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Abstract: We present a microwave experimental setup emulating tight-binding systems that
is now widely used in the realm of topological photonics. A thorough description of the
experimental building blocks is presented, showing the advantages and the limits of this platform.
Various experimental realizations are then described, ranging from the selective enhancement
of a defect state in a non-Hermitian Su-Schrieffer-Heeger (SSH) chain, to the generation of
giant pseudo-magnetic fields in deformed honeycomb lattices. Introducing nonlinear losses,
the interplay between nonlinearity and topological protection can be engineered to realize a
nonlinearly functionalized topological mode with promising applications in receiver protection.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Topological phases of matter are characterized by a global property – a topological invariant
– which make them insensitive to continuous deformation and disorder. Since 1980 with the
discovery of the integer quantum Hall effect [1,2], they have been an extensive research area in
condensed matter physics. More particularly, topological insulators have attracted a huge interest
[3–5]. These materials are crystals that are insulating in the bulk and perfectly conducting at the
edges. They exhibit topologically protected surface modes that are immune to back-scattering
induced by impurities or disorder. As for the analogy between genuine crystals and photonic
crystals [6], Haldane and Raghu first noticed in 2008 that the concepts behind such a topological
protection is not restricted to electrons but can also apply for photonic waves traveling in
specifically arranged lattices [7]. Topological photonics began experimentally a year later with
the observation of scatter-free propagating edge states in a photonic structure operating in the
microwave range [8]. Using alternative approaches, based on artificial gauge field, similar
behaviors were reported in the IR and visible optical range [9,10]. Since then, a great variety of
phenomena directly inspired by topological insulators were experimentally demonstrated (see Ref.
[11] for a recent review). Besides direct analogies, intrinsic photonic properties, like loss, gain,
or nonlinearity, can be engineered to create new topological systems and study novel concepts at
the interface between topological physics and photonics. For instance, topological lasers [12,13]
and topological solitons [14–16] were demonstrated recently. In short, topological photonics
aims at exploiting the topological robustness to improve the performances of photonic devices
from laser sources to waveguides and sensors.

In this context, microwave setups are a driving force in the experimental studies of topological
photonic properties in one (1D) or two-dimensional (2D) systems [11]. Indeed, it is worth noting
that microwaves sources, detectors and components are routinely accessible and that typical
lattice building block scale is cm. It makes topological systems operating in the microwave range
rather easy to implement and to manipulate with high sub-wavelength precision. Additionally,
complex fields (amplitude and phase) can be measured precisely by means of a vector network
analyzer.

We will start this review paper by a brief description of the two main types of experimental
microwave platforms characterized by the polarization of the electromagnetic field, namely TM
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or TE (Section 2). Then we will focus on the microwave resonator lattice developed in our group
for topological photonics experiments. We will start in Section 3 by a description of a single
TE-polarized dielectric resonator. Then Section 4 will describe how these elementary elements
are coupled together to form lattices, going even beyond the usual tight-binding description.
Section 5 will present how an internal degree of freedom can be exploited to achieve anisotropic
coupling between resonators. We exploit transmission measurements in Section 6 giving access
to the sign of wave functions as well as the propagation of a local injection, i.e. to the time domain.
The last two chapters will propose an overview of the topological situations we addressed with
microwave resonator lattices. Section 7 will be devoted to linear systems with various broken
symmetries, while Section 8 will describe studies that combine nonlinear losses and topological
protection.

2. Microwave platforms

Most of the microwave experiments, involved in the framework of topological photonics, consist
in a cavity made of two parallel metallic plates. The lattice structure is placed in the cavity and
arranged along (x, y), see Fig. 1(a). The system presents a cylindrical symmetry, i.e. the system
is invariant along the perpendicular z-direction. Thus the z and x, y components can be separated
and the system can be considered as 2D.

Fig. 1. (a) Typical configuration for microwave topological photonics. A photonic lattice
(made of dielectric, metallic, ferritic, or gyro-magnetic materials) is inserted in a microwave
cavity made of two metallic plates. Antennas can excite and collect the microwave signal via
a vector network analyzer including phase and amplitude information. They can be mobile
to spatially resolve the electromagnetic field in the cavity along the (x, y) plane. (b) Typical
microwave components used in the setup discussed in this review. The dielectric cylindrical
resonators have the same height (5 mm) but their diameter range from 6 to 8 mm. Different
kind of antennas (loop, 1 and dipole, 2) allow to excite the TE polarization. On-site losses
can be controlled via absorbing patches (3, 4) or sprayed graphite (5) placed on top of the
resonators. Nonlinear losses are added via a Schottky diode short-circuited by a metallic
loop and placed on a Teflon spacer (6).

One possibility is to use the transverse magnetic mode in z-direction, where the electric field E⃗
has solely a z-component Ez and does not depend on z (we name it TM0 mode). Below a cutoff
frequency defined by the distance between the two metallic plates, this is the only existing mode
and the vectorial nature of the electromagnetic waves can be reduced to a scalar description. In
microwave systems composed of passive dielectric or metallic structures, such configurations
allow to address Dirac physics in graphene-like photonic crystals [17,18]. Note that beside
topological photonics, a plethora of effects were also reported ranging from quantum chaos
[19–22] to Anderson localization [23,24]. The full range of symmetries (chiral, time reversal,
parity-time (PT ), charge-parity (CP)) and their broken versions become accessible introducing
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gyro-magnetic scatterers. Numerous works have been performed ranging from the pioneering
observation of unidirectional back-scattering immune states [8] to the realization of quantum
(spin) Hall waveguides [25] and the study of disorder-induced topological phase transition [26].
Moreover, emerging applications of microwave topological systems have been recently discussed
in [27].

The second typical setup, which we will solely concentrate on in this review, uses the first
transverse electric mode (TE1) in the z-direction. The microwave cavity in which the dielectric
resonators have been placed supports resonances in air below the cutoff frequency of this
TE1 mode. Consequently, the resonators are evanescently coupled and realize a tight-binding
Hamiltonian system as detailed in Ref. [28] and in Section 4. First graphene-like lattices
have been investigated [29], followed by experimental realization of various systems ranging
from Dirac oscillator [30] to transport in molecules [31] and nanoribbons [32] to experimental
implementation of quantum search algorithms [33] and to give a physical interpretation of the
gap labelling in a Penrose tiling [34]. These experiments have been complemented by research
on non-Hermitian topological structures in 1D (Su-Schrieffer-Heeger (SSH) chain [35]) and 2D
(Lieb lattice [36]). The SSH version was also exploited to implement photonic limiters [37,38].
Topological phase transition [39], edge state manipulation [40] and pseudo-magnetic Landau
levels [41] have been also reported in strained honeycomb lattices.

The experimental platform presented in this review consists of cylindrical dielectric Mie
resonators [42,43] made of ZrSnTiO ceramics (from Exxelia Temex manufacturer) with a
refraction index of n ≈ 6 embedded in a microwave cavity (see Fig. 1). Within the frequency
range we are working, 6 GHz to 9 GHz, and the used height of h = 10 mm to 16 mm between
the metallic plates, the wave number inside the resonators is real, but outside it is purely
imaginary, leading to evanescent fields, and therefore to an evanescent coupling between the
resonators, that itself depends on the distance between the resonators [44]. The resonators can be
positioned anywhere on a plane with a precision of 0.1 mm using a motorized XY-stage (Newport
IMS600CC). For the excitation we use different types of antennas, that ideally excite only TE
modes in the cavity: A kink antenna, whose perpendicular part couples to the electrical field
parallel to the plane of the cavity, and a loop antenna, which couples to the z-component of
the magnetic field, is attached to the top-plate and can be moved in the (x-y) plane above the
resonators.

