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REFLECTED BSDES IN NON-CONVEX DOMAINS
JEAN-FRANCOIS CHASSAGNEUX, SERGEY NADTOCHIY, ADRIEN RICHOU

ABSTRACT. This paper establishes the well-posedness of reflected backward
stochastic differential equations in the non-convex domains that satisfy a weaker
version of the star-shaped property. The main results are established (i) in a
Markovian framework with Holder-continuous generator and terminal condition
and (i) in a general setting under a smallness assumption on the input data.
We also investigate the connections between this well-posedness result and the
theory of martingales on manifolds.

1. INTRODUCTION

Backward stochastic differential equations (BSDEs), originally introduced in
[2] and fully developed in [39, [37], can be viewed as the probabilistic analogues
of semi-linear partial differential equations (PDEs). In particular, BSDEs are
used to describe the solutions of stochastic control problems (see, among many
others, [38, [14], 23]). If the control variable of such an optimization problem has
a discrete component — e.g., an option to switch the state process to a different
regime or to terminate the process and obtain an instantaneous payoff — then,
the associated PDE obtains a free-boundary feature and the associated BSDE
becomes reflected: i.e., its solution lives inside a given domain and is reflected at
the boundary of this domain. The theory of reflected BSDEs in dimension one,
i.e. when the reflected process is one-dimensional, is well developed in a very
high generality: see, e.g. [13, 9 12| 21, 22]. However, the multidimensional case
presents significant additional challenges (e.g., due to the lack of the comparison
principle), and, to date, the well-posedness of multidimensional reflected BSDEs
(or, systems of reflected BSDEs) has only been established in the case of convex
reflection domains: see, e.g., [20, B2, 8, [I7]. The systems of reflected BSDEs
in convex domains appear in certain types of stochastic control problems, such
as the switching problems: see, among others, [24, 27 [7, [6] B35, 1]. On the
other hand, in a certain class of control-stopping stochastic differential games,
the associated equilibria are described by the systems of reflected BSDEs in non-
convex domains, as shown, e.g., in [19] (see also [I§] for the convex case). We

9Authors would like to thank Marc Arnaudon for the enlightening discussions about mar-
tingales on manifolds. The authors also thank the Illinois Institute of Technology for hosting
the meetings during which this research was initiated. Partial support from the NSF CAREER
grant 1855309 is acknowledged.
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also refer to [4], which considers another case of a system of reflected BSDEs in
a non-convex domain. This paper presents the first general well-posedness result
for the systems of reflected BSDEs in non-convex domains under the assumption
of a weak star-shape property, see Assumption [L.I] below.

In addition to the stochastic control-stopping games, the reflected BSDEs in
non-convex domains have a direct connection to the theory of martingales on
manifolds. We refer to [I5] for an introduction and an overview of this theory.
One of the key questions therein is the following: given a random variable £ with
values in a manifold M, is it possible to define a martingale Y in M such that the
terminal value of this martingale (at time 7' > 0) is given by ¢ (i.e., Yy = ), and is
such a martingale unique? A positive answer to this question, in particular, allows
one to extend the notion of conditional expectation and gives one possible way to
define a barycenter on a manifold (see e.g. [10], [42]). We refer to [30} 31, 41 [10]
for other applications. As explained in [I0], it is possible to give a positive answer
to this question by solving a BSDE with quadratic non-linearities with respect
to the z-variable, stated in R? — the Euclidean space in which the manifold is
embedded. It turns out that for a certain class of non-convex reflection domains
D, the reflected BSDE in D gives rise to a martingale on the manifold 0D, see
Section [Bl In particular, our results provide a new proof of the existence and
uniqueness of a martingale with a prescribed terminal value in a given strict sub-
sector of a hemisphere of S*!, in the Markovian framework or under additional
smallness assumptions (see the example in Section ().

On a technical level, our analysis is connected to the theory of BSDEs with
quadratic growth in the z-variable. This connection is made precise in Section [3]
but it can also be seen if one attempts to map a given non-convex domain into a
convex one — the resulting reflected BSDE in a convex domain will have quadratic
terms in z. Thus, the reflected BSDEs in non-convex domains can be viewed as
the quadratic reflected BSDEs in convex domains. This observation also explains
the additional challenges of the case of a non-convex domain, relative to a convex
one: the mathematical difficulties in the former case are similar to those arising
in the well-posedness theory for the systems of quadratic BSDEs [43] 28] 44, 25].
The present work uses some of the results developed in the latter theory: in
particular, the results of [44] are crucial for our analysis.

Another important connection is to the methods of [33, [34], which establish
the well-posedness of the forward (or, regular) stochastic differential equations
(SDEs) reflected at the boundary of a given domain. In particular, we use the
arguments of [34] to establish the stability of the solutions to the reflected BSDEs
considered herein, see Section [2l It is important to mention, however, that many
crucial arguments used in the proof of the well-posedness of a reflected (forward)
SDE cannot be applied to the case of a reflected BSDE due to the adaptedness
issues which, in particular, prohibit the application of the Skorokhod’s mapping,
used in [34], and of the standard localization methods.
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The remainder of this paper is organized as follows. Section [LI] states the
reflected BSDE (equation (L2)) and the main assumptions (Assumptions [L1]
and [[.2)) which hold throughout the paper. Section [2 describes various auxil-
iary properties and a priori estimates, as well as the stability (Proposition 22I)
and uniqueness (Corollary 2.2) of the solutions to the target reflected BSDE in
a certain class. Section B describes a sequence of penalized quadratic BSDEs in
a Markovian framework, shows that their solutions converge to a solution of the
target reflected BSDE, and verifies that this solution belongs to the class in which
the uniqueness holds, thus establishing the well-posedness of the target reflected
BSDE in a Markovian framework (Theorem [B.I]). In Section [ we approximate
a general reflected BSDE by the Markovian ones, to obtain the well-posedness
of the former (Theorem [£.2]) under an additional smallness assumption (Assump-
tion[2Z]). Finally, Section Bl provides a more detailed description of the connection
between the reflected BSDEs in non-convex domains and the martingales on man-
ifolds, which, in particular, illustrates the sharpness of some of our assumptions.

1.1. The setup and main assumptions. Let D be a subset of R? given by

D={yeR’: ¢(y) <0},

with a function ¢ : R? — R. We denote by V the gradient, and by V2 the Hessian,
of a given function. For any subset A of an Euclidean space, we denote its closure
by A and, when A # J, we denote by d(., A) the distance function to A.

Assumption 1.1. We assume that ¢ satisfies the following:

e (Compactness) There ezists R > 0, s.t. ¢(y) > 0 for all |y| > R.
e (Smoothness) ¢ € C?(R?), |[Vo(y)| > 0 for all y € 0D, and V3¢ is locally
Lipschitz.
o (Weak star-shape property) There exists a non-empty open convez set C <
D such that
—0eC,
— there exists a convex function ¢ : R? — R satisfying ¢c € C*(RY),

C={yeR?: ¢c(y) <0},

pc = ¢c(0) and ¢c(y) = |y —Pe(y)| for ally e RANC where Pz stands
for the projection function onto C,

— it holds that

. Vé(y)

1.1 = inf V : > 0.

Remark 1.1. If D is a strictly star-shaped domain w.r.t. 0, i.e., if it satisfies
inf 2 Voly) > 0,

veeD [y [Vo(y)
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then the weak star-shape property is also satisfied, with C being a ball of radius
e > 0 centered at 0, and with

de(y) = o-(ly| — ),

where 9. : R — R is a convex increasing function satisfying 0. € C*(R,R),
0:(z) = —¢/2 for v < —e and o.(x) = x for x > 0.

All stochastic processes and random variables, appearing in this paper, are
constructed on a fixed stochastic basis (Q,F,P), with the filtration F being a
completion of the natural filtration of a multidimensional Brownian motion W in
R? on a time interval [0, 7]

For p > 1, we denote by LP the space of (classes of equivalence of)ﬁ Fr-
measurable random variables ¢ (with values in a Euclidean space), s.t. |||z =
H|<|P]"? < c0. The space £* stands for all Fr-measurable essentially bounded
random variables. We also define #? as the space of progressively measurable

1/2
processes (with values in a Euclidean space) Z, s.t. |Z] 2 := E[Sg |Zt|2dt] <

o0. Next, for p > 1, we define MP as the space of all continuous local martingales
1/p

M with | M|y = E[<M>]}/2] < . For p € [1, 0], we denote by .#? the set of
continuous adapted process U such that Hsupte[ovT] |Ut|H p < ©. We also denote
by Var,(K') the variation of a process K. (with values in a Euclidean space) on the
time interval [0, ¢] and by £, for p € [1, 0], the set of finite-variation process K
such that HVar[O,T](K)ng < o and K, = 0. Finally, we denote by %2 the set of
processes V € 2, satisfying

1
2

HVH,%2 = < +o00.

Lo

T
Supte[O,T]ElJ |Vs|2ds|./7t]
t

Let us remark that V € 2% implies that the martingale { V.dW; is a BMO
martingale, and ||V 4. is the BMO norm of §; V,dW,. We refer to [29] for further
details about BMO martingales.

We are investigating the well-posedness of the following reflected BSDE (Y, Z, K) €
S x H? x !

T T T
(i)Y}zﬁ—l—J f(s,Ys,Zs)ds—f sz—J Z,AW,, 0<t<T,
(12) t t t

¢
(ii) Y,e D ass., K; = J n(Y;)dVarg(K), 0<t<T,
0

IWe drop this clarification in further definitions.
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where n is the unit outward normal to 0D, extended as zero into D:

n(y) = Voly) Vye dD and n(y) =0, YyeD.

Vo)l

Assumption 1.2. We assume that & takes values in D, f(-,y, ) is progressively
measurable, f(t,-,-) is globally Lipschitz (Ky,-Lipschitz in y and Ky ,-Lipschitz
in z), uniformly in (t,w), and [||f(-,0,0)|| 40 < . In addition, w.l.o.g. (in
view of the boundedness of D), there exists a compact K = RY, s.t. f(t,y,2) =0
whenever y ¢ K.

Assumptions [[LTland L2 hold throughout the rest of the paper even if not cited
explicitly.

2. GEOMETRIC PROPERTIES AND A PRIORI ESTIMATES

In this section, we derive useful geometric properties of the domain D, expressed
via the corresponding properties of the function ¢, and construct an auxiliary
function v which is used in the next section to define a sequence of approximating
equations to (L.2). We also present some key a priori estimates and properties of

the solutions to the RBSDEs (.2).

2.1. Absolute continuity of the process K. As noticed in [20], we can take
advantage of the smoothness of D to show that the process K is absolutely con-
tinuous with respect to the Lebesgue measure.

Lemma 2.1. Assume that (Y, Z,K) € /?x 7#*x " solves (L2)). Then, almost
every path of K is absolutely continuous with respect to the Lebesgue measure.

Proof. Applying Itd’s formula to ¢ — ¢(Y;), we obtain

as() = (~Vo) 16,11, 2) + U2 Vo) ) at
(21) V(Y- dEK, + VoY) - ZdW,

Then, the It6-Tanaka formula applied to the positive part of the semi-martingale
—¢(Y;) reads

(2.2 AR = 1prpnpdl-6(¥)] + 2L

where LY is the local time of the semi-martingale —¢(Y") at zero. Since ¢(V;) < 0,
we have d[—¢(Y;)]" = —dé(Y;) which yields, combining (Z1)—(22),

Lisv)=o} (—Vcb(Y;) (Y Zy) + %Tr[ZtTV%(Y;)Zt]) dt + [Vo(Y;)|dVar,(K)

1
+ L=} Vo(Yy) - Z,dW, + §dL§ _0.
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In particular, we deduce that
(2.3)

+

VDIV () < Tipwyooy | VO - F(1, Vi, Z) — T2 V26(¥) 2] | dr.

which proves the absolute continuity of K. ]

2.2. The exterior sphere property. The following lemma states the well known
observation that, for any boundary point of a smooth domain, there exists a small
enough tangent external sphere, see e.g. [34].

Lemma 2.2. There exists Ry > 0, s.t.

