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REFLECTED BSDES IN NON-CONVEX DOMAINS

JEAN-FRANÇOIS CHASSAGNEUX, SERGEY NADTOCHIY, ADRIEN RICHOU

Abstract. This paper establishes the well-posedness of reflected backward
stochastic differential equations in the non-convex domains that satisfy a weaker
version of the star-shaped property. The main results are established (i) in a
Markovian framework with Hölder-continuous generator and terminal condition
and (ii) in a general setting under a smallness assumption on the input data.
We also investigate the connections between this well-posedness result and the
theory of martingales on manifolds.

1. Introduction

Backward stochastic differential equations (BSDEs), originally introduced in
[2] and fully developed in [39, 37], can be viewed as the probabilistic analogues
of semi-linear partial differential equations (PDEs). In particular, BSDEs are
used to describe the solutions of stochastic control problems (see, among many
others, [38, 14, 23]). If the control variable of such an optimization problem has
a discrete component – e.g., an option to switch the state process to a different
regime or to terminate the process and obtain an instantaneous payoff – then,
the associated PDE obtains a free-boundary feature and the associated BSDE
becomes reflected: i.e., its solution lives inside a given domain and is reflected at
the boundary of this domain. The theory of reflected BSDEs in dimension one,
i.e. when the reflected process is one-dimensional, is well developed in a very
high generality: see, e.g. [13, 9, 12, 21, 22]. However, the multidimensional case
presents significant additional challenges (e.g., due to the lack of the comparison
principle), and, to date, the well-posedness of multidimensional reflected BSDEs
(or, systems of reflected BSDEs) has only been established in the case of convex
reflection domains: see, e.g., [20, 32, 8, 17]. The systems of reflected BSDEs
in convex domains appear in certain types of stochastic control problems, such
as the switching problems: see, among others, [24, 27, 7, 6, 35, 1]. On the
other hand, in a certain class of control-stopping stochastic differential games,
the associated equilibria are described by the systems of reflected BSDEs in non-
convex domains, as shown, e.g., in [19] (see also [18] for the convex case). We

0Authors would like to thank Marc Arnaudon for the enlightening discussions about mar-
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also refer to [4], which considers another case of a system of reflected BSDEs in
a non-convex domain. This paper presents the first general well-posedness result
for the systems of reflected BSDEs in non-convex domains under the assumption
of a weak star-shape property, see Assumption 1.1 below.

In addition to the stochastic control-stopping games, the reflected BSDEs in
non-convex domains have a direct connection to the theory of martingales on
manifolds. We refer to [15] for an introduction and an overview of this theory.
One of the key questions therein is the following: given a random variable ξ with
values in a manifold M , is it possible to define a martingale Y in M such that the
terminal value of this martingale (at time T ą 0) is given by ξ (i.e., YT “ ξ), and is
such a martingale unique? A positive answer to this question, in particular, allows
one to extend the notion of conditional expectation and gives one possible way to
define a barycenter on a manifold (see e.g. [16, 42]). We refer to [30, 31, 41, 10]
for other applications. As explained in [10], it is possible to give a positive answer
to this question by solving a BSDE with quadratic non-linearities with respect
to the z-variable, stated in R

d – the Euclidean space in which the manifold is
embedded. It turns out that for a certain class of non-convex reflection domains
D, the reflected BSDE in D gives rise to a martingale on the manifold BD, see
Section 5. In particular, our results provide a new proof of the existence and
uniqueness of a martingale with a prescribed terminal value in a given strict sub-
sector of a hemisphere of Sd´1, in the Markovian framework or under additional
smallness assumptions (see the example in Section 5).

On a technical level, our analysis is connected to the theory of BSDEs with
quadratic growth in the z-variable. This connection is made precise in Section 3,
but it can also be seen if one attempts to map a given non-convex domain into a
convex one – the resulting reflected BSDE in a convex domain will have quadratic
terms in z. Thus, the reflected BSDEs in non-convex domains can be viewed as
the quadratic reflected BSDEs in convex domains. This observation also explains
the additional challenges of the case of a non-convex domain, relative to a convex
one: the mathematical difficulties in the former case are similar to those arising
in the well-posedness theory for the systems of quadratic BSDEs [43, 28, 44, 25].
The present work uses some of the results developed in the latter theory: in
particular, the results of [44] are crucial for our analysis.

Another important connection is to the methods of [33, 34], which establish
the well-posedness of the forward (or, regular) stochastic differential equations
(SDEs) reflected at the boundary of a given domain. In particular, we use the
arguments of [34] to establish the stability of the solutions to the reflected BSDEs
considered herein, see Section 2. It is important to mention, however, that many
crucial arguments used in the proof of the well-posedness of a reflected (forward)
SDE cannot be applied to the case of a reflected BSDE due to the adaptedness
issues which, in particular, prohibit the application of the Skorokhod’s mapping,
used in [34], and of the standard localization methods.
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The remainder of this paper is organized as follows. Section 1.1 states the
reflected BSDE (equation (1.2)) and the main assumptions (Assumptions 1.1
and 1.2) which hold throughout the paper. Section 2 describes various auxil-
iary properties and a priori estimates, as well as the stability (Proposition 2.2)
and uniqueness (Corollary 2.2) of the solutions to the target reflected BSDE in
a certain class. Section 3 describes a sequence of penalized quadratic BSDEs in
a Markovian framework, shows that their solutions converge to a solution of the
target reflected BSDE, and verifies that this solution belongs to the class in which
the uniqueness holds, thus establishing the well-posedness of the target reflected
BSDE in a Markovian framework (Theorem 3.1). In Section 4, we approximate
a general reflected BSDE by the Markovian ones, to obtain the well-posedness
of the former (Theorem 4.2) under an additional smallness assumption (Assump-
tion 2.1). Finally, Section 5 provides a more detailed description of the connection
between the reflected BSDEs in non-convex domains and the martingales on man-
ifolds, which, in particular, illustrates the sharpness of some of our assumptions.

1.1. The setup and main assumptions. Let D be a subset of Rd given by

D “ ty P R
d : φpyq ă 0u,

with a function φ : Rd Ñ R. We denote by ∇ the gradient, and by ∇2 the Hessian,
of a given function. For any subset A of an Euclidean space, we denote its closure
by Ā and, when A ‰ H, we denote by dp., Aq the distance function to A.

Assumption 1.1. We assume that φ satisfies the following:

‚ (Compactness) There exists R ą 0, s.t. φpyq ą 0 for all |y| ě R.
‚ (Smoothness) φ P C2pRdq, |∇φpyq| ą 0 for all y P BD, and ∇2φ is locally

Lipschitz.
‚ (Weak star-shape property) There exists a non-empty open convex set C Ă
D such that

– 0 P C,
– there exists a convex function φC : Rd Ñ R satisfying φC P C2pRdq,

C “ ty P R
d : φCpyq ă 0u,

φC ě φCp0q and φCpyq “ |y´PC̄pyq| for all y P RdzC where PC̄ stands
for the projection function onto C̄,

– it holds that

(1.1) γ :“ inf
yPBD

∇φCpyq ¨
∇φpyq

|∇φpyq|
ą 0.

Remark 1.1. If D is a strictly star-shaped domain w.r.t. 0, i.e., if it satisfies

inf
yPBD

y

|y|
¨
∇φpyq

|∇φpyq|
ą 0,
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then the weak star-shape property is also satisfied, with C being a ball of radius
ε ą 0 centered at 0, and with

φCpyq “ ̺εp|y| ´ εq,

where ̺ε : R Ñ R is a convex increasing function satisfying ̺ε P C2pR,Rq,
̺εpxq “ ´ε{2 for x ă ´ε and ̺εpxq “ x for x ą 0.

All stochastic processes and random variables, appearing in this paper, are
constructed on a fixed stochastic basis pΩ,F,Pq, with the filtration F being a
completion of the natural filtration of a multidimensional Brownian motion W in
Rd1

on a time interval r0, T s.

For p ě 1, we denote by Lp the space of (classes of equivalence of)1 FT -
measurable random variables ξ (with values in a Euclidean space), s.t. }ξ}Lp :“

Er|ξ|ps1{p ă 8. The space L8 stands for all FT -measurable essentially bounded
random variables. We also define H 2 as the space of progressively measurable

processes (with values in a Euclidean space) Z, s.t. }Z}H 2 :“ E

”şT
0

|Zt|
2dt

ı1{2

ă

8. Next, for p ě 1, we define Mp as the space of all continuous local martingales

M with }M}Mp :“ E

”
xMy

p{2
T

ı1{p

ă 8. For p P r1,8s, we denote by S p the set of

continuous adapted process U such that
››suptPr0,T s |Ut|

››
L p

ă 8. We also denote

by VartpKq the variation of a process K¨ (with values in a Euclidean space) on the
time interval r0, ts and by K p, for p P r1,8s, the set of finite-variation process K
such that

››Varr0,T spKq
››
L p ă 8 and K0 “ 0. Finally, we denote by B2 the set of

processes V P H 2, satisfying

}V }
B2 :“

››››suptPr0,T sE

„ż T

t

|Vs|
2ds|Ft

››››

1

2

L 8

ă `8.

Let us remark that V P B2 implies that the martingale
ş.
0
VsdWs is a BMO

martingale, and }V }
B2 is the BMO norm of

ş.
0
VsdWs. We refer to [29] for further

details about BMO martingales.

We are investigating the well-posedness of the following reflected BSDE pY, Z,Kq P
S 2 ˆ H 2 ˆ K 1

$
’’’&
’’’%

piq Yt “ ξ `

ż T

t

fps, Ys, Zsqds ´

ż T

t

dKs ´

ż T

t

ZsdWs, 0 ď t ď T,

piiq Yt P D̄ a.s., Kt “

ż t

0

npYsqdVarspKq, 0 ď t ď T,

(1.2)

1We drop this clarification in further definitions.
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where n is the unit outward normal to BD, extended as zero into D:

npyq “
∇φpyq

|∇φpyq|
, @y P BD and npyq “ 0, @y P D.

Assumption 1.2. We assume that ξ takes values in D̄, fp¨, y, zq is progressively
measurable, fpt, ¨, ¨q is globally Lipschitz (Kf,y-Lipschitz in y and Kf,z-Lipschitz
in z), uniformly in pt, ωq, and }|fp¨, 0, 0q|}

L 8 ă 8. In addition, w.l.o.g. (in
view of the boundedness of D), there exists a compact K Ă Rd, s.t. fpt, y, zq “ 0

whenever y R K.

Assumptions 1.1 and 1.2 hold throughout the rest of the paper even if not cited
explicitly.

2. Geometric properties and a priori estimates

In this section, we derive useful geometric properties of the domain D, expressed
via the corresponding properties of the function φ, and construct an auxiliary
function ψ which is used in the next section to define a sequence of approximating
equations to (1.2). We also present some key a priori estimates and properties of
the solutions to the RBSDEs (1.2).

2.1. Absolute continuity of the process K. As noticed in [20], we can take
advantage of the smoothness of D to show that the process K is absolutely con-
tinuous with respect to the Lebesgue measure.

Lemma 2.1. Assume that pY, Z,Kq P S 2ˆH 2ˆK 1 solves (1.2). Then, almost
every path of K is absolutely continuous with respect to the Lebesgue measure.

Proof. Applying Itô’s formula to t ÞÑ φpYtq, we obtain

dφpYtq “

ˆ
´∇φpYtq ¨ fpt, Yt, Ztq `

1

2
TrrZJ

t ∇
2φpYtqZts

˙
dt

` ∇φpYtq ¨ dKt ` ∇φpYtq ¨ ZtdWt(2.1)

Then, the Itô-Tanaka formula applied to the positive part of the semi-martingale
´φpYtq reads

dr´φpYtqs` “ 1t´φpYtqą0udr´φpYtqs `
1

2
dL0

t ,(2.2)

where L0 is the local time of the semi-martingale ´φpY q at zero. Since φpYtq ď 0,
we have dr´φpYtqs` “ ´dφpYtq which yields, combining (2.1)–(2.2),

1tφpYtq“0u

ˆ
´∇φpYtq ¨ fpt, Yt, Ztq `

1

2
TrrZJ

t ∇
2φpYtqZts

˙
dt ` |∇φpYtq|dVartpKq

` 1tφpYtq“0u∇φpYtq ¨ ZtdWt `
1

2
dL0

t “ 0 .
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In particular, we deduce that

|∇φpYtq|dVartpKq ď 1tφpYtq“0u

„
∇φpYtq ¨ fpt, Yt, Ztq ´

1

2
TrrZJ

t ∇
2φpYtqZts

`

dt,

(2.3)

which proves the absolute continuity of K. l

2.2. The exterior sphere property. The following lemma states the well known
observation that, for any boundary point of a smooth domain, there exists a small
enough tangent external sphere, see e.g. [34].

Lemma 2.2. There exists R0 ą 0, s.t.

py ´ y1q ¨ npyq `
1

2R0

|y ´ y1|2 ě 0 , @ y P BD, y1 P D̄.(2.4)

Proof. Due to the smoothness of φ, for any y P BD and y1 P D̄, there exists
λ P r0, 1s, s.t.
(2.5)

0 ě φpy1q “ φpyq ` py1 ´ yq ¨ npyq|∇φpyq| `
1

2
py ´ y1qJ

∇
2φpλy` p1´ λqy1qpy´ y1q,

It only remains to notice that: φ “ 0 and |∇φ| is bounded away from zero on BD,
and |∇2φ| is bounded from above on D̄. Thus, we obtain the statement of the
lemma. �

Using the above lemma, we can define the projection operator that is used in
the subsequent sections. To this end, we first define the set

Q “ ty P R
d : dpy,Dq ă R0u,

and the set-valued projection operator

Ppyq “ argminxPD̄|x ´ y|, y P R
d.

Corollary 2.1. For any y P Q, Ppyq is a singleton.

