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Abstract
Dictionary learning is a key tool for representation
learning, that explains the data as linear combi-
nation of few basic elements. Yet, this analysis
is not amenable in the context of graph learn-
ing, as graphs usually belong to different metric
spaces. We fill this gap by proposing a new on-
line Graph Dictionary Learning approach, which
uses the Gromov Wasserstein divergence for the
data fitting term. In our work, graphs are encoded
through their nodes’ pairwise relations and mod-
eled as convex combination of graph atoms, i.e.
dictionary elements, estimated thanks to an online
stochastic algorithm, which operates on a dataset
of unregistered graphs with potentially different
number of nodes. Our approach naturally extends
to labeled graphs, and is completed by a novel
upper bound that can be used as a fast approxi-
mation of Gromov Wasserstein in the embedding
space. We provide numerical evidences showing
the interest of our approach for unsupervised em-
bedding of graph datasets and for online graph
subspace estimation and tracking.

1. Introduction
The question of how to build machine learning algorithms
able to go beyond vectorial data and to learn from structured
data such as graphs has been of great interest in the last
decades. Notable applications can be found in molecule
compounds (Kriege et al., 2018), brain connectivity (Ktena
et al., 2017), social networks (Yanardag & Vishwanathan,
2015), time series (Cuturi & Blondel, 2018), trees (Day,
1985) or images (Harchaoui & Bach, 2007; Bronstein et al.,
2017). Designing good representations for these data is
challenging, as their nature is by essence non-vectorial, and
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requires dedicated modelling of their representing structures.
Given sufficient data and labels, end-to-end approaches with
neural networks have shown great promises in the last years
(Wu et al., 2020). In this work, we focus on the unsuper-
vised representation learning problem, where the entirety
of the data might not be known beforehand, and is rather
produced continuously by different sensors, and available
through streams. In this setting, tackling the non-stationarity
of the underlying generating process is challenging (Ditzler
et al., 2015). Good examples can be found, for instance, in
the context of dynamic functional connectivity (Heitmann
& Breakspear, 2018) or network science (Masuda & Lam-
biotte, 2020). As opposed to recent approaches focusing on
dynamically varying graphs in online or continuous learning
(Yang et al., 2018; Vlaski et al., 2018; Wang et al., 2020),
we rather suppose in this work that distinct graphs are made
progressively available (Zambon et al., 2017; Grattarola
et al., 2019). This setting is particularly challenging as
the structure, the attributes or the number of nodes of each
graph observed at a time step can differ from the previous
ones. We propose to tackle this problem by learning a linear
representation of graphs with online dictionary learning.

Dictionary Learning (DL) Dictionary Learning (Mairal
et al., 2009; Schmitz et al., 2018) is a field of unsupervised
learning that aims at estimating a linear representation of
the data, i.e. to learn a linear subspace defined by the span
of a family of vectors, called atoms, which constitute a
dictionary. These atoms are inferred from the input data by
minimizing a reconstruction error. These representations
have been notably used in statistical frameworks such as
data clustering (Ng et al., 2002), recommendation systems
(Bobadilla et al., 2013) or dimensionality reduction (Candès
et al., 2011). While DL methods mainly focus on vectorial
data,

it is of prime interest to investigate flexible and interpretable
factorization models applicable to structured data. We
also consider the dynamic or time varying version of the
problem, where the data generating process may exhibit
non-stationarity over time, yielding a problem of subspace
change or tracking (see e.g. (Narayanamurthy & Vaswani,
2018)), where one wants to monitor changes in the subspace
best describing the data. In this work, we rely on optimal
transport as a fidelity term to compare these structured data.
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Figure 1. From a dataset of graphs with different number of nodes,
our method builds a dictionary of graph atoms with an online
procedure. It uses the Gromov-Wasserstein distance as data fitting
term between a convex combination of the atoms and a pairwise
relations representation for graphs from the dataset.

Optimal Transport for structured data Optimal Trans-
port (OT) theory provides a set of methods for comparing
probability distributions, using, e.g. the well-known Wasser-
stein distance (Villani, 2003). It has been notably used by
the machine learning community in the context of distribu-
tional unsupervised learning (Arjovsky et al., 2017; Schmitz
et al., 2018; Peyré & Cuturi, 2019). Broadly speaking the
interest of OT lies in its ability to provide correspondences,
or relations, between sets of points. Consequently, it has re-
cently garnered attention for learning tasks where the points
are described by graphs/structured data (see e.g. (Nikolent-
zos et al., 2017; Maretic et al., 2019; Togninalli et al., 2019;
Xu et al., 2019a; Vayer et al., 2019; Barbe et al., 2020)). One
of the key ingredient in this case is to rely on the so called
Gromov-Wasserstein (GW) distance (Mémoli, 2011; Sturm,
2012) which is an OT problem adapted to the scenario in
which the supports of the probability distributions lie in
different metric spaces. The GW distance is particularly
suited for comparing relational data (Peyré et al., 2016;
Solomon et al., 2016) and, in a graph context, is able to
find the relations between the nodes of two graphs when
their respective structure is encoded through the pairwise
relationship between the nodes in the graph. GW has been
further studied for weighted directed graphs in (Chowdhury
& Mémoli, 2019) and has been extended to labeled graphs
thanks to the Fused Gromov-Wasserstein (FGW) distance in
(Vayer et al., 2018). Note that OT divergences as losses for
linear and non-linear DL over vectorial data have already
been proposed in (Bonneel et al., 2016; Rolet et al., 2016;
Schmitz et al., 2018) but the case of structured data remains
quite unaddressed. A non-linear DL approach for graphs
based on GW was proposed in (Xu, 2020) but suffers from
a lack of interpretability and high computational complexity
(see discussions in Section 3). To the best of our knowledge,
a linear counterpart does not exist for now.

Contributions In this paper we use OT distances between
structured data to design a linear and online DL for undi-
rected graphs. Our proposal is depicted in Figure 1. It
consists in a new factorization model for undirected graphs
optionally having node attributes relying on (F)GW distance
as data fitting term. We propose an online stochastic algo-
rithm to learn the dictionary which scales to large real-world
data (Section 2.3), and uses extensively novel derivations of
sub-gradients of the (F)GW distance (Section 2.4). An un-
mixing procedure projects the graph in an embedding space
defined w.r.t. the dictionary (Section 2.2). Interestingly
enough, we prove that the GW distance in this embedding
is upper-bounded by a Mahalanobis distance over the space
of unmixing weights, providing a reliable and fast approxi-
mation of GW (Section 2.1). Moreover, this approximation
defines a proper kernel that can be efficiently used for clus-
tering and classification of graphs datasets (sections 4.1-4.2).
We empirically demonstrate the relevance of our approach
for online subspace estimation and subspace tracking by
designing streams of graphs over two datasets (Section 4.3).

Notations The simplex of histograms with N bins is
ΣN :=

{
h ∈ R+

N |
∑
i hi = 1

}
. Let denote SN (R) the set

of symmetric matrices in RN×N . The Euclidean norm is
denoted as ‖.‖2 and 〈., .〉F the Frobenius inner product. We
denote the gradient of a function f over x at y in a stochas-
tic context by ∇̃xf(y). The number nodes in a graph is
called the order of the graph.

2. Online Graph Dictionary Learning
2.1. (Fused) Gromov-Wasserstein for graph similarity

A graph GX with NX nodes, can be regarded as a tuple
(CX ,hX) whereCX ∈ RNX×NX is a matrix that encodes
a notion of similarity between nodes and hX ∈ ΣNX is
a histogram, or equivalently a vector of weights which
models the relative importance of the nodes within the
graph. Without any prior knowledge uniform weights can
be chosen so that hX = 1

NX
1NX . The matrix CX carries

the neighbourhood information of the nodes and, depend-
ing on the context, it may designate the adjacency matrix,
the Laplacian matrix (Maretic et al., 2019) or the matrix
of the shortest-path distances between the nodes (Bavaud,
2010). Let us now consider two graphs GX = (CX ,hX)
and GY = (CY ,hY ), of potentially different orders (i.e
NX 6= NY ). The GW2 distance between GX and GY is
defined as the result of the following optimization problem:

min
T∈U(hX ,hY )

∑
ijkl

(
CXij − CYkl

)2
TikTjl (1)

where U(hX ,hY ) := {T ∈ RN
X×NY

+ |T1NY =
hX ,T T1NX = hY } is the set of couplings between
hX ,hY . The optimal coupling T of the GW problem acts
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as a probabilistic matching of nodes which tends to asso-
ciate pairs of nodes that have similar pairwise relations in
CX and CY , respectively. In the following we denote by
GW2(CX ,CY ,hX ,hY ) the optimal value of equation 1
or by GW2(CX ,CY ) when the weights are uniform.

The previous framework can be extended to graphs with
node attributes (typically Rd vectors). In this case we use the
Fused Gromov-Wasserstein distance (FGW) (Vayer et al.,
2018; 2019) instead of GW. More precisely, a labeled graph
GX with NX nodes can be described this time as a tuple
GX = (CX ,AX ,hX) whereAX ∈ RNX×d is the matrix
of all features. Given two labeled graphsGX andGY , FGW
aims at finding an optimal coupling by minimizing an OT
cost which is a trade-off of a Wasserstein cost between the
features and a GW cost between the similarity matrices. For
the sake of clarity, we detail our approach in the GW context
and refer the reader to the supplementary material for its
extension to FGW.

2.2. Linear embedding and GW unmixing

Linear modeling of graphs We propose to model a
graph as a weighted sum of pairwise relation matrices.
More precisely, given a graph G = (C,h) and a dictio-
nary {Cs}s∈[S] we want to find a linear representation∑
s∈[S] wsCs of the graph G, as faithful as possible. The

dictionary is made of pairwise relation matrices of graphs
with order N . Thus, each Cs ∈ SN (R) is called an atom,
and w = (ws)s∈[S] ∈ ΣS is referred as embedding and
denotes the coordinate of the graph G in the dictionary as
illustrated in Fig.1. We rely on the GW distance to assess
the quality of our linear approximation and propose to min-
imize it to estimate its optimal embedding. In addition to
being interpretable thanks to its linearity, we also propose
to promote sparsity in the weights w similarly to sparse
coding (Chen et al., 2001). Finally note that, when the pair-
wise matrices C are adjacency matrices and the dictionary
atoms have components in [0, 1], the model

∑
s∈[S] wsCs

provides a matrix whose components can be interpreted as
probabilities of connection between the nodes.

Gromov-Wasserstein unmixing We first study the un-
mixing problem that consists in projecting a graph on the
linear representation discussed above, i.e. estimate the op-
timal embedding w of a graph G. The unmixing problem
can be expressed as the minimization of the GW distance
between the similarity matrix associated to the graph and its
linear representation in the dictionary:

min
w∈ΣS

GW 2
2

C, ∑
s∈[S]

wsCs

− λ‖w‖22 (2)

where λ ∈ R+ induces a negative quadratic regularization
promoting sparsity on the simplex as discussed in Li et al.