From the amplitude and phase of the reflection signal S11 measured by a vector network
analyzer (ZVA 24 from Rohde & Schwarz) over a given frequency range, we have direct access
to the local density of states (LDOS)

ρ(r1, ν) ∝
|S11(ν)|

2

⟨|S11 |2⟩ν
φ′11(ν), (1)

where ⟨. . .⟩ν indicates an average over the whole accessible frequency spectrum, φ11 = Arg(S11) is
the phase of the reflected signal, and φ′11 denotes its derivative with respect to the frequency ν (see
appendix A of Ref. [28]). The density of states (DOS) is obtained by averaging over all positions r1.
Moreover, our setup allows us to visualize the wavefunction associated with each eigenfrequency.
According to the definition of the local density of states ρ(r1, ν) =

∑︁
n |Ψn(r1)|

2δ(ν − νn), the
resonance curve exhibits a maximum whose value is related to the intensity of the wavefunction
at the specific position r1. The intensity distribution for the wavefunction associated with each
individual eigenfrequency thus becomes directly accessible [28].

3. Unit cell–electromagnetic description of a single resonator

Considering for now only a single cylindrical resonator with diameter D perfectly sandwiched
between two parallel metallic plates, that are separated by a distance h so that there is perfect
contact on top and bottom between the resonator and the metallic surface. We can thus separate
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the coordinate along the direction perpendicular to the two plates, say the z-direction, and solve
the Helmholtz equation for cylindrical coordinates (r, θ, z) [37]. We concentrate on TE modes,
where the wavefunction Ψ0(x, y) corresponds to the z-component of the magnetic field. Taking
into account the continuity-condition for the fields at the resonator-air interface, the lowest
TE-mode with harmonic time dependency at frequency ν0 takes the form [28,37,44,45]

B⃗ (r, z) = (0, 0, Bz) = B′
0Ψ0(r) sin

πz
h

e⃗z = B0 sin
πz
h

·

{︄
J0(k⊥r)e⃗z for r<D
α · K0(γr)e⃗z for r>D

, (2)

where J0 and K0 are Bessel functions with the wave numbers k⊥ =
√︃(︂

2πν0n
c0

)︂2
−
(︁
π
h
)︁2, γ =√︃(︁

π
h
)︁2

−

(︂
2πν0

c0

)︂2
, n the index of the dielectric material, and c0 the speed of light in vacuum. B0,

B′
0 and α are constants, where α is determined by the continuity equation at the surface of the

resonator. B0 and B′
0 are related by the normalization of Ψ0.

In the experiment though we actually have an air-gap between the resonators and the top-plate.
We cannot place the top-plate directly onto the resonators, since the resonance frequencies have
shown to be very sensitive to the contact condition between the metallic plates and the resonators
[45]. Those conditions would vary too much from one resonator to another due to the slightly
uneven top-plate and fabrication imperfections within the resonator heights. Leaving an air gap
also enables us to scan above the resonators with the loop antenna. Since the air-gap actually
breaks the symmetry in the z-direction, we can’t separate the variables and solve the Helmholtz
equation in the way we did. We assume that the symmetry is still sufficiently maintained, so
that we can modify (2) by introducing an effective z-dependency f (z) that respects the boundary
conditions f (0) = f (h) = 0 and an effective k′⊥ that is defined using the function f [28]. Since the
z-dependence inside the resonator is not a perfect sinus anymore, we can expect to couple to the
first few radially evanescent modes in z-direction outside the resonator. We get

Bz (r, z) ≈ B′
0Ψ0(r, z) = B0 ·

{︄
f (z) · J0(k′⊥r) · e⃗z for r<D∑︁

m am sin mπz
h · K0(γmr) · e⃗z for r>D

, (3)

with γm =

√︃(︁mπ
h
)︁2

−

(︂
2πν0

c

)︂
and am are constants defined by the continuity equation at the surface

of the resonator. Since the loop antenna is sitting at a fixed height z0 above the resonator, we include
the z-dependence and the normalization in new defined coefficients αm = am sin(mπ

h z0)/f (z0)
resulting in [28]

Ψ0(r, z0) ≡ Ψ0(r) ∝

{︄
J0(k′⊥r) for r<D∑︁

m αm · K0(γmr) for r>D
. (4)

|Ψ0(r⃗1)| is related to the reflection signal S11(ν) (r⃗1 denoting the position of the antenna) through
a Breit-Wigner function, at the vicinity of the resonance ν0, as follows [28]:

S11(ν) = 1 − iσ
|Ψ(r⃗1)|

2

ν − ν0 + iΓ
(5)

where σ is a coupling term slowly varying with the frequency that is depending on the used
antenna. For the frequency range we are working in, we suppose it to be constant [46]. Γ
corresponds to the spectral width of the resonance essentially due to Ohmic losses (σ<<Γ).
Fitting the complex reflection S11 at the resonance with a complex Lorentzian including a complex
linear background to incorporate base line effects, one can extract the complex residua from
which the wavefunction |Ψ(r⃗1)| can be extracted up to factor

√
σ. To retrieve the sign of the wave
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function a second antenna needs to be added and the transmission measurements evaluated (see
Section 6 and Eq. (12)). As this invokes an additional perturbation of the system by the second
antenna this will be only added if necessary.

For Sections 3 and 4 we use resonators with a diameter D = 6 mm, but the obtained results
can be transferred directly to the other resonator series. Figure 2 shows the spectrum and
wavefunction Ψ0(r) of a single resonator, that was extracted from reflection measurements, where
the loop-antenna was moved by 0.1 mm-step above a straight line passing through the center
of the resonator. One can note that Ψ0(r) is changing its sign outside of the resonator. Since
a reflection measurement cannot give us access to the sign of the wavefunction, we compared
the wavefunction |Ψ0(r)| extracted form the reflection experiment with the loop antenna to
the wavefunction extracted from a transmission experiment using a second antenna, where we
actually can access the phase of the wavefunction and thus directly see the change of sign (see
Section 6 for more details on transmission-measurements). Since each antenna is a perturbation
to the system, we decide to use |Ψ0(r)| extracted from the reflection measurement and manually
change its sign at exactly the positions where the resonances are vanishing. We fit the extracted
single disk wavefunction Ψ0(r) using (4) up to the order m = 4. Including higher orders does
not improve the fit anymore. The fit parameters are indicated in the figure caption. Since the
loop antenna is not a point-like antenna, it is integrating over a small surface therefore leading to
effective parameters.

Fig. 2. (left) Reflection spectrum of single resonator, measured with the loop antenna over
the center of the resonators. We fit it with a Lorentz line to find its resonance frequency
ν0 = 6.446 GHz and width γ = 2.2 MHz. (right) Extracted single resonator wavefunction
Ψ0 measured on a line going through the center of the resonator. Inside the resonator,
corresponding to the gray zone, we fit it with f (x) = A · J0(γ

′x) and outside of the resonator

with f (x) =
∑︁4

i=1 ai · K0(γix), where γi =
√︃(︂

iπ
h

)︂2
−

(︂
2πν0

c

)︂
is defined using the measured

resonance frequency ν0. The obtained fit parameters are A = 0.994, γ′ = 0.481 mm−1,
a1 = −1.47, a2 = 22.3 , a3 = −58.2, a4 = 46.9 and h = 11.6 mm.