Proof. It is easy to see that, for a ball Brpyq Ă Rd, with radius r ą 0 and center
at y, we have:

(2.6) px ´ x1q ¨
y ´ x

|y ´ x|
`

1

2r
|x ´ x1|2 “ 0, @ x, x1 P BBrpyq.

Next, assume that there exist y P R
dzD̄ and x ‰ x1 P D̄, s.t.

|x ´ y| “ |x1 ´ y| “ argminzPD̄|z ´ y|.

Then, it is clear that x, x1 P BBr X BD, with r “ minzPD̄ |z ´ y| ă R0, and the
equations (2.4), (2.6) yield a contradiction. �

W.l.o.g., we will identify the value of Ppyq with its only element, for any y P Q.
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Remark 2.1. Thanks to (2.5) and to (2.3) we easily deduce for any solution
pY, Z,Kq P S 2 ˆ H 2 ˆ K 1 to (1.2) that

dVartpKq ď 1tφpYtq“0u

˜„
∇φpYtq

|∇φpYtq|
¨ fpt, Yt, Ztq

`

`
1

2R0

|Zt|
2

¸
dt,

with R0 satisfying (2.4).

The following lemma provides an alternative to (1.2)(ii), and it becomes useful
in the subsequent sections.

Lemma 2.3. Assume that pY, Z,Kq P S 2 ˆH 2 ˆK 1 solves (1.2)(i) and Yt P D̄

a.s. for all t P r0, T s. Then

Kt “

ż t

0

npYsqdVarspKq, t P r0, T s,

holds if and only if there exists a constant c ą 0, depending only on D, such that
for all essentially bounded continuous adapted process V in D, we have

ż T

0

`
pYs ´ Vsq ` c|Ys ´ Vs|

2npYtq
˘
dKs ě 0 .(2.7)

Proof. One implication is a direct consequence of Lemma 2.2. The other impli-
cation is a mere generalization of Lemma 2.1 in [20]. l

2.3. The pseudo-distance function. In this subsection, we modify the function
φ in order to construct a new smooth function ψ which satisfies the inequality
(1.1) in R

dzD instead of BD. We denote by ϑ : R Ñ r0, 1s an infinitely smooth
nondecreasing function which is equal to zero on p´8, 0s and to one on r1,8q.
We also choose a large enough R ą 1, s.t. D Ă BR´1p0q, and a small enough
ǫ P p0, 1q, s.t., for all y P BR`1p0qzD, we have:

φpyq ď ǫ ñ y P BRp0q, ∇φCpyq ¨ ∇φpyq ą 0.

Then, we define

(2.8) φ̃pyq :“ φ`pyqp1´ϑp|y|´R´1qq`ϑp|y|´Rq, ψpyq :“ φ̃pyq`κ|y|ϑpφ̃pyq{ǫq,

for an arbitrary constant κ ą 0.

We refer to ψ as the pseudo-distance function.

Notice that

∇φCpyq ¨ ∇ψpyq “ ∇φCpyq ¨ ∇φ̃pyq ` κ∇φCpyq ¨
y

|y|
ϑpφ̃pyq{ǫq

` κ∇φCpyq ¨ ∇φ̃pyq|y|ϑ1pφ̃pyq{ǫq{ǫ

“ ∇φCpyq ¨ ∇φ̃pyq
´
1 ` κ|y|ϑ1pφ̃pyq{ǫq{ǫ

¯
` κ∇φCpyq ¨

y

|y|
ϑpφ̃pyq{ǫq.
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It is clear that ψ P C2pRdzD̄q and that its derivatives up to the second order are

locally Lipschitz-continuous on RdzD. It is also easy to see that φ̃pyq P p0, ǫs if

and only if y P BR`1p0qzD and φpyq ď ǫ, in which case y P BRp0q, φ̃pyq “ φpyq,

∇φ̃pyq “ ∇φpyq, and

∇φCpyq ¨ ∇ψpyq ě ∇φCpyq ¨ ∇φpyq ą 0,

where we also observed that infyPRdzD ∇φCpyq ¨ y{|y| ą 0, which follows from the

convexity of C and from the fact that 0 P C. If φ̃pyq ď 0, then y P D̄. If φ̃pyq ą ǫ,
then

∇φCpyq ¨ ∇ψpyq “ ∇φCpyq ¨ ∇φ̃pyq ` κ∇φCpyq ¨
y

|y|
,

which can be made positive for all y P RdzD by choosing large enough κ ą 0, as

|∇φ̃| is bounded on RdzD and infyPRdzD ∇φCpyq ¨ y{|y| ą 0.
The following lemma summarizes the above properties of ψ and states several

additional properties which can be easily verified.

Lemma 2.4. There exist constants R, ǫ, κ ą 0, s.t. the function ψ defined in
(2.8) satisfies the following properties.

(1) ψ is globally Lipschitz-continuous in Rd.
(2) There exist constants c, C ą 0, s.t. c dpy,Dq ď ψpyq ď C dpy,Dq for

y P Rd.
(3) ψ P C2pRdzD̄q, and its derivatives up to the second order are globally

Lipschitz-continuous in RdzD.
(4) infyPRdzD ∇φCpyq ¨ ∇ψpyq ą 0.
(5) infyPRdzD |∇ψpyq| ą 0.
(6) ψpyq “ φpyq “ 0, ∇ψpyq “ ∇φpyq, and ∇2ψpyq “ ∇2φpyq, for y P BD.

In the remainder of the paper, we fix pR, ǫ, κq as in the above lemma and
consider the associated pseudo-distance function ψ. For convenience, we also
extend the vector-valued function n to Rd as follows:

npyq “
1

|∇ψpyq|
∇ψpyq 1tRdzDupyq.

2.3.1. Asymptotic convexity of the squared pseudo-distance. Due to Lemma 2.4,
the Hessian of ψ2, denoted ∇2ψ2, is well defined in RdzD (it is extended to the
boundary of the latter set by continuity). The following lemma shows that ∇2ψ2,
viewed as a bilinear form, becomes positive semidefinite close to D.

Lemma 2.5. There exists a constant C ą 0, s.t., for all y P RdzD and z P Rd,

zJ
∇

2ψ2pyqz ě ´Cψpyq|z|2.

Proof. Notice that, for y P RdzD and z P Rd,

∇
2ψ2pyq “ 2∇ψpyq∇Jψpyq ` 2ψpyq∇2ψpyq,
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zJ
∇

2ψ2pyqz “ 2p∇ψpyq ¨ zq2 ` 2ψpyqzJ
∇

2ψpyqz ě 2ψpyqzJ
∇

2ψpyqz.

Using the fact that ∇2ψ is bounded (cf. the third property in Lemma 2.4) and
the second property in Lemma 2.4, we complete the proof. �

2.4. A priori estimates. In this subsection, we prove a priori estimates in the
case of general terminal condition ξ and generator f . We first introduce the
appropriate “smallness assumption”.

Assumption 2.1. We assume that at least one of the following four conditions
is fulfilled with some θ ě 1:

(i) |φ`
C

pξq|L 8 ă γR0

θ
and ∇φCpyq¨fps, y, zq ď 0, @s, y, z P r0, T sˆD̄zCˆRdˆd1

,

(ii) or supxPD φ
`
C

pxq ă γR0

θ
,

(iii) or C is the Euclidean ball centered at 0 with radius λ ą 0, and

|ξ|2L 8 ă λ2 `
2R2

0

θ
, ∇φCpyq ¨ fps, y, zq ď 0, @s, y, z P r0, T s ˆ D̄zC ˆ R

dˆd1

,

(iv) or C is the Euclidean ball centered at 0 with radius λ ą 0, and

sup
xPD

|x|2 ă λ2 `
2R2

0

θ
,

with R0 satisfying (2.4) and γ appearing in Assumption 1.1.

It is worth mentioning that Assumption 2.1 is not our standing assumption and
is cited explicitly whenever it is invoked. In particular, our well-posedness results
in the Markovian framework do not require the smallness assumption, see Section
3 .

Next, we consider the following class of solution:

Definition 2.1. For any θ ě 1, we denote by U pθ, ξ, f, T q the set of all solutions
pY, Z,Kq P S 2 ˆ H 2 ˆ K 1 to (1.2) s.t.

E

”
e

θp
R0

VarT pKq
ı

ă 8,(2.9)

with some p ą 1 and with R0 satisfying (2.4).

In the sequel, we will generally drop pξ, f, T q in the notation for the class U .
Note also that we will mainly consider θ “ 1 or θ “ 2.

The following proposition clarifies the link between Assumption 2.1 and the
class U pθq.

Proposition 2.1. Let pY, Z,Kq P S 2 ˆ H 2 ˆ K 1 be a solution to the RBSDE
(1.2). Then, Z P B2. Moreover, if Assumption 2.1 holds for some θ ě 1,
then, there exist constants C and p ą 1, which depend only on Kf,y, Kf,z, γ,
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λ, supyPD |y|, supyPD̄ φ
`
C

pyq, }φ`
C

pξq}L 8, }fp., 0, 0q}L 8 and R0 (recall Assumption
1.1 and (2.4)), such that

(2.10) E

”
e

θp
R0

VarT pKq
ı

ď C.

Thus, under Assumption 2.1, any solution pY, Z,Kq belongs to U pθ, ξ, f, T q.

Proof. 1. We start by applying Itô-Tanaka’s formula to φ`
C

pYtq (note that φ`
C

is
convex): for all t ď t1,

Et

«ż t1

t

∇φ`
C

pYsq ¨ dKs

ff
ď Et

«
φ`
C

pYt1q `

ż t1

t

∇φ`
C

pYsq ¨ fps, Ys, Zsqds

ff
.(2.11)

In the equation above and the proofs below, we use the shorter notation Etr¨s for
Er¨|Fts.
Recalling Assumption 1.1, we also have

γEt

«ż t1

t

dVarspKq

ff
ď Et

«ż t1

t

∇φ`
C

pYsq ¨ npYsqdVarspKq

ff
“ Et

«ż t1

t

∇φ`
C

pYsq ¨ dKs

ff
.

(2.12)

This yields, for t1 “ T , that

γEt

„ż T

t

dVarspKq


ď Et

„
φ`
C

pξq `

ż T

t

∇φ`
C

pYsq ¨ fps, Ys, Zsqds


.(2.13)

Next, we consider an arbitrary ε ą 0 and apply Itô’s formula to ε|Yt|
2 between t

and t1, to obtain:

εEt

«ż t1

t

|Zs|
2ds

ff
ďεEt

“
|Yt1 |

2
‰

` C1εEt

«ż t1

t

p1 ` |fps, 0, 0q| ` |Zs|qds

ff

` εC1E

«ż t1

t

dVarspKq

ff
,

where we used that |Y | is bounded. The above inequality implies

ε

2
Et

«ż t1

t

|Zs|
2ds

ff
ďεEt

“
|Yt1|

2
‰

` CεEt

«ż t1

t

p1 ` |fps, 0, 0q|qds

ff
` εC1E

«ż t1

t

dVarspKq

ff
.

(2.14)
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Setting t1 “ T and ε “ 1 in the previous inequality and combining it with (2.13),
we obtain

1

2
Et

„ż T

t

|Zs|
2ds


ďEt

„
|ξ|2 `

C1

γ
φ`
C

pξq


` CEt

„ż T

t

p1 ` |fps, 0, 0q|qds



`
C

γ
E

„ż T

t

∇φ`
C

pYsq ¨ fps, Ys, Zsqds


.(2.15)

Now, we observe that

C1

γ
E

„ż T

t

∇φ`
C

pYsq ¨ fps, Ys, Zsqds


ď CEt

«ż t1

t

p1 ` |fps, 0, 0q|qds

ff
`

1

4
Et

„ż T

t

|Zs|
2ds



Inserting the previous estimate back into (2.15), we get

1

4
Et

„ż T

t

|Zs|
2ds


ďEt

„
|ξ|2 `

C

γ
φ`
C

pξq


` CEt

„ż T

t

p1 ` |fps, 0, 0q|qds


.

This proves that Z P B2.

2. We now turn to the estimation of the exponential moments of VarT pKq, under
the smallness Assumption 2.1.

2.a First, combining Assumption 2.1(i) with (2.13), we obtain

θ

R0

››››› sup
tPr0,T s

Et

„ż T

t

dVarspKq

›››››
L 8

ă 1.(2.16)

Then, we apply the energy inequalities for non-decreasing processes with bounded
potential (see, e.g., (105.1)-(105.2) in [11]) to obtain (2.10) in this case.

2.b Let now Assumption 2.1-(ii) hold. Using (2.11)-(2.12) and recalling that |Y |
is bounded, we obtain, for all 0 ď t ă t1 ď T and for any ε ą 0,

γEt

«ż t1

t

dVarspKq

ff
ď sup

yPD̄

φ`
C

pyq ` C 1
εpt

1 ´ tqp1 ` |fp., 0, 0q|L 8q `
ε

2
Et

«ż t1

t

|Zs|
2ds

ff
.

Using the above inequality and (2.14) (with the same ε ą 0), we obtain:

pγ ´ CεqEt

«ż t1

t

dVarspKq

ff
ď ε sup

yPD̄

|y|2 ` sup
yPD̄

φ`
C

pyq ` C2
ε pt1 ´ tqp1 ` |fp., 0, 0q|L 8q.

In particular, by taking ε small enough, we conclude that, for any ε1 ą 0, there
exists Cε1 ą 0 such that

Et

«ż t1

t

dVarspKq

ff
ď

supyPD̄ φ
`
C

pyq

γ
p1 ` ε1q ` Cε1pt1 ´ tq.(2.17)
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Next, using (2.17) and Assumption 2.1(ii), we conclude that there exist 0 ă
ε2 ă 1, p ą 1, andN ě 1, depending only onKf,y,Kf,z, γ, supyPD |y|, supyPD̄ φCpyq`,
}fp., 0, 0q}L 8 and R0, such that, a.s.:

Et

«ż T pk`1q{N

t

dVarspKq

ff
ď
R0

θp
p1 ´ ε2q, @0 ď k ă N, @t P rTk{N, T pk ` 1q{Ns.