Algorithm 1 BCD for unmixing problem 46

1: Initialize w = 1
S1S

2: repeat
3: Compute OT matrix T ofGW 2

2 (C,
∑
s wsCs), with

CG algorithm (Vayer et al., 2018, Alg.1 & 2).
4: Compute the optimal w solving equation 46 for a

fixed T with CG algorithm.
5: until convergence

(2016). In order to solve the non-convex problem in equa-
tion 46, we propose to use a Block Coordinate Descent
(BCD) algorithm (Tseng, 2001).

The BCD (Alg.3) works by alternatively updating the OT
matrix of the GW distance and the embeddingsw. Whenw
is fixed the problem is a classical GW which is a non-convex
quadratic program. We solve it using a Conditional Gradient
(CG) algorithm (Jaggi, 2013) based on (Vayer et al., 2019).
Note that the use of the exact GW instead of a regularized
proxy allowed us to keep a sparse OT matrix as well as
to preserve “high frequency” components of the graph, as
opposed to regularized versions of GW (Peyré et al., 2016;
Solomon et al., 2016; Xu et al., 2019b) that promotes dense
OT matrices and leads to smoothed/averaged pairwise ma-
trices. For a fixed OT matrix T , the problem of finding w
is a non-convex quadratic program and can also be tackled
with a CG algorithm. Note that for non-convex problems
the CG algorithm is known to converge to a local stationary
point (Lacoste-Julien, 2016). In practice, we observed a
typical convergence of the CGs in a few tens of iterations.
The BCD itself converges in less than 10 iterations.

Fast upper bound for GW Interestingly, when two
graphs belong to the linear subspace defined by our dic-
tionary, there exists a proxy of the GW distance using a
dedicated Mahalanobis distance as described in the next
propositon:

Proposition 1 For two embedded graphs with embeddings
w(1) and w(2), assuming they share the same weights h,
the following inequality holds

GW2

∑
s∈[S]

w(1)
s Cs,

∑
s∈[S]

w(2)
s Cs

 ≤ ‖w(1) −w(2)‖M

(3)

where Mpq = 〈DhCp,CqDh〉F andDh = diag(h). M
is a positive semi-definite matrix hence engenders a Maha-
lanobis distance between embeddings.

As detailed in the supplementary material, this upper bound
is obtained by considering the GW cost between the linear
models calculated using the admissible couplingDh. The
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latter coupling assumes that both graph representations are
aligned and therefore is a priori suboptimal. As such, this
bound is not tight in general. However, when the embed-
dings are close, the optimal coupling matrix should be close
toDh so that Proposition 3 provides a reasonable proxy to
the GW distance into our embedding space. In practice, this
upper bound can be used to compute efficiently pairwise
kernel matrices or to do retrieval of closest samples (see
numerical experiments).

2.3. Dictionary learning and online algorithm

Assume now that the dictionary {Cs}s∈[S] is not known and
has to be estimated from the data. We define a dataset of K
graphs

{
G(k) : (C(k),h(k))

}
k∈[K]

. Recall that each graph

G(k) of order N (k) is summarized by its pairwise relation
matrix C(k) ∈ SN(k)(R) and weights h(k) ∈ ΣN(k) over
nodes, as described in Section 2.1. The DL problem, that
aims at estimating the optimal dictionary for a given dataset
can be expressed as:

min
{w(k)}k∈[K]

{Cs}s∈[S]

K∑
k=1

GW 2
2

C(k),
∑
s∈[S]

w(k)
s Cs

− λ‖w(k)‖22

(4)

where w(k) ∈ ΣS ,Cs ∈ SN (R). Note that the optimiza-
tion problem above is a classical sparsity promoting dictio-
nary learning on a linear subspace but with the important
novelty that the reconstruction error is computed with the
GW distance. This allows us to learn a graphs subspace of
fixed order N using a dataset of graphs with various orders.
The sum over the errors in equation 52 can be seen as an
expectation and we propose to devise an online strategy to
optimize the problem similarly to the online DL proposed
in (Mairal et al., 2009). The main idea is to update the
dictionary {Cs}s with a stochastic estimation of the gradi-
ents on few dataset graphs (minibatch). At each stochastic
update the unmixing problems are solved independently for
each graph of the minibatch using a fixed dictionary {Cs}s,
using the procedure described in Section 2.2. Then one can
compute a gradient of the loss on the minibatch w.r.t {Cs}s
and proceed to a projected gradient step. The stochastic
update of the proposed algorithm is detailed in Alg.5. Note
that it can be used on a finite dataset with possibly several
epochs on the whole dataset or online in the presence of
streaming graphs. We provide an example of such subspace
tracking in Section 4.3. We will refer to our approach as
GDL in the rest of the paper.

Numerical complexity The numerical complexity of
GDL depends on the complexity of each update. The main
computational bottleneck is the unmixing procedure that
relies on multiple resolution of GW problems. The com-

Algorithm 2 GDL: stochastic update of atoms {Cs}s∈[S]

1: Sample a minibatch of graphs B := {C(k)}k∈B .
2: Compute optimal {(w(k),T (k))}k∈[B] by solving B

independent unmixing problems with Alg.3.
3: Projected gradient step with estimated gradients ∇̃Cs

(equation in supplementary), ∀s ∈ [S]:

Cs ← ProjSN (R)(Cs − ηC∇̃Cs) (5)

plexity of solving a GW with the CG algorithm between
two graphs of order N and M and computing its gradient is
dominated by O

(
N2M +M2N

)
operations (Peyré et al.,

2016; Vayer et al., 2018). Thus given dictionary atoms of
order N , the worst case complexity can be only quadratic
in the highest graph order in the dataset. For instance, es-
timating embedding on dataset IMDB-M (see Section 4.2)
over 12 atoms takes on average 44 ms per graph (on pro-
cessor i9-9900K CPU 3.60GHz). We refer the reader to the
supplementary for more details. Note that in addition to
scale well to large datasets thanks to the stochastic optimiza-
tion, our method also leads to important speedups when
using the representations as input feature for other ML tasks.
For instance, we can use the upper bound in equation 11
to compute efficiently kernels between graphs instead of
computing all pairwise GW distances.

GDL on labeled graphs We can also define the same DL
procedure for labeled graphs using the FGW distance. The
unmixing part defined in equation 46 can be adapted by
considering a linear embedding of the similarity matrix and
of the feature matrix parametrized by the samew. From an
optimization perspective, finding the optimal coupling of
FGW can be achieved using a CG procedure so that Alg.5
extends naturally to the FGW case. Note also that the upper
bound of Proposition 3 can be generalized to this setting.
This discussion is detailed in supplementary material.

2.4. Learning the graph structure and distribution

Recent researches have studied the use of potentially more
general distributions h on the nodes of graphs than the
naive uniform ones commonly used. (Xu et al., 2019a)
empirically explored the use of distributions induced by
degrees, such as parameterized power laws, hi = pi∑

i pi
,

where pi = (deg(xi) + a)b with a ∈ R+ and b ∈ [0, 1].
They demonstrated the interest of this approach but also
highlighted how hard it is to calibrate, which advocates
for learning these distributions. With this motivation, we
extend our GDL model defined in equation 52 and propose
to learn atoms of the form {Cs,hs}s∈[S]. In this setting
we have two independent dictionaries modeling the relative
importance of the nodes with hs ∈ ΣN , and their pairwise
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relations through Cs. This dictionary learning problem
reads:

min
{(w(k),v(k))}k∈[K]

{(Cs,hs)}s∈[S]

K∑
k=1

GW 2
2

(
C(k), C̃(w(k)),h(k), h̃(v(k))

)

− λ‖w(k)‖22 − µ‖v(k)‖22 (6)

where w(k),v(k) ∈ ΣS are the structure and distribution
embeddings and the linear models are defined as:

∀k, h̃(v(k)) =
∑
s

v(k)
s hs, C̃(w(k)) =

∑
s

w(k)
s Cs

Here we exploit fully the GW formalism by estimating si-
multaneously the graph distribution h̃ and its geometric
structure C̃. Optimization problem 64 can be solved by an
adaptation of stochastic Algorithm 5. We estimate the struc-
ture/node weights unmixings (w(k),v(k)) over a minibatch
of graphs with a BCD (see Section 2.3). Then we perform
simultaneously a projected gradient step update of {Cs}s
and {hs}s. More details are given in the supplementary.

The optimization procedure above requires to have access
to a gradient for the GW distance w.r.t. the weights. To the
best of our knowledge no theoretical results exists in the
literature for finding such gradients. We provide below a
simple way to compute a subgradient for GW weights from
subgradients of the well-known Wasserstein distance:

Proposition 2 Let (C1,h1) and (C2,h2) be two graphs.
Let T ∗ be an optimal coupling of the GW problem
between (C1,h1), (C2,h2). We define the following

cost matrix M(T ∗) :=
(∑

kl(C
1
ik − C2

jl)
2T ∗kl

)
ij

. Let

α∗(T ∗),β∗(T ∗) be the dual variables of the following lin-
ear OT problem:

min
T∈U(h1,h2)

〈M(T ∗),T 〉F (7)

Thenα∗(T ∗) (resp β∗(T ∗)) is a subgradient of the function
GW 2

2 (C1,C2, • ,h2) (resp GW 2
2 (C1,C2,h1, • )).

The proposition above shows that the subgradient of GW
w.r.t. the weights can be found by solving a linear OT
problem which corresponds to a Wasserstein distance. The
ground cost M(T ∗) of this Wasserstein is moreover the
gradient (w.r.t. the couplings) of the optimal GW loss. Note
that in practice the GW problem is solved with a CG algo-
rithm which already requires to solve this linear OT problem
at each iteration. In this way, after convergence, the gradient
w.r.t. the weights can be extracted for free from the last
iteration of the CG algorithm. The proof of proposition 2 is
given in the supplementary material.

3. Related work and discussion
In this section we discuss the relation of our GDL framework
with existing approaches designed to handle graph data. We
first focus on existing contributions for graph representation
in machine learning applications. Then, we discuss in more
details the existing non-linear graph dictionary learning
approach of (Xu, 2020).