1 _
(24) (y=y) ny) +5ply—yI >0, VyedD, yeD.
0
Proof. Due to the smoothness of ¢, for any y € 0D and 3’ € D, there exists
A€ [0,1], s.t.
(2.5)

0=o(y) = o(y)+ (¥ —y) - ny)|Voy)| + %(y — ) V2o(Ay+ (L= Ny )y —y),

It only remains to notice that: ¢ = 0 and |V¢| is bounded away from zero on 0D,
and |V2¢| is bounded from above on D. Thus, we obtain the statement of the
lemma. U

Using the above lemma, we can define the projection operator that is used in
the subsequent sections. To this end, we first define the set

Q = {y € Rd : d(y>D) < R0}>
and the set-valued projection operator
m(y) = argminmef)|x - y|7 ye Rd’
Corollary 2.1. For any y € Q, P(y) is a singleton.

Proof. It is easy to see that, for a ball B,(y) = R?, with radius » > 0 and center
at y, we have:

— 1
(2.6) (z — 1) - é_i' tole—a'f =0, Vaa'€0B,(y).

Next, assume that there exist y € R\D and z # 2’ € D, s.t.
[z —y| = |2’ — y| = argmin.p|z — y/.

Then, it is clear that z,2’ € 0B, n 0D, with r = min,.p |z — y| < Ro, and the
equations (2.4)), (2.6)) yield a contradiction. O

W.lo.g., we will identify the value of P3(y) with its only element, for any y € Q.
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Remark 2.1. Thanks to (23) and to (23) we easily deduce for any solution
(Y, Z, K) e % x % x A" to (I2) that

VoY, T
dvart(K) < 1{‘1’(Yt):0} (l% ’ f(ta }/;fa Zt)] + 2—R0|Zt|2> dta

with Ry satisfying (2.4).

The following lemma provides an alternative to (L2)(ii), and it becomes useful
in the subsequent sections.

Lemma 2.3. Assume that (Y, Z,K) € /% x 72 x # solves (L2) (i) and Y; € D
a.s. for allt € [0,T]. Then

K, = f n(Y,)dVar,(K), te 0,77,

holds if and only if there exists a constant ¢ > 0, depending only on D, such that
for all essentially bounded continuous adapted process V' in D, we have

(2.7) f (V= V) + olYe — ViP'n(¥i) dK. > 0.

Proof. One implication is a direct consequence of Lemma 2.2 The other impli-
cation is a mere generalization of Lemma 2.1 in [20]. O

2.3. The pseudo-distance function. In thissubsection, we modify the function
¢ in order to construct a new smooth function 1) which satisfies the inequality
) in RAD instead of dD. We denote by ¥ : R — [0, 1] an infinitely smooth
nondecreasing function which is equal to zero on (—c0, 0] and to one on [1,00).
We also choose a large enough R > 1, s.t. D < Bg_1(0), and a small enough
€€ (0,1), s.t., for all y € Br1(0)\D, we have:

p(y) <e = yeBr(0), Voc(y) Voly) > 0.

Then, we define

(2.8) dy) := &* () 1=I(|y|-R=1))+0(|y|-R), ¥(y) := d(y)+rly|9(S(y)/e),
for an arbitrary constant x > 0.
We refer to 1 as the pseudo-distance function.
Notice that
TR

Voely)  Vi(y) = Voe(y) - Vo(y) + kVoe(y) - mﬁ(aﬁ(y)/e)

+ KV c(y) - Vo(y)|yl9 (o(y)/e)/e

= Vocly)- Vo(y) (1 + slyl? (Gu)/e)fe) + Voely) - oG 0)/e)
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It is clear that ¢ € C?(R¥\D) and that its derivatives up to the second order are
locally Lipschitz-continuous on RA\D. It is also easy to see that ¢(y) € (0,€] if
and only if y € Bry1(0)\D and ¢(y) < ¢, in which case y € Br(0), ¢(y) = ¢(y),

Vo(y) = Vo(y), and

Voe(y) - Vi(y) = Voe(y) - Vo(y) > 0,

where we also observed that inf cgap Ve (y) - y/|y| > 0, which follows from the

convexity of C and from the fact that 0 e C. If ¢(y) < 0, then y € D. If ¢(y) > e,
then

Vée(y) - Vi (y) = Vée(y) - Voly) + £V e (y) - %

which can be made positive for all y € R\D by choosing large enough x > 0, as
V4| is bounded on RN\D and infegap Ve (y) - y/|y| > 0.

The following lemma summarizes the above properties of 1) and states several
additional properties which can be easily verified.

Lemma 2.4. There exist constants R,e,x > 0, s.t. the function ¢ defined in
(28) satisfies the following properties.
(1) 9 is globally Lipschitz-continuous in RY.
(2) There exist constants ¢,C > 0, s.t. cd(y,D) < ¥(y) < Cd(y,D) for
y e RY.
(3) ¥ € C2(RND), and its derivatives up to the second order are globally
Lipschitz-continuous in R\D.
(4) infyegap Ve (y) - Vi(y) > 0.
(5) infyegarp [Vip(y)| > 0.
(6) ¥(y) = ¢(y) = 0, Vib(y) = Vé(y), and V¥ (y) = V>4(y), for y € 0D.

In the remainder of the paper, we fix (R,¢, k) as in the above lemma and
consider the associated pseudo-distance function . For convenience, we also
extend the vector-valued function n to R? as follows:

1
n(y) = WV@D(Q) 1{Rd\’D}(y)'

2.3.1. Asymptotic convexity of the squared pseudo-distance. Due to Lemma [2.4]
the Hessian of 92, denoted V212, is well defined in RN\D (it is extended to the
boundary of the latter set by continuity). The following lemma shows that V21?2,
viewed as a bilinear form, becomes positive semidefinite close to D.

Lemma 2.5. There exists a constant C > 0, s.t., for all y e R\D and z € R?,
2TV (y)z = —Cy(y)|2)*.
Proof. Notice that, for y € RA\D and z € R?,
V2 (y) = 2V(y) VT (y) + 20 (y) V2 (y),
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VAR (y)z = 2(Vi(y) - 2)° + 20 (y)2 V()2 = 2¢(y) 2 V(y)2.
Using the fact that V?¢ is bounded (cf. the third property in Lemma 2.4)) and
the second property in Lemma 2.4] we complete the proof. O

2.4. A priori estimates. In this subsection, we prove a priori estimates in the
case of general terminal condition £ and generator f. We first introduce the
appropriate “smallness assumption”.

Assumption 2.1. We assume that at least one of the following four conditions
15 fulfilled with some 6 > 1:

(i) |6¢(€)| 2= < 15 and Voe(y)-f(s,y,2) <0, Vs,y,z € [0,T]xD\C xR,

(ii) or sup,ep ¢¢ (x) < %0,
(111) or C is the Euclidean ball centered at 0 with radius A\ > 0, and

2R2 _ /
(€[50 < X+ =2, Vee(y) fs,y,2) <0, Vs,y,2€[0,T] x D\C x R,

0
(iv) or C is the Euclidean ball centered at 0 with radius A\ > 0, and
2R2
sup |z]? < A? 4+ =2,
zeD 0
with Ry satisfying (24) and v appearing in Assumption [1.1]
It is worth mentioning that Assumption 2.1]is not our standing assumption and

is cited explicitly whenever it is invoked. In particular, our well-posedness results
in the Markovian framework do not require the smallness assumption, see Section

Bl

Next, we consider the following class of solution:

Definition 2.1. For any 6 > 1, we denote by % (0,€, f,T) the set of all solutions
(Y, Z,K)e % x 72 x #" to (L2) s.t.

(2.9) E [eg—ﬁvafT(K)] < o0,
with some p > 1 and with Ry satisfying (2.4).

In the sequel, we will generally drop (£, f,T") in the notation for the class % .
Note also that we will mainly consider § = 1 or 6 = 2.

The following proposition clarifies the link between Assumption 2.1l and the
class % (0).

Proposition 2.1. Let (Y, Z,K) € %% x 7% x H' be a solution to the RBSDE
(T2). Then, Z € %B% Moreover, if Assumption 21 holds for some 0 > 1,
then, there exist constants C' and p > 1, which depend only on Ky,, K;., 7,
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A, Supyep [yl supyep &¢ (), [d¢ (§)z=, [f(-,0,0)|.= and Ry (recall Assumption
L1 and 2.4])), such that

(2.10) E [e%varT(K)] <C.

Thus, under Assumption 2], any solution (Y, Z, K) belongs to % (0,¢, f,T).

Proof. 1. We start by applying Ito-Tanaka’s formula to ¢} (Y;) (note that ¢7 is
convex): for all t < ¢,

(2.11) [ f Vo (Y. ]<Et [¢g(y;,>+ f V¢é<m-f<s,m,zs>ds].

In the equation above and the proofs below, we use the shorter notation E-| for

- F].

Recalling Assumption [T, we also have

(2.12)

f dVar, (K ] “ Vi (Y, )dVars(K)] ~E,

This yields, for ¢ = T, that

VE; f Vo (Ys) - sz] .

(2.13) AR, UtT dVars(K)] <E, l% f Voi(Ys) - f(s,Ys, Z,)ds ]

Next, we consider an arbitrary ¢ > 0 and apply It6’s formula to €|Y;|? between ¢

and t’, to obtain:

tl
cE, [f |ZS|2ds] <ck, [|Yt/|2] + CieE,
t

f dVar, (K )] ,

where we used that |Y| is bounded. The above inequality implies

£ (14 [f(5,0.0)] + |ZS|>ds]

+ EC:[E

(2.14)

t/
%Et “ |ZS|2ds] <eE [|Yy*] + C.E, +eC1E
t

Jt (1+ |£(5,0,0)])ds

f dvars<K>] |
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Setting ¢’ = T and € = 1 in the previous inequality and combining it with (2.13]),
we obtain

1 g C
35 | [ 12| <z lep + Soci| + cm |

(2.15) +ZE UT Voi(va) - fls. Y Zs>ds] |

T

(14 1f(s,0, o>|>ds]

Now, we observe that

T
%E [ f Vo (Y.) - f(s. Y, Zs>ds] < CE

f(l + |f<s,o,o>|>ds] + 1B [ | ' |Zs|2ds]

Inserting the previous estimate back into (ZIH), we get

iEt UtT|Zs|2dS] & l|£|2 N %¢Z(§)] L CE, Uf(l - |f(8,0,0)|)ds] .

This proves that Z € %2.

2. We now turn to the estimation of the exponential moments of Varr(K'), under
the smallness Assumption 2.1l

2.a First, combining Assumption 2.Ii) with (2.13]), we obtain

< 1.
goo

(2.16) i

T
sup E; [f dVars(K)]
Ry ¢

te[0,T]

Then, we apply the energy inequalities for non-decreasing processes with bounded
potential (see, e.g., (105.1)-(105.2) in [11]) to obtain (2.I0) in this case.

2.b Let now Assumption 2T}(ii) hold. Using (2I1)-(2I2) and recalling that |Y|
is bounded, we obtain, for all 0 < t <t < T and for any € > 0,

VE;
yeD

t/ t/

| dVars<K>] < sup 6t ) + CLE — 1)1 +17(,0,0)L) + ZEy [ | |zs|2ds] .
t t

Using the above inequality and (Z14]) (with the same ¢ > 0), we obtain:

(v — Ce)E;

yeD yeD

J dVars(K)] <esuply]? +sup g (y) + CL (' — ) (1 + | f(.,0,0)] 2=).

In particular, by taking ¢ small enough, we conclude that, for any & > 0, there
exists C > 0 such that

2.17 E
(2.17) ' >

Jt dVars(K)] < S 9eW) g Loy
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Next, using (2.I7) and Assumption 2.I[(ii), we conclude that there exist 0 <
" <1,p>1,and N > 1, depending only on Ky, K., ¥, Sup,ep |y|, sup,ep dc(y)*,
|f(.,0,0)| z= and Ry, such that, a.s.:

(2.18)

T(k+1)/N R
E, f dVar,(K) | < 2901 — 2", Vo <k <N, Ve [Tk/N, T(k + 1)/N].
t

Then, we apply the energy inequalities for non-decreasing processes with bounded
potential (see, e.g., (105.1)-(105.2) in [I1]), to obtain, for all 0 < k < N,

T(k+1)/N

with C' that depends only on K, Ky, v, sup,ep [y], sup,ep de(y)*, [ (., 0,0)] 2=
and Ry. We now observe that

E[e%VarT(K)] _ E[Q%VarT(Nfl)/N(K [6% S?(Nﬂ)/zv dVars(K)]]

)ET(N—l) /N

Y

E i Ay K
< CE[(BRO arT(N—l)/N( )]

where we used ([2I9) with £ = N — 1 to obtain the last inequality. Iterating the
above procedure concludes the proof of this case.