(2.18)

Then, we apply the energy inequalities for non-decreasing processes with bounded
potential (see, e.g., (105.1)-(105.2) in [11]), to obtain, for all 0 ď k ă N ,

ETk{N

”
e

θp
R0

şT pk`1q{N
Tk{N

dVarspKq
ı

ď C̃,(2.19)

with C̃ that depends only onKf,y, Kf,z, γ, supyPD |y|, supyPD̄ φCpyq`, }fp., 0, 0q}L 8

and R0. We now observe that

E

”
e

θp
R0
V arT pKq

ı
“ E

”
e

θp
R0

VarT pN´1q{N pKq
ET pN´1q{N

”
e

θp
R0

şT
T pN´1q{N dVarspKq

ıı

ď C̃E
”
e

θp
R0

VarT pN´1q{N pKq
ı
,

where we used (2.19) with k “ N ´ 1 to obtain the last inequality. Iterating the
above procedure concludes the proof of this case.

2.c Next, we let Assumption 2.1(iii) hold. Using (2.3), the linear growth of f , and
Young’s inequality, we have, for all ε ą 0,

VarT pKq ď Cε `
1 ` ε

2R0

ż T

0

1tφpYtq“0u|Zt|
2dt.(2.20)

Moreover, we apply Itô-Tanaka formula to p|Ys|
2 ´ λ2q` to obtain, for all t ď t1,

Et

«ż t1

t

1tφpYsq“0u|Zs|
2ds

ff
ď Et

«ż t1

t

1tφCpYsqą0u|Zs|
2ds

ff

ďEt

«
p|Yt1 |

2 ´ λ2q` ` 2

ż t1

t

1tφCpYsqą0u|Ys|∇φCpYsq ¨ fps, Ys, Zsqds

ff
,(2.21)

where we also recall that 1tφCpYsqą0u|Ys|∇φCpYsq “ 1tφCpYsqą0uYs since C is a Eu-
clidean ball centered at zero. Then, by taking t1 “ T in (2.21) and using Assump-
tion 2.1(iii), we obtain, for ε ą 0 and p ą 1 small enough,

θpp1 ` εq

2R2
0

››››› sup
tPr0,T s

Et

„ż T

t

1tφpYsq“0u|Zs|
2ds

›››››
L 8

ă 1.
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It remains to apply the John-Nirenberg inequality for BMO Martingales (see
Theorem 2.2 in [29]) and recall (2.20), to conclude that

E

”
e

θp
R0

VarT pKq
ı

ď CεE

„
e

θpp1`εq

2R2
0

şT
0
1tφpYsq“0u|Zs|2ds


ă `8,

which yields (2.10).

2.d Finally, the proof in the case of Assumption 2.1(iv) follows from (2.20) and
(2.21), by partitioning r0, T s into small time intervals as in step 2.b. To avoid the
redundant calculations, we skip the details. l

2.5. Stability and uniqueness in U pθq. Using the a priori estimates estab-
lished in the previous subsection, we prove the following stability property of the
solutions to (1.2).

Proposition 2.2. Let us consider pY, Z,Kq P S 2ˆH 2ˆK 1 (resp. pY 1, Z 1, K 1q P
S 2 ˆH 2 ˆK 1) which solve the RBSDE (1.2) with a domain D (resp. D1), with
a terminal condition ξ (resp. ξ1), and with a generator f (resp. f 1). Assume,
moreover, that there exists p ą 1 such that

(2.22) κ :“ E

”
e

p
R0

pVarT pKq`VarT pK 1qq
ı

ă `8,

with R0 satisfying (2.4) for D and D1. Let us denote by P̄ (resp. P̄1) a measurable
selection of the projection operator onto D (resp. D1). Then, the following stability
result holds: there exists a constant C ą 0, which depends only on Kf,y, Kf 1,y,
Kf,z, Kf 1,z (recall Assumption 1.2), supyPDYD1 |y|, R0, and on κ, and is such that

}Y ´ Y 1}S 2 ` }Z ´ Z 1}H 2 ` }K ´ K 1}S 2

ďCEr|ξ ´ ξ1|2p{pp´1qspp´1q{p2pq ` CE

«ˆż T

0

|fps, Ys, Zsq ´ f 1ps, Ys, Zsq|ds

˙2p{pp´1q
ffpp´1q{p2pq

` CE

«
sup
sPr0,T s

|Ys ´ P̄1pYsq|p{pp´1q

ffpp´1q{p2pq

` CE

«
sup
sPr0,T s

|Y 1
s ´ P̄pY 1

s q|p{pp´1q

ffpp´1q{p2pq

.

Proof. We apply Itô’s formula to the process

e
βt` 1

R0
pVartpKq`VartpK 1qq

|Yt ´ Y 1
t |2,

with the constant β to be determined later on. By denoting

δft :“ fpt, Yt, Ztq ´ f 1pt, Y 1
t , Z

1
tq, δξ :“ ξ ´ ξ1,

Γt :“ e
βt` 1

R0
pVartpKq`VartpK 1qq

, δY :“ Y ´ Y 1, δZ “ Z ´ Z 1,
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we obtain

Γt|δYt|
2 `

ż T

t

Γs|δZs|
2ds

“ΓT |δξ|2 ` 2

ż T

t

ΓsδYs ¨ δfsds ´ 2

ż T

t

ΓsδYs ¨ dKs ` 2

ż T

t

ΓsδYs ¨ dK 1
s

´ β

ż T

t

Γs|δYs|
2ds ´

1

R0

ż T

t

Γs|δYs|
2dVarspKq ´

1

R0

ż T

t

Γs|δYs|
2dVarspK

1q

´ 2

ż T

t

ΓsδYs ¨ δZsdWs.(2.23)

Using the BDG inequality, the fact that |δY | is bounded, Hölder inequality
(with q “ p{pp ´ 1q ą 1 being the conjugate exponent), we obtain:

E

«
sup
tPr0,T s

ˇ̌
ˇ̌
ż t

0

ΓsδYs ¨ δZsdWs

ˇ̌
ˇ̌
ff

ď CE

«ˆż T

0

|ΓsδZs|
2
ds

˙ 1

2

ff

ď CErpΓT qps
1

p E

„
p

ż T

0

|δZs|
2dsqrq{2s

 1

q

ă 8,

where the last inequality is due to (2.22) and to the Energy Inequality (since
Z,Z 1 P B

2). Hence, we conclude that the local martingale term in the right hand
side of (2.23) is a true martingale.

Next, we estimate the second term in the right hand side of (2.23) using the
Lipschitz property of f 1:

δYs ¨ δfs ď |δYs||fps, Ys, Zsq ´ f 1ps, Ys, Zsq| ` β|δYs|
2 `

1

4
|δZs|

2,

provided β ą 0 is large enough. In addition, the condition (1.2)(ii) and the
exterior sphere property (recall (2.4)) yield

´ 2

ż T

t

ΓsδYs ¨ dKs ´
1

R0

ż T

t

Γs|δYs|
2dVarspKq

“ ´ 2

ż T

t

ΓspP̄pY 1
s q ´ Y 1

s q ¨ dKs ´ 2

ż T

t

Γs
`
Ys ´ P̄pY 1

sq
˘

¨ dKs ´
1

R0

ż T

t

Γs|δYs|
2dVarspKq

“ ´ 2

ż T

t

Γs
`
Ys ´ P̄pY 1

s q
˘

¨ dKs ´
1

R0

ż T

t

Γs|Ys ´ P̄pY 1
sq|2dVarspKq

`
1

R0

ż T

t

Γsp|P̄pY 1
s q ´ Y 1

s |2 ´ |δYs|
2qdVarspKq ´ 2

ż T

t

ΓspP̄pY 1
s q ´ Y 1

s q ¨ dKs

ďC

ż T

t

Γs|P̄pY 1
s q ´ Y 1

s |dVarspKq ď CΓT sup
sPr0,T s

|P̄pY 1
s q ´ Y 1

s |,
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where for the last inequality, we used:
şT
t
exp

´
VarspKq
R0

¯
dVarspKq ď R0 exp

´
VarT pKq

R0

¯
.

By the same arguments we obtain

2

ż T

t

ΓsδYs ¨ dK 1
s ´

1

R0

ż T

t

Γs|δYs|
2dVarspK

1qq ď CΓT sup
sPr0,T s

|P̄1pYsq ´ Ys|.

Using the above estimates, we take expectations on both sides of 2.23, with t “ 0,
and apply Hölder inequality to obtain

}Γ1{2δZ}H 2 ď E

„
ΓT |δξ|2 ` 2

ż T

0

Γs|δYs||fps, Ys, Zsq ´ f 1ps, Ys, Zsq|ds

1{2

` E

«
ΓT

˜
sup
sPr0,T s

|P̄1pYsq ´ Ys| ` |P̄pY 1
s q ´ Y 1

s |

¸ff
1{2

ď CEr|δξ|2qs1{p2qq

` 2E

«
sup
sPr0,T s

pΓ1{2
s |δYs|qΓ

1{2
T

ż T

0

|fps, Ys, Zsq ´ f 1ps, Ys, Zsq|ds

ff1{2

` CE

«
sup
sPr0,T s

`
|P̄1pYsq ´ Ys| ` |P̄pY 1

s q ´ Y 1
s |

˘q
ff1{p2qq

.(2.24)

Using (2.23) and (2.24), we apply BDG, Hölder and Young inequalities to obtain

}Γ1{2δY }S 2 ď CEr|δξ|qs1{p2qq

` CE

«
sup
sPr0,T s

pΓ1{2
s |δYs|qΓ

1{2
T

ż T

0

|fps, Ys, Zsq ´ f 1ps, Ys, Zsq|ds

ff
1{2

` CE

«
sup
sPr0,T s

`
|P̄1pYsq ´ Ys| ` |P̄pY 1

s q ´ Y 1
s |

˘q
ff1{p2qq

ď CEr|δξ|qs1{p2qq `
1

2
}Γ1{2δY }S 2 ` CE

«ˆż T

0

|fps, Ys, Zsq ´ f 1ps, Ys, Zsq|ds

˙2q
ff1{p2qq

` CE

«
sup
sPr0,T s

`
|P̄1pYsq ´ Ys| ` |P̄pY 1

s q ´ Y 1
s |

˘q
ff1{p2qq

.(2.25)
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Then, combining (2.24), Young inequality, and (2.25), yields

}Y ´ Y 1}S 2 ` }Z ´ Z 1}H 2 ď }Γ1{2δY }S 2 ` }Γ1{2δZ}H 2

ďCEr|ξ ´ ξ1|2qs1{p2qq ` CE

«ˆż T

0

|fps, Ys, Zsq ´ f 1ps, Ys, Zsq|ds

˙2q
ff
1{p2qq

` CE

«
sup
sPr0,T s

`
|P̄1pYsq ´ Ys| ` |P̄pY 1

s q ´ Y 1
s |

˘q
ff1{p2qq

.(2.26)

Finally, we recall that

Kt ´ K 1
t “ δYt ´ δY0 `

ż t

0

fps, Ys, Zsq ´ f 1ps, Y 1
s , Z

1
sqds ´

ż t

0

δZsdWs.

Then, the BDG inequality, the Lipschitz property of f 1, as well as (2.26), yield

}K ´ K 1}S 2 ďCEr|ξ ´ ξ1|2qs1{p2qq ` CE

«ˆż T

0

|fps, Ys, Zsq ´ f 1ps, Ys, Zsq|ds

˙2q
ff1{p2qq

` CE

«
sup
sPr0,T s

`
|P̄1pYsq ´ Ys| ` |P̄pY 1

s q ´ Y 1
s |

˘q
ff1{p2qq

,

which completes the proof of the proposition. l

In a general non-Markovian framework, we obtain the following uniqueness
result as a direct consequence of Proposition 2.2.

Corollary 2.2. The reflected BSDE (1.2) has at most one solution in the class
U p2q.

Proof. Indeed, it suffices to check that, for any two solutions in the class U p2q,
(2.22) holds. This follows directly from the Cauchy-Schwarz inequality. l

This uniqueness result is improved in the Markovian setting: see Theorem 3.1
and Remark 3.5.

3. Well-posedness in a Markovian framework

In this section, we establish the existence and uniqueness of the solution to
(3.3) under the assumption that the terminal condition and the generator of the
reflected BSDE are functions of a Markov diffusion process X in Rd1

:

(3.1) Xt “ x`

ż t

0

bps,Xsqds `

ż t

0

σps,XsqdWs, x P R
d1

.

Namely, we make the following assumptions.
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Assumption 3.1. We assume that pb, σq are bounded measurable functions, uni-
formly Lipschitz with respect to x, and such that σJσ is uniformly positive definite
(i.e., uniformly elliptic), which implies in particular that σ is invertible.

Assumption 3.2. We assume that

ξ :“ gpXT q and fpt, y, zq :“ F pt, Xt, y, zq,

where g is α-Hölder and D̄-valued, F is measurable in all variables, globally Lip-
schitz in py, zq, and s.t. |F p¨, ¨, 0, 0q| is bounded.

Recall that Assumptions 1.1 and 1.2 hold throughout the paper, even if they
are not cited explicitly.

3.1. Penalized equation. We begin by noticing that ψ2 P C1pRdq and denote

Ψpyq :“
1

2
∇ψpyq2 “ ψpyq∇ψpyq, y P R

d,

where we extend (naturally) ∇ψ to D by zero. We also extend ∇2ψ2 to D by
zero.

It is useful to note that there exist constants c, C, s.t.

(3.2) 0 ă cψ ď |Ψ| ď Cψ.