Graph representation learning Processing of graph data
in machine learning applications have traditionally been han-
dled using implicit representations such as with graph ker-
nels (Shervashidze et al., 2009; Vishwanathan et al., 2010).
Recent results have shown the interest of using OT based
distances to measure graph similarities and to design new
kernels (Vayer et al., 2019; Maretic et al., 2019; Chowdhury
& Needham, 2020). However, one limit of kernel methods
is that the representation of the graph is fixed a priori and
cannot be adapted to specific datasets. On the other hand,
Geometric deep learning approaches (Bronstein et al., 2017)
attempt to learn the representation for structured data by
means of deep learning (Scarselli et al., 2008; Perozzi et al.,
2014; Niepert et al., 2016). Graph Neural Networks (Wu
et al., 2020) have shown impressive performance for end-
to-end supervised learning problems. Note that both kernel
methods and many deep learning based representations for
graphs suffer from the fundamental pre-image problem, that
prevents recovering actual graph objects from the embed-
dings. Our proposed GDL aims at overcoming such a limit
relying on an unmixing procedure that not only provides a
simple vectorial representation on the dictionary but also
allows a direct reconstruction of interpretable graphs (as
illustrated in the experiments). A recent contribution po-
tentially overcoming the pre-image problem is Grattarola
et al. (2019). In that paper, a variational autoencoder is
indeed trained to embed the observed graphs into a constant
curvature Riemannian manifold. The aim of that paper is to
represent the graph data into a space where the statistical
tests for change detection are easier. We look instead for
a latent representation of the graphs that remains as inter-
pretable as possible. As a side note, we point out that our
GDL embeddings might be used as input for the statistical
tests developed by (Zambon et al., 2017; 2019) to detect
stationarity changes in the stochastic process generating the
observed graphs (see for instance Figure 6) .

Non-linear GW dictionary learning of graphs In a re-
cent work, (Xu, 2020) proposed a non-linear factorization of
graphs using a regularized version of GW barycenters (Peyré
et al., 2016) and denoted it as Gromov-Wasserstein Fac-
torization (GWF). Authors propose to learn a dictionary
{Cs}s∈[S] by minimizing over {Cs}s∈[S] and {w(k)}k∈[K]

the quantity
∑K
k=1GW

2
2 (B̃(w(k); {Cs}s),C(k)) where

B̃(w(k); {Cs}s) ∈ arg minB
∑
s w

(k)
s GW 2

2 (B,Cs) is a
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GW barycenter. The main difference between GDL and
this work lies in the linear representation of the approxi-
mated graph that we adopt whereas (Xu, 2020) relies on the
highly non-linear Gromov barycenter. As a consequence,
the unmixing requires solving a complex bi-level optimiza-
tion problem that is computationally expensive. Similarly,
reconstructing a graph from this embedding requires again
the resolution of a GW barycenter, whereas our linear re-
construction process is immediate. In Section 4, we show
that our GDL representation technique compares favorably
to GWF, both in terms of numerical complexity and perfor-
mance.

4. Numerical experiments
This section aims at illustrating the behavior of the ap-
proaches introduced so far for both clustering (Sections
4.1-4.2) and online subspace tracking (Section 4.3).

Implementation details The base OT solvers that are
used in the algorithms rely on the POT toolbox (Flamary
& Courty, 2017). For our experiments, we considered
the Adam algorithm (Kingma & Ba, 2014) as an adap-
tive strategy for the update of the atoms with a fixed
dataset, but used SGD with constant step size for the on-
line experiments in Section 4.3. The code is available at
https://github.com/cedricvincentcuaz/GDL.

4.1. GDL on simulated datasets

The GDL approach discussed in this section refers to equa-
tion 52. First we illustrate it on datasets simulated according
to the well understood Stochastic Block Model (SBM, Hol-
land et al., 1983; Wang & Wong, 1987) and show that we can
recover embeddings and dictionary atoms corresponding to
the generative structure.

Datasets description We consider two datasets of graphs,
generated according to SBM, with various orders, randomly
sampled in {10, 15, ..., 60} . The first scenario (D1) adopts
three different generative structures (also referred to as
classes): dense (no clusters), two clusters and three clus-
ters (see Figures 2). Nodes are assigned to clusters into equal
proportions. For each generative structure 100 graphs are
sampled. The second scenario (D2) considers the genera-
tive structure with two clusters, but with varying proportions
of nodes for each block (see top of Figure 3), 150 graphs
are simulated accordingly. In both scenarios we fix p = 0.1
as the probability of inter-cluster connectivity and 1− p as
the probability of intra-cluster connectivity. We consider
adjacency matrices for representing the structures of the
graphs in the datasets and uniform weights on the nodes.

GDL unmixing w(k) with = 0.001

Class 1

Class 2

Class 3

GDL unmixing w(k) with = 0

Class 1

Class 2

Class 3

Examples

1

1

1

2

2

2

3

3

3

Figure 2. Visualizations of the embeddings of the graphs from
D1 with our GDL on 3 atoms. The positions on the simplex for
the different classes are reported with no regularization (left) and
sparsity promoting regularization (right). Three simulated graphs
from D1 are shown in the middle and their positions on the simplex
reported in red.

Results and interpretation First we learn on dataset D1

a dictionary of 3 atoms of order 6. The unmixing coeffi-
cients for the samples in D1 are reported in Fig. 2. On the
left, we see that the coefficients are not sparse on the sim-
plex but the samples are clearly well clustered and graphs
sharing the same class (i.e. color) are well separated. When
adding sparsity promoting regularization (right part of the
figure) the different classes are clustered on the corners of
the simplex, thus suggesting that regularization leads to a
more discriminant representation. The estimated atoms for
the regularized GDL are reported on the top of Fig. 1 as
both matrices Cs and their corresponding graphs. As it can
be seen, the different SBM structures in D1 are recovered.
Next we estimate on D2 a dictionary with 2 atoms of order
12. The interpolation between the two estimated atoms for
some samples is reported in Fig. 3. As it can be seen, D2

can be modeled as a one dimensional manifold where the
proportion of nodes in each block changes continuously. We
stress that the grey links on the bottom of Figure 3 corre-
spond to the entries of the reconstructed adjacency matrices.
Those entries are in [0, 1], thus encoding a probability of
connection (see Section 2.2). The darker the link, the higher
the probability of interaction between the corresponding
nodes. The possibility of generating random graphs using
these probabilities opens the door to future researches.

We evaluate in Fig. 4 the quality of the Mahalanobis upper
bound in equation 11 as a proxy for the GW distance on
D1. On the left, one can see that the linear model allows us
to recover the true GW distances between graphs most of
the time. Exceptions occur for samples in the same class
(i.e. ”near” to each other in terms of GW distance). The
right part of the figure shows that the correlation between
the Mahalanobis upper bound (cf. Proposition 3) and the
GW distance between the embedded graphs is nearly perfect
(0.999). This proves that our proposed upper bound provides
a nice approximation of the GW distance between the input
graphs, with a correlation of 0.96 (middle of the figure), at
a much lower computational cost.

https://github.com/cedricvincentcuaz/GDL
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

w= [0.0, 1.0] w= [0.2, 0.8] w= [0.4, 0.6] w= [0.6, 0.4] w= [0.8, 0.2] w= [1.0, 0.0]

Figure 3. On the top, a random sample of real graphs from D2 (two
blocks). On the bottom, reconstructed graphs as linear combination
of two estimated atoms (varying proportions for each atom).

Figure 4. Plot of the pairwise distances in D1 and their Pearson
correlation coefficients. GW distance between graphs versus its
counterpart between the embedded graphs (left). GW distance
between graphs versus Mahalanobis distance between the embed-
dings (middle). GW distance between the embedded graphs versus
Mahalanobis between the corresponding embeddings (right).

4.2. GDL on real data for clustering and classification

We now show how our unsupervised GDL procedure can
be used to find meaningful representations for well-known
graph classification datasets. The knowledge of the classes
will be employed as a ground truth to validate our estimated
embeddings in clustering tasks. For the sake of complete-
ness, in supplementary material we also report the super-
vised classification accuracies of some recent supervised
graph classification methods (e.g. GNN, kernel methods)
showing that our DL and embedding is also competitive for
classification.

Datasets and methods We considered well-known bench-
mark datasets divided into three categories: i) IMDB-B and
IMDB-M (Yanardag & Vishwanathan, 2015) gather graphs
without node attributes derived from social networks; ii)
graphs with discrete attributes representing chemical com-
pounds from MUTAG (Debnath et al., 1991) and cuneiform
signs from PTC-MR (Krichene et al., 2015); iii) graphs with
real vectors as attributes, namely BZR, COX2 (Sutherland
et al., 2003) and PROTEINS, ENZYMES (Borgwardt &
Kriegel, 2005). We benchmarked our models for clustering
tasks with the following state-of-the-art OT models: i) GWF
(Xu, 2020), using the proximal point algorithm detailed in
that paper and exploring two configurations, i.e. with either
fixed atom order (GWF-f) or random atom order (GWF-r,
default for the method); ii) GW k-means (GW-k) which is

a k-means using GW distances and GW barycenter (Peyré
et al., 2016); iii) Spectral Clustering (SC) of (Shi & Malik,
2000; Stella & Shi, 2003) applied to the pairwise GW dis-
tance matrices or the pairwise FGW distance matrices for
graphs with attributes. We complete these clustering eval-
uations with an ablation study of the effect of the negative
quadratic regularization proposed with our models. As in-
troduced in equation 52, this regularization is parameterized
by λ, so in this specific context we will distinguish GDL
(λ = 0) from GDLλ (λ > 0).

Experimental settings For the datasets with attributes
involving FGW, we tested 15 values of the trade-off param-
eter α via a logspace search in (0, 0.5) and symmetrically
(0.5, 1) and select the one minimizing our objectives. For
our GDL methods as well as for GWF, a first step consists
into learning the atoms. A variable number of S = βk
atoms is tested, where k denotes the number of classes
and β ∈ {2, 4, 6, 8}, with a uniform number of atoms per
class. When the order N of each atom is fixed, for GDL
and GWF-f, it is set to the median order in the dataset. The
atoms are initialized by randomly sampling graphs from the
dataset with corresponding order. We tested 4 regularization
coefficients for both methods.

The embeddings w are then computed and used as input
for a k-means algorithm. However, whereas a standard
Euclidean distance is used to implement k-means over the
GWFs embeddings, we use the Mahalanobis distance from
Proposition 3 for the k-means clustering of the GDLs em-
beddings. Unlike GDL and GWF, GW-k and SC do not
require any embedding learning step. Indeed, GW-k directly
computes (a GW) k-means over the input graphs and SC is
applied to the GW distance matrix obtained from the input
graphs. The cluster assignments are assessed by means of
Rand Index (RI, Rand, 1971), computed between the true
class assignment (known) and the one estimated by the dif-
ferent methods. For each parameter configuration (number
of atoms, number of nodes and regularization parameter) we
run each experiment five times, independently, with differ-
ent random initializations. The mean RI was computed over
the random initializations and the dictionary configuration
leading to the highest RI was finally retained.