2.c Next, we let Assumption [2I[(iii) hold. Using (Z3)), the linear growth of f, and
Young’s inequality, we have, for all € > 0,

1+¢e (7 9
(220) VaI'T(K> < Cg + 2—&] . 1{¢(K§):0}|Zt| dt.

Moreover, we apply Ito-Tanaka formula to (]Y;|*> — A?)* to obtain, for all ¢ < ¢/,

tl
E, f Lig(v.)-0y Zs[*ds
t

t/
< E, [f Lige(vo)=03| Zs|*ds
t

t/
(2:21)  <E; | ([Ye? = N*)" + 2f Lige(vo)>03[Ys| Ve (Ys) - f(s, Y5, Zs)db“] :
t

where we also recall that 1is.v,)>0|Ys|Vde(Ys) = Lige(vi)>0Ys since C is a Eu-
clidean ball centered at zero. Then, by taking ¢ = T in (2.2I]) and using Assump-
tion 2.1](iii), we obtain, for e > 0 and p > 1 small enough,

Op(1 + ¢€)

1.
2R =

R

T
sup K, U 1{¢(Ys>—0}|Zs|2d8]
te[0,T] t
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It remains to apply the John-Nirenberg inequality for BMO Martingales (see
Theorem 2.2 in [29]) and recall (2Z20), to conclude that

Op(l+e) ¢T 2
92 Varp (K S0 Lie(vs)=0}Zs[?ds
E[eRo ary( )] <C.E le 2rZ 0 He(¥s)=0} < too,

which yields (2.10]).
2.d Finally, the proof in the case of Assumption ZI|(iv) follows from (Z20) and

(2.21)), by partitioning [0, 7] into small time intervals as in step 2.b. To avoid the
redundant calculations, we skip the details. ]

2.5. Stability and uniqueness in %/ (). Using the a priori estimates estab-

lished in the previous subsection, we prove the following stability property of the
solutions to (L2).

Proposition 2.2. Let us consider (Y, Z,K) € ?x#?x %" (resp. (Y', 7', K') €
S x A x ) which solve the RBSDE (L2) with a domain D (resp. D'), with
a terminal condition & (resp. &), and with a generator f (resp. f'). Assume,
moreover, that there exists p > 1 such that

(2.22) pim B [edi (RO nan ] o

with Ry satisfying 2.4) for D and D'. Let us denote by B (resp. B') a measurable
selection of the projection operator onto D (resp. D’'). Then, the following stability
result holds: there exists a constant C' > 0, which depends only on Ky, Ky,
Ky, Ky . (recall Assumption[L23), sup,cp o Y|, Ro, and on k, and is such that

Y =Yz + 12 = Z'| 52 + | K = K| 52

(

] (»—1)/(2p)

<CE[|¢ — §’|2p/(p—1)](17—1)/(2p) 4+ CF

0

+ CE | sup [|Y; — ‘i?'(YS)V’/(p*l)
s€[0,T]

+CE | sup |Y] —P(Y)P/~Y

s€[0,T]

Proof. We apply 1td’s formula to the process

6ﬁt+RLO(Vart(K)+Vart(K’))|Y; _ }/;/|2’
with the constant § to be determined later on. By denoting

5ft = f(t,}/;,Zt)—f/(t’}/;/’Zé), 55225_5/7

T, = P m Ve Ven(KD) sy oy s — g g

T 2p/(p—1)7 P—1
J‘ |f(8a}/;>Zs) _f/($>Y:9aZs)|dS> ]

)/(2p)

] (»—1)/(2p)
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we obtain

T
Ly|0Y % + J [,|6Z,|*ds
t
T

T T
=T7|6]* + 2J [,0Y, - §fds — 2J [,0Y, - dK, + 2f [,0Y, - dK.
t t

t

T 1 T 1 T

_ 5J T,|5Y,2ds — — J I,|6Y, [2dVar, (K) — — J I,|8Y, [2dVar, (K')
t RO t RO t
T

(2.23) —2 J T,6Y, - 6 Z,dW,.
t

Using the BDG inequality, the fact that [0Y| is bounded, Holder inequality
(with ¢ = p/(p — 1) > 1 being the conjugate exponent), we obtain:

¢ T 3
f . E U |F85Z8|2ds) ]
0 0

< CH(T7)?] l f 16Z,]%ds) W]l < o,

where the last inequality is due to (222) and to the Energy Inequality (since
Z,7" e %%). Hence, we conclude that the local martingale term in the right hand
side of (2.23) is a true martingale.

Next, we estimate the second term in the right hand side of (2.23) using the
Lipschitz property of f’:

E[ sup
te[0,T]

V.8, < 10VIF (s Yer Z2) — /(5. Ya, Z)] + B0V + 1102,

provided f > 0 is large enough. In addition, the condition (L2))(ii) and the
exterior sphere property (recall (2.4])) yield

2 PTF §Y, - dK L Tr §Y,|?dVar, (K
- J, s s’ S_R_(]J; s| s| ars( )
T B T
=—2Jt Fs(‘B(Y;’)—Y;’)-sz—2£ s (Y —B(Y))) - K——JFMYIdVars( )
rT B
— 2| L (- BOY) - dK, —Rio 0, 1Y, — () PdVar,(K)
1 T T B
Ro Lo (1B(YY) — K/I2—|5K|2)dVars(K)—2£ L (P(Y) - Y;) - dK,

<c j ILB(Y?) — Y!|dVar,(K) < Ty sup [R(Y!) YY),
t

s€[0,T]
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where for the last inequality, we used: StT exp <WrR§7§K)> dVars(K) < Ry exp (VarT(K)> :
By the same arguments we obtain

T 1 T B
2f LY, dK' — — | .6V Pdvar,(K) < CTy sup [(Ys) — Vi,
¢ Ry J; se[0,7]

Using the above estimates, we take expectations on both sides of 2.23], with ¢ = 0,
and apply Holder inequality to obtain

T 1/2
0262 s < E [maa? #2 [ TYAIfs. Y Z) — Zs>|ds]
0

1/2

s€[0,T

+E[FT<SUP (V) - Y;|+|‘J3(YZ)—Y;’|)

< CE[j6¢ e

1/2
+ 2E [ sup (F1/2|5Y| 1/2J |f(5,Ys, Zs) — f/(‘S?}/stS”dS]
s€[0,T7]

1/(2q)

s€[0,T7]

(2.24) + CE [ ap (V) — Vil + RO — V7))

Using (2.23) and (2:24)), we apply BDG, Holder and Young inequalities to obtain
[TY26Y | 2 < CE[|6¢]9]9

1/2
+ CE [ sup (F1/2|5Y| mf |f(s,Ys, Z,) — f’(S,Ys,ZsﬂdS]
s€[0,T]

1/(29)
+ CE [ aup (V) — Vil + B0 — V)"

s€[0,T]
T 2¢7 1/ (29)
<J |f(8a}/;aZ8> - f/(sa}/tsazsﬂds) ]
0

1/(20)
sup (['(Y;) — Yol + [B(Y)) - Y;/I)q] :

s€[0,T]

1
< CE[|6€]9)V2D) 4 5|\r1/25y|\y2 + CE

(2.25) + CE
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Then, combining (2.24)), Young inequality, and (2.25)), yields
|Y = Y|z + |Z = Z'| w2 < [TY26Y | 52 + |TV26Z )| 2

(

(2.26)  +CE [ sup (|9'(Y) = Yi| + [B(Y)) - Y2])"

T 2¢71/(2q)
<CE[[¢ — &'}/ + CE f |f(s,Ys,Zs>—f’(s,Ys,Zs>|ds) ]

0

1/(2q)

s€[0,T]

Finally, we recall that

t t
K, — K| = §Y, — 6Yy + f F(s,Ye, Z) — f'(s,Y!, Z)ds — f 5Z, AW,
0

) S
0

Then, the BDG inequality, the Lipschitz property of f’, as well as (226, yield

(

1/(2q)
| K — K'| 52 <CE[|¢ — ¢'|*)Y 4 CE

T 2q
J‘ |f(SaYt9> Zs) - f/(S,Y:g’ Z8)|d8) ]

0

1/(2q9)
+CE | sup (JB'(Ys) - Yol + B -YI)'|
s€[0,T]
which completes the proof of the proposition. OJ

In a general non-Markovian framework, we obtain the following uniqueness
result as a direct consequence of Proposition

Corollary 2.2. The reflected BSDE (IL2) has at most one solution in the class
U (2).

Proof. Indeed, it suffices to check that, for any two solutions in the class % (2),
(222) holds. This follows directly from the Cauchy-Schwarz inequality. N

This uniqueness result is improved in the Markovian setting: see Theorem [B.1]
and Remark

3. WELL-POSEDNESS IN A MARKOVIAN FRAMEWORK

In this section, we establish the existence and uniqueness of the solution to
(B3) under the assumption that the terminal condition and the generator of the
reflected BSDE are functions of a Markov diffusion process X in R?:

t t
(3.1) X, =z + J b(s, X,)ds + J o(s, X,)dW,, zeR?.
0 0

Namely, we make the following assumptions.
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Assumption 3.1. We assume that (b, o) are bounded measurable functions, uni-
formly Lipschitz with respect to x, and such that oo is uniformly positive definite
(i.e., uniformly elliptic), which implies in particular that o is invertible.

Assumption 3.2. We assume that
5:: g(XT) and f(tuyvz) = F<t7Xt7y7Z)7

where g is a-Holder and D-valued, F is measurable in all variables, globally Lip-
schitz in (y, z), and s.t. |F(-,-,0,0)| is bounded.

Recall that Assumptions [[.1] and [L.2 hold throughout the paper, even if they
are not cited explicitly.

3.1. Penalized equation. We begin by noticing that 1% € C*(R?) and denote

W(y) = VU) = b)), ye R,

where we extend (naturally) Vi to D by zero. We also extend V2% to D by
Zero.

It is useful to note that there exist constants ¢, C, s.t.
(3.2) 0<cp <|¥| <CP.

Next, we consider the following penalized equation:

T T T
33) Y=g | Sy znds— [ ez - [ ziaw,
t t t

Let us remark that, contrarily to the convex framework tackled in [20], it is
natural (and necessary) to add a |z|? inside the penalization term due to (Z3)).
For convenience, we introduce the notation:
t t
e R S R TR PAR
0 0
(3.4) K} = o} + 0.

3.2. Existence of a solution to the penalized equation. We start by consid-
ering the following family of approximating BSDEs, indexed by a pair of positive
integers M = (M, M>):

T T
(3.5) Y M = g(Xp) + J FrM(s, X, ymM znMyqs — J ZmMaw,

with
FmM(t? z,Y, Z) = f(tv z,Y, Z) — NP (w(y))vw(y)(l +pM2(|Z|2))7 pk(SL’) =z nk.

The above BSDE has a globally Lipschitz generator and, therefore, is known to
have a unique Markovian solution (Y™™ ZnM) e &2 x 7 (see, e.g., Theorem
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4.1 in [14]). The following Proposition uses the weak star-shape property of D,
stated in Assumption [T} to establish a uniform estimate on (Y™™, ZmM),

Lemma 3.1. There exists a constant C > 0, s.t., for any n > 1, any M =
(My, My), and any t € [0,T], the following holds a.s.:

(3.6)
T T
M2y EtU M2 |Z§L’Ml2ds} < OEtlISF + f (1+ If(s,0>0>|2)d8} ’
: t

(3.7)
EtUtT npan (YY) (1 + pMQ(IZ?’MF))dS] < CEtl|£l2 + f(l +f(5,0,0)[)ds | .

I

Proof. W.l.o.g., we assume that ¢ attains its minimum at zero. Then, we
consider arbitrary ¢ € [0,7] and constants « > 0, 5 > 0, to be fixed later, and
define

[t,T] x R 5 (s,y) — h(s,y) := e’ (aly” + (¢c(y) — ¢c(0))?) € R.

We observe that (¢¢ — ¢¢(0))? is convex and h(s,y) < e#T=%¢o|y|?, for some
positive constant cq. Then, we apply It6’s formula to the process h(s, YM)
(recalling (3.3])), to obtain

al "M P < bt YY) < AT

o f D @Y 4 (Ge(Y7M) = 6e(0)Voe (VM) - (s, Y, 20V ) ds
(3.8)

= [ o DT M) - T+ (7 s

T T T
— zf V,h(s, YMY . Z20MAW, — J P ZznM12qs — 5J Pt ymM 2,
t t t

AsY™M e 72 and Z™M e 2, the local martingale in the above representation
is in M! and, hence, is a true martingale.

