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REFLECTED BSDES IN NON-CONVEX DOMAINS

This paper establishes the well-posedness of reflected backward stochastic differential equations in the non-convex domains that satisfy a weaker version of the star-shaped property. The main results are established (i) in a Markovian framework with Hölder-continuous generator and terminal condition and (ii) in a general setting under a smallness assumption on the input data. We also investigate the connections between this well-posedness result and the theory of martingales on manifolds.

Introduction

Backward stochastic differential equations (BSDEs), originally introduced in [START_REF] Bismut | Théorie probabiliste du contrôle des diffusions[END_REF] and fully developed in [START_REF] Peng | Probabilistic interpretation for systems of quasilinear parabolic partial differential equations[END_REF][START_REF] Pardoux | Backward stochastic differential equations and quasilinear parabolic partial differential equations[END_REF], can be viewed as the probabilistic analogues of semi-linear partial differential equations (PDEs). In particular, BSDEs are used to describe the solutions of stochastic control problems (see, among many others, [START_REF] Peng | Backward stochastic differential equations and applications to optimal control[END_REF][START_REF] Karoui | Backward stochastic differential equations in finance[END_REF][START_REF] Hamadène | BSDEs with continuous coefficients and stochastic differential games[END_REF]). If the control variable of such an optimization problem has a discrete component -e.g., an option to switch the state process to a different regime or to terminate the process and obtain an instantaneous payoff -then, the associated PDE obtains a free-boundary feature and the associated BSDE becomes reflected: i.e., its solution lives inside a given domain and is reflected at the boundary of this domain. The theory of reflected BSDEs in dimension one, i.e. when the reflected process is one-dimensional, is well developed in a very high generality: see, e.g. [START_REF] Karoui | Reflected solutions of backward SDE's, and related obstacle problems for PDE's[END_REF][START_REF] Cvitanic | Backward stochastic differential equations with reflection and Dynkin games[END_REF][START_REF] Dumitrescu | Generalized Dynkin games and doubly reflected BSDEs with jumps[END_REF][START_REF] Grigorova | Reflected BSDEs when the obstacle is not right-continuous and optimal stopping[END_REF][START_REF] Grigorova | Doubly reflected BSDEs and E f -Dynkin games: beyond the right-continuous case[END_REF]. However, the multidimensional case presents significant additional challenges (e.g., due to the lack of the comparison principle), and, to date, the well-posedness of multidimensional reflected BSDEs (or, systems of reflected BSDEs) has only been established in the case of convex reflection domains: see, e.g., [START_REF] Gégout-Petit | Équations différentielles stochastiques rétrogrades réfléchies dans un convexe[END_REF][START_REF] Klimsiak | Reflected BSDEs in time-dependent convex regions[END_REF][START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF][START_REF] Fakhouri | Reflected backward stochastic differential equations with jumps in time-dependent random convex domains[END_REF]. The systems of reflected BSDEs in convex domains appear in certain types of stochastic control problems, such as the switching problems: see, among others, [START_REF] Hamadène | Switching problem and related system of reflected backward SDEs[END_REF][START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF][START_REF] Chassagneux | Discrete-time approximation of multidimensional BSDEs with oblique reflections[END_REF][START_REF] Chassagneux | A note on existence and uniqueness for solutions of multidimensional reflected BSDEs[END_REF][START_REF] Martyr | Finite-horizon optimal multiple switching with signed switching costs[END_REF][START_REF] Benezet | Randomised switching problems and obliquely reflected BSDEs[END_REF]. On the other hand, in a certain class of control-stopping stochastic differential games, the associated equilibria are described by the systems of reflected BSDEs in nonconvex domains, as shown, e.g., in [START_REF] Gayduk | Control-stopping games for market microstructure and beyond[END_REF] (see also [START_REF] Gayduk | Endogenous formation of Limit Order Books: dynamics between trades[END_REF] for the convex case). We 0 Authors would like to thank Marc Arnaudon for the enlightening discussions about martingales on manifolds. The authors also thank the Illinois Institute of Technology for hosting the meetings during which this research was initiated. Partial support from the NSF CAREER grant 1855309 is acknowledged. also refer to [START_REF] Briand | Particles systems for mean reflected BSDEs[END_REF], which considers another case of a system of reflected BSDEs in a non-convex domain. This paper presents the first general well-posedness result for the systems of reflected BSDEs in non-convex domains under the assumption of a weak star-shape property, see Assumption 1.1 below.

In addition to the stochastic control-stopping games, the reflected BSDEs in non-convex domains have a direct connection to the theory of martingales on manifolds. We refer to [START_REF] Émery | Stochastic calculus in manifolds[END_REF] for an introduction and an overview of this theory. One of the key questions therein is the following: given a random variable ξ with values in a manifold M, is it possible to define a martingale Y in M such that the terminal value of this martingale (at time T ą 0) is given by ξ (i.e., Y T " ξ), and is such a martingale unique? A positive answer to this question, in particular, allows one to extend the notion of conditional expectation and gives one possible way to define a barycenter on a manifold (see e.g. [START_REF] Émery | Sur le barycentre d'une probabilité dans une variété[END_REF][START_REF] Picard | Barycentres et martingales sur une variété[END_REF]). We refer to [START_REF] Kendall | Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence[END_REF][START_REF] Kendall | Convex geometry and nonconfluent Γ-martingales. I. Tightness and strict convexity[END_REF][START_REF] Picard | Martingales on Riemannian manifolds with prescribed limit[END_REF][START_REF] Darling | Constructing gamma-martingales with prescribed limit, using backwards SDE[END_REF] for other applications. As explained in [START_REF] Darling | Constructing gamma-martingales with prescribed limit, using backwards SDE[END_REF], it is possible to give a positive answer to this question by solving a BSDE with quadratic non-linearities with respect to the z-variable, stated in R d -the Euclidean space in which the manifold is embedded. It turns out that for a certain class of non-convex reflection domains D, the reflected BSDE in D gives rise to a martingale on the manifold BD, see Section 5. In particular, our results provide a new proof of the existence and uniqueness of a martingale with a prescribed terminal value in a given strict subsector of a hemisphere of S d´1 , in the Markovian framework or under additional smallness assumptions (see the example in Section 5).