Results and interpretation Clustering results can be
seen in Table 1. The mean RI and its standard deviation are
reported for each dataset and method. Our model outper-
forms or is at least comparable to the state-of-the-art OT
based approaches for most of the datasets. Results show
that the negative quadratic regularization proposed with our
models brings additional gains in performance. Note that for
this benchmark, we considered a fixed batch size for learn-
ing our models on labeled graphs, which turned out to be a
limitation for the dataset ENZYMES. Indeed, comparable
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Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.
NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES

MODELS IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
GDL (ours) 51.32(0.30) 55.08(0.28) 70.02(0.29) 51.53(0.36) 62.59(1.68) 58.39(0.52) 66.97(0.93) 60.22(0.30)
GDLλ (ours) 51.64(0.59) 55.41(0.20) 70.89(0.11) 51.90(0.54) 66.42(1.96) 59.48(0.68) 66.79(1.12) 60.49(0.71)

GWF-r 51.24 (0.02) 55.54(0.03) 68.83(1.47) 51.44(0.52) 52.42(2.48) 56.84(0.41) 72.13(0.19) 59.96(0.09)
GWF-f 50.47(0.34) 54.01(0.37) 58.96(1.91) 50.87(0.79) 51.65(2.96) 52.86(0.53) 71.64(0.31) 58.89(0.39)
GW-k 50.32(0.02) 53.65(0.07) 57.56(1.50) 50.44(0.35) 56.72(0.50) 52.48(0.12) 66.33(1.42) 50.08(0.01)

SC 50.11(0.10) 54.40(9.45) 50.82(2.71) 50.45(0.31) 42.73(7.06) 41.32(6.07) 70.74(10.60) 49.92(1.23)

Graph from dataset Model unif. h (GW=0.09) Model est. h̃ (GW=0.08) Est. h̄s weight atoms

Graph from dataset Model unif. h (GW=0.12) Model est. h̃ (GW=0.08) Est. h̄s weight atoms

Figure 5. Modeling of two real life graphs from IMDB-M with our
GDL approaches with 8 atoms of order 10. (left) original graphs
from the dataset, (center left) linear model for GDL with uniform
weights as in equation 52, (center right) linear model for GDL with
estimated weights as in equation 64 and (right) different hs on the
estimated structure.

conclusions regarding our models performance have been
observed by setting a higher batch size for this latter dataset
and are reported in the supplementary material. This might
be due to both a high number of heterogeneous classes and a
high structural diversity of labeled graphs inside and among
classes.

We illustrate in Fig. 5 the interest of the extension of GDL
with estimated weights for IMDB-M dataset. We can see in
the center-left part of the figure that, without estimating the
weights, GDL can experience difficulties producing a model
that preserves the global structure of the graph because of
the uniform weights on the nodes. In opposition, simultane-
ously estimating the weights brings a more representative
modeling (in the GW sense), as illustrated in the centred-
right columns. The weights estimation can re-balance and
even discard non relevant nodes, in the vein of attention
mechanisms. We report in the supplementary material a
companion study for clustering tasks which further supports
our extension concerning the learning of node weights.

4.3. Online graph subspace estimation and change
detection

Finally we provide experiments for online graph subspace
estimation on simulated and real life datasets. We show that
our approach can be used for subspace tracking of graphs
as well as for change point detection of subspaces.
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Figure 6. Online GDL on dataset TWITCH-EGOS with 2 atoms
of 14 nodes each (top) and on TRIANGLES with 4 atoms of 17
nodes each (bottom).

Datasets and experiments In this section we considered
two new large graph classification datasets: TWITCH-
EGOS (Rozemberczki et al., 2020) containing social graphs
without attributes belonging to 2 classes and TRIANGLES
(Knyazev et al., 2019) that is a simulated dataset of labeled
graphs with 10 classes. Here we investigate how our ap-
proach fits to online data, i.e. in the presence of a stream of
graphs. The experiments are designed with different time
segments where each segment streams graphs belonging to
the same classes (or group of classes). The aim is to see if
the method learns the current stream and detects or adapts
to abrupt changes in the stream. For TWITCH-EGOS, we
first streamed all graphs of a class (A), then graphs of the
other class (B), both counting more than 60.000 graphs. All
these graphs consist in a unique high-frequency (a hub struc-
ture) with sparse connections between non-central nodes
(sparser for class B). For TRIANGLES, the stream follows
the three groups A,B and C, with 10,000 graphs each, where
the labels associated with each group are: A = {4, 5, 6, 7},
B = {8, 9, 10} and C = {1, 2, 3}.

Results and discussion The online (F)GW losses and a
running mean of these losses are reported for each dataset
on the left part of Fig. 6. One the right part of the Figure,
we report the average losses computed on several datasets
containing data from each stream at some time instant along
the iterations. First, the online learning for both datasets can
be seen in the running means with a clear decrease of loss on



Online Graph Dictionary Learning

each time segment. Also, note that at each event (change of
stream) a jump in terms of loss is visible suggesting that the
method can be used for change point detection. Finally it
is interesting to see on the TRIANGLES dataset that while
the loss on Data B is clearly decreased during Stream B
it increases again during Stream C, thus showing that our
algorithm performs subspace tracking, adapting to the new
data and forgetting old subspaces no longer necessary.

5. Conclusion
We present a new linear Dictionary Learning approach for
graphs with different orders relying on the Gromov Wasser-
stein (GW) divergence, where graphs are modeled as convex
combination of graph atoms. We design an online stochastic
algorithm to efficiently learn our dictionary and propose
a computationally light proxy to the GW distance in the
described graphs subspace. Our experiments on cluster-
ing classification and online subspace tracking demonstrate
the interest of our unsupervised representation learning ap-
proach. We envision several extensions to this work, notably
in the context of graph denoising or graph inpainting.
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Peyré, G. and Cuturi, M. Computational optimal transport.
Foundations and Trends in Machine Learning, 11:355–
607, 2019.
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6. Supplementary Material
6.1. Notations & definitions

In this section we recall the notations used in the rest of the supplementary.

For matrices we note SN (R) the set of symmetric matrices in RN×N and 〈·, ·〉F the Frobenius inner product defined for
real matrices C1,C2 as 〈C1,C2〉F = tr(C>1 C2) where tr denotes the trace of matrices. Moreover C1 �C2 denotes the
Hadamard product of C1,C2, i.e. (C1 �C2)ij = C1(i, j)C2(i, j). Finally vec(C) denotes the vectorization of the matrix
C.

For vectors the Euclidean norm is denoted as ‖ · ‖2 associated with the inner product 〈·, ·〉. For a vector x ∈ RN the operator
diag(x) denotes the diagonal matrix defined with the values of x. If M ∈ SN (R) is a positive semi-definite matrix we note
‖ · ‖M the pseudo-norm defined for x ∈ RN by ‖x‖2M = x>Mx. By some abuse of terminology we will use the term
Mahalanobis distance to refer to generalized quadratic distances defined as dM(x,y) = ‖x − y‖M. The fact that M is
positive semi-definite ensures that dM satisfies the properties of a pseudo-distance.

For a 4-D tensor Ł = (Lijkl)ijkl we note ⊗ the tensor-matrix multiplication, i.e. given a matrix C, Ł ⊗A is the matrix(∑
k,l Li,j,k,lAk,l

)
i,j

.

The simplex of histograms (or weights) with N bins is ΣN :=
{
h ∈ R+

N |
∑
i hi = 1

}
. For two histograms hX ∈

ΣNX ,h
Y ∈ ΣNY the set U(hX ,hY ) := {T ∈ RN

X×NY
+ |T1NY = hX ,T T1NX = hY } is the set of couplings between

hX ,hY .

Recall that for two graphs GX = (CX ,hX) and GY = (CY ,hY ) the GW2 distance between GX and GY is defined as
the result of the following optimization problem:

min
T∈U(hX ,hY )

∑
ijkl

(
CXij − CYkl

)2
TikTjl (8)

In the following we denote by GW2(CX ,CY ,hX ,hY ) the optimal value of equation 8 or by GW2(CX ,CY ) when the
weights are uniform. With more compact notations:

GW2(CX ,CY ,hX ,hY ) = min
T∈U(hX ,hY )

〈Ł(CX ,CY )⊗ T ,T 〉F (9)

where Ł(CX ,CY ) is the 4-D tensor Ł(CX ,CY ) =
(
(CXij − CYkl)2

)
ijkl

For graphs with attributes we use the Fused Gromov-Wasserstein distance (Vayer et al., 2019). More precisely consider
two graphs GX = (CX ,AX ,hX) and GY = (CY ,AY ,hY ) whereAX = (aXi )i∈[NX ] ∈ RNX×d,AY = (aYj )j∈[NY ] ∈
RNY ×d are the matrices of all features. Given α ∈ [0, 1] and a cost function c : Rd × Rd → R between vectors in Rd the
FGW2 distance is defined as the result of the following optimization problem:

min
T∈U(hX ,hY )

(1− α)
∑
ij

c(aXi ,a
Y
j )Tij + α

∑
ijkl

(
CXij − CYkl

)2
TikTjl (10)

In the following we note FGW2,α(CX ,AX ,CY ,AY ,hX ,hY ) the optimal value of equation 10 or by
FGW2,α(CX ,AX ,CY ,AY ) when the weights are uniform. The term

∑
ij c(a

X
i ,a

Y
j )Tij will be called the Wasserstein

objective and denoted as F(AX ,AY ,T ) and the term
∑
ijkl

(
CXij − CYkl

)2
TikTjl will be called the Gromov-Wasserstein

objective and denoted E(CX ,CY ,T ).

6.2. Proofs of the different results

6.2.1. (F)GW UPPER-BOUNDS IN THE EMBEDDING SPACE

Proposition 3 (Gromov-Wasserstein) For two embedded graphs with embeddings w(1) and w(2) over the set of pairwise
relation matrices {Cs}s∈[S] ⊂ SN (R), with a shared masses vector h, the following inequality holds

GW2

∑
s∈[S]

w(1)
s Cs,

∑
s∈[S]

w(2)
s Cs

 ≤ ‖w(1) −w(2)‖M (11)
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where M = (〈DhCp,CqDh〉F )pq and Dh = diag(h). M is a positive semi-definite matrix hence engenders a
Mahalanobis distance between embeddings.