Next, we consider the following penalized equation:

Y n
t “ ξ `

ż T

t

fps, Y n
s , Z

n
s qds ´

ż T

t

nΨpY n
s qp1 ` |Zn

s |2qds ´

ż T

t

Zn
s dWs.(3.3)

Let us remark that, contrarily to the convex framework tackled in [20], it is
natural (and necessary) to add a |z|2 inside the penalization term due to (2.3).
For convenience, we introduce the notation:

Φnt :“

ż t

0

nΨpY n
s qds, Θn

t :“

ż t

0

nΨpY n
s q|Zn

s |2ds,

Kn
t :“ Φnt ` Θn

t .(3.4)

3.2. Existence of a solution to the penalized equation. We start by consid-
ering the following family of approximating BSDEs, indexed by a pair of positive
integers M “ pM1,M2q:

Y
n,M
t “ gpXT q `

ż T

t

F n,Mps,Xs, Y
n,M
s , Zn,M

s qds ´

ż T

t

Zn,M
s dWs,(3.5)

with

F n,Mpt, x, y, zq :“ fpt, x, y, zq´nρM1
pψpyqq∇ψpyqp1`ρM2

p|z|2qq, ρkpxq :“ x^k.

The above BSDE has a globally Lipschitz generator and, therefore, is known to
have a unique Markovian solution pY n,M , Zn,Mq P S

2 ˆ H
2 (see, e.g., Theorem
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4.1 in [14]). The following Proposition uses the weak star-shape property of D,
stated in Assumption 1.1, to establish a uniform estimate on pY n,M , Zn,Mq.

Lemma 3.1. There exists a constant C ą 0, s.t., for any n ě 1, any M “
pM1,M2q, and any t P r0, T s, the following holds a.s.:

|Y n,M
t |2 ` Et

„ż T

t

|Y n,M
s |2 ` |Zn,M

s |2ds


ď C Et

„
|ξ|2 `

ż T

t

p1 ` |fps, 0, 0q|2qds


,

(3.6)

Et

„ż T

t

nρM1
pψpY n,M

s qqp1 ` ρM2
p|Zn,M

s |2qqds


ď C Et

„
|ξ|2 `

ż T

t

p1 ` |fps, 0, 0q|2qds


.

(3.7)

Proof. W.l.o.g., we assume that φC attains its minimum at zero. Then, we
consider arbitrary t P r0, T s and constants α ą 0, β ą 0, to be fixed later, and
define

rt, T s ˆ R
d Q ps, yq ÞÑ hps, yq :“ eβps´tq

`
α|y|2 ` pφCpyq ´ φCp0qq2

˘
P R.

We observe that pφC ´ φCp0qq2 is convex and hps, yq ď eβpT´sqc0|y|2, for some
positive constant c0. Then, we apply Itô’s formula to the process hps, Y n,M

s q
(recalling (3.3)), to obtain

α|Y n,M
t |2 ď hpt, Y n,M

t q ď hpT, ξq

` 2

ż T

t

eβps´tqpαY n,M
s ` pφCpY n,M

s q ´ φCp0qq∇φCpY n,M
s qq ¨ fps, Y n,M

s , Zn,M
s qds

´

ż T

t

nρM1
pψpY n,M

s qq∇yhps, Y n,M
s q ¨ ∇ψpY n,M

s qp1 ` ρM2
p|Zn,M

s |2qqds

(3.8)

´ 2

ż T

t

∇yhps, Y n,M
s q ¨ Zn,M

s dWs ´ α

ż T

t

eβps´tq|Zn,M
s |2ds ´ β

ż T

t

eβps´tq|Y n,M
s |2ds.

As Y n,M P S 2 and Zn,M P H 2, the local martingale in the above representation
is in M1 and, hence, is a true martingale.

Next, we notice that the fourth property in Lemma 2.4 implies the existence of
a constant c1 ą 0, s.t.

∇φCpY n,M
s q ¨ ∇ψpY n,M

s q ě c11tY n,m
s RDu.



REFLECTED BSDES IN NON-CONVEX DOMAINS 19

Then, there exist constants c2, c3 ą 0 such that

´

ż T

t

nρM1
pψpY n,M

s qq∇yhps, Y n,M
s q ¨ ∇ψpY n,M

s qp1 ` ρM2
p|Zn,M

s |2qqds

ď ´ 2

ż T

t

neβps´tqρM1
pψpY n,M

s qqpc1pφCpY n,M
s q ´ φCp0qq ´ αc2|Y

n,M
s |qp1 ` ρM2

p|Zn,M
s |2qqds

ď ´ 2

ż T

t

neβps´tqρM1
pψpY n,M

s qq
“
c1pφCpY n,M

s q ´ φCp0qq

(3.9)

´ αc2pφCpY n,M
s q ` |PC̄pY n,M

s q|q
‰ `

1 ` ρM2
p|Zn,M

s |2q
˘
ds

ď ´ c3

ż T

t

neβps´tqρM1
pψpY n,M

s qqp1 ` ρM2
p|Zn,M

s |2qqds,

provided α is small enough. In the rest of the proof, we assume that α is chosen
so that the above inequality holds.

Next, we remark that
ˇ̌
ˇ̌2

ż T

t

eβps´tq
`
αY n,M

s ` pφCpY n,M
s q ´ φCp0q

˘
∇φCpY n,M

s qq ¨ fps, Y n,M
s , Zn,M

s qds

ˇ̌
ˇ̌

ď C1

ż T

t

eβps´tq
`
pα ` 1q|Y n,M

s | ´ φCp0q
˘ `

|fps, 0, 0q| ` C2|Y
n,M
s | ` C2|Z

n,M
s |

˘
ds

ď

ż T

t

eβps´tq
´
C3|Y n,M

s |2 ` C3 ` |fps, 0, 0q|2 `
α

2
|Zn,M

s |2
¯
ds.

Combining the above estimates and (3.8), we conclude that, for a large enough
β ą 0, there exists a constant C4 ą 0, s.t.

α|Y n,M
t |2 ` Et

„
c3

ż T

t

nρM1
pψpY n,M

s qq
`
1 ` ρM2

p|Zn,M
s |2q

˘
ds `

α

2

ż T

t

|Y n,M
s |2 ` |Zn,M

s |2ds



ď eβpT´tq
Et

„
c0|ξ|2 `

ż T

t

pC4 ` |fps, 0, 0q|2qds


,

which yields the statement of the lemma. l

Proposition 3.1. Under Assumptions 3.1 and 3.2, for any n ě 1, the BSDE
(3.3) has a Markovian solution pY n, Znq. In particular, there exists a measurable
function un such that Y n

t “ unpt, Xtq. Moreover, the estimates (3.6)–(3.7) hold
with pY n,M , Zn,Mq and ρMi

replaced, respectively, by any solution pY n, Znq of (3.3)
and by the identity function.

Proof. The main statement of the proposition follows from Theorem 2.8 in
[44] (without the localization). To be able to apply the latter theorem, we first
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consider the following auxiliary BSDE, which can be viewed as a middle ground
between (3.3) and (3.5):

Ỹ
n,M1

t “ gpXT q `

ż T

t

F̃ n,M1ps,Xs, Ỹ
n,M1

s , Z̃n,M1

s qds ´

ż T

t

Z̃n,M1

s dWs,(3.10)

with

F̃ n,M1pt, x, y, zq :“ fpt, x, y, zq ´ nρM1
pψpyqq∇ψpyqp1 ` |z|2q

and ρM1
pxq “ x ^ M1. We claim that the unique solution pY n,M , Zn,Mq of (3.5)

converges (along a subsequence) to a Markovian solution pỸ n,M1, Z̃n,M1q of (3.10),
as M2 Ñ 8. Indeed, this claim follows directly from Theorem 2.8 in [44]. To
verify the assumptions of the latter theorem, we first notice that, due to (3.6),

there exists a constant c ą 0 such that |Y n,M
t | ď c, for all t P r0, T s and

n,M . Moreover, for large enough C ą 0 (independent of n and M), hpyq :“
C pα|y|2 ` pφCpyq ´ φCp0qq2q is a global c-Lyapunov function for pF n,MqM , in the
sense of Definition 2.3 in [44], where α is the constant chosen in the proof of
Lemma 3.1. Indeed, there exists a large enough C ą 0, s.t., for all |y| ď c, we
have:

1

2
C TrrpzσqJp∇2hpyqqzσs ´ C∇hpyq ¨ F n,M

ě CαTrrpzσqJzσs ´ 2C rαy ` pφCpyq ´ φCp0qq∇φCpyqs ¨ fpt, x, y, zq

` 2Cn rαy ` pφCpyq ´ φCp0qq∇φCpyqs ¨ ∇ψpyqρM1
pψpyqqp1 ` ρM2

p|z|2qq

ě |z|2 ´ C 1,

where we used the uniform ellipticity of σJσ, Assumption 1.2, and the fourth
property in Lemma 2.4, and repeated the estimates used in (3.9). In addition,
we have |F n,Mpt, x, y, zq| ď C ` Cn|z|2, with the constants pC,Cnq independent

of M2. Observing that F n,M converges to F̃ n,M1 locally uniformly, as M2 Ñ
8, we conclude that the assumptions of Theorem 2.8 in [44] are satisfied and
that (3.10) has a Markovian solution pỸ n,M1, Z̃n,M1q which is a limit point of
tpY n,M , Zn,MquM2

.
Next, we recall that, due to (3.6), |Y n,M | is bounded uniformly over M . Hence,

|Ỹ n,M1| can be bounded uniformly over M1 ě 1, and, in turn, pỸ n,M1, Z̃n,M1q solve
(3.3) for any large enough M1 ą 0.

The estimates (3.6)–(3.7) are obtained by repeating the proof of Lemma 3.1 for
the equation (3.3) in place of (3.5). l

3.3. A priori estimates. The following result relies on the asymptotic convexity
of the squared pseudo-distance function, stated in Lemma 2.5.

Lemma 3.2. Under Assumptions 3.1 and 3.2, there exists a constant C ą 0, s.t.,
for any n ě 1, any solution pY n, Znq of (3.3), and any t P r0, T s, the following
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holds a.s.:

nψ2pY n
t q`Et

„ż T

t

n2|ΨpY n
s q|2

`
1 ` |Zn

s |2
˘
ds



ď C Et

„
|ξ|2 `

ż T

t

|fps, 0, 0q|2ds


,

and, in particular,

dpY n
t ,Dq ď Cn´1{2.

Proof. We begin by applying Itô’s formula to |ψpY n
t q|2, to obtain

ψ2pY n
t q “ 2

ż T

t

ΨpY n
s q ¨ fps, Y n

s , Z
n
s qds ´ 2

ż T

t

n|ΨpY n
s q|2ds

´ 2

ż T

t

n|ΨpY n
s q|2|Zn

s |2ds ´ 2

ż T

t

ΨpY n
s q ¨ Zn

s dWs(3.11)

´
1

2

ż T

t

TrrpZn
s qJ

∇
2ψ2pY n

s qZn
s sds

Remark 3.1. Note that the Hessian of ψ2 has a discontinuity at BD. To justify
the use of Itô’s formula, we approximate ψ2 by a sequence of C2 functions tgmu, so
that gm, ∇gm and ∇2gm converge, respectively, to ψ2, ∇ψ2 and ∇2ψ2 everywhere
in Rd, and |∇gm|, |∇2gm| are locally bounded uniformly over m. To construct
such a sequence, we first define

φ̂pyq :“ φpyqp1´ϑp|y|´R´1qq`ϑp|y|´Rq, ψ̂pyq :“ φ̂pyq`κ|y|ϑpφ̂pyq{ǫq, y P R
d,

where we recall the original function φ, appearing in Assumption 1.1, and use the
same ϑ, R, and ǫ, as the ones used in Subsection 2.3 to define ψ (see (2.8)). It

is clear that ψ̂pyq “ ψpyq, for y P RdzD, and that ψ̂pyq “ φpyq, for y P D. Thus,

ψ̂ is a smooth extension of ψ into D. Next, we consider an infinitely smooth
nondecreasing function ρ : R Ñ R, such that ρpxq “ ´1 for x ď ´1 and ρpxq “ x

for x ě 0, and define

gmpyq :“
1

m2
ρ2

´
mψ̂pyq

¯
, y P R

d.

It is easy to check by a direct computation that gmpyq, ∇gmpyq and ∇2gmpyq
converge to zero as m Ñ 8, for any y P D. On the other hand, gmpyq and its
first two derivatives coincide with ψ2pyq and with its respective derivatives, for all
y P RdzD and all m. Thus, we obtain the desired sequence tgmu. Applying Itô’s
formula to gmpY n

t q and using the dominated convergence theorem to pass to the
limit as m Ñ 8, we establish (3.11).
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As |Ψ| is linearly bounded (see Lemma 2.4), we conclude, as in the proof of
Lemma 3.1, that the local martingale in the above representation is a true mar-
tingale.

Next, we note that

2ΨpY n
s q ¨ fps, Y n

s , Z
n
s q ď n|ΨpY n

s q|2 ` n´1|fps, Y n
s , Z

n
s q|2,

and use Lemma 3.1, to obtain:

Et

ż T

t

2ΨpY n
s q ¨ fps, Y n

s , Z
n
s qds

(3.12)

ď Et

ż T

t

n|ΨpY n
s q|2ds ` Cn´1

Et

„
|ξ|2 `

ż T

t

p1 ` |fps, 0, 0q|2qds


.

In addition, Lemmas 2.4 and 2.5 yield

TrrpZn
s qJ

∇
2ψ2pY n

s qZn
s s ě ´CΨpY n

s q|Zn
s |2.

Then,

´ n

ˆ
1

2
TrrpZn

s qJ
∇

2ψ2pY n
s qZn

s s ` 2n|ΨpY n
s q|2|Zn

s |2
˙

ď
`
Cn|ΨpY n

s q| ´ cn2|ΨpY n
s q|2

˘
|Zn

s |2(3.13)

Next, we observe that
`
Cn|ΨpY n

s q| ´ Cn2|ΨpY n
s q|2

˘
|Zn

s |2 ď C|Zn
s |2.(3.14)

Collecting (3.13)–(3.14) and using Lemma 3.1, we obtain

´ Et

ż T

t

`
TrrpZn

s qJ
∇

2ψ2pY n
s qZn

s s ` 2n|ΨpY n
s q|2|Zn

s |2
˘
ds(3.15)

ď Cn´1
Et

ż T

t

|Zn
s |2ds ď Cn´1

Et

„
|ξ|2 `

ż T

t

p1 ` |fps, 0, 0q|2qds


.