We find a good agreement between the measured resonance and the Lorentz line fit, as well as
between the fit-function (4) and the extracted wavefunction. The resonance is well isolated and
has a quality factor Q = ν0/γ ≈ 3000, which makes it suitable for tight-binding experiments.
This quality factor includes losses stemming mainly from Ohmic losses of the induced currents
in the top and bottom plates, but as well material losses inside the resonator, and the coupling to
the non-resonant TM0 mode, which can freely propagate between the plates and radiates at the
border of the open system. The fitted free parameter h = 11.6 mm corresponds reasonably well
to the directly measured height of hmeas ≈ 12 mm. The bottom and top plates are not perfectly
parallel, leading to an incertitude of a few tenths of a millimeter when measuring directly their
distance. One can see that the energy is well localized inside the resonator while outside the
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fields are decreasing fast with increasing distance from the center. This is an important property
in order to be able to describe the system with a tight-binding model.

4. Multiple coupled resonators–beyond tight-binding description

Apart from the energy well localized inside the resonators, another important step towards a
tight-binding description is the coupling between resonators. Bringing two resonators closer
than a few diameters leads to a coupling that is depending on the separation d of the resonators,
due to the evanescent nature of the excited mode outside the dielectric medium, as can be seen
in Fig. 3. According to the tight-binding approach the frequency split ∆ν equals two times the
coupling strength |t| and can be calculated evaluating the overlap integral of the evanescent fields

t =
∫
Ψ

∗(r⃗)HΨ(r⃗ + d⃗)dr⃗ (6)

where H = −∇⃗2/n2(r⃗) is the ’Hamiltonian’ of a scalar wave equation, and Ψ(r⃗) is the 3D
wavefunction of the system [43]. However our setup only allows us to measure 2D scalar
wavefunctions Ψ(x, y, z0), making it impossible to evaluate (6) exactly. Note here that in order to
perform tight-binding experiments with our platform, we don’t actually need an explicit function
|t(d)| since |t| can be easily measured for any distance d and even a simple exponential fit works
well to extract intermediate values [44,45]. We nevertheless fit the coupling |t| as a function of
the separation d with a strongly simplified approximation of (6), taking into account only the first
order evanescent mode outside, and replace the integration by a point-like evaluation in the exact
center between the resonators:

t ≃ −Ψ

(︂
r = − d

2 , z = z0

)︂ d2Ψ
(︂
r = d

2 , z = z0

)︂
dr2 ≈ K0

(︂
γ1

d
2

)︂
·

[︂
K2

(︂
γ1

d
2

)︂
+ K0

(︂
γ1

d
2

)︂]︂
, (7)

where K0, K2 are Bessel functions. Since the two resonators have slightly different eigenfrequen-
cies due to the fabrication process, we compensate for this by adding a constant frequency shift
∆ν0 to the fit function |t(d)| = A · {K0(γ1d/2) · [K2(γ1d/2) + K0(γ1d/2)]} + ∆ν0. We only fit the
two parameters A and ∆ν0. We especially re-use the decay constant γ1 obtained by fitting the
outside part of a single resonator, in order to explicitly link the evanescent decay of the single
resonator wavefunction to the coupling for increasing distance d. As one can see in Fig. 3 we
find a good agreement between the experimental data and the fit-function. Note that the constant
frequency shift ∆ν0 = 1.55 MHz we found is smaller than the single resonator resonance width
γ = 2.2 MHz, meaning that the two used resonators have close enough resonance frequencies.

Another important requirement in order to describe our system with a tight-binding formalism,
is that the wavefunctions of the system should be well approximated by superpositions of the
single resonators wavefunctions. Still working with the two-resonator system, writing the
tight-binding Hamiltonian under the form of a 2x2 matrix (for real only coupling)

H = ⎛⎜⎝
ν0 −t

−t ν0

⎞⎟⎠ (8)

we find the two eigenvectors (1, 1)/
√

2 and (1,−1)/
√

2 corresponding to the eigenvalues ν0 − t
and ν0 + t respectively. We thus expect a symmetric wavefunction Ψsym(r) ∝ Ψ0(r) + Ψ0(r − d)
and an anti-symmetric wavefunction Ψantisym(r) ∝ Ψ0(r) − Ψ0(r − d).

Similar to the wavefunction scan of a single resonator we perform a series of reflection
measurements along an axis going through the center of both resonators. For each antenna-
position we then fit the spectra with the superposition of two Lorentz lines in order to extract
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Fig. 3. (left) Reflection spectra of two coupled resonators for different separations d,
ranging from 7 mm to 22 mm, with a step-size of 1 mm, that are up-shifted for increasing
distance between the resonators. The spectra are measured via the loop antenna over the
center of the first resonator. (right) Measured coupling strength |t| as a function of the
separation d. We extract |t| = ∆ν/2 by fitting each spectrum with the superposition of
two Lorentz lines in order to find the frequency-split ∆ν. We then fit |t| with the function
|t(d)| = A · {K0(γ1d/2) · [K2(γ1d/2) + K0(γ1d/2)]} + ∆ν0. The obtained fit parameters are
∆ν0 = 1.55 MHz and A = 63.2 MHz.

the two wavefunctions Ψsym and Ψantisym. In Fig. 4 one can see the measured wavefunction
intensities for two resonators that are separated by a distance of d = 10 mm. We proceed to fit
them with functions f (x) = |A ·Ψ0,fit(x− x1) ± B ·Ψ0,fit(x− x2)|

2, where Ψ0,fit(x) is the fit function
obatined by fitting the wavefunction of a single resonator (see Fig. 2). Since our two resonators
are not identical, we allow A ≠ B to compensate for that. We find a good agreement with the
measurements, especially since the difference in fitted positions x1, x2 equals 10.0 mm, the exact
spacing between the resonators. One may note that the antisymmetric state is occurring at the
lower frequency and the symmetric state at the higher frequency, indicating that in our system
the coupling-strength t is actually negative.

Finding a good agreement in describing a simple two-resonator system by a tight-binding
formalism in the frequency-domain, as well as in describing its wavefunctions as symmetric and
antisymmetric superpositions, we proceed now to investigate the next more complex system: a
linear chain of equally spaced resonators.

We chose to investigate two chains in detail, one with N = 8 and one with N = 7 resonators.
The resonators are separated by a distance of d = 9 mm. As in the previous measurements, we
measure the reflection along an axis passing through the centers of the resonators, in order to
extract the spatially resolved wavefunctions of the N states of the system. In Fig. 5(a-d) we
present two reflection spectra for each chain. For the chain with N = 8 (N = 7) resonators, we
present the reflection measured exactly above the first (first) and third (forth) resonator. In the
spectra measured above the first resonator, we can identify N distinct and well isolated resonances
for both chains. In the spectra above the third (forth) resonator one can see that several resonances
are vanishing, since the associated wavefunctions have nodes at that resonator. We compare the
spectra with the eigenvalues νn of the tight-binding Hamiltonian

H0 =

N∑︂
i=1
ν0 |i⟩⟨i| +

N−1∑︂
i=1

t|i⟩⟨i + 1| + C.C (9)

and find a good agreement. We re-use the single resonator resonance frequency ν0 = 7.446 GHz
(see Fig. 2) and t = −53.0 MHz, corresponding to the separation of 9 mm (see Fig. 3).
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Fig. 4. Extracted wavefunctions of two coupled resonators with a separation of d = 10 mm
between them (blue/orange squares). The blue squares correspond to the state that is
occurring at the lower frequency. The orange squares correspond to the state that is occurring
at the higher frequency. We identify the lower frequency state (blue) as the antisymmetric
state, since its wavefunction is vanishing at the middle distance between the two resonators.
It follows that the higher frequency state is the symmetric state. We then proceed to fit
both wavefunction with symmetric and antisymmetric superpositions of the single resonator
wavefunction f (x) = |A · Ψ0,fit(x − x1) ± B · Ψ0,fit(x − x2)|

2 (solid blue/orange lines). The
found fit-parameters for the antisymmetric, symmetric superposition are A = 0.69, B = 0.68,
x1 = 0.0 mm, x2 = 10.0 mm and A = 0.71, B = 0.75, x1 = 0.0 mm, x2 = 10.0 mm.