Proof. Let consider the formulation of the GW distance as a Frobenius inner product (see e.g (Peyré et al., 2016)).
Denoting T the optimal transport plan between both embedded graph and the power operation over matrices applied at
entries level,

GW2(
∑
s

w(1)
s Cs,

∑
s

w(2)
s Cs,h) = 〈(

∑
s

w(1)
s Cs)

2h1>N+1Nh
>(
∑
s

w(2)
s Cs

>
)2−2(

∑
s

w(1)
s Cs)T (

∑
s

w(2)
s Cs

>
),T 〉F

(12)
Using the marginal constraints of GW problem, i.e T ∈ U(h,h) := {T ∈ RN×N+ |T1N = h,T T1N = h}, and the
symmetry of matrices {Cs},equation 12 can be developed as follow,

GW2(
∑
s

w(1)
s Cs,

∑
s

w(2)
s Cs,h) =

∑
pq

tr
(
w(1)
p w(1)

q (Cp �Cq)hh> + w(2)
p w(2)

q (Cp �Cq)hh> − 2w(1)
p w(2)

q CpTCqT
>
)

(13)

With the following property of the trace operator:

tr
(
(C1 �C2)xx>

)
= tr

(
C>1 diag(x)C2diag(x)

)
(14)

DenotingDh = diag(h), equation 13 can be expressed as:

GW2(
∑
p

w(1)
p Cp,

∑
q

w(2)
q Cq,h) =

∑
pq

(w(1)
p w(1)

q + w(2)
p w(2)

q )〈DhCp,CqDh〉F − 2w(1)
p w(2)

q 〈T>Cp,CqT>〉F

(15)

As T ∈ U(h,h) is a minimum of the GW objective, we can bound by above equation 13 by evaluating the GW objective in
Dh ∈ U(h,h), which is a sub-optimal admissible coupling.

GW2(
∑
p

w(1)
p Cp,

∑
q

w(2)
q Cq,h) ≤

∑
pq

(w(1)
p w(1)

q + w(2)
p w(2)

q − 2w(1)
p w(2)

q )〈DhCp,CqDh〉F

= w(1)TMw(1) +w(2)>Mw(2) − 2w(1)>Mw(2)

(16)

with M = (〈DhCp,CqDh〉F )pq. It suffices to prove that the matrix M is a PSD matrix to conclude that it defines a
Mahalanobis distance over the set of embeddings w which bounds by above the GW distance between corresponding
embedded graphs. Let consider the following reformulation of an entry Mpq as follow,

〈DhCp,CqDh〉 = vec(Bp)
>vec(Bq) (17)

where ∀n ∈ [S],Bn = D
1/2
h CnD

1/2
h . Hence withB = (Bn)n ⊂ RN2×S ,M can be factorized asBTB and therefore

is a PSD matrix. �

A similar result can be proven for the Fused Gromov-Wasserstein distance:

Proposition 4 (Fused Gromov-Wasserstein) For two embedded graphs with node attributes, with embeddings w(1) and
w(2) over the set of pairwise relation matrices {(Cs,As)}s∈[S] ⊂ SN (R)× RN×dd, and a shared masses vector h, the
following inequality holds ∀α ∈ (0, 1),

FGW2,α

(
C̃(w(1)), Ã(w(1)), C̃(w(2)), Ã(w(2))

)
≤ ‖w(1) −w(2)‖αM1+(1−α)M2

(18)

with,
C̃(w) =

∑
s

wsCs and Ã(w) =
∑
s

wsAs (19)

Where M1 =
(
〈DhCp,CqDh〉F

)
pq

and M2 = (〈D1/2
h Ap,D

1/2
h Aq〉F )pq∈[S], and Dh = diag(h), are PSD matrices

and therefore their linear combination being PSD engender Mahalanobis distances over the unmixing space.
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Proof. Let consider the optimal transport plan T ∈ U(h,h) of the FGW distance between both embedded structures.

FGW 2
2,α

(
C̃(w(1)), Ã(w(1)), C̃(w(2)), Ã(w(2)),h

)
= αE

(
C̃(w(1)), C̃(w(2)),T

)
+ (1− α)F

(
Ã(w(1)), Ã(w(2)),T

)
(20)

where E and F denotes respectively the Gromov-Wasserstein objective and the Wasserstein objective. As a similar approach
than for Proposition 11 can be used for the GW objective involved in equation 20, we will first highlight a suitable
factorization of the Wasserstein objective F . Note that for any feature matrices A1 = (a1,i)i∈[N ],A2 = (a2,i)i∈[N ] ∈
RN∗d, F with an euclidean ground cost can be expressed as follow using the marginal constraints on T ∈ U(h,h),

F(A1,A2,T ) =
∑
ij

‖a1,i − a2,j‖22Tij

=
∑
i

‖a1,i‖22hi +
∑
j

‖a1,j‖22hj − 2
∑
ij

〈a1,i,a2,j〉Tij

= 〈D1/2
h A1,D

1/2
h A1〉F + 〈D1/2

h A2,D
1/2
h A2〉F − 2〈A1A

>
2 ,T 〉F

(21)

Returning to our main problem 20, a straigth-forward development of its Wasserstein term F using equation 21 leads to the
following equality,

F
(
Ã(w(1)), Ã(w(2)),T

)
=
∑
pq

(
w(1)
p w(1)

q + w(2)
p w(2)

q

)
〈D1/2

h Ap,D
1/2
h Aq〉F − 2w(1)

p w(2)
q 〈ApA

>
q ,T 〉F (22)

Similarly than for the proof of Proposition 1, T ∈ U(h,h) is an optimal admissible coupling minimizing the FGW
problem, thus equation 20 is upper bounded by its evaluation in the sub-optimal admissible couplingDh ∈ U(h,h). Let
M1 = M = (〈DhCp,CqDh〉F )pq the PSD matrix coming from the proof of Proposition 3.

Let M2 =
(
〈D1/2

h Ap,D
1/2
h Aq〉F

)
pq

which is also a PSD matrix as it can be factorized as B>B with B =(
vec(D

1/2
h As)

)
s∈[S]

∈ RNd×S .

Let us denote ∀α ∈ (0, 1), Mα = αM1 + (1 − α)M2 which is PSD as convex combination of PSD matrices, hence
engender a Mahalanobis distance in the embedding space. To summarize, equation 23 holds ∀α ∈ (0, 1),

FGW 2
2,α

(
C̃(w(1)), Ã(w(1)), C̃(w(2)), Ã(w(2)),h

)
≤ w(1)>Mαw

(1) +w(2)>Mαw
(2) − 2w(1)>Mαw

(2)

= ‖w(1) −w(2)‖Mα

� (23)

6.2.2. PROPOSITION 3. GRADIENTS OF GW w.r.t. THE WEIGHTS

In this section we will prove the following result:

Proposition 5 Let (C1,h1) and (C2,h2) be two graphs. Let T ∗ be an optimal coupling of the GW problem between

(C1,h1), (C2,h2). We define the following cost matrix M(T ∗) :=
(∑

kl(C
1
ik − C2

jl)
2T ∗kl

)
ij

. Let α∗(T ∗),β∗(T ∗) be

the dual variables of the following linear OT problem:

min
T∈U(h1,h2)

〈M(T ∗),T 〉F

Then α∗(T ∗) (resp β∗(T ∗)) is a subgradient of the function GW 2
2 (C1,C2, • ,h2) (resp GW 2

2 (C1,C2,h1, • )).

In the following T ≥ 0 should be understood as ∀i, j Tij ≥ 0. Let (C1,h1) and (C2,h2) be two graphs of order n and
m with C1 ∈ Sn(R),C2 ∈ Sm(R) and (h1,h2) ∈ Σn × Σm. Let T ∗ be an optimal solution of the GW problem i.e.
GW2(C1,C2,h1,h2) = 〈Ł(C1,C2)⊗ T ∗,T ∗〉F . We defineM(T ∗) := Ł(C1,C2)⊗ T ∗. We consider the problem:

min
T∈U(h1,h2)

〈M(T ∗),T 〉F = min
T∈U(h1,h2)

〈Ł(C1,C2)⊗ T ∗,T 〉F (24)

We will first show that the optimal coupling for the Gromov-Wasserstein problem is also an optimal coupling for the problem
equation 24, i.e. minT∈U(h1,h2)〈M(T ∗),T 〉F = 〈M(T ∗),T ∗〉F . This result is based on the following theorem which
relates a solution of a Quadratic Program (QP) with a solution of a Linear Program (LP):
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Theorem 1 (Theorem 1.12 in (Murty, 1988)) Consider the following (QP):

minx f(x) = cx + xTQx
s.t. Ax = b, x ≥ 0

(25)

Then if x∗ is an optimal solution of equation 25 it is an optimal solution of the following (LP):

minx f(x) = (c + xT∗Q)x
s.t. Ax = b, x ≥ 0

(26)

Applying Theorem 1 to our case gives exactly that:

T ∗ ∈ arg min
T∈U(h1,h2)

〈M(T ∗),T 〉F (27)

since T ∗ is an optimal solution of the GW problem and so minT∈U(h1,h2)〈M(T ∗),T 〉F = 〈M(T ∗),T ∗〉F .

Now let α∗(T ∗),β∗(T ∗) be an optimal solution to the dual problem of equation 24. Then by strong duality it implies that:

min
T∈U(h1,h2)

〈M(T ∗),T 〉F = 〈α∗(T ∗),h1〉+ 〈β∗(T ∗),h2〉 = 〈M(T ∗),T ∗〉F (28)

Since 〈M(T ∗),T ∗〉F = GW2(C1,C2,h1,h2) we have:

GW2(C1,C2,h1,h2) = 〈α∗(T ∗),h1〉+ 〈β∗(T ∗),h2〉 (29)

To prove Proposition 5 the objective is to show that β∗(T ∗) is a subgradient of F : q→ GW (C1,C2,h1,q) (by symmetry
the result will be true for α∗(T ∗)). In other words we want to prove that:

∀q ∈ Σm, 〈β∗(T ∗),q〉 − 〈β∗(T ∗),h2〉 ≤ F (q)− F (h2) (30)

This condition can be rewritten based on the following simple lemma:

Lemma 1 The dual variable β∗(T ∗) is a subgradient of F : q→ GW2(C1,C2,h1,q) if and only if:

∀q ∈ Σm, 〈β∗(T ∗),q〉+ 〈α∗(T ∗),h1〉 ≤ F (q) (31)

Proof. It is a subgradient if and only if:

∀q ∈ Σm, 〈β∗(T ∗),q〉 − 〈β∗(T ∗),h2〉 ≤ F (q)− F (h2) (32)

However using equation 29 and the definition of F we have:

F (h2) = 〈α∗(T ∗),h1〉+ 〈β∗(T ∗),h2〉 (33)

So overall:

〈β∗(T ∗),q〉 − 〈β∗(T ∗),h2〉 ≤ F (q)− (〈α∗(T ∗),h1〉+ 〈β∗(T ∗),h2〉)
⇐⇒ 〈β∗(T ∗),q〉+ 〈α∗(T ∗),h1〉 ≤ F (q)

(34)

�

In order to prove Proposition 5 we have to prove that the condition in Lemma 1 is satisfied. We will do so by leveraging the
weak-duality of the GW problem as described in the next lemma:

Lemma 2 For any vectors α ∈ Rn,β ∈ Rm we define:

G(α,β) := min
T≥0
〈Ł(C1,C2)⊗ T −α1>m − 1nβ

>,T 〉

Let T ∗ be an optimal solution of the GW problem. Consider:

min
T∈U(h1,h2)