Taking the conditional expectation in (3.11), multiplying both sides by n, and
using (3.12), (3.15), we complete the proof. l

The following proposition improves the rate of convergence of Y n to D.

Proposition 3.2. Under Assumptions 3.1 and 3.2, there exist N, C ą 0, s.t. for
any n ě N, any solution pY n, Znq of (3.3), and any t P r0, T s, the following holds
a.s.:

nψpY n
t q ď C
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Proof. First, we denote by }∇2ψpyq}˚ the maximum absolute value across all
negative parts of the entries of the matrix ∇2ψpyq. Next, we fix arbitrary ǫ, ε ą 0

satisfying

ǫ ď

ˆ
ε ` sup

yPBD

}∇2ψpyq}˚

|∇ψpyq|2

˙´1

, ǫ ď

˜
ε ` 2 sup

yPBD, zPRdˆm, sPr0,T s

}npyq ¨ fps, y, zq}
L 8

|∇ψpyq|

¸´1

,

and define

Ψnpyq :“ pψpyq ´ 1{pǫnqq`
∇ψpyq “

1

2
∇

`
pψpyq ´ 1{pǫnqq`

˘2
,

H̃pyq :“ ∇
2

`
pψpyq ´ 1{pǫnqq`

˘2
“ 2∇ψpyq∇Jψpyq 1ψě1{pǫnq`2pψpyq´1{pǫnqq`

∇
2ψpyq.

Next, we apply Itô’s formula to ppψpY n
t q ´ 1{pǫnqq`q2 (the validity of Itô’s

formula for the function ppψ ´ 1{pǫnqq`q2 is justified similarly to Remark 3.1), to
obtain

ppψpY n
t q ´ 1{pǫnqq`q2 “ 2

ż T

t

ΨnpY n
s q ¨ fps, Y n

s , Z
n
s qds ´ 2

ż T

t

n|ΨpY n
s q||ΨnpY n

s q|ds

´ 2

ż T

t

n|ΨpY n
s q||ΨnpY n

s q||Zn
s |2ds ´ 2

ż T

t

ΨnpY n
s q ¨ Zn

s dWs(3.16)

´
1

2

ż T

t

TrrpZn
s qJH̃pY n

s qZn
s sds.

As |Ψn| is linearly bounded (see Lemma 2.4), we conclude, as in the proof of
Proposition 3.1, that the local martingale in the above representation is a true
martingale.

Next, we note that

2ΨnpY n
s q ¨ fps, Y n

s , Z
n
s q ´ n|ΨpY n

s q||ΨnpY n
s q|

ď |ΨnpY n
s q| p2|npY n

s q ¨ fps, Y n
s , Z

n
s q| ´ nψpY n

s q|∇ψpY n
s q|q .

Notice that, whenever ΨnpY n
s q ą 0, we have ψpY n

s q ě 1{pǫnq and, hence, nψpY n
s q ě

1{ǫ. Then, since ǫ ą 0 satisfies

ǫ ď

˜
ε ` 2 sup

yPBD, zPRdˆm, sPr0,T s

}npyq ¨ fps, y, zq}
L 8

|∇ψpyq|

¸´1

,

and since Y n
s is close to D for large enough n (due to Lemma 3.2), we conclude

that

nψpY n
s q|∇ψpY n

s q| ě |∇ψpY n
s q|

˜
ε ` 2 sup

yPBD, zPRdˆm, sPr0,T s

}npyq ¨ fps, y, zq}
L 8

|∇ψpyq|

¸

ě |∇ψpY n
s q|ε{2 ` 2|npY n

s q ¨ fps, Y n
s , Z

n
s q|
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and, in turn,

2ΨnpY n
s q ¨ fps, Y n

s , Z
n
s q ´ n|ΨpY n

s q||ΨnpY n
s q| ď 0.(3.17)

Next, we recall that

1

2
TrrpZn

s qJH̃pY n
s qZn

s s ě pψpY n
s q ´ 1{pǫnqq`

TrrpZn
s qJ

∇
2ψpY n

s qZn
s s

and, hence,

´
1

2
TrrpZn

s qJH̃pY n
s qZn

s s ď }∇2ψpY n
s q}˚ pψpY n

s q ´ 1{pǫnqq` |Zn
s |2.

In addition,

´|ΨpY n
s q||ΨnpY n

s q||Zn
s |2 “ ´|∇ψpY n

s q|2ψpY n
s q pψpY n

s q ´ 1{pǫnqq` |Zn
s |2.

Collecting the two equations above, we deduce

´
1

2
TrrpZn

s qJH̃pY n
s qZn

s s ´ n|ΨpY n
s q||ΨnpY n

s q||Zn
s |2

ď pψpY n
s q ´ 1{pǫnqq` |Zn

s |2
`
}∇2ψpY n

s q}˚ ´ |∇ψpY n
s q|2nψpY n

s q
˘
.

Recall that, whenever ψpY n
s q ě 1{pǫnq, we have nψpY n

s q ě 1{ǫ. Then, since ǫ ą 0

satisfies

ǫ ď

ˆ
ε ` sup

yPBD

}∇2ψpyq}˚

|∇ψpyq|2

˙´1

,

and since Y n
s is close to D for large enough n, we conclude that

|∇ψpY n
s q|2nψpY n

s q ě |∇ψpY n
s q|2

ˆ
ε ` sup

yPBD

}∇2ψpyq}˚

|∇ψpyq|2

˙

ě |∇ψpY n
s q|2ε{2 ` }∇2ψpY n

s q}˚

and, in turn,

´
1

2
TrrpZn

s qJH̃pY n
s qZn

s s ´ n|ΨpY n
s q||ΨnpY n

s q||Zn
s |2 ď 0.(3.18)

Taking the conditional expectation in (3.16), we make use of equations (3.17)
and (3.18), and of the fact that |Ψn| ď |Ψ|, to obtain

ppψpY n
t q ´ 1{pǫnqq`q2`Et

ż T

t

n|ΨnpY n
s q|2

`
1 ` |Zn

s |2
˘
ds ď 0

and complete the proof. l

Using Proposition 3.2, we can improve the statement of Proposition 3.1 and
deduce that the Hölder norm of the Markovian solution of the penalized BSDE
is bounded uniformly over n.
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Corollary 3.1. Under Assumptions 3.1 and 3.2, there exist constants N ě 1,
α1 P p0, 1s, and C ą 0 (independent of n), s.t., for any n ě N, the BSDE (3.3)
has a Markovian solution pY n, Znq, with Y n

t “ unpt, Xtq, and any such solution
satisfies

sup
pt,xq‰pt1 ,x1q

|unpt, xq ´ unpt1, x1q|

|t ´ t1|α1{2 ` |x ´ x1|α1 ď C.(3.19)

Proof. The statement of the corollary follows from Theorem 2.5 in [44] (without
the localization). To verify the assumptions of the latter theorem, we consider
the following capped version of (3.3):

Ŷ
n,N
t “ gpXT q `

ż T

t

F̂ n,Nps,Xs, Ŷ
n,N
s , Ẑn,N

s qds ´

ż T

t

Ẑn,N
s dWs,(3.20)

with
F̂ n,Npt, x, y, zq :“ fpt, x, y, zq ´ ρNpnψpyqq∇ψpyqp1 ` |z|2q

and ρNpxq “ x^N . Propositions 3.1 and 3.2 imply the existence of (large enough)
N,N ą 0, s.t., for every n ě N, there exists a Markovian solution pY n, Znq of
(3.3), with Y n

t “ unpt, Xtq, and any such solution also solves (3.20). Moreover,
there exists c ą 0 such that |un| ď c for all n.

Next, we fix N as above and verify easily (as in the proof of Proposition
3.1) that, for large enough C ą 0 and small enough α ą 0 (independent of

n), Cpα|y|2 ` pφCpyq ´ φCp0qq2q is a global c-Lyapunov function for pF̂ n,Nqn, in

the sense of Definition 2.3 in [44]. In addition, |F̂ n,Npt, x, y, zq| ď C ` CN |z|2,
with the constants pC,CNq independent of n. Thus, Theorem 2.5 in [44] yields
the uniform boundedness of the Hölder norm of un. l

W.l.o.g. we assume that the statements of Proposition 3.2 and Corollary 3.1
hold with N “ 1. From Corollary 3.1, we deduce that there exists a subsequence
of tununě1 converging locally uniformly to a function u satisfying (3.19). To
alleviate the notation, this subsequence is still denoted punqně1. Recalling that
Y n
t “ unpt, Xtq and introducing Yt :“ upt, Xtq, for t P r0, T s, we observe that

E

«
sup
tPr0,T s

|Y n
t ´ Yt|

2

ff
ÝÑ
nÑ`8

0 ,(3.21)

since t ÞÑ pt, Xtq is a.s. continuous and t|Y n|u is bounded uniformly by a constant,
see Lemma 3.2.

We conclude this section with the following lemma, which is used in the next
section. This lemma provides a uniform upper bound on the second moment of
the auxiliary process

Γ
n,m
t :“ exp

ˆż t

0

´
1 ` | 9Kn

s | ` | 9Km
s |

¯
ds

˙
, t P r0, T s,
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where we recall (3.4).

Lemma 3.3. Under Assumptions 3.1 and 3.2, for any ε ą 0, there exists N ě 1

(independent of n) such that, for all n ě 1 and all 0 ď k ă N , we have a.s.:

Et

«ż T pk`1q{N

t

|Zn
s |2 ` | 9Kn

s |ds

ff
ď ε, @t P rTk{N, T pk ` 1q{Ns.

In particular, for any β ą 0, there exists a constant C “ Cpβq (independent of
pn,mq), s.t.

ErpΓn,mT qβs ď C,

for all n,m ě 1.

Remark 3.2. It is worth noticing that the constant C, appearing in Lemma 3.3,
does not depend on the initial value x of the diffusion X, as follows from the proof
of the lemma.

Proof. The proof of the first statement of the lemma is an improvement of
the estimates in the proof of Lemma 3.1, with the use of Corollary 3.1. We
fix t ă t1 P r0, T s, β 1 ą 0 and α ą 0, and apply Itô’s formula to the process
peβ

1ps´tqpα|Y n
s |2 ` pφCpY n

s q ´ φCp0qq2qsPrt,t1s (recall (3.3)) to obtain, as in the proof
of Lemma 3.1,

|Y n
t |2 ` cEt

«ż t1

t

|Zn
s |2 ` | 9Kn

s |ds

ff
ď Et

«
eβ

1pt1´tq|Y n
t1 |2 ` C

ż t1

t

eβ
1ps´tqp1 ` |F ps,Xs, 0, 0q|2qds

ff
,

which holds for large enough β 1 and small enough α.
Then, by using the upper bounds on |Y n|, see Proposition 3.2 and on |F p., ., 0, 0q|,

see Assumption 3.2, we obtain:

Et

«ż t1

t

|Zn
s |2 ` | 9Kn

s |ds

ff

ďEt

«
eβ

1pt1´tq|Y n
t1 |2 ´ |Y n

t |2 ` C

ż t1

t

eβ
1ps´tqp1 ` |F ps,Xs, 0, 0q|2qds

ff

ďEt

„
peβ

1pt1´tq ´ 1q|Y n
t1 |2 ` |Y n

t1 ` Y n
t ||unpt1, Xt1q ´ unpt, Xtq| `

C

β 1
peβ

1pt1´tq ´ 1q



ďCpβ 1qpt1 ´ tq ` CEt

”
pt1 ´ tqα

1{2 ` |Xt1 ´ Xt|
α1

ı
ď C 1pβ 1qpt1 ´ tqα

1{2,

where C 1 is independent of n, and we made use of Jensen’s inequality and of
standard SDE estimates on X in the last inequality. The above proves the first
statement of the lemma.
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To prove the second statement, we fix an arbitrary β ą 0 and consider N
corresponding to ε “ 1{p8βq. Then, the first statement of the lemma and the
John-Nirenberg inequality yield:

E

”
e2β

şT
0

| 9Kn
s |`| 9Km

s |ds
ı

ď E

”
e2β

şT pN´1q{N
0

| 9Kn
s |`| 9Km

s |ds
ET pN´1q{N

”
e
2β

şT
T pN´1q{N | 9Kn

s |`| 9Km
s |ds

ıı

ď 2E

”
e2β

şT pN´1q{N
0

| 9Kn
s |`| 9Km

s |ds
ı
.

Iterating the above, we obtain the desired estimate. l

3.4. Existence and uniqueness. We denote by tpY n, Znquně1 a sequence of
Markovian solutions to (3.3) satisfying (3.21) (whose existence is established
in the previous subsection). The goal of this subsection is to establish that
tpY n, Zn, Knq P S 2 ˆ H 2 ˆ K 1uně1 (with Kn defined in (3.4))2 converges to
a solution of the reflected BSDE (1.2) and that this solution is unique in the
appropriate class.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Then, there exists a triplet
pY, Z,Kq P S 2 ˆ H 2 ˆ K 1, such that

lim
nÑ8

p}Y n ´ Y }S 2 , }Zn ´ Z}H 2 , }Kn ´ K}S 2q “ 0 .

which solves (1.2). The process K is absolutely continuous and satisfies, for all
β ą 0,

E
“
eβVarT pKq

‰
ă 8 .(3.22)

Moreover, this solution is unique in the class U p1q (recall Definition 2.1).

Remark 3.3. If, in addition to Assumptions 3.1 and 3.2, g and F are globally
Lipschitz in x (i.e., α “ 1 in Assumption 3.2), then there exists a constant C
such that

|Z| ď C, dt ˆ dP-a.e.