We then extract the wavefunctions for each state again by fitting each resonance individually
with a Lorentz line and present them by pairs of symmetric and antisymmetric states [see
Fig. 5(e-l)]. We further search to link the measured amplitude over a resonator to the tight-binding
coefficient of that site. One problem that we encounter is the slight overlap of adjacent single
resonator wavefunctions, meaning that the measured amplitude Ψ(r0) over the center of a
resonator at position r0 is not only proportional to a0, the tight-binding coefficient of that site, but
is actually proportional to Ψ(r0) = a0Ψ0(0)+

∑︁
i aiΨ0(r0 − ri), where

∑︁
i is the sum over the other

resonators of the system and ai and ri their tight-binding coefficients and positions. This effect
changes for each system and especially for each wavefunction individually. In order to illustrate
and estimate the deviation we add the eigenstates |vn⟩ of the tight-binding Hamiltonian (9) as
black circles to Fig. 5(e-l). In general, the biggest difference can be observed when comparing the
complete symmetric with the complete antisymmetric wavefunctions of a system [see Fig. 5(e-f)],
where the deviation is of the order of 10 %.

We still find a very good overall agreement of the general structure of the different wavefunctions,
but nevertheless we go one step further and compare our measurement with effective Hamiltonian
simulations, that can account for the overlapping single resonator wavefunctions. The effective
Hamiltonian theory has been introduced to describe open quantum system and suits perfectly to
model our open tight-binding system (an overview is given in Ref. [47]). For a system, where
the openness is modeled via only one channel, the effective Hamiltonian takes the form [46,48]

Heff = H0 −
iσ
2

WWT , (10)

where W is a normalized vector of size N, containing the information on the exact nature of the
coupling. σ is the overall coupling strength of the channel and H0 is a N × N matrix representing
the Hamiltonian of the corresponding closed (tight-binding) system (in our case N corresponds to
the number of resonators). Modeling an excitation over the i-th resonator, not taking the overlap
of the wavefunctions into consideration, only the i-th element of W is non zero and equals one.
In our case the antenna is not only exciting the resonator at site i but also the neighboring sites,
since their single resonator wavefunctions have not yet vanished completely at that distance. In
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Fig. 5. The figures on the left (right) are corresponding to a chain with N = 8 (N = 7)
resonators.(a),(b) are reflection spectra measured over the first resonator of the chains. (c) and
(d) are reflection spectra measured over the third and forth resonator respectively. The dashed
lines in (a) -(d) are presenting the eigenvalues νn of H0. (e) to (l) are showing the extracted
wavefunctions of the systems as a function of the antenna-position (blue and orange solid
lines), as well as effective Hamiltonian simulations as left (higher frequency states) and right
(lower frequency states) pointing triangles. The states are numbered increasingly according
to their resonance-frequency. If existing, each time the antisymmetric and symmetric state
are presented in the same graph. We add the projection |⟨i|νn⟩|2 of the eigenstates |νn⟩ of H0
onto the i-th site as black circles at the i-th resonator position (the x-axis ticks correspond to
the resonator positions). The measured wavefunctions and effective Hamiltonian simulations
share the same y-axis, while the projection of the eigenstates of H0 were adjusted by a global
factor, to match the effective Hamiltonian simulations in (l), since for that state, the effective
Hamiltonian simulation should be proportional to the eigenstate of H0 since there is no
contribution from directly neighboring sites, since every other resonator has zero amplitude.
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order to model such an excitation we add a small term ϵ (ϵ ≪ 1) on the neighboring sites of
the i-th element in W: W = (· · · , 0, 0, 1, 0, 0, . . .) → W = (· · · , 0, ϵ , 1, ϵ , 0, . . .)/

√
1 + 2ϵ2. We

further neglect next-nearest-neighbor contributions. We set ϵ ≈ Ψ0(0)/Ψ0(d), where d is the
distance between the resonators, which in our case turns out to be negative, since the measured
single resonator wavefunction is negative at a distance of d = 9 mm from the center.

The resulting reflection spectrum S11 as a function of the frequency ν is then given by [46,48,49]

S11(ν) = 1 − iσ
(︃
WT 1
ν − Heff

W
)︃

(11)

We simulate the spectra over each resonator and extract the wavefunction the same way as for
the measured spectra. The results are presented as triangles in Fig. 5. In order to match the
measurements we are using σ = 2.2 MHz and ϵ = −0.035. ϵ does not correspond exactly to
Ψ0(0)/Ψ0(d) = −0.066, but is the same order of magnitude. The difference can probably be
explained by the fact that the antenna is not point-like, thus inducing a convolution operation,
that is not commuting with the square-operation (in reflection measurement we only have direct
access to |Ψ|2). Apart from local fluctuations (due to small differences of the used resonators),
we find a good agreement between the measured wavefunctions and the ones simulated using
the effective Hamiltonian. The wavefunction of state 4 for the chain with N = 7 resonators [see
Fig. 5(l)] actually shows a tendency of growing peak height for an increasing antenna position.
This is probably due to not perfectly parallel bottom and top plates, leading to different heights for
different areas of the chain changing slightly the resonance-frequencies and couplings between
the resonators. Since state 4 is occurring at the single resonator resonance frequency, we expect
it to be the most sensitive one to those local fluctuations.

5. Anisotropic coupling

Since the fundamental TE1 s-mode is the most robust and well isolated mode, up to now we
were working only with it. The resonators though are showing more TE-modes within the
cut-off frequency range of the cavity [44]. We proceed to investigate the p-mode since its spatial
shape provides anisotropic coupling. These high order orbitals have been successfully exploited
in topological experiments using polaritons [12,50]. In this paper we chose to only present
preliminary measurements in order to demonstrate the possibility of our platform. Depending
on their diameter, certain resonator series are better suited than others, since we need a well
isolated resonance to work with. We chose to perform these measurements with resonators with
D = 8 mm. Indeed, with D = 6 mm, the TE2 s-mode with second order z-dependency is too close
to the TE1 p-mode with fundamental z-dependency due to its similar height and diameter.