Next, we notice that the fourth property in Lemma 2.4 implies the existence of
a constant ¢; > 0, s.t.

Ve (YM) - V(YY) = o)1 ynmgp.
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Then, there exist constants ¢, c3 > 0 such that

T
—f npa, (Y)Y (s, YIM) - V() (L + pan (1204 7))ds

~T
<=2 ] e’ g, (W(YM) (1 (de (VM) = de(0)) — aca Y M) (1 + par, (120 ))ds

rT

<-2?) e par, (W (VM) [er (e (YY) — 6c(0))
—aca(de (V") + [Be (YD (1 + par, (12M]7)) ds

T
<—c f 15D o (DY M) (14 pana (120 2))ds,
t

provided « is small enough. In the rest of the proof, we assume that « is chosen
so that the above inequality holds.

Next, we remark that

T
2 [ (@ (e — 6e(0) Tl 5, Y 2

t

T

<O [0 (Gt DIV = 6e(0) (1£65,0,0) + GV + Col ) ds

T ' a
< [ (o 4 Oy 17, 0,00 + S1Z ) s

t

Combining the above estimates and ([3.8)), we conclude that, for a large enough
£ > 0, there exists a constant Cy > 0, s.t.

. T o T
a4 B o [ opan 0O (U g2 ds 5 [ 2 |
t t

T
< eﬁ(Tt)EthOKF + f (Ca+ |f(37070)|2)d5] :
t

which yields the statement of the lemma. ]

Proposition 3.1. Under Assumptions 3.1 and [3.2, for any n > 1, the BSDE
B3) has a Markovian solution (Y™, Z™). In particular, there exists a measurable
function u™ such that Y = u™(t, X;). Moreover, the estimates ([3.0)—B1) hold
with (Y™M 7MY and pyy. replaced, respectively, by any solution (Y™, Z™) of (3.3))
and by the identity function.

Proof. The main statement of the proposition follows from Theorem 2.8 in
[44] (without the localization). To be able to apply the latter theorem, we first
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consider the following auxiliary BSDE, which can be viewed as a middle ground

between (B.3) and (B3.5):

T T
(3.10)  YM = g(Xp) +J FrMis X, Y znMyy s J ZmMaw,,
t ¢
with
F(t, @,y 2) = f(t @y, 2) — npan (0(y) Vi (y) (1 + [2])

and pyr, (z) = x A M;. We claim that the unique solution (Y™™ ZmM) of ([3.5)
converges (along a subsequence) to a Markovian solution (Y™, ZnM) of ([31I0),
as My — o0. Indeed, this claim follows directly from Theorem 2.8 in [44]. To
verify the assumptions of the latter theorem, we first notice that, due to (3.0),
there exists a constant ¢ > 0 such that [V;""| < ¢, for all t € [0,7] and
n, M. Moreover, for large enough C' > 0 (independent of n and M), h(y) :=
C (aly* + (ée(y) — ¢¢(0))?) is a global c-Lyapunov function for (F™*),,, in the
sense of Definition 2.3 in [44], where « is the constant chosen in the proof of
Lemma 3.1l Indeed, there exists a large enough C' > 0, s.t., for all |y| < ¢, we
have:

%C’ Tr[(z0) T (V2h(y))zo] — CVhA(y) - F™M

> CaTr[(z0)" z0] — 2C [ay + (¢c(y) — ¢c(0))Voc(y)] - f(t, z,y, 2)
+2C0n [ay + (¢e(y) — ¢c(0))Vée )] - VY (y)pan (V) (1 + par, (|2]*))
> |2)* - C,

where we used the uniform ellipticity of o'o, Assumption [[2, and the fourth
property in Lemma [24] and repeated the estimates used in ([B9). In addition,
we have |[F™M(t,z,y,2)| < C + C,|z|?, with the constants (C,C,) independent
of M,. Observing that F™M converges to F™M locally uniformly, as M, —
o, we conclude that the assumptions of Theorem 2.8 in [44] are satisfied and
that (I0) has a Markovian solution (Y™™ Z™M) which is a limit point of
{(Yn’Mv Zn7M)}M2'

Next, we recall that, due to (3.6]), |Y™| is bounded uniformly over M. Hence,
[Y™M1| can be bounded uniformly over M; > 1, and, in turn, (Y™, Z7M1) solve
B3) for any large enough M; > 0.

The estimates ([B.6)—(B.7) are obtained by repeating the proof of Lemma [3.1] for

the equation (B.3]) in place of (3.5). O

3.3. A priori estimates. The following result relies on the asymptotic convexity
of the squared pseudo-distance function, stated in Lemma

Lemma 3.2. Under Assumptions[31 and[3.2, there exists a constant C' > 0, s.t.,
for any n = 1, any solution (Y™, Z™) of B3)), and any t € [0,T], the following
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holds a.s.:
T
nwm")th 2V (1 +|202) ds]
t

T
< cmlmz - |f<s,o,o>|2ds] ,

and, in particular,
d(Y;", D) < Cn~ Y2,

Proof. We begin by applying 1t6’s formula to |1(Y;)|?, to obtain
T T
) =2 [ WO Y7 2 -2 | e s
t t

T T
(3.11) —zf n|\If(Ys”)|2|Z;L|2ds—2f WYY - Zrdw,
t t

1 T
-3 | vz

Remark 3.1. Note that the Hessian of 1¥?* has a discontinuity at 0D. To justify
the use of Ito’s formula, we approzimate 1* by a sequence of C* functions {g™}, so
that g™, Vg™ and V2g™ converge, respectively, to 1¥?, Vi? and V*)? everywhere
in RY, and |Vg™|, |V2g™| are locally bounded uniformly over m. To construct
such a sequence, we first define

o(y) == o(y) 1=0(ly|=R=1)+I(|ly|=R), ¥(y) == o(y)+xlyld(d(y)/e), yeR,
where we recall the original function ¢, appearing in Assumption 1.1, and use the
same ¥, R, and €, as the ones used in Subsection[Z3 to define ¢ (see [2.8])). It
is clear that Qﬂ(y) = Y(y), for y e R\D, and that @E(y) = ¢(y), for ye D. Thus,
1& is a smooth extension of ¥ into D. Next, we consider an infinitely smooth
nondecreasing function p : R — R, such that p(z) = —1 for x < —1 and p(x) = x
for x =0, and define

9" (y) = %f (miﬁ(y)> , yeRY

It is easy to check by a direct computation that ¢™(y), Vg™ (y) and Vg™ (y)
converge to zero as m — o, for any y € D. On the other hand, g"(y) and its
first two derivatives coincide with v*(y) and with its respective derivatives, for all
y € R\D and all m. Thus, we obtain the desired sequence {g™}. Applying It6’s
formula to ¢g™(Y;") and using the dominated convergence theorem to pass to the
limit as m — o0, we establish (B3.11).
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As |U] is linearly bounded (see Lemma 2.4), we conclude, as in the proof of
Lemma [3.T], that the local martingale in the above representation is a true mar-
tingale.

Next, we note that
20(Y)) - f(s, Y, Z7) < n|U(Y)[P + 0t f(s, Y Z0),
and use Lemma [3.1] to obtain:
(3.12)
T
B 200 7(s, Y2 22)ds
t T T
< Etﬁ n|U(Y)*ds + C’nlEtl|§|2 +£ (1+1£(s,0,0)]*)ds | .
In addition, Lemmas 2.4l and 2.5 yield
Te[(Z)) V2R (Y Z7) = —CO(Y])|Z] .
Then,
A CL CANREAPARE ALY
(3.13) < (Cn|O(Y])| = en?|W(Y)[*) 1277
Next, we observe that
(3.14) (Crlw (V)| = Cn*|R(Y)?) | 2017 < C1 27"
Collecting (B313)—(B.I4) and using Lemma B.I] we obtain

(3.15) - EtJ; (Tr[(Z) V2 (Y1) Z2] + 20O (V)P Z01) ds

T T
< CnlEtJ |Z7%ds < CnlEtl|§|2 + J (1+ |f(s,0,0)|2)ds] :
t t

Taking the conditional expectation in (B.I1]), multiplying both sides by n, and
using (3.12), (315), we complete the proof. O

The following proposition improves the rate of convergence of Y™ to D.

Proposition 3.2. Under Assumptions[3.1 and[3.3, there exist N, C' > 0, s.t. for
any n =N, any solution (Y, Z™) of B.3)), and any t € [0,T], the following holds
a.s.:

nmp(Yy") < €
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Proof. First, we denote by |[V?%(y)|« the maximum absolute value across all
negative parts of the entries of the matrix V29 (y). Next, we fix arbitrary ¢, > 0
satisfying

1 -1
e<(5+supM) | 6<<5+2 . |n(y)-f(s,y,2)lgoo> |

veop |V (y)[? yedD, zeRIx M se[0,T] Vi (y)|

and define
2

U(y) == (U(y) = 1/(en)) "V (y) = %V ((@(y) = 1/(en))*)",

H(y) == V* (((y) — 1/(en) ") = 2V 1)V (y) Lys e +2(0(y) —1/(en)) V2 (y).

Next, we apply It6’s formula to ((¢(Y*) — 1/(en))™)? (the validity of Ito’s
formula for the function ((¢» — 1/(en))™)? is justified similarly to Remark B.]), to
obtain

(W) — 1/(en)))? =2 f UV - (s, YR Z0)ds - 2£ ATV |07 (V)| ds
(3.16) =] L (v | Ze s — 2 | L) zraw,

1 T n\T 17 n n
-5 | ROz

As |U"| is linearly bounded (see Lemma 2.4]), we conclude, as in the proof of
Proposition B.I] that the local martingale in the above representation is a true
martingale.

Next, we note that
20M(Y") - f(s, Y Z3) = n| (Y)W (Y]
< UMY EY) - f(s, Y Z0) = np (Y[ VR (Y)]) -

Notice that, whenever U"(Y]") > 0, we have ¢)(Y*) = 1/(en) and, hence, ny)(Y]") =
1/e. Then, since € > 0 satisfies

-1
e |e+2 sup Hn(y> ' f(svyv Z)H,s,ﬂoo 7
yedD, R ™, s¢[0,T] IV (y)

and since Y is close to D for large enough n (due to Lemma B.2]), we conclude
that

n n n Hn(y) : f(s>y> Z)Hffoo
Y IVY(Y™)| = [Vy(Y. 2
ny(Y) [V (Y])]| = [V (Y]] (5 + ye&D,zeﬂi}ij;E’L,se[O,T] SZ000] )

> [Vo(Y)le/2 +2n(YS) - f(s, Y, Z0)]
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and, in turn,
(3.17) 20M(Y) - f(s, Y Z7) = nR (Y)W (Y]")] < 0.

Next, we recall that

%Tr[(Z?)TFI(K")Z?] > (Y(Y]) = 1/(en)) " Te[(27) V(Y] Z{]

and, hence,

—%Tr[(Z?)Tﬁ(K")Z?] < V2OV (V) = 1/(en)) ™ |22,

In addition,
—[TYICYNZP = =Yoo @) = 1/(en)” | 2.

Collecting the two equations above, we deduce
1 n ] n\ r7n n n/ymn n
-5 T[(Z)) H(Y) 2] = n e (V)| ()| Z:

2
< (V) = 1/(en) " |1Z2 P (V20 (Y0 | = V(Y P (YD) -
Recall that, whenever ¢ (Y) = 1/(en), we have ny(Y]") = 1/e. Then, since € > 0

satisfies )
|V2w(y)|*>_
e< e+ sup ——F ,
( yeap |V (y)[?

and since Y is close to D for large enough n, we conclude that

VoY) P (Y] = (VYD) ( T Vo)

> [V (Y e/2 + [V (V)]

and, in turn,
1 ~
(3.18) = 5 Tl(Z0) T H(Y) Z7] = o (V)| en (V)| 2] < 0.
Taking the conditional expectation in (8.I6]), we make use of equations (3.17)

and (3.18), and of the fact that [U"| < ||, to obtain

T
((p(Y/") = 1/(6“))+)2+Etf (Y (1+127)7) ds < 0

t

and complete the proof. O

Using Proposition B.2, we can improve the statement of Proposition B.1] and
deduce that the Holder norm of the Markovian solution of the penalized BSDE
is bounded uniformly over n.
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Corollary 3.1. Under Assumptions [3.1] and [3.2, there exist constants N > 1,
o' € (0,1], and C > 0 (independent of n), s.t., for any n = N, the BSDE (3.3
has a Markovian solution (Y™, Z™), with Y;" = u™(t, X}), and any such solution
satisfies
(319) sup |un(t> l;) _ un(t,> lj)|/ <

(ta)<(t) |0 = V)02 + o — 2!