Indeed, using the same arguments as in the proof of Corollary 3.1, we conclude
that the conditions of Theorem 2.16 in [25] are satisfied. The latter theorem yields
the existence of a constant C, s.t. |Zn

t | ď C for a.e. pt, ωq and for all n. Then, it
follows that |Z| ď C.

Remark 3.4. It is worth noticing that every exponential moment of VarT pKq
can be bounded by a constant that does not depend on the initial value x of the
diffusion X, as follows from Remark 3.2 and from the proof of Theorem 3.1.

2The fact that Kn P K 1 follows from the inequality (3.7) and the second statement of
Proposition 3.1.
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Proof. 1.a We first prove the uniqueness of the solution in the desired class. For
any solution pY 1, Z 1, K 1q in U p1q, we have

(3.23) E

„
e

p1

R0
VarT pK 1q


ă `8,

for some p1 ą 1. Setting 1 ă p :“ p1`p1q{2 ă p1, q1 :“ p1{p ą 1 and q “ q1{pq1 ´1q,
we obtain, using Hölder inequality,

E

”
e

p
R0

pVarT pKq`VarT pK 1qq
ı

ď E

”
e

qp
R0

VarT pKq
ı 1

q

E

„
e

q1p
R0

VarT pK 1q

 1

q1

.(3.24)

By (3.23), we have E

„
e

q1p
R0

VarT pKq


“ E

„
e

p1

R0
VarT pKq


ă 8. Then using (3.22), which

is proved below, we obtain

E

”
e

p
R0

pVarT pKq`VarT pK 1qq
ı

ă `8.(3.25)

Proposition 2.2, then, yields the uniqueness stated in the theorem.

1.b The fact that K is absolutely continuous is proved in Lemma 2.1.

2. Turning to the existence part of the proof, we have already obtained the
convergence of tY nu – recall (3.21). Moreover, it follows easily from Proposition
3.2 that, with probability one, Yt takes values in D̄ for all t P r0, T s.

We now turn to the convergence of tZnu. For n,m ě 1, we denote

δft :“ fpt, Y n
t , Z

n
t q ´ fpt, Y m

t , Z
m
t q, δK :“ Kn ´ Km,

δY :“ Y n ´ Y m, δZ “ Zn ´ Zm.

Applying Itô’s formula to peβ
1s|δYs|

2qsPrt,T s, we obtain

|δYt|
2 `

ż T

t

eβ
1ps´tq|δZs|

2ds “ 2

ż T

t

eβ
1ps´tqδYs ¨ δfsds ´ 2

ż T

t

eβ
1ps´tqδYs ¨ δ 9Ksds

´ 2

ż T

t

eβ
1ps´tqδYs ¨ δZsdWs ´ β 1

ż T

t

eβ
1ps´tq|δYs|

2ds.

(3.26)

Choosing a large enough β 1 ą 0 and using the standard estimates, we deduce

E

„ż T

0

|δZs|
2ds


ď CE

„ż T

0

ˇ̌
ˇδYs ¨ δ 9Ks

ˇ̌
ˇ ds


.(3.27)

Note that Lemma 3.3 yields the existence of a constant C, s.t. E

„´şT
0

|δ 9Ks|ds
¯2


ď

C, for all n,m. Then, using the Cauchy-Schwartz inequality, we obtain

E

„ż T

0

|δYs ¨ δ 9Ks|ds


ď E

«
sup
sPr0,T s

|δYs|
2

ff 1

2

«
E

ˆż T

0

|δ 9Ks|ds

˙2
ff 1

2

.
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The above estimate, along with (3.27) and (3.21), implies that tZnuně1 is a Cauchy
sequence. Thus, there exists pY, Zq P S 2 ˆ H 2 such that pY n, Znq Ñ pY, Zq.

Next, we recall that

Kn
t “ Y n

t ´ Y n
0

`

ż t

0

fps, Y n
s , Z

n
s qds ´ Mn

t , Mn
t :“

ż t

0

Zn
s dWs.

Doob’s maximal inequality implies that tMnu converges in S 2 to M , with Mt :“şt
0
ZsdWs. As fpt, ¨, ¨q is Lipschitz, we conclude that

(3.28) }Kn ´ K}S 2 Ñ 0,

with the continuous process K defined as

Kt :“ Yt ´ Y0 `

ż t

0

fps, Ys, Zsqds ´

ż t

0

ZsdWs.

We now prove that K P K 1, and that dKt is directed along n and is active only
when Y touches the boundary. To this end, we define the auxiliary nondecreasing
processes

K̂n
t :“

ż t

0

nψpY n
s qp1 ` |Zn

s |2qds, t P r0, T s.

From Lemma 3.1 we deduce the existence of a constant C, s.t. E
”
K̂n
T

ı
ď C for all

n. Then, using Proposition 3.4 in [5], we know that there exists a nondecreasing

nonnegative process K̂, two sequences of integers tp ď Npu, with p Ñ 8, and a

family of numbers tλpru, with
řNp

r“p λ
p
r “ 1, such that

P

˜
pK̂t :“

Npÿ

r“p

λprK̂
r
t Ñ K̂t , @t P r0, T s

¸
“ 1 .(3.29)

The above implies that the measure induced by d pK̂t on r0, T s converges a.s. to

dK̂t. Then, for any bounded continuous process χ and any 0 ď t1 ă t2 ď T ,

ηppt1, t2q :“

ż t2

t1

χt

Npÿ

r“p

λprrψpY r
t qp1 ` |Zr

t |2qdt “

ż t2

t1

χtd
pK̂t Ñ

ż T

0

χtdK̂t, a.s.

(3.30)

From the first statement of Lemma 3.3 (with the use of Proposition 3.2), we
conclude that, for any ε ą 0, there exists N ě 1 (independent of n) such that, for
all p and all 0 ď k ă N , we have a.s.:

Etr|η
ppt, T pk ` 1q{Nq|s ď ε, @t P rTk{N, T pk ` 1q{Ns.
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Then, repeating the last part of the proof of Lemma 3.3, we conclude that, for
any β ą 0, there exists a constant C, s.t.

E
“
eβη

pp0,T q
‰

ď C, @ p.

Thus, the family texppβηpp0, T qqup is uniformly integrable. The latter implies,
in particular, that the convergence in (3.30) holds in L1 and that all exponential

moments of K̂T are finite.

Next, we define

pKt :“

Npÿ

r“p

λprK
r
t , t P r0, T s.

We also denote by Ą∇ψ a Lipschitz extension of ∇ψ into D (constructed as in
Remark 3.1). Then, for any event A and any t P r0, T s, we have:

ErpKt 1As “ E

«ż t

0

Npÿ

r“p

λpr
Ą∇ψpY r

s qrψpY r
s qp1 ` |Zr

s |2qds 1A

ff

“ E

«ż t

0

Ą∇ψpYsq

Npÿ

r“p

λprrψpY r
s qp1 ` |Zr

s |2qds 1A

ff

`O

˜
E

«
Npÿ

r“p

λpr sup
sPr0,ts

|Y r
s ´ Ys|

ż t

0

p1 ` |Zr
s |2qds

ff¸

Ñ E

„ż t

0

Ą∇ψpYsqdK̂sds 1A


,

where we used (3.30), and its L1 version, and the estimate

E

«
sup
sPr0,ts

|Y r
s ´ Ys|

ż t

0

p1 ` |Zr
s |2qds

ff
ď C}Y r´Y }S 2E

”
e

şt
0

p1`|Zr
s |2q

ı1{2

ď C}Y r´Y }S 2 ,

which follows from Lemma 3.3.
On the other hand, asKn converges toK in S 2, ErpKt 1As converges to ErKt1As,

and since A is arbitrary and K¨ is continuous, we conclude:

(3.31) P

ˆ
Kt “

ż t

0

Ą∇ψpYsqdK̂sds, @ t P r0, T s

˙
“ 1.

Note that the integrability of K̂T and the above representation, in particular,
imply K P K 1.

It only remains to show that

(3.32)

ż T

0

1DpYtqdK̂t “ 0.
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To this end, we choose an arbitrary Lipschitz f supported in D and any event A,
to obtain:

E

„ż T

0

fpYtqdK̂t 1A


“ lim

nÑ8
E

«ż T

0

fpYtq

Npÿ

r“p

λprrψpY r
t qp1 ` |Zr

t |2qdt 1A

ff

“ lim
nÑ8

E

«ż T

0

Npÿ

r“p

λprfpY r
t qrψpY r

t qp1 ` |Zr
t |2qdt 1A

ff

`O

˜
E

«
Npÿ

r“p

λpr sup
tPr0,T s

|Y r
t ´ Yt|

ż T

0

p1 ` |Zr
t |2qdt

ff¸
“ 0.

As A is arbitrary, we conclude that, for any Lipschitz f supported in D, we haveşT
0
fpYtqdK̂t “ 0 a.s.. Approximating 1D with a sequence of such f , we, e.g., use

the monotone convergence theorem to deduce (3.32). Combining the latter with
(3.31), we obtain (1.2)(ii) and conclude the proof of the first part of Theorem 3.1.

l

Remark 3.5. Theorem 3.1 implies that, under Assumptions 3.1, 3.2 and 2.1 with
θ “ 1, there exists a unique solution to (1.2) in pY, Z,Kq P S 2 ˆ H 2 ˆ K 1.

4. Well-posedness beyond Markovian framework

4.1. Discrete path-dependent framework. In this subsection, we extend the
existence and uniqueness result obtained in a Markovian framework, see Theorem
3.1, to a discrete path-dependent framework.

Assumption 4.1. Let ℓ be an arbitrary strictly positive integer and consider the
partition 0 “ t0 ă t1 ă ... ă tℓ “ T of r0, T s. We assume that

ξ “ gpXt1, ..., Xtℓq and fps, y, zq “ F ps,Xt1^s, ¨ ¨ ¨ , Xtℓ^s, y, zq

where

(i) g is α-Hölder and takes values in D̄,
(ii) F is measurable in all variables, globally Lipschitz in py, zq, uniformly over

px1, ..., xℓq, and globally α-Hölder in px1, ..., xℓq, uniformly over py, zq, and
|F p¨, ¨ ¨ ¨ , 0, 0q| is bounded.

We note that ℓ “ 1 corresponds to the Markovian framework with an extra
regularity assumption on the generator with respect to x. We also recall that
Assumptions 1.1 and 1.2 hold throughout Section 4 even if not cited explicitly.

Theorem 4.1. Let Assumptions 3.1 and Assumption 4.1 hold. Then, there exists
a triplet pY, Z,Kq P S 2 ˆ H 2 ˆ K 1 that solves (1.2). Moreover, all exponential
moments of VarT pKq are finite, and this solution is unique in the class U p1q
(recall Definition 2.1).
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Proof. Once the finiteness of the exponential moments of VarT pKq is proven,
the uniqueness of the solution in the class U p1q follows from the same arguments
as in step 1.a of the proof of Theorem 3.1. Let us now prove the existence part of
the theorem. To this end, we use the backward recursion to construct a solution
on each interval rti, ti`1s for 0 ď i ď ℓ ´ 1.

Since the case ℓ “ 1 corresponds to the already treated Markovian framework,
we assume that ℓ ą 1 and we consider the interval time rtℓ´1, T s. For any pt, xq P
r0, T s ˆRd1

, we denote by X t,x the unique solution of (3.1) on rt, T s, which starts
from x at time t. We reserve the notation X for the original diffusion started
at time zero. For any x “ px1, ...,xℓ´1q P pRd1

qℓ´1, we denote by pY x, Zx, Kxq

the solution of (1.2) on rtℓ´1, T s, with the terminal condition gpx, X
tℓ´1,xℓ´1

T q and
with the generator F p.,x, X tℓ´1,xℓ´1

. , ., .q, whose existence is ensured by Theorem
3.1 and whose uniqueness in an appropriate class follows from Theorem 2.2.

Next, we denote by pY x,n, Zx,nq a Markovian solution of the penalized BSDE
(3.3) on rtℓ´1, T s, whose existence is ensured by Proposition 3.1. In particular,
there exist measurable functions unpx, ., .q and vnpx, ., .q such that

Y
x,n
t “ unpx, t, X

tℓ´1,xℓ´1

t q, Z
x,n
t “ vnpx, t, X

tℓ´1,xℓ´1

t q.

By considering a sequence of Lipschitz approximations of (3.3), given by (3.5),
we apply Theorem 5.4 in [26] and, passing to the limit for the Lipschitz approxi-
mations as in the proof of Proposition 3.1, we conclude that a Markovian solution
to (3.3) can be constructed so that un and vn are jointly measurable in all vari-
ables. Passing to the limit in n along a subsequence, we use Theorem 3.1 and
the uniform Hölder estimate in Corollary 3.1, to deduce the existence of jointly
measurable functions u and v satisfying

(4.1) Y x

t “ upx, t, X
tℓ´1,xℓ´1

t q, Zx

t “ vpx, t, X
tℓ´1,xℓ´1

t q.

Then, by denoting X “ pXt1 , ...Xtℓ´1
q, we consider the progressively measurable

processes pY X

t , Z
X

t qtPrtℓ´1,T s and define

KX

t :“ Y X

t ´Y X

tℓ´1
`

ż t

tℓ´1

F ps,X, X
tℓ´1,Xtℓ´1

s , Y X

s , Z
X

s qds´

ż t

tℓ´1

ZX

s dWs, tℓ´1 ď t ď T.

We note that X
tℓ´1,Xtℓ´1

s “ Xs and that pY X

t , Z
X

t , K
X

t qtPrtℓ´1,T s is a solution of

(1.2) on the time interval rtℓ´1, T s satisfying KX

tℓ´1
“ 0.