As one can see in Fig. 6, the spectrum of the p-mode of a single resonator shows a well isolated
resonance. Adding a second resonator at a distance of 10 mm splits the one peak into four,
indicating that the single resonator level is actually degenerate. Due to fabrication imperfections
we don’t expect the two orthogonal p-modes to be at exactly the same frequency. Nevertheless
the observed resonance in the single resonator spectrum can be well fitted with a single Lorentz
line, meaning that the frequency difference is significantly smaller then the resonance width, and
the two states are almost perfectly degenerate. The fact that we observe four individual peaks in
the two-resonator reflection spectrum confirms the expected anisotropic coupling, that arises
from different overlap integrals depending on the alignment of the modes compared to the axis
going through the center of both resonators. We proceed to extract the wavefunctions of the
four different states by performing a full two dimensional reflection scan with the loop antenna.
Instead of fitting each resonance for each position individually to extract its wavefunction (as
done in the previous chapters) we use 1 − |S11(ν)|

2 as an approximation of the local density of
states ρ(r⃗, ν) for each antenna-position r⃗ [28,44,49]. By integrating along the frequency axis
around each peak ρ(r⃗, ν) we find a good approximation of |Ψ(r⃗)|2). The obtained two dimensional
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wavefunctions are plotted in Fig. 6(a-d). One can clearly identify the two orthogonal p-modes
of the single resonators that form either a symmetric or antisymmetric superposition: The one
where the nodal lines are parallel to the axis going through the centers of both resonators (b,c),
and the one, where the nodal lines are orthogonal to that axis (a,d). One can identify the two
higher frequency modes as symmetric and the two lower frequency modes as antisymmetric
superpositions. This corresponds to the results observed for the s-mode (see Section 3 and 4).
Since the single resonator p-mode wavefunction is extending further outside of the resonator
along the axis that is perpendicular to the modal line, we find the two modes that are coupled via
their overlap along that dia rection at the extremes of the spectrum, since their overlap and thus
the resulting coupling strength is greater. For the two-resonator system the degeneracy was lifted
due to the anisotropic coupling along the axis going through the centers of both resonators. In
order to perform measurements with more complex structures, that are e.g. symmetric in both
the x− and y−direction where the degeneracy will persist, one needs precise control exciting the
p-modes with the desired polarization. For our platform this can be done via a precise positioning
and orientation of a kink antenna, that is coupled only to one of the two modes or placing an
elongated metallic object on top of the resonator to force a nodal line and thus orient the p-mode
along that direction.

Fig. 6. (top) Reflection measurement for a single resonator (blue) and two coupled
resonators (orange) separated by a distance of 10 mm (from center to center) measured at
dx = dy = 3 mm from the center of the (first) resonator. The single resonator spectrum was
fitted with a Lorentz line (black dashed line). (a - d) two dimensional wavefunctions |Ψ|2
of the two resonator system (ordered according to their frequency). The black circles are
corresponding to the perimeters of the two resonators.

6. Time domain

Up to know we were only presenting reflection measurements. They only use one antenna, are
thus faster to perform and show very good results extracting the (local) density of states and
wavefunction intensities. In reflection measurements though one looses the information about
the phases of the wavefunctions and there can be systems where one is explicitly interested in
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these quantities. Here transmission measurements come into play. The transmission S12 between
two weakly coupled point-like antennas at positions r⃗1 and r⃗2 for a system with N states can be
written as [46]

S12(ν; r⃗1, r⃗2) = −i
√
σ1σ2

N∑︂
n

Ψn(r⃗1)Ψ
∗
n(r⃗2)

ν − νn + iΓn
, (12)

where Ψn(r⃗), νn and Γn are the wavefunction, resonance frequency and resonance width of state
n. σ1 (σ2) is the coupling strength of antenna 1(2), that we suppose to be constant within the
frequency range we are working in and the same for all states [46]. Having one fixed antenna at
position r⃗1 and one moving antenna, one can extract the wavefunctions Ψn(r⃗2) up to global factor
Ψ∗

n(r⃗1)
√
σ1σ2 for any position r⃗2 of the scanning antenna by fitting the complex resonances in

S12.
In Fig. 7 one can see the transmission spectra of a benzene ring, measured between a fixed

kink antenna and the movable loop-antenna, that was successively placed above the centers of all
6 resonators. Fitting the two outermost resonances one can extract the complex amplitudes of the
associated wavefunctions up to a global phase factor. Since for this system we expect real only
wavefunctions, we subtract a global phase from the extracted complex amplitudes in order to
minimize the overall imaginary part (remaining imaginary part is less then 5 % of the real part for
all sites) and then plot its projection onto the real axis [see Fig. 7(a)]. One can clearly distinguish
between the complete symmetric (at the highest frequency) and complete antisymmetric state (at
the lowest frequency).

Fig. 7. (a) Transmission spectra measured between a fixed kink antenna and the movable
loop-antenna successively placed above each resonator and its Fourier transforms (b). Each
color corresponds to a different site/resonator. The insets in (a) show the amplitudes of the
wavefunctions for the highest and lowest frequency state. The insets in (b) show snapshots of
the temporal intensity evolution at times t = 0 ns, 3.8 ns, 9.8 ns and 15.6 ns. These times are
additionally marked as vertical dashed lines in (b). All inset plots were normalized so that
the maximum value equals 1 in order to use the same color scale for both set of inset-plots in
(a) and (b).

Another equivalent way to exploit the transmission spectra is by calculating its Fourier
transform FT(S12) and link it to the temporal intensity distribution I(t, r⃗) ∝ |FT

[︁
S12(ν, r⃗)

]︁
|2.

One is thus able to visualize the dynamics of a pulse spreading from the fixed antenna into the
system as shown in Fig. 7(b), and as used in Section 7.1.

7. Investigation of topological systems by coupled microwave resonator lat-
tices

In the realm of topological photonics, our microwave experimental platform has been successfully
implemented in various situations: in 1D systems with broken passive PT symmetry (Subsection
7.1), in 2D systems either with partial chiral symmetry breaking (Subsection 7.3), or with an
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uni-axial deformation of the lattice (Subsection 7.2), or even with non homogeneous deformation
(Subsection 7.4). All these systems rely on linear wave propagation, while in the following
Section 8 a strategy based on the interplay between topological protection and nonlinearity is
illustrated.

7.1. Topological interface state in a non-Hermitian system with broken PT symmetry

The SSH model (Su, Schrieffer and Heeger [51]) constitutes the minimal one-dimensional model
with a topological band structure. This bipartite lattice with staggering hopping amplitudes was
originally introduced in an electronic context to describe fractionalized charges in polyacetylene,
which appear in the presence of a dimerization defect. In absence of the defect, this dimer model
has attracted independent attention because it provides a natural platform for gain-loss distributed
systems displaying a so-called parity-time (PT ) symmetry [52–56]. As shown in Fig. 8(a),
this model can be easily implemented in our experimental platform: alternating couplings are
realized by alternating distances, and absorptive patches placed on one of the two sublattices
allow to implement a passive variant of non-Hermitian PT symmetry [35]. By repeating one
spacing in the center of the chain, one introduces a defect that breaks the PT symmetry. Due to
this symmetry breaking, as one can see in Fig. 8(d), a mode appears at the center of the spectral
gap, that we call “zero-modes” in reference to the “zero-energy” modes in condensed-matter
context. As shown in Fig. 8(e), the corresponding wavefunction is spatially localized on the
interface created by the defect and contrary to the other “bulk”- modes of the chain confined
to a sublattice. Moreover, as the defect imposes a gauge prescription, both parts of the chain
acquire a different topological charge, namely the Zak phase [57]. The interface state is thus
topologically protected and inherits the properties of robustness against disorder [35].

Fig. 8. (a) Microwave realization of a SSH chain with passive non-Hermitian PT symmetry
breaking. Time evolution of a pulse launched on the defect site. (b) Without absorption,
diffraction and interference spoil the propagation of the interface state, which cannot be
discerned after 250 ns. (c) With staggered losses, the visibility of the interface state is
drastically enhanced. (d) Experimentally obtained density of states (DOS) of the chain. One
can clearly identify the zero-mode in the center of the band-gap (grey zone). (e) Spatial
distribution of the zero-mode and a selection of bulk-states. The associated peaks in the
DOS (d) are referenced using encircled roman numbers. Adapted from Ref. [35].