Proof. The statement of the corollary follows from Theorem 2.5 in [44] (without
the localization). To verify the assumptions of the latter theorem, we consider
the following capped version of (B.3)):

T T
(3.20) VN = g(Xr) 4+ J FN (s, X, YN 20NV )ds —J ZmNaw;,

t t
with R

Fr(tx,y, 2) = f(t @y, 2) — pn(nd(y)) Ve (y) (1 + [2))

and py(z) = x AN. PropositionsB.I]and B.2limply the existence of (large enough)
N, > 0, s.t., for every n = N, there exists a Markovian solution (Y, Z™) of
B3), with Y, = u™(t, X;), and any such solution also solves ([3.:20). Moreover,
there exists ¢ > 0 such that |u"| < ¢ for all n.

Next, we fix N as above and verify easily (as in the proof of Proposition
BI) that, for large enough C' > 0 and small enough a > 0 (independent of
n), Claly|® + (¢c(y) — ¢c(0))?) is a global ¢-Lyapunov function for (F™Y),, in
the sense of Definition 2.3 in [44]. In addition, |[F™N(t,z,y,z)| < C + Cy|z|?,
with the constants (C,Cy) independent of n. Thus, Theorem 2.5 in [44] yields
the uniform boundedness of the Holder norm of u™. ]

W.lo.g. we assume that the statements of Proposition and Corollary B.1]
hold with 9t = 1. From Corollary 8.1l we deduce that there exists a subsequence
of {u"},>1 converging locally uniformly to a function u satisfying (3.19). To
alleviate the notation, this subsequence is still denoted (u"),>1. Recalling that
Y" = u"(t, X;) and introducing Y; := u(t, X;), for t € [0, T], we observe that

— 0,
n— -+

(3.21) E[ sup |V — Y|
te[0,T]

since t — (¢, X;) is a.s. continuous and {|Y"|} is bounded uniformly by a constant,
see Lemma 3.2

We conclude this section with the following lemma, which is used in the next
section. This lemma provides a uniform upper bound on the second moment of
the auxiliary process

t
™ = exp (J (1 + | K7 + |K;”’|> ds) , tel0,T],
0
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where we recall (3.4]).

Lemma 3.3. Under Assumptions[31 and[33, for any e > 0, there exists N > 1
(independent of n) such that, for alln =1 and all 0 < k < N, we have a.s.:

T(k+1)/N ‘
E, f ZM2 4 [K7ds | <e, Vte [Th/N,T(k + 1)/N].
t

In particular, for any B > 0, there exists a constant C = C(B) (independent of
(n,m)), s.t.

E[(T3™)’] < C,
for alln,m > 1.

Remark 3.2. [t is worth noticing that the constant C, appearing in Lemmal3.3,
does not depend on the initial value x of the diffusion X, as follows from the proof
of the lemma.

Proof. The proof of the first statement of the lemma is an improvement of
the estimates in the proof of Lemma B.I with the use of Corollary BI. We
fixt <t e€[0,T], 5/ > 0 and o > 0, and apply Itd’s formula to the process
(D (al Y + (pe(Y) — ¢c(0))?)seprr (recall (B3)) to obtain, as in the proof
of Lemma [3.1]

t t
[Y"[? + cE U |21 + IKSIdSI < E [eﬁl(tl_“lYJ‘I2 + Cf MO+ |F(s, X, 0,0))ds |
t t

which holds for large enough 5" and small enough a.
Then, by using the upper bounds on |Y"|, see PropositionB.2land on |F'(., ., 0, 0)|,
see Assumption [3.2] we obtain:

t/
B || 12ip |K:|ds]
t

tl
<E, | IYpP — Y7+ C f

t

D1+ (s, X, 0, 0)|2)ds]

't — n n n n n C 14
<E, |77 = DIV + V7 + Y (¢, Xe) = (8, Xl + (" t>_1)]

<CENE = 1) + CB (¢ = 72 + X = X7 | < (B = )7,

where C’ is independent of n, and we made use of Jensen’s inequality and of
standard SDE estimates on X in the last inequality. The above proves the first
statement of the lemma.
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To prove the second statement, we fix an arbitrary f > 0 and consider N
corresponding to € = 1/(8/). Then, the first statement of the lemma and the
John-Nirenberg inequality yield:

B [62/3 5 |f<;w+|f<;"|ds] <E [62/3 o TN IR K s, 2B 5Ty |f<;w+|f<;"|ds]]

(N—1)/N [

< 9F [626 fo o |ks|+\K?\ds]
Iterating the above, we obtain the desired estimate. ]

3.4. Existence and uniqueness. We denote by {(Y", Z")},>1 a sequence of
Markovian solutions to ([B.3) satisfying (B2I) (whose existence is established
in the previous subsection). The goal of this subsection is to establish that
(Y™, 2", K") € 2 x 2 x H sy (with K™ defined in (34)M converges to
a solution of the reflected BSDE ([.2)) and that this solution is unique in the
appropriate class.

Theorem 3.1. Let Assumptions [31] and [3.2 hold. Then, there exists a triplet
(Y, Z,K) e % x #?% x A", such that

Tim (IY" = Y], | 2" = Z] 2, | K" = K 52) = 0.

which solves ([L2). The process K is absolutely continuous and satisfies, for all
p >0,

(3.22) HeVarr] < oo
Moreover, this solution is unique in the class % (1) (recall Definition [21]).

Remark 3.3. If, in addition to Assumptions 31 and[3.2, g and F are globally
Lipschitz in x (i.e., o = 1 in Assumption [3.2), then there exists a constant C
such that

|Z| < C, dt x dP-a.e.

Indeed, using the same arguments as in the proof of Corollary 3.1, we conclude
that the conditions of Theorem 2.16 in [25] are satisfied. The latter theorem yields
the existence of a constant C, s.t. |Z}'| < C for a.e. (t,w) and for all n. Then, it
follows that |Z| < C.

Remark 3.4. [t is worth noticing that every exponential moment of Varp(K)
can be bounded by a constant that does not depend on the initial value x of the
diffusion X, as follows from Remark[3.2 and from the proof of Theorem [3 1.

2The fact that K™ € ¢ follows from the inequality ([B77) and the second statement of
Proposition B.11
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Proof. 1.a We first prove the uniqueness of the solution in the desired class. For
any solution (Y', 72’ K') in % (1), we have

(3.23) E leﬁ*ovafT(K')] < +o0,

for some p’ > 1. Setting 1 < p:= (14+p")/2<p/,¢ :=p'/p>1andq=¢/(¢d—1),
we obtain, using Holder inequality,

(3.24) E[e’%(v”T(K >+VarT(K')>] < E[e?z’{)varT(MF Ele?%’vm(m)] v

By ([3:23), we have E e%varT(K)] = Ele%ovarT(K)] < . Then using (3.22), which
is proved below, we obtain
(325> E[eRLO(VarT(K)JrVarT(K/))] < +oo.

Proposition 2.2 then, yields the uniqueness stated in the theorem.
1.b The fact that K is absolutely continuous is proved in Lemma 2.1
2. Turning to the existence part of the proof, we have already obtained the
convergence of {Y"} — recall ([3.2I)). Moreover, it follows easily from Proposition
that, with probability one, Y; takes values in D for all ¢ € [0, T7].
We now turn to the convergence of {Z"}. For n,m > 1, we denote
Ofy = f(&, Y, 27 — f(t,Y,", Z]"), O0K :=K"— K™,
oY =YY" =YY" L =7"—-72".
Applying 1t6’s formula to (66'5|5Ys|2)se[tﬂ, we obtain
T T T
0Y;|* + f P DI5 7|2 ds = 2f eV TIEY, - 6 fods — 2f eV DSY, - S K ds
t t t
(3.26)
T / T /
— 2f P08y, 52, dW, — f P 5015Y, P ds.
t t

Choosing a large enough ' > 0 and using the standard estimates, we deduce

(3.27) E[LT|5ZS|2ds] < CEMT)(SYS K, ds].

: 2
Note that Lemmal3.3lyields the existence of a constant C, s.t. El (Sép |6Ks|ds> ] <

C, for all n,m. Then, using the Cauchy-Schwartz inequality, we obtain
T ) % T ) 2 %
E[J |0Y - 5Ks|ds] < E| sup [0Y;]? E (J |5Ks|ds> .
0 s€[0,T] 0
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The above estimate, along with (8.27) and (B8:21]), implies that {Z"},>; is a Cauchy
sequence. Thus, there exists (Y, Z) € #? x 2 such that (Y",Z") — (Y, Z).

Next, we recall that
t ¢
K=Y =Yg o [ g veiznas -, - | zraw.
0 0
Doob’s maximal inequality implies that {}™} converges in .#? to M, with M, :=
Sé ZsdWs. As f(t,-,-) is Lipschitz, we conclude that
(3.28) |K" — K| g2 — 0,

with the continuous process K defined as

t t
K, =Y, — Yy + J £(s,Y,, Z,)ds — J Z,dW.,.
0 0

We now prove that K € #!, and that dK; is directed along n and is active only
when Y touches the boundary. To this end, we define the auxiliary nondecreasing
processes

t
Kﬁ:fW@ma+me&temﬂ.
0

From Lemma [B.T] we deduce the existence of a constant C, s.t. IE[K'%] < C for all

n. Then, using Proposition 3.4 in [5], we know that there exists a nondecreasing
nonnegative process K, two sequences of integers {p < N,}, with p — 00, and a
family of numbers {\?}, with 3™ A2 = 1, such that

r=p’'r
Np
(3.29) P (”Kt = Y INK] > K, Ve [0,T]> =1.
r=p

The above implies that the measure induced by d?K; on [0, T"] converges a.s. to
dK;. Then, for any bounded continuous process x and any 0 < t; <ty < T,

(3.30)
to . T .
P(t1,ta) : f thA”W (Y + |2 P)dt = f Xtd”Kt—>J XKy, a.s.
0

t1

From the first statement of Lemma (with the use of Proposition B.2)), we
conclude that, for any € > 0, there exists N > 1 (independent of n) such that, for
all pand all 0 < k < N, we have a.s.:

E{|n" (¢, T(k+1)/N)|] <e, Vtel|Tk/N,T(k+ 1)/N].



30 JEAN-FRANCOIS CHASSAGNEUX, SERGEY NADTOCHIY, ADRIEN RICHOU

Then, repeating the last part of the proof of Lemma B.3] we conclude that, for
any (3 > 0, there exists a constant C', s.t.

E{eﬁ"p(O’T)] <C, Vp.

Thus, the family {exp(8n?(0,7))}, is uniformly integrable. The latter implies,
in particular, that the convergence in (3.30) holds in £' and that all exponential

moments of K are finite.

Next, we define
Z NPKT [0, T7.

We also denote by % a Lipschitz extension of Vi) into D (constructed as in
Remark B.]). Then, for any event A and any t € [0, 7], we have:

7K, 1,4] - Utz MDY )oY (1 + |27 )ds 1A]
= “ V(Y. va (YY) (1 + |27 ?)ds 1A]

([Z)\psup Y7 — Y| (1+|ZT|) D

r—p S€ [0,¢]

U Vo (Y,)dK, dslA]

where we used ([3.30), and its £! version, and the estimate

t ¢ rioy11/2
E'sup Y7 -, f (1+1Z:[2)ds | < ClY" =Y | B eh0H120 |7 < Oy =Y e,
0

s€[0,t]

which follows from Lemma [3.3]
On the other hand, as K™ converges to K in %, F[PK; 14| converges to F K;1 4],
and since A is arbitrary and K. is continuous, we conclude:

(3.31) P (Kt — f’va(ys)df(Sds, Vie [O,T]) ~ 1.
0

Note that the integrability of K7 and the above representation, in particular,
imply K e 71
It only remains to show that

(3.32) JT 1p(Y;)dK, = 0.
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To this end, we choose an arbitrary Lipschitz f supported in D and any event A,
to obtain:

EUT f(V)dEK, 1A] = lim E“ F(Y) wa (Y)Y (1 + |27 [*)dt 1A]

0 n—o0

T Np
glgorz“ va V7)o (Y7) (1 + | Z02)dE 14

)_o

As Ais arbitrary, we conclude that, for any Lipschitz f supported in D, we have
So f(Yy) dK; = 0 as.. Approximating 1p with a sequence of such f, we, e.g., use
the monotone convergence theorem to deduce ([3.32). Combining the latter with
(B31)), we obtain (L.2)(ii) and conclude the proof of the first part of Theorem [B.11

[

Remark 3.5. Theorem[3. 1 implies that, under Assumptions[3.1, [3.2 and[2.1] with
0 = 1, there exists a unique solution to (L2) in (Y, Z, K) € % x 7% x A",

+0< [Z A sup |Y) — Yt|J (14 |ZI%)at
r=p

te[0,T]

4. WELL-POSEDNESS BEYOND MARKOVIAN FRAMEWORK

4.1. Discrete path-dependent framework. In this subsection, we extend the
existence and uniqueness result obtained in a Markovian framework, see Theorem
B.1, to a discrete path-dependent framework.