〈M(T ∗),T 〉F (35)

where M(T ∗) := Ł(C1,C2) ⊗ T ∗. Let α∗(T ∗),β∗(T ∗) be the dual variables of the problem in equation 35. If
G(α∗(T ∗),β∗(T ∗)) = 0 then β∗(T ∗) is a subgradient of F : q→ GW2(C1,C1,h1,q)



Online Graph Dictionary Learning

Proof. Let q ∈ Σm be any weights vector be fixed. Recall that F : q→ GW2(C1,C2,h1,q) so that:

F (q) = GW2(C1,C2,h1,q) = min
T∈U(h1,q)

〈Ł(C1,C2)⊗ T ,T 〉 (36)

The Lagrangian associated to equation 36 reads:

min
T≥0

max
α,β

L(T ,α,β) where L(T ,α,β) := 〈Ł(C1,C2)⊗ T ,T 〉+ 〈h1 − T1m,α〉+ 〈q− T>1n,β〉 (37)

Moreover by weak Lagrangian duality:

min
T≥0

max
α,β

L(T ,α,β) ≥ max
α,β

min
T≥0

L(T ,α,β) (38)

However:

max
α,β

min
T≥0

L(T ,α,β) = max
α,β
〈α,h1〉+ 〈β,q〉+ min

T≥0
〈Ł(C1,C2)⊗ T −α1>m − 1nβ

>,T 〉

= max
α,β
〈α,h1〉+ 〈β,q〉+ G(α,β)

So by considering the dual variable α∗(T ∗),β∗(T ∗) defined previously we have:

max
α,β

min
T≥0

L(T ,α,β) ≥ 〈α∗(T ∗),h1〉+ 〈β∗(T ∗),q〉+ G(α∗(π∗),β∗(T ∗)) (39)

Now combining equation 38 and equation 39 we have:

min
T≥0

max
α,β

L(T ,α,β) ≥ 〈α∗(T ∗),h1〉+ 〈β∗(T ∗),q〉+ G(α∗(T ∗),β∗(T ∗)) (40)

Since F (q) = minT≥0 maxα,β L(T ,α,β) we have proven that:

∀q ∈ Σm, 〈β∗(T ∗),q〉+ 〈α∗(T ∗),h1〉+ G(α∗(T ∗),β∗(T ∗)) ≤ F (q) (41)

However Lemma 1 states that β∗(T ∗) is a subgradient of F if and only if:

∀q ∈ Σm, 〈β∗(T ∗),q〉+ 〈α∗(T ∗),h1〉 ≤ F (q) (42)

So combining equation 41 with Lemma 1 proves:

G(α∗(T ∗),β∗(T ∗)) ≥ 0 =⇒ β∗(T ∗) is a subgradient of F (43)

However we have F (h2) = 〈α∗(T ∗),h1〉+ 〈β∗(T ∗),h2〉 by equation 33. So G(α∗(T ∗),β∗(T ∗)) ≤ 0 using equation 41
with q = h2. So we can only hope to have G(α∗(T ∗),β∗(T ∗)) = 0. �

The previous lemma states that it is sufficient to look at the quantity G(α∗(T ∗),β∗(T ∗)) in order to prove that β∗(T ∗) is a
subgradient of F . Interestingly the condition G(α∗(T ∗),β∗(T ∗)) = 0 is satisfied which proves Proposition 5 as sated in
the next lemma:

Lemma 3 With previous notations we have G(α∗(T ∗),β∗(T ∗)) = 0. In particular β∗(T ∗) is a subgradient of F so that
Proposition 5 is valid.

Proof. We want to find:

G(α∗(T ∗),β∗(T ∗)) = min
T≥0
〈Ł(C1,C2)⊗ T −α∗(T ∗)1>m − 1nβ

∗(T ∗)>,T 〉

We define H(T ) := 〈Ł(C1,C2) ⊗ T − α∗(T ∗)1>m − 1nβ
∗(T ∗)>,T 〉. Since T ∗ is optimal coupling for

minT∈U(h1,h2)〈M(T ∗),T 〉F by equation 27 then for all i, j we have T ∗ij(M(T ∗)ij − α∗i (T
∗) − β∗j (T ∗)) = 0 by

the property of the optimal couplings for the Wasserstein problems. Equivalently:

∀(i, j) ∈ [n]× [m], T ∗ij([Ł(C1,C2)⊗ T ∗]ij − α∗i (T ∗)− β∗j (T ∗)) = 0 (44)
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Then:

H(T ∗) = tr
(
T ∗>(Ł(C1,C2)⊗ T ∗ −α∗(T ∗)1>m − 1nβ

∗(T ∗)>)
)

=
∑
ij

T ∗ij(Ł(C1,C2)⊗ T ∗ −α∗(T ∗)1>m − 1nβ
∗(T ∗)>)ij

=
∑
ij

T ∗ij([Ł(C1,C2)⊗ T ∗]ij − α∗i (T ∗)− β∗j (T ∗)) = 0

(45)

Which proves G(α∗(T ∗),β∗(T ∗)) = 0. �

6.3. Algorithmic details

6.3.1. GDL FOR GRAPHS WITHOUT ATTRIBUTES

We propose to model a graph as a weighted sum of pairwise relation matrices. More precisely, given a graph G = (C,h)
and a dictionary {Cs}s∈[S] ⊂ SN (R) we want to find a linear representation

∑
s∈[S] wsCs of the graph G, as faithful as

possible. The dictionary is made of pairwise relation matrices of graphs with order N . w = (ws)s∈[S] ∈ ΣS is referred as
embedding and denotes the coordinate of the graph G in the dictionary. We rely on the GW distance to assess the quality of
our linear approximation and propose to minimize it to estimate its optimal embedding.

6.3.2. GROMOV-WASSERSTEIN UNMIXING

We first study the unmixing problem that consists in projecting a graph on the linear representation discussed above, i.e.
estimate the optimal embedding w of a graph G. Our GW unmixing problem reads as

min
w∈ΣS

GW 2
2

(
C, C̃(w)

)
− λ‖w‖22 (46)

where, C̃(w) =
∑
s

wsCs (47)

where λ ∈ R+ induces a negative quadratic regularization promoting sparsity on the simplex as discussed in Li et al. (2016).
In order to solve the non-convex problem in equation 46, we propose to use a Block Coordinate Descent (BCD) algorithms
(Tseng, 2001). We fully detail the algorithm in the following and refer our readers to the main paper for the discussion on
this approach.

Algorithm 3 BCD for GW unmixing problem 46

1: Initialize w = 1
S1S

2: repeat
3: Compute OT matrix T of GW 2

2

(
C, C̃(w)

)
, with CG algorithm (Vayer et al., 2018, Alg.1 & 2).

4: Compute the optimal w solving equation 46 for a fixed T with CG algorithm 4
5: until convergence

Algorithm 4 CG for solving GW unmixing problem w.r.t w given T
1: repeat
2: Compute g, gradients w.r.t w of E(C, C̃(w),T ) following equation 49.
3: Find direction x? = arg minx∈ΣS x

Tg
4: Line-search: denoting z(γ) = γx? + (1− γ)w,

γ? = arg min
γ∈(0,1)

E(C, C̃(z(γ)),T ) = arg min
γ∈(0,1)

aγ2 + bγ + c (48)

5: w ← z(γ?)
6: until convergence
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Partial derivates of the GW objective E w.r.t w = ( ∂E
∂ws

)s∈[S] are expressed in equation 49, and further completed with
gradient of the negative regularization term .

∂E
∂ws

(C, C̃(w),T ) = 2tr{
(
Cs � C̃(w)

)
hh> −CsT>C>T } (49)

The coefficient of the second-order polynom involved in equation 57 used to solve the problem, are expressed as follow,

a = tr{
(
C̃(x? −w)� C̃(x? −w)

)
hhT } − λ‖x? −w‖22 (50)

b = 2tr{
(
C̃(x? −w)� C̃(w)

)
hh> − C̃(x? −w)T>CTT } − 2λ〈w,x−w〉 (51)

6.3.3. DICTIONARY LEARNING AND ONLINE ALGORITHM

Assume now that the dictionary {Cs}s∈[S] is not known and has to be estimated from the data. We define a dataset of K
graphs

{
G(k) : (C(k),h(k))

}
k∈[K]

. Recall that each graph G(k) of order N (k) is summarized by its pairwise relation matrix

C(k) ∈ SN(k)(R) and weights h(k) ∈ ΣN(k) over nodes. The DL problem, that aims at estimating the optimal dictionary
for a given dataset can be expressed as:

min
{w(k)}k∈[K]

{Cs}s∈[S]

K∑
k=1

GW 2
2

(
C(k), C̃(w(k))

)
− λ‖w(k)‖22 (52)

wherew(k) ∈ ΣS ,Cs ∈ SN (R). We refer the reader to the main paper for the discussion on the non-convex problem 52.
To tackle this problem we proposed a stochastic algorithm 5

Algorithm 5 GDL: stochastic update of atoms {Cs}s∈[S]

1: Sample a minibatch of graphs B := {C(k)}k∈B .
2: Compute optimal {(w(k),T (k))}k∈[B] by solving B independent unmixing problems with Alg.3.
3: Projected gradient step with estimated gradients ∇̃Cs (see equation 54), ∀s ∈ [S]:

Cs ← ProjSN (R)(Cs − ηC∇̃Cs) (53)

Estimated gradients w.r.t {Cs} over a minibatch of graphs B := {C(k)}k∈B given unmixing solutions {(w(k),T (k))}k∈[B]

read:

∇̃Cs

(∑
k∈B

E(C(k), C̃(w(k)),T (k)

)
=

2

B

∑
k∈B

w(k)
s {C̃(w(k))� hh> − T (k)>C(k)>T (k)} (54)

6.4. GDL for graph with nodes attribute

We can also define the same DL procedure for labeled graphs using the FGW distance. The unmixing part defined in
equation 46 can be adapted by considering a linear embedding of the similarity matrix and of the feature matrix parametrized
by the same w.

6.4.1. FUSED GROMOV-WASSERSTEIN UNMIXING

More precisely, given a labeled graphG = (C,A,h) (see Section 6.1 ) and a dictionary {(Cs,As)}s∈[S] ⊂ SN (R)×RN×d
we want to find a linear representation (

∑
s∈[S] wsCs,

∑
s∈[S] wsAs) of the labeled graph G, as faithful as possible in

the sense of the FGW distance. The FGW unmixing problem that consists in projecting a labeled graph on the linear
representation discussed above reads as follow, ∀α ∈ (0, 1),

min
w∈ΣS

FGW 2
2,α

(
C,A, C̃(w), Ã(w)

)
− λ‖w‖22 (55)
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where, C̃(w) =
∑
s

wsCs and Ã(w) =
∑
s

wsAs (56)

where λ ∈ R+. A similar discussion than for the GW unmixing problem 46 holds. We adapt the BCD algorithm detailed in
3 to labeled graphs in Alg.6, to solve the non-convex problem of equation 55.