As a consequence of the PT symmetry breaking, the interface state is not affected by the
staggered losses and then become the predominant mode in the spectrum. This feature is
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illustrated in the time evolution of a pulse injected in the defect resonator as shown in Fig. 8
for the two situations: (b) without absorption and (c) with staggered losses. In the first case,
the propagation of the interface state is dramatically degraded by diffraction and interference.
The ’bulk’ states even if not predominantly excited by the initial condition participate to the
dynamics. On the contrary, losses induce a selective enhancement of the interface state which
now dominates the propagation without any degradation.

7.2. Topological phase transition and edge state engineering in strained honeycomb
lattices

For almost two decades the exciting physics of graphene has stimulated intense research activities
[58,59]. Graphene has become the paradigm of a larger class of “Dirac materials” whose
fundamental interest and promise of applications are attracting a lot of consideration [60,61]. One
of the most fascinating aspects for the scientific community is the physics of well-celebrated Dirac
points. In their vicinity relativistic physics became accessible on table-top condensed-matter
experiments [62]. In addition, while the topology of graphene is trivial, the Dirac points are
characterized by opposite topological charges (opposite Berry phases). The richness of the low
energy physics close to the Dirac points lies essentially in the honeycomb structure. The latter
can be built in various (meta) materials, responding to various types of wave excitations. Thus
exploring achievements arising from many experimental realization using artificial graphene
based on atoms, molecules and photons [63,64], mechanical systems [65], in acoustic [66–68],
and in elastodynamics [69]. Among them, our setup is probably one of the most flexible as we
have almost total freedom in the placement of the resonators. It was thus possible to carry out a
true engineering of the Dirac points [39].

By exerting an uniaxial strain on a honeycomb lattice, and consequently introducing an
anisotropy in the couplings, the Dirac points move along a specific direction in the Brillouin
zone. Depending on the direction of the strain axis with respect to the lattice vectors, the Dirac
points can move towards each other, merge and finally the two opposite topological charges
annihilate: the system experiences a topological phase transition [70,71]. If the anisotropy is
increased further, a band gap opens in the dispersion relation. This transition from a gapless
(Dirac) phase to a gapped phase corresponds to a Lifshitz phase transition from a semi-metallic to
an insulating phase. The left row of Fig. 9 shows a regular honeycomb lattice with an hexagonal
shape and only armchair boundaries and two deformed lattices. The strain is applied along the
vertical direction, which corresponds to one lattice axis. Thus the strain changes one of the three
nearest-neighbor couplings only (in this study the role of the highest-order nearest-neighbor
couplings are qualitatively inessential). The modified coupling is denoted by t′ and the anisotropy
parameter by β = t′/t. In the experiments, β is gradually increased from 1, corresponding to
the isotropic case, to 3.5, where the system is supposed to be far in the gapped phase. On the
top-right of Fig. 9, we plot the measured density of states (DOS) obtained for six different values
of β using a white-blue colorscale. The linear opening of the gap with β above a critical value is
emphasized by the gray zone. The topological transition between a gapless phase and a gapped
phase is unambiguously observed. These experimental results are successfully compared with the
DOS calculated for the corresponding infinite systems with tight-binding parameters extracted
from the experiments [39].

In Fig. 9, the DOS was obtained by averaging the reflection measurements over the bulk
resonators only (the darkest sites on the left panel), thus avoiding the edges of the deformed
hexagons. Without this precaution, additional states would have appeared around the Dirac
frequency, at the center of the gap, characterizing the topological transition. These edge states
have been first predicted in graphene ribbons [72–74] and later observed along “zigzag” edges
[75,76]. Although not strictly speaking topologically protected, edge states in graphene possess
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Fig. 9. (left row) 3 deformations of the microwave honeycomb lattice (the strain is applied
along the vertical axis): (top) isotropic case, (middle) critical anisotropy corresponding to the
topological transition, (bottom) larger strain. In dark the sites over which the local densities
of states are averaging to obtain the density of states. (middle row) The corresponding
density of states. (right row) (top) The experimentally measured density of states in color
plot for different values of the anisotropy parameter β (the arrows indicated the situations
depicted in the middle), (bottom) tight-binding calculation of the DOS for an infinite systems
with the values of the couplings taken from the experiments. Adapted from Ref. [39].

a topological origin coined by the Zak phase and remain robust against weak chiral symmetry
perturbations [77,78].

In Ref. [40], we proposed an experimental manipulation of edge state properties by applying
uniaxial strains on an artificial graphene ribbon exhibiting the three usual types of edges, namely
zigzag, bearded and armchair. The lattice is presented at the top of Fig. 10. The strain is applied
along a direction parallel to the armchair edges, which corresponds to one lattice axis. Thus the
strain changes one of the three nearest-neighbor couplings only, denoted by t′. Note, that in
this study higher-order nearest-neighbor couplings are qualitatively inessential. Whatever the
anisotropy β = t′/t is, the two armchair edges along the strain axis do not support any edge state
[78].

For different values of the anisotropy parameter β, Fig. 10(a-d) show the spatial intensities
distribution associated to modes at the Dirac frequency – close to the bare frequency of each
isolated resonator [28] – that we call “zero-modes” in reference to the “zero-energy” modes in
condensed-matter context. Both zigzag and bearded edges are populated in the unstrained case
β = 1 [Fig. 10(b)]. When a strain is applied (β ≠ 1), the relative strength of the two types of
zero-modes is controlled by the value of β. For β = 0.4 [Fig. 10(a)], bearded edges are dominant
whereas they are totally absent for β = 2.5 where only the zigzag edge is found [Fig. 10(d)].
For intermediate anisotropy [β = 1.5, Fig. 10(c)], both edge types are seen, with an opposite
relative strength compared to the β = 1 case. Note that the topological phase transition described
above occurs at βc = 1.8. The existence of edge states is thus not determined by the topological
transition observed in [39] but more subtly to the motion of the Dirac points in the Brillouin
zone when the lattice is deformed according to β [70,71]. Indeed, their relative weight and their
extension into the bulk is completely controlled by the anisotropy parameter [40]. As also pointed
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Fig. 10. (top) Picture of an unstrained artificial graphene ribbon with zigzag, bearded and
armchair edges. Experimental zero-mode intensities for different anisotropy parameters
(a) β = 0.4, (b) β = 1 (unstrained honeycomb lattice), (c) β = 1.5 and (d) β = 2.5, the
anisotropy axis being along the parallel armchair edges, the zigzag edge is on the right, and
the bearded on the left. Adapted from Ref. [40].

out in [79], their existence is a manifestation of the non zero value of the Zak phase. This 1D
winding number has been directly measured in cold atom experiments [80].

7.3. Partial chiral symmetry breaking

In the previous studies based on deformed honeycomb lattices, the role of high-order nearest-
neighbor couplings, always present in our experiments, are not qualitatively important. Their
influence is simply expressed by a renormalization of some pertinent parameters. For example,
in the topological phase transition in strained graphene, the critical anisotropy, expected at βc = 2
for tight-binding with nearest-neighbors couplings, is lowered to βc = 1.8 because of the third
order nearest-neighbor couplings. In [81] we exploited this long range couplings to induce a
partial breaking of chiral symmetry in a two-dimensional bipartite system possessing flat band
and to stabilize and isolate point-defect zero-modes.