Assumption 4.1. Let { be an arbitrary strictly positive integer and consider the
partition 0 =ty <ty < .. <t, =T of [0,T]. We assume that

éu:g(th,---,th> and f(sayaz) :F(Saqu/\sa“' aXte/\say7Z>
where

(i) g is a-Hélder and takes values in D,

(i1) F is measurable in all variables, globally Lipschitz in (y, z), uniformly over
(1, ...,x0), and globally a-Hélder in (xq, ..., z¢), uniformly over (y,z), and
|F(-,--+,0,0)| is bounded.

We note that ¢ = 1 corresponds to the Markovian framework with an extra
regularity assumption on the generator with respect to z. We also recall that
Assumptions [[.1] and hold throughout Section [ even if not cited explicitly.

Theorem 4.1. Let Assumptions[3 1 and Assumption[{.1 hold. Then, there exists
a triplet (Y, Z, K) € . x A2 x H" that solves (L2). Moreover, all exponential
moments of Varp(K) are finite, and this solution is unique in the class % (1)
(recall Definition[2.1).
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Proof. Once the finiteness of the exponential moments of Varr(K) is proven,
the uniqueness of the solution in the class % (1) follows from the same arguments
as in step 1.a of the proof of Theorem 3.1l Let us now prove the existence part of
the theorem. To this end, we use the backward recursion to construct a solution
on each interval [t;,¢;,1] for 0 <i < /¢ — 1.

Since the case ¢ = 1 corresponds to the already treated Markovian framework,
we assume that £ > 1 and we consider the interval time [t,_1,T]. For any (¢,z) €
[0,T] x R?, we denote by X% the unique solution of (3.I)) on [t,T], which starts
from z at time t. We reserve the notation X for the original diffusion started
at time zero. For any x = (xy,...,x,_;) € (R¥)*"! we denote by (Y*, 2%, K¥)
the solution of (L2) on [t,_y, T], with the terminal condition g(x, X2~***"!) and
with the generator F'(.,x, Xt-v*-1 ) whose existence is ensured by Theorem
8.1l and whose uniqueness in an appropriate class follows from Theorem 2.2

Next, we denote by (Y*" Z*") a Markovian solution of the penalized BSDE
B3) on [ty_1,T], whose existence is ensured by Proposition Bl In particular,
there exist measurable functions u™(x, .,.) and v"™(x, .,.) such that

Xxn _.n te—1,Xe—1 Xn _,.m to—1,X¢e—1
Y =u"(x,t, X, ), Zp" =0"(x,t, X, ).

By considering a sequence of Lipschitz approximations of (3.3), given by (B.3),
we apply Theorem 5.4 in [26] and, passing to the limit for the Lipschitz approxi-
mations as in the proof of Proposition B.Il we conclude that a Markovian solution
to (8.3]) can be constructed so that u™ and v™ are jointly measurable in all vari-
ables. Passing to the limit in n along a subsequence, we use Theorem [B.1] and
the uniform Hoélder estimate in Corollary Bl to deduce the existence of jointly
measurable functions u and v satisfying

(4.1) Y =l XU, ZE = o X,

Then, by denoting X = (X,,...Xs,_,), we consider the progressively measurable
processes (Y X, ZtX)te[tg,l,T] and define
t ¢
K = YtX—Yti‘ﬁf F(s, X, X, v X, Zi‘)ds—f ZEAW,, tea <t<T.
to_1 te—1

te—1,Xt, 4

We note that X, = X, and that (Y}, ZX, KX)ep, , 1 is a solution of
(L2) on the time interval [t,_1, T] satisfying KX = 0.

In order to iterate this construction and to extend the solution to the time
interval [t,_o,t,_1], we have to ensure that the associated terminal condition Ytil
of the reflected BSDE (L.2) on [t;_o,t,1] is an a-Holder function of X. To this
end, we recall the function v in (Z1]) and define, for all X = (x4, ..., X¢_s) € (R¥)*2

and x,_; € R?, the deterministic function

g(i? Xé—l) = u(f(, Xy—1, té—la XZ—l) — }/:;fiefl.
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Let us prove that this function is a-Hélder. Indeed, for any x := (X,x,.1) €
(RT) and x' := (¥, x},_,) € (RY)*"!, Proposition 22 with p = 2 yields

9(x) = §(x)| < JY* = Y2
4i| 1/4

T , 4
+CE [(J |F(s,x, XX yx 7%) F(s,x',Xﬁlil’x"l, Y, Z;‘)|ds) ]

< latx, i) o, )

1/4

0

0<s<T

/ 1/4
<C <|x —X|*+E [ sup | Xlerxer Xﬁfl’x21|4a] )
~ s ,

with a constant C' that does not depend on x (see Remark[3.4). Then, the Jensen’s
inequality and the standard SDE estimates yield

19(x) — g(x)| < Clx = x|,
which gives us the a-Hélder property of §. Considering the reflected BSDE (I.2))
on [ty_o,t,_1], with the terminal condition Ytil = §(Xy, ..., Xy, ,) and with the
generator
F(S, th A8y ey th,g/\sa th,l A8 th—l rsy Y, Z)a
we deduce, as in the first part of the proof, that it has a solution in the form (4.]).

Finally, iterating the above construction, we concatenate the “Y” and “Z” parts
of the solutions constructed in individual sub-intervals, and we sum up the “K”
parts (assuming that every individual “K” part is extended continuously as a
constant to the left and to the right of the associated sub-interval). It is easy to
see that the resulting process (Y, Z, K) € .72 x #% x # " is a solution of (I2)
on [0,7]. O

4.2. General case.

Theorem 4.2. Let Assumption [21] hold with 0 = 2. Then, there exists a triplet
(Y, Z, K) € 9% x H#?* x 7 that solves (D), and this solution is unique in the
class U (2).

Proof. The uniqueness part of the theorem is a direct consequence of Proposition
2.1 and Corollary 221 Let us now prove the existence part: To do so, we shall
construct a Cauchy sequence of approximating reflected BSDEs.

First, we observe that the terminal condition ¢ can be approximated by a sequence
of random variables of the form ¢" := g,(W,,,...,W,;, ), where g, is infinitely
differentiable. The sequence (£"),en+ can be chosen so that it converges to £ in
L1 for any q = 1 (see, e.g., [36]). In particular,

; _n12p/(p—1)7] =
(4.2) lim E[[¢ - ¢"/D] =0,
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with p > 1 appearing in Proposition 2.1l Replacing g, by g, A [[£] .=, we can
assume [€"| g < €] g». We observe that " satisfies Assumption AIIi) for
X =W.

Second, to approximate the generator, for every n € N*, we denote by K" the
closed ball in R**? of radius n centered at zero, and choose a sequence of numbers
€, 1 0. We set

b= [ f(,0,0) g + Kyysuply| + nky.,
yeD

recalling Assumption [[L2. For each n, we introduce £" the compact convex subset
of €(D x K") (the space of continuous function endowed with the uniform norm
denoted |- | ) consisting of Lipschitz functions, with the Lipschitz coefficients K7,
in the variable y € D and K, in the variable z € K", and whose (uniform) norm
is bounded by /,. Note that fic» is valued in £". We are now going to build an
approximation of fip,xn in £" satisfying Assumption &1l (for X = W).

Let {¢7}M" be an e,-cover of the compact set £" with M, a positive integer.
We denote by f"(t,-) the (measurable selection of the) proximal projection of
fioxicn(t,-) on {op}ny - Tt satisfies

My, ~
frt) = ) on O™ = u()ip and () = fipwen(t )]s < e as.
m=1

with 7™ a progressively measurable process which takes its value on the (non zero)
extremal points of Sy, = {r € RM |0 < 2™ < 1,3 2™ < 1}. Then, using
the dominated convergence theorem, we have

T ~
- EU | Fpn (2,) = F7 (2, ->|§”“””dt] < T(e,)?/0 ),

We now classically approximate (7} )wo,r] by an adapted process (7;)iwe[o,1]
piecewise constant on a grid II,, := {ty = 0 < --- <t} <--- <tp =T}. This
process can be chosen to be Sy -valued and satisfying

T
A (2p/(0=1) En
EUO 7 =t dt] S GL,e2pen -

Setting
kn—1

(4.4) ) = ) o)ig . 1(t),
k=0

My

which is £"-valued, as a random convex combination of the {¢!"}.'",,

T ~ PN
(45) E[ [ 17 - e ->rip/<f’”dt] <en

we compute
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Then, we apply the approximation result of [36] for each ﬁ% Introducing, if
necessary, a finer grid ®,, < II,,, we set

772@ = Ps [T]TgL ((Wr)re%n,rétZ)] )

where r is a smooth function with values in R and Bs the (orthogonal) pro-
jection onto Syy,. We can chose ! such that

2 1 €n

(4.6) Hnp — o [P/ < (L2 )1
Setting f™(t,-) = :”01 n ()7 Zl(t27t2+1](t>’ which belongs to £", we have

T A
(@7) B [ 1770 = o] < e,

0

Collecting the above, we conclude that
T
(4.8) lim Ef sup | f(t,y,2) — ["(t,y, 2) PP Vdt = 0.
n—ow 0 yeD, zeKn

We extend f"(t,y,-) to R”*¥\K" as a constant in each radial direction, so that
its uniform norm and Lipschitz coefficient do not change.

When, moreover, f satisfies Assumption 2.I}(i) (resp. Assumption [2.1}(iii)),
the above construction allow to build an approximating sequence f" having the
same properties. One simply works with £" instead of £" where £ is the closed
convex subset of £" whose function satisfies Assumptlonﬂ( ) (resp. Assumption

2Tk (iii)).

Now, since, for any n € N*, £" and f™ satisfy Assumption 1] we can invoke
Theorem E.T to obtain an unique solution (Y™, Z", K™) € .2 x 7% x 4! to (I.2)
associated with this data. Thanks to Proposition 2.1l we are allowed to apply
Proposition for all n,m € N*,

[Y" = Y™ g2 + |2 = 27| 2 + | K" = K™ 0
(4.9) < CE[¢" — em2w/v-0] " 0/C)

T 2p/(p—1)1 2—1)/(2p)
( [NEREEE fm<s,Y£,Z:>|ds) ] ,
0

with a constant C' that does not depend on n and m.

+ CE
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Applying the Cauchy-Schwartz, Jensen’s, and Chebyshev’s inequalities, we ob-

tain
. 2p/(p-1)
El(f (1+ IZZ‘I)l{|Z?>n}dt> ]
0
- /-2 o
ng/@l)l/zE[(f (1+|Zt"|)2dt> ] EU 1{Z?|>n}dt}
0 0

Tp/(p—1)-1/2 T 2p/(p-1) 7 1/2 T 1/2
< Ty (J (1+|Zy|)2dt> EU |Zf|2dt} |
n 0 0

Using Proposition 21l and the energy inequality for BMO martingales, we can

1/2

‘ - L A\
estimate E <S0 (1+127) dt) uniformly over n. Then, for all m > n, we
obtain from the above estimate:
T 2p/(p—1)7 (P—1)/(2p)
Bl ([ 1rmeyez - ravezoe) ]
0
T 2p/(p—1)7 (P—1)/(2p)
0
(4.10)
T 2p/(p—1)7 (P=1)/(2p)
+ CE (J |fr(t, Y Z0) — fm (Y, Zt")|1{|zglsn}dt> ]
0

C T o (p—1)/(2p)
n n n n n\ |2 -1 _
S oo T CEUO Y ZE) = f( Y 20 1{nnev,23<n}dt]

T (p—1)/(2p)
+ CEUO LY 20 — (LY Ztn)|2p/(p_1)1{yt”eﬁ,Zf|<m}dt] :

In view of (8], the right hand side of the above vanishes as n, m — c0. Collecting

(@2), (49) and ([EI0), we conclude:
[Y" = Y™ 2 + |27 = 27| 2+ | K" = K™ 2 25255 0,
In other words, (Y™, Z", K™),en+ is a Cauchy sequence in . x 32 x .2, Then,

there exists (V, Z, K) € #2 x % x #? such that (Y", 2", K") “="% (Y, Z, K).
Moreover, Y takes values on D. As (Y",Z", K™) is the unique solution to (.2l)
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associated to the terminal condition £" and the generator f”, and since we have
T
B| [ ez - vz
t

T T
<E U If"(s,Ys,Zs>—f(s,Ys,Zs)|ds}+0E U Y —Y,| + |27 — Z,|ds ]|,
t t

we can easily pass to the limit in (L2])(i) to show that (Y, Z, K) satisfies (L2)(i).