Algorithm 6 BCD for FGW unmixing problem 55

1: Initialize w = 1
S1S

2: repeat
3: Compute OT matrix T of FGW 2

2,α

(
C,A, C̃(w), Ã(w)

)
, with CG algorithm (Vayer et al., 2018, Alg.1 & 2).

4: Compute the optimal w solving equation 55 for a fixed T with CG algorithm 7.
5: until convergence

Algorithm 7 CG for solving FGW unmixing problem w.r.t w given T
1: repeat
2: Compute g, gradients w.r.t w of equation 55 given T following equation 58.
3: Find direction x? = arg minx∈ΣS x

Tg
4: Line-search: denoting z(γ) = γx? + (1− γ)w,

γ? = arg min
γ∈(0,1)

αE(C, C̃(z(γ)),T ) + (1− α)F(A, Ã(z(γ)),T ) = arg min
γ∈(0,1)

aγ2 + bγ + c (57)

5: w ← z(γ?)
6: until convergence

Partial derivates of the FGW objective Gα := αE + (1 − α)F w.r.t w are expressed in equations 49 and 58, and further
completed with gradient of the negative regularization term.

∂Gα
∂ws

(C,A, C̃(w), Ã(w),T ) = α
∂E
∂ws

(C, C̃(w),T ) + (1− α)
∂F
∂ws

(A, Ã(w),T )

= α
∂E
∂ws

(C, C̃(w),T ) + 2(1− α)tr{DhÃ(w)As
> − T>AAs

>}
(58)

where Dh = diag(h). The coefficients of the second-order polynom involved in equation 57 used to solve the problem,
satisfy the following equations,

a = αtr{
(
C̃(x? −w)� C̃(x? −w)

)
hhT }+ (1− α)tr{DhÃ(x? −w)Ã(x−w)>} − λ‖x? −w‖22 (59)

b = 2αtr{
(
C̃(x? −w)� C̃(w)

)
hh> − C̃(x? −w)T>CTT }

+ (1− α)tr{DhÃ(x? −w)Ã(w)> − T>AÃ(x? −w)>} − 2λ〈w,x−w〉
(60)

6.4.2. DICTIONARY LEARNING AND ONLINE ALGORITHM

Assume now that the dictionary {(Cs,As)}s∈[S] is not known and has to be estimated from the data. We define a dataset of
K labeled graphs

{
G(k) : (C(k),A(k),h(k))

}
k∈[K]

. Recall that each labeled graph G(k) of order N (k) is summarized by

its pairwise relation matrix C(k) ∈ SN(k)(R), its matrix of node featuresA(k) ∈ RN(k)×d and weights h(k) ∈ ΣN(k) over
nodes. The DL problem, that aims at estimating the optimal dictionary for a given dataset can be expressed as:

min
{w(k)}k∈[K]

{(Cs,As)}s∈[S]

K∑
k=1

FGW 2
2,α

(
C(k),A(k), C̃(w(k)), Ã(w(k))

)
− λ‖w(k)‖22 (61)
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Algorithm 8 GDL: stochastic update of atoms {(Cs,As)}s∈[S]

1: Sample a minibatch of graphs B := {(C(k),A(k))}k∈B .
2: Compute optimal {(w(k),T (k))}k∈[B] by solving B independent unmixing problems with Alg.6.
3: Gradients step with estimated gradients ∇̃Cs (see equation 54), and ∇̃As (see equation 63), ∀s ∈ [S]. :

Cs ← ProjSN (R)(Cs − ηC∇̃Cs) and As ← As − ηA∇̃As (62)

where w(k) ∈ ΣS ,Cs ∈ SN (R),As ∈ RN×d. We refer the reader to the main paper for the discussion on the non-convex
problem 52 which can be transposed to problem 61. To tackle this problem we proposed a stochastic algorithm 8

Estimated gradients w.r.t {Cs} and {As} over a minibatch of graphs B := {(C(k),A(k))}k∈B given unmixing solutions
{(w(k),T (k))}k∈[B] can be computed separately. The ones related to the GW objective are described in equation 54, while
the ones related to the Wasserstein objective satisfy equation 63:

∇̃As

(∑
k∈B

F(A(k), Ã(w(k)),T (k))

)
=

2

B

∑
k∈B

w(k)
s {DhÃ(w(k))− T>A(k)} (63)

6.5. Learning the graph structure and nodes distribution

Here we extend our GDL model defined in equation 52 and propose to learn atoms of the form {Cs,hs}s∈[S]. In this setting
we have two independent dictionaries modeling the relative importance of the nodes with hs ∈ ΣN , and their pairwise
relations through Cs. This dictionary learning problem reads:

min
{(w(k),v(k))}k∈[K]

{(Cs,hs)}s∈[S]

K∑
k=1

GW 2
2

(
C(k), C̃(w(k)),h(k), h̃(v(k))

)
− λ‖w(k)‖22 − µ‖v(k)‖22 (64)

where w(k),v(k) ∈ ΣS are the structure and distribution embeddings and the linear models are defined as:

∀k, h̃(v(k)) =
∑
s

v(k)
s hs, C̃(w(k)) =

∑
s

w(k)
s Cs (65)

Here we exploit fully the GW formalism by estimating simultaneously the graph distribution h̃ and its geometric structure
C̃. Optimization problem 64 can be solved by an adaptation of stochastic Algorithm 5. Indeed, in the light of the proposition
5, we can derive the following equation 66 between the input graph (C(k),h(k)) and its embedded representation C̃(w(k)

and h̃(v(k)), given an optimal coupling T (k) satisfying Proposition 5,

2〈L(C(k), C̃(w(k)))⊗ T (k),T (k)〉 = 〈u(k),h(k)〉+ 〈ũ(k), h̃(v(k))〉 (66)

where u(k), ũ(k) are dual potentials of the induced linear OT problem.

First, with this observation we estimate the structure/node weights unmixings (w(k),v(k)) for the graph G(k). We proposed
the BCD algorithm 9 derived from the initial BCD 3. Note that the dual variables of the induced linear OT problems are
centered to ensure numerical stability.

Algorithm 9 BCD for extended GW unmixing problem inherent to equation 64

1: Initialize embeddings such as w = v = 1
S1S

2: repeat
3: Compute OT matrix T of GW 2

2

(
C, C̃(w),h, h̃(v)

)
, with CG algorithm (Vayer et al., 2018, Alg.1 & 2). From the

finale iteration of CG, get dual potentials (u, ũ) of the corresponding linear OT problem (see Proposition 5).
4: Compute the optimal v by minimizing equation 66 w.r.t v given ũ with a CG algorithm.
5: Compute the optimal w solving equation 46 given T and v with CG algorithm 4.
6: until convergence
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Second, now that we benefit from an algorithm to project any graph G(k) = (C(k),h(k)) onto the linear representations
described in 65, we extend the stochastic algorithm 5. to the problem 64. This extension is described in algorithm 10.

Algorithm 10 extended GDL: stochastic update of atoms {(Cs,hs)}s∈[S]

1: Sample a minibatch of graphs B := {(C(k),h(k))}k∈B .
2: Compute optimal embeddings {(w(k),v(k))}k∈[B] coming jointly with the set of OT variables (T (k),u(k), ũ(k)) by

solving B independent unmixing problems with Alg.9.
3: Projected gradient step with estimated gradients ∇̃Cs (see equation 54) and ∇̃hs (see equation 68), ∀s ∈ [S]:

Cs ← ProjSN (R)(Cs − ηC∇̃Cs) and hs ← ProjΣN (hs − ηh∇̃hs) (67)

For a minibatch a graphs {Ck,hk}k∈[B], once each unmixing problems are solved independently estimating unmixings
{(w(k),w(k))}k and the underlying OT matrix T (k) associated with potential ũ(k), we perform simultaneously a projected
gradient step update of {Cs}s and {hs}s. The estimated gradients of equation 64 w.r.t {hs}s reads ∀s ∈ [S],

∇̃hs · =
1

2B

∑
k∈[B]

v(k)
s ũ(k) (68)

6.6. Numerical experiments

6.6.1. DATASETS

Table 2. Datasets descriptions
datasets features #graphs #classes mean #nodes min #nodes max #nodes median #nodes mean connectivity rate
IMDB-B None 1000 2 19.77 12 136 17 55.53
IMDB-M None 1500 3 13.00 7 89 10 86.44
MUTAG {0..2} 188 2 17.93 10 28 17.5 14.79
PTC-MR {0, .., 17} 344 2 14.29 2 64 13 25.1
BZR R3 405 2 35.75 13 57 35 6.70
COX2 R3 467 2 41.23 32 56 41 5.24
PROTEIN R29 1113 2 29.06 4 620 26 23.58
ENZYMES R18 600 6 32.63 2 126 32 17.14

We considered well-known benchmark datasets divided into three categories: i) IMDB-B and IMDB-M (Yanardag &
Vishwanathan, 2015) gather graphs without node attributes derived from social networks; ii) graphs with discrete attributes
representing chemical compounds from MUTAG (Debnath et al., 1991) and cuneiform signs from PTC-MR (Krichene
et al., 2015); iii) graphs with real vectors as attributes, namely BZR, COX2 (Sutherland et al., 2003) and PROTEINS,
ENZYMES (Borgwardt & Kriegel, 2005). Details on each dataset are reported in Table 2

6.6.2. SETTINGS

In the following, we detail the benchmark of our methods on supervised classification along additional (shared) considerations
we made regarding the learning of our models. To consistently benchmark methods and configurations, as real graph
datasets commonly used in machine learning literature show a high variance considering structure, we perform a nested
cross validation (using 9 folds for training, 1 for testing, and reporting the average accuracy of this experiment repeated 10
times) by keeping same folds across methods. All splits are balanced w.r.t labels. In following results, parameters of SVM
are cross validated within C ∈ {10−7, 10−6, ..., 107} and γ ∈ {2−10, 2−9, ..., 210}.

For our approach, similar dictionaries are considered for unsupervised classification presented in the main paper, than
for the supervised classification benchmark detailed in the following. So we refer the reader to the main paper for most
implementation details. For completeness, we picked a batch size of 16. We initialized learning rate on the structure {Cs} at
0.1. In the presence of node features, we set a learning rate on {As} of 0.1 if α < 0.5 and 1.0 otherwise. We optimized our
dictionaries without features over 20 epochs and those with features over 40 epochs. In the following, we denote GDL-w
the SVMs derived from embeddingsw endowed with the Mahalanobis distance. While GDL-g denotes the SVMs derived
from embedded graphs with the (F)GW distance. (Xu, 2020) proposed a supervised extension to their Gromov-Wasserstein
Factorization (GWF), we refer to GWF-r and GWF-f when the dictionary atoms have random size or when we fix it to match
our method. His supervised approach consists in balancing the dictionary objective with a classification loss by plugging
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a MLP classifier to the unconstrained embedding space. We explicitly regularized the learning procedure by monitoring
the accuracy on train splits. Note that in their approach they relaxed constraints of their unmixing problems by applying
a softmax on unconstrained embeddings to conduct barycenters estimation. Moreover, they constrain the graph atoms to
be non-negative as it enhances numerical stability of their learning procedure. For fair comparisons, we considered this
restriction for all dictionaries even if we did not observe any noticeable impact of this hypothesis on our approach. As for
unsupervised experiments, we followed their architecture choices. We further validated their regularization coefficient in
{1., 0.1, 0.01, 0.001}. Their model converge over 10 epochs for datasets without features, and 20 epochs otherwise.