One of the main goals of present research in electronic and photonic systems is the realisation
of topologically protected states [4,11,82]. The existence of such states relies on symmetries,
with the present focus set on the roles of time-reversal symmetry, chiral symmetry and charge-
conjugation symmetry. In combination with considerations of dimensionality, a classification of
robust protected states can then be achieved, which guides the design of theoretical models and
experimental realizations [83]. In the photonic setting, the most interesting symmetry classes are
difficult to realize - e.g., magneto-optical effects to break time-reversal and induce quantum-hall
like phases are typically too weak. The chiral symmetry is most easily realized. Indeed, chiral
symmetries emerge naturally in bipartite lattices [84,85] with the consequence that they can
support robust zero-modes localized at point defects [86], which exhibit sublattice polarization
[84,85], while all finite-energy states have an equal weight on both sublattices. As an intriguing
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consequence, many bipartite lattices of interest, such as the Lieb lattice – a face-centered depleted
square lattice – exhibit flat bands of zero-modes supported by one of the two sublattices (the
majority sublattice, which contains more sites per unit cell than the complementary minority
sublattice). Various photonic realizations of regular Lieb lattices tried to exploit the properties of
these compacton-like states [87–90].

In Fig. 11(a) the Lieb lattices with its coupling constants is presented. All sites have the same
eigenenergies/frequencies and the dimerization is implemented by different nearest-neighbor
couplings u, v, u′, and u′′. Figure 11(b-d) shows the evolution of the band structure of a Lieb
lattice with the couplings. Figure 11(b) corresponds to the situation of a regular Lieb lattice with
uniform couplings along vertical and horizontal axes only. The band structure consists of a flat
band supported by the majority sublattice and two dispersive bands of extended states touching
at a Dirac point. When the lattice is dimerized [Fig. 11(c)], the dispersive bands are separated by
a gap, while the flat band and the point-defect state remain fixed at zero energy. Figure 11(d)
shows the evolution when next-nearest-neighbor couplings (along diagonals w, w′, w′′, and w′′′)
are introduced: the flat band becomes dispersive and moves to finite energies, the symmetry
of the dispersive bands is broken, only the defect state remains unaltered. One can prove that
the detuning of the compacton-like states is due to their finite sublattice polarization [81]. The
next-nearest-neighbor couplings breaks the chiral symmetry on the majority sublattice, which
moves the flat band away from the chiral symmetry point in the spectrum. This leaves behind a
spatially localized zero-mode supported by the minority sublattice, on which the chiral symmetry
remains operational.

Fig. 11. (top) Theoretical description of the Lieb Lattice. (a) Lieb lattice with nearest-
neighbor couplings u, v, u′, v′, and next-nearest-neighbor couplings w, w′, w′′, w′′′ that
reduce the chiral symmetry. This lattice realizes a centered dimerization defect (gray
zones). (b)–(d) Dispersion relation of the infinite system. The localized zero-mode becomes
spectrally isolated as one passes from (b) uniform couplings (u = v = u′ = v′) over (c)
dimerized couplings u = v = 4/3, u′ = v′ = 2/3), gapping out the extended states, to (d)
additional next-nearest-neighbor couplings (w = 0.4, w′ = w′′′ = 0.2, w′′ = 0.1), gapping
out the flat band. The inset in (d) details the spectral separation of the zero-mode and
the flat band. (bottom) Microwave realization and experimental results. (e) Picture of the
experimental microwave realization of the dimerized Lieb lattice. The white bar corresponds
to 12 mm. (f) Density of states, with the point-defect zero-mode shaded in light gray and
the flat band shaded in dark grey. (g) Spatial distribution of the zero-mode. (h) Spatial
distribution of the ‘flat’ band. Adapted from Ref. [81].
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Figure 11(e-g) shows the experimental results for configurations where the point defect sits at
the center of the lattice, and in a situation with semi-chiral symmetry due the next-nearest-neighbor
couplings between microwave resonators. The density of states exhibits the expected behavior
[see Fig. 11(e)]: The extended bands are not symmetric, the “flat band” acquires a finite width
(dark gray zone) and is shifted from the zero energy thus isolating the zero-mode (light gray zone).
Note that thus the flat band is not flat anymore and is a standard band with a small dispersion but
still the wavefunctions remain confined to the majority sublattice [Fig. 11(f)] but cover the whole
lattice. The state associated with the spectrally isolated peak displays a spatially localized profile
with intensity confined to the minority sublattice [Fig. 11(g)]. By using the same strategy as the
one deployed in Section 7.1, the defect state can be further promoted via judiciously introduced
local losses [81]. Our findings introduce a whole new element into considerations of topology
and symmetry, which is both of fundamental importance as well as of practical value.

7.4. Giant pseudo-magnetic field

In the celebrated quantum Hall effect, quantum-mechanical effects force electrons exposed
to a magnetic field to travel though a conductor in precisely determined numbers [91]. This
results in devices with a resistance that does not depend on details, to the extent that it does
not matter if the material is perfectly clean – the hallmark of a topological effect [92]. The
backbone of this behavior are Landau levels, quantum states where many electrons share the
same, well-defined energy, which can be imaged by spectroscopic experiments. Unfortunately,
magnetic fields cannot be used to achieve the same effect for light, as this is described quantum
mechanically by photons, electrically neutral particles that are insensitive to magnetic fields
(albeit magneto-transverse diffusion of light has been observed [93], but the physical mechanism
is very different). Consequently, any attempts to observe Landau levels and their peculiar
topological properties in photonic systems appear to be in vain. Fortunately, in the wake of the
extraordinary research activities triggered by the experimental realization of graphene, it has been
recognized that magnetic fields can be mimicked by means of inhomogeneous mechanical strain
[94,95]. The effect is then captured by the concept of a pseudo-magnetic field: An artificial gauge
field that modifies the low-energy spectrum of graphene near the famous Dirac points, where
electrons behave like relativistic particles. This results in the formation of pseudo-Landau levels
with the same energies as conventional Landau levels, but subtly different quantum-mechanical
wave intensity patterns. This concept has been implemented in a variety of artificial graphene
systems, ranging from acoustics [96,97] to photonic devices [9] and exciton, polariton excitations
[98]. However, previous works failed to observe the hallmarks of topological protection of the
pseudo-Landau levels, partially because the subtly different nature of their topology was not
completely understood.

In a recently published paper [41], we overcame these obstacles by combining new theoretical
insights into these topological features with direct experimental observations in our microwave
platform. The unstrained system forms a honeycomb lattice with nearest-neighbor spacing
a0 = 13.9 mm, combining two triangular A and B sublattices and forming a triangle with zig-zag
edges. The bare resonance frequency of each resonator is ω0 = 6.653 GHz, and the coupling
strength between nearest-neighbor sites is t0 = 21.5 MHz. To create a pseudo-magnetic field
corresponding to that in strained graphene, a triaxial spatial coupling profile is implemented
through the following non uniform couplings law:

tl = t0[1 − (η/2a2
0)ρl · r], (13)

where r refers to the positions of the links between the coupled resonators in the unstrained
system and ρl are pointing along these coupling directions. Note, that in contrast to the uniaxial
strain applied in Section 7.2 this strain breaks the translational lattice symmetry. The topology
of the two deformed lattices are thus not equivalent. This coupling profile ensures a constant
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pseudo-magnetic field of strength η throughout the whole system. As illustrated by the blue
arrows in Fig. 12, this deformation stretches the system along three directions, corresponding
to triaxial strain. Translating the experimental conditions to genuine graphene, we managed
to achieve field strengths up to 42000 T, which are unattainable in the original setting. As the
strength of this field increased from zero to its maximal value, a radical change of the resonance
frequencies and intensity patterns is observed. Sharp peaks appeared in the frequency spectrum,
corresponding to well-defined pseudo-Landau levels (Fig. 12).