In order to iterate this construction and to extend the solution to the time
interval rtℓ´2, tℓ´1s, we have to ensure that the associated terminal condition Y X

tℓ´1

of the reflected BSDE (1.2) on rtℓ´2, tℓ´1s is an α-Hölder function of X. To this
end, we recall the function u in (4.1) and define, for all x̃ “ px1, ...,xℓ´2q P pRd1

qℓ´2

and xℓ´1 P Rd1
, the deterministic function

g̃px̃,xℓ´1q :“ upx̃,xℓ´1, tℓ´1,xℓ´1q “ Y
x̃,xℓ´1

tℓ´1
.
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Let us prove that this function is α-Hölder. Indeed, for any x :“ px̃,xℓ´1q P
pRd1

qℓ´1 and x
1 :“ px̃1,x1

ℓ´1
q P pRd1

qℓ´1, Proposition 2.2 with p “ 2 yields

|g̃pxq ´ g̃px1q| ď }Y x ´ Y x
1

}S 2

ďCE

„ˇ̌
ˇgpx, X

tℓ´1,xℓ´1

T q ´ gpx1, X
tℓ´1,x

1
ℓ´1

T q
ˇ̌
ˇ
4

1{4

` CE

«ˆż T

0

|F ps,x, X tℓ´1,xℓ´1

s , Y x

s , Z
x

s q ´ F ps,x1, X
tℓ´1,x

1
ℓ´1

s , Y x

s , Z
x

s q|ds

˙4
ff
1{4

ďC

˜
|x ´ x

1|α ` E

„
sup

0ďsďT
|X tℓ´1,xℓ´1

s ´ X
tℓ´1,x

1
ℓ´1

s |4α
1{4

¸
,

with a constant C that does not depend on x (see Remark 3.4). Then, the Jensen’s
inequality and the standard SDE estimates yield

|g̃pxq ´ g̃px1q| ď C|x ´ x
1|α,

which gives us the α-Hölder property of g̃. Considering the reflected BSDE (1.2)
on rtℓ´2, tℓ´1s, with the terminal condition Y X

tℓ´1
“ g̃pXt1 , ..., Xtℓ´1

q and with the
generator

F ps,Xt1^s, ..., Xtℓ´2^s, Xtℓ´1^s, Xtℓ´1^s, y, zq,

we deduce, as in the first part of the proof, that it has a solution in the form (4.1).

Finally, iterating the above construction, we concatenate the “Y ” and “Z” parts
of the solutions constructed in individual sub-intervals, and we sum up the “K”
parts (assuming that every individual “K” part is extended continuously as a
constant to the left and to the right of the associated sub-interval). It is easy to

see that the resulting process pY, Z, K̃q P S 2 ˆ H 2 ˆ K 1 is a solution of (1.2)
on r0, T s. l

4.2. General case.

Theorem 4.2. Let Assumption 2.1 hold with θ “ 2. Then, there exists a triplet
pY, Z,Kq P S 2 ˆ H 2 ˆ K 1 that solves (1.2), and this solution is unique in the
class U p2q.

Proof. The uniqueness part of the theorem is a direct consequence of Proposition
2.1 and Corollary 2.2. Let us now prove the existence part: To do so, we shall
construct a Cauchy sequence of approximating reflected BSDEs.
First, we observe that the terminal condition ξ can be approximated by a sequence
of random variables of the form ξn :“ gnpWt1 , ...,Wtnq, where gn is infinitely
differentiable. The sequence pξnqnPN˚ can be chosen so that it converges to ξ in
L

q, for any q ě 1 (see, e.g., [36]). In particular,

(4.2) lim
nÑ8

E
“
|ξ ´ ξn|2p{pp´1q

‰
“ 0,
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with p ą 1 appearing in Proposition 2.1. Replacing gn by gn ^ }ξ}L 8 , we can
assume }ξn}L 8 ď }ξ}L 8 . We observe that ξn satisfies Assumption 4.1(i) for
X “ W .

Second, to approximate the generator, for every n P N˚, we denote by Kn the
closed ball in Rdˆd1

of radius n centered at zero, and choose a sequence of numbers
ǫn Ó 0. We set

ℓn :“ }fp¨, 0, 0q}L 8 ` Kf,y sup
yPD̄

|y| ` nKf,z,

recalling Assumption 1.2. For each n, we introduce Ln the compact convex subset
of C pD̄ ˆ Knq (the space of continuous function endowed with the uniform norm
denoted }¨}s) consisting of Lipschitz functions, with the Lipschitz coefficients Kf,y

in the variable y P D̄ and Kf,z in the variable z P Kn, and whose (uniform) norm
is bounded by ℓn. Note that f|Kn is valued in Ln. We are now going to build an
approximation of f|D̄ˆKn in Ln satisfying Assumption 4.1 (for X “ W ).

Let tφmn uMn

m“1
be an ǫn-cover of the compact set Ln with Mn a positive integer.

We denote by f̃npt, ¨q the (measurable selection of the) proximal projection of
f|D̄ˆKnpt, ¨q on tφmn uMn

m“1
. It satisfies

f̃npt, ¨q “
Mnÿ

m“1

φmn p¨qpη̃nt qm “: φnp¨qη̃nt and }f̃npt, ¨q ´ f|D̄ˆKnpt, ¨q}s ď ǫn a.s.

with η̃n a progressively measurable process which takes its value on the (non zero)

extremal points of SMn
:“ tx P RMn | 0 ď xm ď 1,

řMn

m“1
xm ď 1u. Then, using

the dominated convergence theorem, we have

E

„ż T

0

}f|D̄ˆKnpt, ¨q ´ f̃npt, ¨q}2p{pp´1q
s dt


ď T pǫnq2p{pp´1q.(4.3)

We now classically approximate pη̃nt qtPr0,T s by an adapted process pη̂nt qtPr0,T s

piecewise constant on a grid Πn :“ tt0 “ 0 ă ¨ ¨ ¨ ă tnk ă ¨ ¨ ¨ ă tnκn “ T u. This
process can be chosen to be SMn

-valued and satisfying

E

„ż T

0

|η̃nt ´ η̂nt |2p{pp´1qdt


ď

ǫn

pMnℓ2nqp{pp´1q
.

Setting

f̂npt, ¨q “
κn´1ÿ

k“0

φnp¨qη̂ntn
k
1ptn

k
,tn
k`1

sptq,(4.4)

which is Ln-valued, as a random convex combination of the tφmn uMn

m“1
, we compute

E

„ż T

0

}f̃npt, ¨q ´ f̂npt, ¨q}2p{pp´1q
s dt


ď ǫn.(4.5)
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Then, we apply the approximation result of [36] for each η̂ntn
k
. Introducing, if

necessary, a finer grid ℜn Ă Πn, we set

ηntn
k
:“ PS

“
rnk

`
pWrqrPℜn,rďtn

k

˘‰
,

where rnk is a smooth function with values in R
Mn and PS the (orthogonal) pro-

jection onto SMn
. We can chose rnk such that

E
“
|ηntk ´ η̂ntk |2p{pp´1q

‰
ď

ǫn

pMnℓ2nqp{pp´1q
.(4.6)

Setting fnpt, ¨q “
řκn´1

k“0
φnp¨qηntn

k
1ptn

k
,tn
k`1

sptq, which belongs to Ln, we have

E

„ż T

0

}f̂npt, ¨q ´ fnpt, ¨q}2p{pp´1q
s dt


ď Tǫn.(4.7)

Collecting the above, we conclude that

(4.8) lim
nÑ8

E

ż T

0

sup
yPD̄, zPKn

|fpt, y, zq ´ fnpt, y, zq|2p{pp´1qdt “ 0.

We extend fnpt, y, ¨q to Rdˆd1
zKn as a constant in each radial direction, so that

its uniform norm and Lipschitz coefficient do not change.
When, moreover, f satisfies Assumption 2.1-(i) (resp. Assumption 2.1-(iii)),

the above construction allow to build an approximating sequence fn having the
same properties. One simply works with L̃n instead of Ln, where L̃n is the closed
convex subset of Ln whose function satisfies Assumption 2.1-(i) (resp. Assumption
2.1-(iii)).

Now, since, for any n P N
˚, ξn and fn satisfy Assumption 4.1, we can invoke

Theorem 4.1 to obtain an unique solution pY n, Zn, Knq P S 2 ˆH 2 ˆK 1 to (1.2)
associated with this data. Thanks to Proposition 2.1, we are allowed to apply
Proposition 2.2: for all n,m P N˚,

}Y n ´ Y m}S 2 ` }Zn ´ Zm}H 2 ` }Kn ´ Km}S 2

ď CE
“
|ξn ´ ξm|2p{pp´1q

‰pp´1q{p2pq
(4.9)

` CE

«ˆż T

0

|fnps, Y n
s , Z

n
s q ´ fmps, Y n

s , Z
n
s q|ds

˙2p{pp´1q
ffpp´1q{p2pq

,

with a constant C that does not depend on n and m.
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Applying the Cauchy-Schwartz, Jensen’s, and Chebyshev’s inequalities, we ob-
tain

E

«ˆż T

0

p1 ` |Zn
t |q1t|Zn

t |ąnudt

˙2p{pp´1q
ff

ď T p{pp´1q´1{2
E

«ˆż T

0

p1 ` |Zn
t |q2dt

˙2p{pp´1q
ff1{2

E

„ż T

0

1t|Zn
t |ąnudt

1{2

ď
T p{pp´1q´1{2

n
E

«ˆż T

0

p1 ` |Zn
t |q2dt

˙2p{pp´1q
ff1{2

E

„ż T

0

|Zn
t |2dt

1{2

.

Using Proposition 2.1 and the energy inequality for BMO martingales, we can

estimate E

´şT
0

p1 ` |Zn
t |q2dt

¯2p{pp´1q

uniformly over n. Then, for all m ě n, we

obtain from the above estimate:

E

«ˆż T

0

|fnpt, Y n
t , Z

n
t q ´ fmpt, Y n

t , Z
n
t q|dt

˙2p{pp´1q
ffpp´1q{p2pq

ď CE

«ˆż T

0

p1 ` |Zn
t |q1t|Zn

t |ąnudt

˙2p{pp´1q
ffpp´1q{p2pq

` CE

«ˆż T

0

|fnpt, Y n
t , Z

n
t q ´ fmpt, Y n

t , Z
n
t q|1t|Zn

t |ďnudt

˙2p{pp´1q
ffpp´1q{p2pq

(4.10)

ď
C

npp´1q{p2pq
` CE

„ż T

0

|fnpt, Y n
t , Z

n
t q ´ fpt, Y n

t , Z
n
t q|2p{pp´1q

1tY n
t PD̄,|Zn

t |ďnudt

pp´1q{p2pq

` CE

„ż T

0

|fmpt, Y n
t , Z

n
t q ´ fpt, Y n

t , Z
n
t q|2p{pp´1q

1tY n
t PD̄,|Zn

t |ďmudt

pp´1q{p2pq

.

In view of (4.8), the right hand side of the above vanishes as n,m Ñ 8. Collecting
(4.2), (4.9) and (4.10), we conclude:

}Y n ´ Y m}S 2 ` }Zn ´ Zm}H 2 ` }Kn ´ Km}S 2

n,mÑ`8
ÝÝÝÝÝÝÑ 0.

In other words, pY n, Zn, KnqnPN˚ is a Cauchy sequence in S 2 ˆ H 2 ˆ S 2. Then,

there exists pY, Z,Kq P S 2 ˆ H 2 ˆ S 2 such that pY n, Zn, Knq
nÑ`8
ÝÝÝÝÑ pY, Z,Kq.

Moreover, Y takes values on D̄. As pY n, Zn, Knq is the unique solution to (1.2)
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associated to the terminal condition ξn and the generator fn, and since we have

E

„ż T

t

|fnps, Y n
s , Z

n
s q ´ fps, Ys, Zsq|ds



ďE

„ż T

t

|fnps, Ys, Zsq ´ fps, Ys, Zsq|ds


` CE

„ż T

t

|Y n
s ´ Ys| ` |Zn

s ´ Zs|ds


,

we can easily pass to the limit in (1.2)(i) to show that pY, Z,Kq satisfies (1.2)(i).

It remains to prove that K P K 1, that dKt is directed along npYtq and that
it is active only when Y touches the boundary (the latter two properties will be
shown via the alternative characterization given by Lemma 2.3). Repeating the
derivation of (2.11)-(2.12) for pY n, Zn, Knq, but without taking the conditional
expectations, and with β “ 0, we obtain:

ż T

0

dVarspK
nq ď C

ˆ
|ξn|2 `

ż T

0

2Y n
s ¨ fps, Y n

s , Z
n
s qds ´

ż T

0

2Y n
s Z

n
s dWs

˙
,

where the constant C does not depend on n. The right hand side of the above in-
equality converges in probability, hence it also converges a.s. up to a subsequence
which we still denote tpY n, Zn, Knqu. Then, tVarT pKnqunPN˚ is a.s. bounded
uniformly over n, and Fatou’s lemma yields that VarT pKq is a.s. bounded – i.e.
K is a bounded variation process. Thanks to Proposition 2.1, tVarT pKnqunPN˚ is
uniformly integrable and, hence, K P K 1. As pY n, Zn, Knq solve (1.2) with the
terminal condition ξn and the generator fn, Lemma 2.3 yields the existence of
a constant c, independent of n, such that, for all continuous adapted process V
with values in D̄, we have

ż T

0

pY n
s ´ VsqdK

n
s ` c|Y n

s ´ Vs|
2npY n

s qdKn
s ě 0 a.s.

Finally, we use Lemma 5.8 in [20] to pass to the limit in the above inequality, to
obtain ż T

0

pYs ´ VsqdKs ` c|Ys ´ Vs|
2npYsqdKs ě 0 a.s.

and complete the proof of the theorem via another application of Lemma 2.3. l

5. Connection to Brownian Γ-martingales

It turns out that the solutions to reflected BSDEs in non-convex domains,
defined via (1.2) and constructed in the previous sections, are naturally connected
to the notion of martingales on manifolds (a.k.a. Γ-martingales – see [15]). In
this section, we investigate this connection more closely, in particular, discovering
a new proof of the existence and uniqueness of a Brownian martingale with a
prescribed terminal value on a section of a sphere and showing the sharpness of
the weak star-shape property in Assumption 1.1.
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The connection to martingales on manifolds is made precise by the following
proposition, which states that, under certain assumptions, the Y -component of
the solution to (1.2) always stays on the boundary of the domain D. Treating BD
as a manifold and expressing dKt via ∇2φpYtq and Zt, we discover that Y satisfies
the definition of a Brownian Γ-martingale on the manifold BD given in [15].