We also considered several kernel based approaches. (FGWK) The kernels e−γFGW proposed by (Vayer et al., 2018) where
pairwise distances are computed using CG algorithms using POT library (Flamary & Courty, 2017). To get a grasp of the
approximation error from this algorithmic approach, we also applied the MCMC algorithm proposed by (Chowdhury &
Needham, 2020) to compute FGW distance matrices with a better precision (S-GWK). As the proper graph representations
for OT-based methods is still a question of key interest, we consistently benchmarked our approach and these kernels when
we consider adjacency and shortest-path representations. Moreover, we experimented on the heat kernels over normalized
laplacian matrices suggested by (Chowdhury & Needham, 2020) on datasets without attributes, where we validated the
diffusion parameter t ∈ {5, 10, 20}. We also reproduced the benchmark for classification on Graph Kernels done by (Vayer
et al., 2018) by keeping their tested parameters for each method. (SPK) denotes the shortest path kernel (Borgwardt &
Kriegel, 2005), (RWK) the random walk kernel (Gärtner et al., 2003), (WLK) the Weisfeler Lehman kernel (Vishwanathan
et al., 2010), (GK) the graphlet count kernel (Shervashidze et al., 2009). For real valued vector attributes, we consider the
HOPPER kernel (HOPPERK) (Feragen et al., 2013) and the propagation kernel (PROPAK) (Neumann et al., 2016) . We
built upon the GraKel library (Siglidis et al., 2020) to construct the kernels.

Finally to compare our performances to recent state-of-the-art models for supervised graph classification, we partly replicated
the benchmark done by (Xu et al., 2018). We experimented on their best model GIN-0 and the model of (Niepert et al.,
2016) PSCN. r. For both we used the Adam optimizer (Kingma & Ba, 2014) with initial learning rate 0.01 and decayed the
learning rate by 0.5 every 50 epochs. The number of hidden units is chosen depending on dataset statistics as they propose,
batch normalization (Ioffe & Szegedy, 2015) was applied on each of them. The batch size was fixed at 128. We fixed a
dropout ratio of 0.5 after the dense layer (Srivastava et al., 2014). The number of epochs was 150 and the model with the
best cross-validation accuracy averaged over the 10 folds was selected at each epoch.

6.6.3. RESULTS ON SUPERVISED CLASSIFICATION

The accuracies of the nested-cross validation on described datasets are reported in Tables 3, 4, 5. First, we observe as
anticipated that the model GIN-0 (Xu et al., 2018) outperforms most of the time other methods including PSCN, which has
been consistently argued in their paper. Moreover, (F)GW kernels over the embedded graphs built thanks to our dictionary
approach consistently outperforms (F)GW kernels from input graphs. Hence, it supports that our dictionaries are able to
properly denoise and capture discriminant patterns of these graphs, outperforming other models expect GNN on 6 datasets
out of 8. The Mahalanobis distance over embeddings w demonstrates satisfying results compared to FGWK relatively to
the model simplification it brings. We also observe consistent improvements of the classification performances when we
use the MCMC algorithm (Chowdhury & Needham, 2020) to estimate (F)GW pairwise distance matrices, for all tested
graph representations reported. This estimation procedure for (F)GW distances is computationally heavy compared to the
usual CG gradient algorithm (Vayer et al., 2018). Hence, we believe that it could bring significant improvements to our
dictionary learning models but would increase too consequently the run time of solving unmixing problems required for
each dictionary updates. Finally, results over adjacency and shortest path representations interestingly suggest that their
suitability w.r.t (F)GW distance is correlated to the averaged connectivity rate (see 2) in different ways depending on the
kind of node features. We envision to study these correlations in future works.
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Table 3. Graphs without attributes: Classification results of 10-fold nested-cross validation on real datasets. Best results are highlighted
in bolt independently of the depicted model category, and the best performances from not end-to-end supervised methods are reported in
italic.

category model IMDB-B IMDB-M
OT (Ours) GDL-w (ADJ) 70.11(3.13) 49.01(3.66)

GDL-g (ADJ) 72.06(4.09) 50.64(4.41)
GDL-w (SP) 65.4(3.65) 48.03(3.80)
GDL-g (SP) 68.24(4.38) 48.47(4.21)

OT FGWK (ADJ) 70.8(3.54) 48.89(3.93)
FGWK (SP) 65.0(3.69) 47.8(3.84)

FGWK (heatLAP) 67.7(2.76) 48.11(3.96)
S-GWK (ADJ) 71.95(3.87) 49.97(3.95)

S-GWK (heatLAP) 71.05(3.02) 49.24(3.49)
GWF-r (ADJ) 65.08(2.85) 47.53(3.16)
GWF-f (ADJ) 64.68(2.27) 47.19(2.96)

Kernels GK (K=3) 57.11(3.49) 41.85(4.52)
SPK 56.18(2.87) 39.07(4.89)

GNN PSCN 71.23(2.13) 45.7(2.71)
GIN-0 74.7(4.98) 52.19(2.71)

Table 4. Graphs with discrete attributes : Classification results of 10-fold nested-cross validation on real datasets with discrete attributes
(one-hot encoded). Best results are highlighted in bolt independently of the depicted model category, and the best performances from not
end-to-end methods are reported in italic.

category model MUTAG PTC-MR
OT (Ours) GDL-w (ADJ) 81.07(7.81) 55.26(8.01)

GDL-g (ADJ) 85.84(6.86) 58.45(7.73)
GDL-w (SP) 84.58(6.70) 55.13(6.03)
GDL-g (SP) 87.09(6.34) 57.09(6.59)

OT FGWK (ADJ) 82.63(7.16) 56.17(8.85)
FGWK (SP) 84.42(7.29) 55.4(6.97)

S-GWK (ADJ) 84.08(6.93) 57.89(7.54)
GWF-r (ADJ) - -
GWF-f (ADJ) - -

Kernels GK (K=3) 82.86(7.93) 57.11(7.24)
SPK 83.29(8.01) 60.55(6.43)

RWK 79.53(7.85) 55.71(6.86)
WLK 86.44(7.95) 63.14(6.59)

GNN PSCN 91.4(4.41) 58.9(5.12)
GIN-0 88.95(4.91) 64.12(6.83)

Table 5. Graphs with vectorial attributes: Classification results of 10-fold nested-cross validation on real datasets with vectorial
features. Best results are highlighted in bolt independently of the depicted model category, and the best performances from not end-to-end
supervised methods are reported in italic.

category model BZR COX2 ENZYMES PROTEIN
OT (ours) GDL-w (ADJ) 87.32(3.58) 76.59(3.18) 70.68(3.36) 72.13(3.14)

GDL-g (ADJ) 87.81(4.31) 78.11(5.13) 71.44(4.19) 74.59(4.95)
GDL-w (SP) 83.96(5.51) 75.9(3.81) 69.95(5.01) 72.95(3.68)
GDL-g (SP) 84.61(5.89) 76.86(4.91) 71.47(5.98) 74.86(4.38)

OT FGWK (ADJ) 85.61(5.17) 77.02(4.16) 72.17(3.95) 72.41(4.70)
FGWK (SP) 84.15(6.39) 76.53(4.68) 70.53(6.21) 74.34(3.27)

S-GWK (ADJ) 86.91(5.49) 77.85(4.35) 73.03(3.84) 73.51(4.96)
GWF-r (ADJ) 83.61(4.96) 75.33(4.18) 72.53(5.39) 73.64(2.48)
GWF-f (ADJ) 83.72(5.11) 74.96(4.0) 72.14(4.97) 73.06(2.06)

Kernels HOPPERK 84.51(5.22) 79.68(3.48) 46.2(3.75) 72.07(3.06)
PROPAK 80.01(5.11) 77.81(3.84) 71.84(5.80) 61.73(4.5)

GNN PSCN 83.91(5.71) 75.21(3.29) 43.89(3.91) 74.96(2.71)
GIN-0 88.71(5.48) 81.13(4.51) 68.6(3.69) 76.31(2.94)



Online Graph Dictionary Learning

6.6.4. COMPLEMENTARY RESULTS ON UNSUPERVISED CLASSIFICATION

vanilla GDL As mentioned in section 4 of the main paper, we considered a fixed batch size for learning our models on
labeled graphs, which turned out to be a limitation for the dataset ENZYMES. We report in table 6 our models performance
on this dataset for a batch size fixed to 64 instead of 32 within the framework detailed above. These results are consistent
with those observed on the other datasets.

Table 6. Clustering : dataset ENZYMES
MODELS ENZYMES

GDL 71.83(0.18)
GDLλ 72.92(0.28)

extended version of GDL We report here a companion study for clustering tasks which further supports our extension
of GDL to the learning of node weights. As there is no Mahalanobis upper-bound for the linear models learned with this
extension as their node weights are a priori different, we compare performances of K-means with GW distance applied on
the embedded graphs produced with vanilla GDL, the extended version of GDL denoted here GDLh and GWF. Similar
considerations have been made for learning GDLh than those detailed for GDL, and we completed these results with an
ablation of the quadratic negative regularization parameterized by λ. Results provided in 7 show that GW Kmeans applied
to the graph representations from our method GDLh leads to state-of-the-art performances.

Table 7. Clustering: RI from GW Kmeans on embedded graphs.
models λ IMDB-B IMDB-M
GDL (ours) 0 51.54(0.29) 55.86(0.25)

> 0 51.97(0.48) 56.41(0.35)
GDLh (ours) 0 52.51(0.22) 57.12(0.3)

> 0 53.09(0.38) 56.95(0.25)
GWF-r NA 51.39(0.15) 55.80(0.21)
GWF-f NA 50.93(0.39) 54.48(0.26)

6.6.5. RUNTIMES

We report in Table 8 averaged runtimes for the same relative precision of 10−4 to compute one graph embedding on learned
dictionaries from real datasets.

Table 8. Averaged runtimes.
dataset # atoms GDL GWF

IMDB-B 12 52 ms 123 ms
16 69 ms 186 ms

IMDB-M 12 44 ms 101 ms
18 71 ms 168 ms