Fig. 12. Experimental density of states (left panels) and microwave intensity distributions
of the 0-th order pseudo-Landau level (right panels). The grey dashed lines in the total
density of states for η = 0.2 depict the expected pseudo-Landau level frequencies from
coupled-mode theory. The size of the circles corresponds to the intensity on the A sites (red)
and B sites (blue). From top to bottom, the pseudo-magnetic field strength η varies from 0
to 0.2, with the maximal value corresponding to 42000T in graphene. In this process, zigzag
edge states present in the regular system (top) continuously transform to bulk states (bottom),
while remaining confined to one sublattice. Adapted from Ref. [41].

We demonstrated two powerful signatures of topology, relating to two types of pseudo-Landau
levels found at different frequencies. The frequencies of these levels are arranged symmetrically
around a central peak, for which the resonant spatial intensity pattern arises only from one half
of the resonators. The central peak emits light only from one sublattice. This effect, known as
sublattice polarization [99], exists also for midgap states in an undeformed graphene system, but
then is confined to the edges of the device. We observed in Fig. 12 that these edge states transform
continuously into the well isolated 0-th order pseudo-Landau level peak, which then emits from
a wide area in the middle of the sample, thereby establishing a surprising direct connection of
these two phenomena. The second signature of topology observed is a systematic connection
between the wave intensity patterns of different Landau levels. A pattern on one sublattice in
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one level is identical to the pattern of the other sublattice in the next level. Mathematically, this
effect is related to a deep fundamental phenomenon originating in particle physics, known as
supersymmetry, which applies to the experimental setting because of the relativistic physics
emerging near the Dirac points. As for the central level, we managed to confirm this effect by
following the formation of pseudo-Landau levels in the complete transition from vanishing to
large pseudo-magnetic field strengths [41], which was made possible by the flexible experimental
setup.

These results connect features of a specific device to very general theoretical phenomena that
can be applied to many other settings. Consequently, this work provides a framework to design a
wide range of novel optical devices operating with unprecedented precision, and paves a way to
generate flat bands – systems in which many states have the same energy or frequency – which
can be used to enhance light-matter interactions with promising applications for solar cells or
energy harvesting systems. Furthermore, it would be interesting to explore the utility of this
setup as a sublattice-dependent sensor, where one would exploit that certain external fields can
break the chiral symmetry in our system, for which no sensors presently exist.

8. Towards nonlinear systems

As already indicated in the introduction (see Fig. 1), we are able to locally integrate additional
linear (see Section 7.1) and even nonlinear absorption into our system. Adding linear absorption
is simply done by placing absorbing patches or spraying an absorptive graphite layer on top of
the resonators and resonance widths of single resonators can be increased up to a factor 100 [37].
In order to add nonlinear absorption we use different diodes, that are embedded in metallic loops
and couple them inductively by placing them over the resonators using Teflon spacers. The single
resonator response with inductively coupled diode can be seen in Fig. 13(a). For small powers a
decrease of the resonance height due to an increase of the resonance width is observed, whereas
for higher powers an additional frequency shift is seen as well. The nonlinearity can be used in a
wide range of systems and opens up path to interesting experiments, combining nonlinearity and
topology.

One possible application of such a nonlinear topological system, is a self-shielded topological
receiver protector (RP) [38,100]. RPs shield sensitive electronics from high-power incoming
signals that might damage them and are widely used in (wireless) communication and radar
setups [see Fig. 13(b)]. We implemented the topological RP using an SSH chain of 17 coupled
resonators with central defect [see Fig. 13(d)]. The leftmost and rightmost resonators are coupled
to kink antennas and we place a diode on top of the central resonator, where the defect-mode is
(exponentially) localized [see Fig. 8(a) and (e)]. We then measured the transmission through the
resonator array for increasing power Pin. Results are presented in Fig. 13(c). For small incident
powers the transmission between the two antennas shows a high peak resonance associated with
the topologically induced resonant-defect-mode (zero-mode). When we now increase the power,
the nonlinear losses of the diode are activated. The resonant mode experiences a self-induced
transition from an underdamping to an overdamping regime, destroying the resonant-defect mode.
Since the resonance itself is vanishing, the peak in the transmittance is gradually suppressed and
simultaneously the reflectance approaches 1 (not shown here, see Ref. [100] for details).

We may note here, that a single resonator with diode on top, coupled to two antennas is already
an RP, but one with very limited dynamic range. High input signals will be absorbed directly by
the diode, causing its overheating or even destruction. Its implementation inside a C-symmetric
photonic circuit [35,101] on the topological defect creating a zero-mode for low powers which
is destructed for high powers. Thus the scattering profile of the incident wave changes from
an exponential increase to defect resonator on the sublattice to an exponential decrease. This
behaviour give rise to a decrease of transmittance, an increase of reflectance without an increase
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Fig. 13. (d) Proposed implementation of the RP consisting of 17 resonators with central
defect. The incoming signal is injected via the left antenna with a power Pin and transmitted
via the right antenna. The central resonator has a diode positioned on top of it using a
Teflon spacer of 1 mm height [see photograph in (a)]. (b) Application of the RP in a radar
setup. (a) Reflection spectra |S11 |

2 for an isolated resonator inductively coupled to a diode
and (c) the transmittance spectra |S21 |

2 of the proposed RP for increasing input power Pin
ranging from -30 (blue) to 4 dBm (grey) in steps of 2 dBm. The black arrow indicates the
direction of increasing power. The reflection spectra were measured using a weakly coupled
kink antenna. In (c) one can clearly see the two bands and the defect state in the middle of
the band gap. The bulk-states within the two bands are hardly affected by the nonlinearity,
while the central peak is vanishing for increasing power. The grey area is showing the
frequency-range, where the RP is operating. Adapted from Ref. [100].

of absorbance (for details see [38,100]) for increasing power signals. Thus the RP survives
significant greater input powers before it will be destroyed compared to a single resonator.

9. Conclusion

In the remarkably vivid domain of topological photonics, experiments performed in the microwave
regime play a leading role. In this review we focused our attention to a specific platform consisting
of evanescently coupled dielectric resonators excited by TE-polarized microwaves. The limited
constraints in terms of fabrication allows to emulate lattices (with up to a few hundreds of sites)
of any 1D or 2D geometries: periodic (with complex unit cell), uniformly or non-homogeneously
deformed or disordered. Edges and defects can also be implemented at will. Moreover, intrinsic
properties of each resonator can be individually tuned (e.g. resonant frequency, losses) and can
be even equipped with a nonlinear response. The coupling between two resonators can be finely
adjusted on demand over one order of magnitude. For a given lattice, both amplitude and phase
of the reflected and/or transmitted signals are measured with a high degree of accuracy and large
dynamics, allowing a precise extraction of the local density of states, and consequently of the
density of states and their spatial distribution.
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With this versatile and flexible experimental platform we tackled several important topological
photonic topics ranging from transport enhancement by means of a non PT -symmetric interface
state, to a new type of non sacrificial fuses based on self-shielded topological receiver protectors,
but also from Dirac points merging to the continuous transformation of edge state into Landau
level under the influence of a giant pseudo-magnetic field. We showed also that far from
hindering topological effects, high-order couplings may be used to generate subtle symmetry
breaking, promoting defect state with enhanced topological protection. This results illustrate
that the microwave resonator lattices constitute an ideal photonic topological material for both
fundamental studies and applications.

In the near future, we will take advantage of the multiple possibilities offered by this
experimental platform to address exciting topics at the crossroads of topological physics, disorder
and non-linearity.
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