Proposition 5.1. Assume the following:

‚ there exists a convex domain A, satisfying Ā X D̄ Ă BD,
‚ 1tyPBDzĀu∇dpy,Aq ¨ ∇φpyq ě 0,

‚ f ” 0 and ξ P Ā X BD almost surely,
‚ pY, Z,Kq P S 2 ˆ H 2 ˆ K 1 solve (1.2).

Then, Y P Ā X D̄ Ă BD almost surely. Moreover, we have

(5.1) dVartpKq “

„
´
1

2
TrrZJ

t ∇
2φpYtqZts

`

dt.

Finally, Y is a Γ-martingale, with the prescripted terminal value ξ, in the manifold
BD endowed with the Riemannian structured inherited from Rd and its canonical
connection Γ, as defined in [15].

Remark 5.1. It is worth mentioning that the assumptions made in Proposition
5.1 imply that the set A cannot be smooth. To obtain an intuitive understanding
of what the set A may look like, we refer the reader to the example that follows.

Proof. We apply Itô’s formula for general convex functions (in the form of an
inequality, as in [3]) to the process dpYt,Aq to obtain

0 ď dpYt,Aq ď Et

„
dpξ,Aq ´

ż T

t

1tYsPBDzĀu∇dpYs,AqdKs


ď 0, t P r0, T s,

which gives us Y P Ā X D Ă BD. Applying Itô’s formula to φpYtq yields (5.1).
Finally, using (5.1), the fact that dKt is orthogonal to the tangent space of BD at
the point Yt, as well as (4.9), (4.10), (5.6)(ii) from [15], we conclude that Y is a
Γ-martingale on BD. l

In the remainder of this section, we assume f “ 0 and present a simple ex-
ample of the domains D and A for which the assumptions of Proposition 5.1
hold. This example allows us to obtain an alternative proof of a known result
on Γ-martingales using the reflected BSDEs and, on the other hand, to illustrate
the sharpness of the weak star-shape assumption (see Assumption 1.1) using the
martingales on manifolds.

In this example, we construct the functions φ and φC, which define the domains
D and C as in Assumption 1.1, first, in the plane P :“ R ˆ t0ud´2 ˆ R of Rd.
These functions are built symmetric with respect to the yd-axis, as the domains
are themselves symmetric, see the precise description below. Then, we extend
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them to Rd via

φpyq “ φpprpyq, 0, ..., 0, ydqq, φCpyq “ φCpprpyq, 0, ..., 0, ydqq,

with rpyq :“
´řd´1

i“1
|yi|2

¯1{2

. By an abuse of notation we denote by the same

names the associated domains D and C constructed in Rd and their intersections
with P.

We consider the three parameters α P p0, π{2q, η ą 0, ε P p0, π{2 ´ αq, and the
domains Dα,η,ε, Cα,η, Aα,ε given in Figure 1, which satisfy the following properties.

‚ Cα,η is a square centered at p0,´1´ η´ sinpαqq, with length 2 sinpαq ` 2η,
with the edges parallel to axes and with rounded corners (obtained by
modifying the square in the η-neighborhoods of these corners), such that
BCα,η is a C2 curve and Cα,η is convex,

‚ Dα,η,ε is symmetric w.r.t. the axis yd.
‚ BDα,η,ε is C2 and is made up of the following pieces:

– the arc Sα of angle 2α, symmetric w.r.t. the axis yd, of the circle
centered at zero and with the radius 1,

– the arc of angle 2α, symmetric w.r.t. the axis yd, of the circle centered
at zero and with the radius p2 sinpαq ` 2η ` 1q{ cospαq,

– and two smooth curves L1 and L2,, symmetric to each other w.r.t.
the axis yd, which connect the two arcs described above forming a C2

closed curve that does not intersect itself nor Cα,η.
‚ We denote by A1 (respectively, A2) the end point of the curve Sα that

belongs to the right (respectively, left) half-plane w.r.t. the axis yd.
‚ Let us assume that L1 (respectively, L2) belongs to the right (respectively,

left) half-plane w.r.t. the axis yd. We also assume that the curve L1 is
constructed so that, in its natural parameterization with the starting point
A1, the slope of its tangent vector has exactly one change of monotonicity.
Namely, we assume that there exists a point B1

ε , such that the angle
between B1

ε and A1 relative to zero is ε and such that the derivative of the
slope of the aforementioned tangent vector is continuous, nonincreasing,
and equal to zero at B1

ε . The curve L2, then, satisfies the analogous
property due to symmetry, with the associated point B2

ε .
‚ As the curve BDα,η,ε is C2, closed, and without self-intersections, we con-

struct φ as the signed distance to BDα,η,ε in a neighborhood of BDα,η,ε and,
then, extend it in a smooth way to R

2. φC is constructed similarly.

‚ We define Sα,ε as the concatenation of the curves
"

B2

εA
2, Sα,

"

A1B1

ε , and
we define Aα,ε as the interior of the convex hull of Sα,ε.

‚ Finally, we always assume that η ą 0 is small enough, such that Cα,η is
included in the triangle with vertices P 1, 0 and P 2, as shown in Figure 1.
This ensures that C̄α,η Ă Dα,η,ε for any ε ą 0.
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Dα,η,ε

Cα,η

Aα,ε

Sα L1L2

‚
A1

‚
A2

‚
B1

ε

‚
B2

ε

‚
P 1

‚
P 2

‚ aα,η

1

η

η

η

η

α ε
‚
0

Figure 1. Domains Dα,η,ε, Cα,η, Aα,ε

Let us now consider a terminal condition ξ P Sα and verify that Dα,η,ε, Aα,ε and
ξ satisfy the desired assumptions. We easily deduce that R0 “ 1. Then, for any
α P p0, π{2q and η ą 0, there exists ε0 P p0, π{2´αq, such that, for all 0 ă ε ă ε0,
the condition (1.1) holds up to a shift of coordinates in Rd that maps the origin to
aα,η :“ p0, ..., 0,´1 ´ η ´ sinpαqq. The other conditions of Assumption 1.1 follow
easily.

Next, we notice that, in the discrete path-dependent framework and under
Assumption 4.1, we can apply Theorem 4.1 to conclude that there exists a unique
(in U p1q) triplet pY ε, Zε, Kεq P S 2 ˆ H 2 ˆ K 1 that solves (1.2) in the domain
D “ Dα,η,ε (we suppress the dependence of the solution on η and α as they are
fixed in what follows). Proposition 5.1 applied to D “ Dα,η,ε and A “ Aα,ε

(whose assumptions are satisfied by the construction of Aα,ε, L1 and L2) states
that Y ε lives in Sα,ε. Then, the stability result of Proposition 2.2 yields that
tpY 1{n, Z1{n, K1{nqu8

n“1
is a Cauchy sequence and, hence, has a limit pY, Z,Kq. It

is clear that Y lives on Sα. Then, applying the arguments similar to those used in
the proof of Theorem 3.1, one can deduce that pY , Z,Kq solve the reflected BSDE
(1.2) in the domain D “ Dα,η,ε1, for any ε1 P p0, ε0q. Applying Proposition 5.1 once
more and recalling that Y lives on Sα, we conclude that Y is a Γ-martingale on
the manifold Sα with the terminal condition ξ. The uniqueness part of Theorem
4.1 yields that such a Γ-martingale is unique (in U p1q).
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Now, let us come back to a general terminal condition. We first notice that
Proposition 2.1 holds for any solution pY, Z,Kq P S 2 ˆ H 2 ˆ K 1 of (1.2) that
lives in Sα and satisfies Assumption 2.1(i) with γ replaced by

γα :“ inf
yPSα

∇φCpyq ¨
∇φpyq

|∇φpyq|
.

We can easily compute γα “ cospαq. Moreover, we also have R0 “ 1 and

|φ`
C

pξq|L 8 ď 1 ´ cospαq.

Thus, we conclude that Assumption 2.1(i) is fulfilled with θ “ 2 as long as
cospαq ą 2{3. Considering a sequence of discrete path-dependent terminal con-
ditions that approximate the given (general) terminal condition and take values
in Sα, we repeat the proof of Theorem 4.2 obtaining a unique (in U p2q) triplet
pY , Z,Kq P S 2 ˆ H 2 ˆ K 1 that solves (1.2) in the domain D “ Dα,η,ε1, for
any ε1 P p0, ε0q, and is such that Y lives in Sα. Applying Proposition 5.1 once
more, we conclude that Y is a Γ-martingale on the manifold Sα with the terminal
condition ξ. The uniqueness part of Theorem 4.1 yields that such a Γ-martingale
is unique in U p2q.

To sum up, the above construction proves the existence and uniqueness result
for a Brownian Γ-martingale with a prescribed discrete path-dependent terminal
condition ξ, satisfying Assumption 4.1, on any sector of the sphere Sd´1 (we
understand a sector as an intersection of a sphere and a half-space) that is strictly
contained in a hemisphere. For a general terminal condition ξ, we are only able to
tackle the case α ă arccosp2{3q. Thus, our results provide an alternative proof of
a particular case of [30, 41], where the existence and uniqueness for any α ă π{2
is established. Considering the case α “ π{2, we notice that, for any D that is
included in the outside of a sphere and whose boundary contains a hemisphere,
it is impossible to find a convex domain C Ă D that can “see” all points on the
boundary of this hemisphere with a strictly positive angle: in other words, (1.1)
can not be fulfilled. Therefore, our existence and uniqueness results fail for the
case of a hemisphere. On the other hand, considering directly the problem of
existence and uniqueness of a Brownian Γ-martingale with a prescribed terminal
condition on a closed hemisphere of Sd´1, we notice the major challenge that is
due to the non-uniqueness of geodesics, when d ě 3. Indeed, assume that ξ takes
its values in the set tz1, z2u consisting of two antipodes on the sphere (i.e., the line
connecting the two points goes through the center of the sphere) and note that

Sπ{2 does contain such points. Then, for any shortest arc
"
z1z2 Ă Sπ{2, there exists

a Γ-martingale on the manifold
"
z1z2 with the terminal condition ξ. As the arc

"
z1z2

is a geodesic, we conclude that the resulting Γ-martingale is also a Γ-martingale
in the larger manifold Sπ{2. Assuming that ξ takes each of its two values with
strictly positive probability and recalling that there are infinitely many geodesic

arcs
"
z1z2 on Sπ{2, we conclude that the uniqueness of a Γ-martingale on S

d´1 with
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the terminal condition ξ does not hold. This observation, in particular, illustrates
the sharpness of the weak star-shape property in Assumption 1.1 (condition (1.1))
in the case of a general terminal condition and general d ě 2.

Let us also mention that the non-uniqueness described above does not occur
for d “ 2, which indicates that it may be possible to relax our assumptions for
reflected BSDEs in planar non-convex domains. In particular, we refer to [40]
for a complete treatment of Γ-martingales on S1. The latter result also yields
the existence and uniqueness of a solution to the reflected BSDE in the domain
D “ ty P R2, 1 ă |y| ă 2u, which does not possess the weak star-shape property,
with zero generator and with a terminal condition satisfying |ξ| “ 1.

Moreover, in Section 3 of [41], Picard was able to prove the existence and
uniqueness of a Brownian Γ-martingale with a prescribed terminal condition in a
closed hemisphere of Sd´1, and in an even bigger domain, for a small enough T and
under a smoothness assumption on the terminal condition3. The latter indicates
that in a smooth Markovian or discrete path-dependent framework, under an
additional smallness assumption, it may also be possible to relax the requirement
of a weak star-shape property even for d ą 2.

Finally, let us give a simple example showing that the a priori estimates of
Proposition 2.1 are not sharp.4 Mimicking [40], we consider a FT -measurable
random variable ν with values in r´α, αs, where 0 ă α ă π{2 is a given parameter,

and let pθt, ηtqtPr0,T s be the solution of the BSDE θt “ ν ´
şT
t
ηsdWs for t P r0, T s.

We set Yt “ pcospθtq, sinpθtqqJ for all t P r0, T s and we easily check that Y is a
solution to the BSDE

Yt “ ξ `

ż T

t

|Zs|
2

2
Ysds ´

ż T

t

ZsdWs, 0 ď t ď T,

where ξ “ pcospνq, sinpνqqJ and Zt “ p´ηt sinpθtq, ηt cospθtqqJ. Notice that this
multidimensional quadratic BSDE can also be seen as a reflected BSDE in the
domain Dα,η,ε, with sufficiently small η, ε ą 0, rotated by π{2. Indeed, Y lives
on (rotated) Sα and the reflecting term is always pointing along the outer normal
vector to (rotated) Sα. Recall that Dα,η,ε satisfies the weak star-shape property

and note that dVartpKq “ |ηt|2

2
. Then, an application of Itô’s formula to θ2t yields

Et

„ż T

t

dVarspKq


“

1

2
Et

„ż T

t

|ηs|
2ds


“

1

2
Et

“
ν2 ´ pEtνq2

‰
ď
α2

2
.

Moreover, the above becomes an equality for t “ 0 and ν “ signpWT qα. Then,
recalling that R0 “ 1 for Dα,η,ε, we deduce from the John-Nirenberg inequality

3To be precise, it is assumed that the process Z, defined by ξ “ Erξs `
şT
0
ZsdWs, has

sufficiently small
şT
0

ess supΩ|Zs|2ds.
4Note that these estimates are not needed in a Markovian or discrete path-dependent case.
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that
E

”
e

2p
R0

VarT pKq
ı

ă 8,

for some p ą 1, provided α ă 1, which is weaker than the condition α ă
arccosp2{3q ă 1 required by Assumption 2.1(i) with θ “ 2, as computed ear-
lier in this subsection.
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