thorough investigation of multi-
target focusing with our technique is left for future work. Another question for future research is related
to the possibility of further enhancements by shaping the incident wavefront not only in space but ad-
ditionally in time. Given that the resonant target’s linewidth must be much thinner than a typical res-
onance in the surrounding scattering medium, it appears impossible to find two or more frequencies ca-
pable of exciting the target’s resonance that would propagate “independently” through the scattering
medium. Nonetheless, this limitation may be circumvented by leveraging higher harmonics of the tar-
geted resonator. Our approach demonstrated in the microwave range can be extended to optics, acous-
tics and seismology. We expect these results to trigger new schemes to enhance energy harvesting and
non-linear effects in photonic and phononic materials [57]. Our framework may also open new perspec-
tives for coherent perfect absorption in random media [51, 58, 52, 59, 60], to control random lasing [61]
and for deep-imaging through highly scattering samples [62].

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.
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By leveraging the dwell-time enhancement of waves that interact with a resonator, waves can be focused on a resonator of
arbitrary shape, even if it is embedded in a scattering medium at an unknown location. The optimality of this blind and
non-invasive scheme is theoretically proven with a modal approach. The technique is demonstrated with experiments in
the microwave domain.
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