It remains to prove that K € ¢!, that dK; is directed along n(Y;) and that
it is active only when Y touches the boundary (the latter two properties will be
shown via the alternative characterization given by Lemma 23]). Repeating the
derivation of (2IT))-(ZT12) for (Y™, Z™, K™), but without taking the conditional
expectations, and with § = 0, we obtain:

T T
J dVarg(K") < C (|§"|2 + J 2V - f(s, Y, Z7)ds — J

0 0 0

T
zygzgdws) :

where the constant C' does not depend on n. The right hand side of the above in-
equality converges in probability, hence it also converges a.s. up to a subsequence
which we still denote {(Y™, 2", K™)}. Then, {Varp(K")},en+ is a.s. bounded
uniformly over n, and Fatou’s lemma yields that Vary(K) is a.s. bounded — i.e.
K is a bounded variation process. Thanks to Proposition 211 {Vary(K™)},en+ is
uniformly integrable and, hence, K € #'. As (Y",Z", K") solve (L.2)) with the
terminal condition £" and the generator f”, Lemma yields the existence of
a constant ¢, independent of n, such that, for all continuous adapted process V'
with values in D, we have

T
f (Y™ — V)AK™ + c|Y™ — V,Pa(Y")dK" > 0 as.
0

Finally, we use Lemma 5.8 in [20] to pass to the limit in the above inequality, to
obtain .

f (Y, = V)AK, + c|Y, — Vi|*n(Y,)dK, = 0 as.
0
and complete the proof of the theorem via another application of Lemma 2.3l []

5. CONNECTION TO BROWNIAN ['-MARTINGALES

It turns out that the solutions to reflected BSDEs in non-convex domains,
defined via (L.2)) and constructed in the previous sections, are naturally connected
to the notion of martingales on manifolds (a.k.a. I'-martingales — see [15]). In
this section, we investigate this connection more closely, in particular, discovering
a new proof of the existence and uniqueness of a Brownian martingale with a
prescribed terminal value on a section of a sphere and showing the sharpness of
the weak star-shape property in Assumption [L.1]
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The connection to martingales on manifolds is made precise by the following
proposition, which states that, under certain assumptions, the Y-component of
the solution to (L2]) always stays on the boundary of the domain D. Treating 0D
as a manifold and expressing dK; via V2¢(Y;) and Z;, we discover that Y satisfies
the definition of a Brownian I'-martingale on the manifold 0D given in [15].

Proposition 5.1. Assume the following:

e there exists a convex domain A, satisfying A nD < 0D,
b 1{y€8’D\A}Vd(y7 "_4) ’ V¢(y) = O;

e f=0and &€ An dD almost surely,

o (YV,Z K)e S x % x H* solve (L2)).

Then, Y € AnD < 0D almost surely. Moreover, we have

(5.1) dVar,(K) = —%Tr[ZtT VoY) Z]| dt.

Finally, Y is a I'-martingale, with the prescripted terminal value &, in the manifold
0D endowed with the Riemannian structured inherited from R? and its canonical
connection I, as defined in [15].

Remark 5.1. It is worth mentioning that the assumptions made in Proposition
[5.1] imply that the set A cannot be smooth. To obtain an intuitive understanding
of what the set A may look like, we refer the reader to the example that follows.

Proof. We apply Itd’s formula for general convex functions (in the form of an
inequality, as in [3]) to the process d(Y;,.A) to obtain

T
0< d(Y;fa A) < Et ld(fa A) o J 1{Y568’D\A}Vd(yzsﬁ A)dKS < Oa te [Oa T]>
t

which gives us Y € A n D < 0D. Applying Itd’s formula to ¢(Y;) yields (5.1)).
Finally, using (5.]), the fact that dK; is orthogonal to the tangent space of 0D at
the point Y;, as well as (4.9), (4.10), (5.6)(ii) from [I5], we conclude that Y is a
[-martingale on 0D. ]

In the remainder of this section, we assume f = 0 and present a simple ex-
ample of the domains D and A for which the assumptions of Proposition .1
hold. This example allows us to obtain an alternative proof of a known result
on [-martingales using the reflected BSDEs and, on the other hand, to illustrate
the sharpness of the weak star-shape assumption (see Assumption [[I]) using the
martingales on manifolds.

In this example, we construct the functions ¢ and ¢¢, which define the domains
D and C as in Assumption [T} first, in the plane P := R x {0}972 x R of R%
These functions are built symmetric with respect to the yz-axis, as the domains
are themselves symmetric, see the precise description below. Then, we extend
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them to R? via

¢(y) = ¢((T<y>707 "'707yd>>7 ¢C<y> = (bC((T(y)vov "'707yd>>7

o\ 12
with r(y) := <Zf:_11 |yl|2) . By an abuse of notation we denote by the same

names the associated domains D and C constructed in R? and their intersections
with P.

We consider the three parameters « € (0,7/2), n > 0, € € (0,7/2 — «), and the
domains Dq ¢, Can, Aa,e given in Figure[ll which satisfy the following properties.

e C,, is a square centered at (0, —1 —n —sin(«)), with length 2sin(a) + 27,
with the edges parallel to axes and with rounded corners (obtained by
modifying the square in the n-neighborhoods of these corners), such that
0Cq is a C? curve and C,,, is convex,

® D, ;. is symmetric w.r.t. the axis y,.

e 0D, is C* and is made up of the following pieces:

— the arc S, of angle 2, symmetric w.r.t. the axis y,4, of the circle
centered at zero and with the radius 1,

— the arc of angle 2a;, symmetric w.r.t. the axis y4, of the circle centered
at zero and with the radius (2sin(«) + 2n + 1)/ cos(a),

— and two smooth curves £; and Lo, symmetric to each other w.r.t.
the axis y,4, which connect the two arcs described above forming a C?
closed curve that does not intersect itself nor C,,,.

e We denote by A' (respectively, A%) the end point of the curve S, that
belongs to the right (respectively, left) half-plane w.r.t. the axis y,.

e Let us assume that £ (respectively, L2) belongs to the right (respectively,
left) half-plane w.r.t. the axis y;. We also assume that the curve £, is
constructed so that, in its natural parameterization with the starting point
Al the slope of its tangent vector has exactly one change of monotonicity.
Namely, we assume that there exists a point B!, such that the angle
between B! and A! relative to zero is € and such that the derivative of the
slope of the aforementioned tangent vector is continuous, nonincreasing,
and equal to zero at B!. The curve L,, then, satisfies the analogous
property due to symmetry, with the associated point BZ.

e As the curve 0D, . is C?, closed, and without self-intersections, we con-
struct ¢ as the signed distance to 0D, , . in a neighborhood of ¢D,, ,, . and,
then, extend it in a smooth way to R%. ¢¢ is constructed similarly.

e We define S, . as the concatenation of the curves B>A?, S, A'B!, and
we define A, . as the interior of the convex hull of S, ..

e Finally, we always assume that > 0 is small enough, such that C,,, is
included in the triangle with vertices P!, 0 and P?, as shown in Figure [l
This ensures that C_am < Dy e for any e > 0.
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FIGURE 1. Domains Dy ¢, Cays Aae

Let us now consider a terminal condition { € S, and verify that D, ., Aq and
¢ satisfy the desired assumptions. We easily deduce that Ry = 1. Then, for any
a € (0,7/2) and n > 0, there exists €y € (0,7/2 — «), such that, for all 0 < € < &,
the condition (I.I)) holds up to a shift of coordinates in R¢ that maps the origin to
Aoy = (0,...,0,—1 —n —sin(a)). The other conditions of Assumption [L.1] follow
easily.

Next, we notice that, in the discrete path-dependent framework and under
Assumption [£T], we can apply Theorem [4.1] to conclude that there exists a unique
(in 7 (1)) triplet (Y=, Z5, K¢) € 2 x % x ! that solves (I.2) in the domain
D = D, (we suppress the dependence of the solution on 7 and a as they are
fixed in what follows). Proposition B.1l applied to D = D, ,. and A = A,.
(whose assumptions are satisfied by the construction of A, ., £1 and L,) states
that Y lives in S,.. Then, the stability result of Proposition yields that
{(YVr, ZVn KYn)l©_ s a Cauchy sequence and, hence, has a limit (Y, Z, K). It
is clear that Y lives on S,. Then, applying the arguments similar to those used in
the proof of Theorem B.I] one can deduce that (Y, Z, K) solve the reflected BSDE
(L2) in the domain D = D,, ., for any €’ € (0,&,). Applying Proposition 5.l once
more and recalling that Y lives on S,, we conclude that Y is a [-martingale on
the manifold S, with the terminal condition £. The uniqueness part of Theorem
4.1l yields that such a I'-martingale is unique (in %/ (1)).
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Now, let us come back to a general terminal condition. We first notice that
Proposition 2.1] holds for any solution (Y, Z, K) € .#? x % x 2" of (L2) that
lives in S, and satisfies Assumption 2.1)(i) with v replaced by

. Vé(y)
o i= inf =

We can easily compute v, = cos(a). Moreover, we also have Ry = 1 and

|66 (§)z < 1= cos(a).

Thus, we conclude that Assumption 211(i) is fulfilled with 6 = 2 as long as
cos(a) > 2/3. Considering a sequence of discrete path-dependent terminal con-
ditions that approximate the given (general) terminal condition and take values
in S,, we repeat the proof of Theorem obtaining a unique (in % (2)) triplet
(Y,Z,K) € S x % x " that solves (L.2) in the domain D = D, ., for
any £ € (0,g9), and is such that Y lives in S,. Applying Proposition [5.1] once
more, we conclude that Y is a I'-martingale on the manifold S, with the terminal
condition £. The uniqueness part of Theorem [4.1] yields that such a I'-martingale
is unique in % (2).

To sum up, the above construction proves the existence and uniqueness result
for a Brownian I'-martingale with a prescribed discrete path-dependent terminal
condition ¢, satisfying Assumption Il on any sector of the sphere S¢! (we
understand a sector as an intersection of a sphere and a half-space) that is strictly
contained in a hemisphere. For a general terminal condition &, we are only able to
tackle the case o < arccos(2/3). Thus, our results provide an alternative proof of
a particular case of [30} 4], where the existence and uniqueness for any a < 7/2
is established. Considering the case o = 7/2, we notice that, for any D that is
included in the outside of a sphere and whose boundary contains a hemisphere,
it is impossible to find a convex domain C < D that can “see” all points on the
boundary of this hemisphere with a strictly positive angle: in other words, (I.])
can not be fulfilled. Therefore, our existence and uniqueness results fail for the
case of a hemisphere. On the other hand, considering directly the problem of
existence and uniqueness of a Brownian [-martingale with a prescribed terminal
condition on a closed hemisphere of S¥~!, we notice the major challenge that is
due to the non-uniqueness of geodesics, when d > 3. Indeed, assume that & takes
its values in the set {21, 22} consisting of two antipodes on the sphere (i.e., the line
connecting the two points goes through the center of the sphere) and note that
Sr/2 does contain such points. Then, for any shortest arc 2129 © Sy /2, there exists

a [-martingale on the manifold 2129 with the terminal condition &. As the arc 2120
is a geodesic, we conclude that the resulting I'-martingale is also a ['-martingale
in the larger manifold S;/;. Assuming that { takes each of its two values with
strlctly positive probability and recalling that there are infinitely many geodesic
arcs z12s on S, /2, we conclude that the uniqueness of a I'-martingale on S with
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the terminal condition £ does not hold. This observation, in particular, illustrates
the sharpness of the weak star-shape property in Assumption [[.T] (condition (1))
in the case of a general terminal condition and general d > 2.

Let us also mention that the non-uniqueness described above does not occur
for d = 2, which indicates that it may be possible to relax our assumptions for
reflected BSDEs in planar non-convex domains. In particular, we refer to [40]
for a complete treatment of I'-martingales on S'. The latter result also yields
the existence and uniqueness of a solution to the reflected BSDE in the domain
D = {yeR?1 < |y| <2}, which does not possess the weak star-shape property,
with zero generator and with a terminal condition satisfying || = 1.

Moreover, in Section 3 of [4I], Picard was able to prove the existence and
uniqueness of a Brownian [-martingale with a prescribed terminal condition in a
closed hemisphere of SY~!, and in an even bigger domain, for a small enough 7" and
under a smoothness assumption on the terminal conditionfl. The latter indicates
that in a smooth Markovian or discrete path-dependent framework, under an
additional smallness assumption, it may also be possible to relax the requirement
of a weak star-shape property even for d > 2.

Finally, let us give a simple example showing that the a priori estimates of
Proposition 2.1 are not sharpE Mimicking [40], we consider a Fp-measurable
random variable v with values in [—a, «], where 0 < a < 7/2 is a given parameter,

and let (6, 71)e0,r) be the solution of the BSDE 6, = v — S? nsdWs for t € [0, T].
We set Y; = (cos(6;),sin(;))" for all ¢ € [0,T] and we easily check that Y is a
solution to the BSDE

T | Zs|2 T
Y}=£+J 5 sts—J ZdW,, 0<t<T,
t t
where ¢ = (cos(v),sin(v))" and Z; = (—n;sin(6;),n; cos(6;))T. Notice that this
multidimensional quadratic BSDE can also be seen as a reflected BSDE in the
domain D, , ., with sufficiently small 7,e > 0, rotated by m/2. Indeed, Y lives
on (rotated) S, and the reflecting term is always pointing along the outer normal
vector to (rotated) S,. Recall that D, , . satisfies the weak star-shape property

and note that dVar,(K) = @ Then, an application of It6’s formula to 67 yields

T 1 T 1 OK2
E, lf dVars(K)} = -E,; lf |775|2ds} = -E,; [1/2 — (Etl/)2] < —.
t 2 ¢ 2 2

Moreover, the above becomes an equality for ¢ = 0 and v = sign(Wr)a. Then,
recalling that Ry = 1 for D, ., we deduce from the John-Nirenberg inequality

3To be precise, it is assumed that the process Z, defined by & = E[¢] + Sg Z,dWs, has

sufficiently small Sg ess supg|Zs|?ds.
4Note that these estimates are not needed in a Markovian or discrete path-dependent case.



REFLECTED BSDES IN NON-CONVEX DOMAINS 43

that o
E [eﬁovarT(K)] < o,

for some p > 1, provided @ < 1, which is weaker than the condition o <
arccos(2/3) < 1 required by Assumption 2I(i) with 6 = 2, as computed ear-
lier in this subsection.

REFERENCES

[1] C. Benezet, J.-F. Chassagneux, and A. Richou. Randomised switching problems and
obliquely reflected BSDEs.

[2] J.-M. Bismut. Théorie probabiliste du controle des diffusions. Mem. Amer. Math. Soc.,
4(167):xiii+130, 1976.

[3] N. Bouleau. Formules de changement de variables. Ann. Inst. H. Poincaré Probab. Statist.,
20(2):133-145, 1984.

[4] P. Briand and H. Hibon. Particles systems for mean reflected BSDEs. Stochastic Process.
Appl., 131:253-275, 2021.

[5] L. Campi and W. Schachermayer. A super-replication theorem in kabanov’s model of trans-
action costs. Finance and Stochastics, 10(4):579-596, 2006.

[6] J.-F. Chassagneux, R. Elie, and I. Kharroubi. A note on existence and uniqueness for
solutions of multidimensional reflected BSDEs. Electron. Commun. Probab., 16:120-128,
2011.

[7] J.-F. Chassagneux, R. Elie, and I. Kharroubi. Discrete-time approximation of multidimen-
sional BSDEs with oblique reflections. Ann. Appl. Probab., 22(3):971-1007, 2012.

[8] J.-F. Chassagneux and A. Richou. Obliquely reflected backward stochastic differential equa-
tions. Ann. Inst. Henri Poincaré Probab. Stat., 56(4):2868-2896, 2020.

[9] J. Cvitanic and I. Karatzas. Backward stochastic differential equations with reflection and
Dynkin games. The Annals of Probability, pages 2024-2056, 1996.

[10] R. W. R. Darling. Constructing gamma-martingales with prescribed limit, using backwards
SDE. Ann. Probab., 23(3):1234-1261, 1995.

[11] C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres V & VIII, volume 1385
of Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics|. Her-
mann, Paris, revised edition, 1980. Théorie des martingales. [Martingale theory].

[12] R. Dumitrescu, M.-C. Quenez, and A. Sulem. Generalized Dynkin games and doubly re-
flected BSDEs with jumps. Electronic Journal of Probability, 21, 2016.

[13] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng, and M.-C. Quenez. Reflected solutions
of backward SDE’s, and related obstacle problems for PDE’s. the Annals of Probability,
pages 702737, 1997.

[14] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in
finance. Math. Finance, 7(1):1-71, 1997.

[15] M. Emery. Stochastic calculus in manifolds. Universitext. Springer-Verlag, Berlin, 1989.
With an appendix by P.-A. Meyer.

[16] M. Emery and G. Mokobodzki. Sur le barycentre d’une probabilité dans une variété. In
Séminaire de Probabilités, XXV, volume 1485 of Lecture Notes in Math., pages 220-233.
Springer, Berlin, 1991.

[17] 1. Fakhouri, Y. Ouknine, and Y. Ren. Reflected backward stochastic differential equations
with jumps in time-dependent random convex domains. Stochastics, 90(2):256-296, 2018.

[18] R. Gayduk and S. Nadtochiy. Endogenous formation of Limit Order Books: dynamics
between trades. SICON, 56(3):1577-1619, 2018.



44 JEAN-FRANCOIS CHASSAGNEUX, SERGEY NADTOCHIY, ADRIEN RICHOU

[19] R. Gayduk and S. Nadtochiy. Control-stopping games for market microstructure and be-
yond. Mathematics of Operations Research, 45(4):1193-1620, 2020.

[20] A. Gégout-Petit and E. Pardoux. Equations différentielles stochastiques rétrogrades
réfléchies dans un convexe. Stochastics Stochastics Rep., 57(1-2):111-128, 1996.

[21] M. Grigorova, P. Imkeller, E. Offen, Y. Ouknine, and M.-C. Quenez. Reflected BSDEs when
the obstacle is not right-continuous and optimal stopping. Ann. Appl. Probab., 27(5):3153—
3188, 2017.

[22] M. Grigorova, P. Imkeller, Y. Ouknine, and M.-C. Quenez. Doubly reflected BSDEs and
E/-Dynkin games: beyond the right-continuous case. Electron. J. Probab., 23:Paper No.
122, 38, 2018.

[23] S. Hamadeéne, J.-P. Lepeltier, and S. Peng. BSDEs with continuous coefficients and stochas-
tic differential games. In Backward stochastic differential equations, pages 115-128. Harlow:
Longman, 1997.

[24] S. Hamadéne and J. Zhang. Switching problem and related system of reflected backward
SDEs. Stochastic Process. Appl., 120(4):403-426, 2010.

[25] J. Harter and A. Richou. A stability approach for solving multidimensional quadratic BS-
DEs. Electron. J. Probab., 24:Paper No. 4, 51, 2019.

[26] Y. Hu and J. Ma. Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs
with continuous coeflicients. Stochastic Process. Appl., 112(1):23-51, 2004.

[27] Y. Hu and S. Tang. Multi-dimensional BSDE with oblique reflection and optimal switching.
Probab. Theory Related Fields, 147(1-2):89-121, 2010.

[28] Y. Hu and S. Tang. Multi-dimensional backward stochastic differential equations of diago-
nally quadratic generators. Stochastic Process. Appl., 126(4):1066-1086, 2016.

[29] N. Kazamaki. Continuous exponential martingales and BMO, volume 1579 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 1994.

[30] W. S. Kendall. Probability, convexity, and harmonic maps with small image. I. Uniqueness
and fine existence. Proc. London Math. Soc. (8), 61(2):371-406, 1990.

[31] W. S. Kendall. Convex geometry and nonconfluent I'-martingales. I. Tightness and strict
convexity. In Stochastic analysis (Durham, 1990), volume 167 of London Math. Soc. Lecture
Note Ser., pages 163-178. Cambridge Univ. Press, Cambridge, 1991.

[32] T. Klimsiak, A. Rozkosz, and L. Stomiriski. Reflected BSDEs in time-dependent convex
regions. Stochastic Process. Appl., 125(2):571-596, 2015.

[33] P.-L. Lions, J.-L. Menaldi, and A.-S. Sznitman. Construction de processus de diffusion ré
échis par pénalisation du domaine. CR Acad. Sc. Paris, 229:459-462, 1981.

[34] P.-L. Lions and A.-S. Sznitman. Stochastic differential equations with reflecting boundary
conditions. Comm. Pure Appl. Math., 37(4):511-537, 1984.

[35] R. Martyr. Finite-horizon optimal multiple switching with signed switching costs. Math.
Oper. Res., 41(4):1432-1447, 2016.

[36] D. Nualart. The Malliavin calculus and related topics. Probability and its Applications
(New York). Springer-Verlag, Berlin, second edition, 2006.

[37] E. Pardoux and S. Peng. Backward stochastic differential equations and quasilinear par-
abolic partial differential equations. In Stochastic partial differential equations and their
applications (Charlotte, NC, 1991), volume 176 of Lecture Notes in Control and Inform.
Sci., pages 200-217. Springer, Berlin, 1992.

[38] S. Peng. Backward stochastic differential equations and applications to optimal control.
Appl. Math. Optim., 27(2):125-144, 1993.

[39] S. G. Peng. Probabilistic interpretation for systems of quasilinear parabolic partial differ-
ential equations. Stochastics Stochastics Rep., 37(1-2):61-74, 1991.



REFLECTED BSDES IN NON-CONVEX DOMAINS 45

[40] J. Picard. Martingales sur le cercle. In Séminaire de Probabilités, XXIII, volume 1372 of
Lecture Notes in Math., pages 147-160. Springer, Berlin, 1989.

[41] J. Picard. Martingales on Riemannian manifolds with prescribed limit. J. Funct. Anal.,
99(2):223-261, 1991.

[42] J. Picard. Barycentres et martingales sur une variété. Ann. Inst. H. Poincaré Probab.
Statist., 30(4):647-702, 1994.

[43] R. Tevzadze. Solvability of backward stochastic differential equations with quadratic
growth. Stochastic Process. Appl., 118(3):503-515, 2008.

[44] H. Xing and G. Zitkovié. A class of globally solvable Markovian quadratic BSDE systems
and applications. Ann. Probab., 46(1):491-550, 2018.

UFR DE MATHEMATIQUES & LPSM, UNIVERSITE DE PARIS.
Email address: chassagneuxQlpsm.paris

DEPARTMENT OF APPLIED MATHEMATICS, ILLINOIS INSTITUTE OF TECHNOLOGY, CHICAGO,
IL 60616.
Email address: snadtochiy@iit.edu

UNIVERSITE DE BORDEAUX, IMB, UMR 5251, F-33400 TALENCE, FRANCE.
Email address: adrien.richou@math.u-bordeaux.fr



	1. Introduction
	1.1. The setup and main assumptions

	2. Geometric properties and a priori estimates
	2.1. Absolute continuity of the process K
	2.2. The exterior sphere property
	2.3. The pseudo-distance function
	2.4. A priori estimates
	2.5. Stability and uniqueness in U()

	3. Well-posedness in a Markovian framework
	3.1. Penalized equation
	3.2. Existence of a solution to the penalized equation
	3.3. A priori estimates
	3.4. Existence and uniqueness

	4. Well-posedness beyond Markovian framework
	4.1. Discrete path-dependent framework
	4.2. General case

	5. Connection to Brownian -martingales
	References