On a technical level, our analysis is connected to the theory of BSDEs with quadratic growth in the z-variable. This connection is made precise in Section 3, but it can also be seen if one attempts to map a given non-convex domain into a convex one -the resulting reflected BSDE in a convex domain will have quadratic terms in z. Thus, the reflected BSDEs in non-convex domains can be viewed as the quadratic reflected BSDEs in convex domains. This observation also explains the additional challenges of the case of a non-convex domain, relative to a convex one: the mathematical difficulties in the former case are similar to those arising in the well-posedness theory for the systems of quadratic BSDEs [START_REF] Tevzadze | Solvability of backward stochastic differential equations with quadratic growth[END_REF][START_REF] Hu | Multi-dimensional backward stochastic differential equations of diagonally quadratic generators[END_REF][START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF][START_REF] Harter | A stability approach for solving multidimensional quadratic BS-DEs[END_REF]. The present work uses some of the results developed in the latter theory: in particular, the results of [START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF] are crucial for our analysis.

Another important connection is to the methods of [START_REF] Lions | Construction de processus de diffusion ré échis par pénalisation du domaine[END_REF][START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF], which establish the well-posedness of the forward (or, regular) stochastic differential equations (SDEs) reflected at the boundary of a given domain. In particular, we use the arguments of [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF] to establish the stability of the solutions to the reflected BSDEs considered herein, see Section 2. It is important to mention, however, that many crucial arguments used in the proof of the well-posedness of a reflected (forward) SDE cannot be applied to the case of a reflected BSDE due to the adaptedness issues which, in particular, prohibit the application of the Skorokhod's mapping, used in [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF], and of the standard localization methods.

The remainder of this paper is organized as follows. Section 1.1 states the reflected BSDE (equation (1.2)) and the main assumptions (Assumptions 1.1 and 1.2) which hold throughout the paper. Section 2 describes various auxiliary properties and a priori estimates, as well as the stability (Proposition 2.2) and uniqueness (Corollary 2.2) of the solutions to the target reflected BSDE in a certain class. Section 3 describes a sequence of penalized quadratic BSDEs in a Markovian framework, shows that their solutions converge to a solution of the target reflected BSDE, and verifies that this solution belongs to the class in which the uniqueness holds, thus establishing the well-posedness of the target reflected BSDE in a Markovian framework (Theorem 3.1). In Section 4, we approximate a general reflected BSDE by the Markovian ones, to obtain the well-posedness of the former (Theorem 4.2) under an additional smallness assumption (Assumption 2.1). Finally, Section 5 provides a more detailed description of the connection between the reflected BSDEs in non-convex domains and the martingales on manifolds, which, in particular, illustrates the sharpness of some of our assumptions.

1.1. The setup and main assumptions. Let D be a subset of R d given by D " ty P R d : φpyq ă 0u, with a function φ : R d Ñ R. We denote by ∇ the gradient, and by ∇ 2 the Hessian, of a given function. For any subset A of an Euclidean space, we denote its closure by Ā and, when A ‰ H, we denote by dp., Aq the distance function to A. Assumption 1.1. We assume that φ satisfies the following: ' (Compactness) There exists R ą 0, s.t. φpyq ą 0 for all |y| ě R. ' (Smoothness) φ P C 2 pR d q, |∇φpyq| ą 0 for all y P BD, and ∇ 2 φ is locally Lipschitz. ' (Weak star-shape property) There exists a non-empty open convex set C Ă D such that -0 P C, -there exists a convex function then the weak star-shape property is also satisfied, with C being a ball of radius ε ą 0 centered at 0, and with

φ C : R d Ñ R satisfying φ C P C 2 pR d q, C " ty P R d : φ C pyq ă 0u, φ C ě φ C p0q
φ C pyq " ̺ ε p|y| ´εq,
where ̺ ε : R Ñ R is a convex increasing function satisfying ̺ ε P C 2 pR, Rq, ̺ ε pxq " ´ε{2 for x ă ´ε and ̺ ε pxq " x for x ą 0.

All stochastic processes and random variables, appearing in this paper, are constructed on a fixed stochastic basis pΩ, F, Pq, with the filtration F being a completion of the natural filtration of a multidimensional Brownian motion W in R d 1 on a time interval r0, T s.

For p ě 1, we denote by L p the space of (classes of equivalence of) We also denote by Var t pKq the variation of a process K ¨(with values in a Euclidean space) on the time interval r0, ts and by K p , for p P r1, 8s, the set of finite-variation process K such that › › Var r0,T s pKq › › L p ă 8 and K 0 " 0. Finally, we denote by B 2 the set of processes V P H 2 , satisfying

}V } B 2 :" › › › › sup tPr0,T s E "ż T t |V s | 2 ds|F t › › › › 1 2 L 8 ă `8.
Let us remark that V P B 2 implies that the martingale ş . 0 V s dW s is a BMO martingale, and }V } B 2 is the BMO norm of ş . 0 V s dW s . We refer to [START_REF] Kazamaki | Continuous exponential martingales and BMO[END_REF] for further details about BMO martingales.

We are investigating the well-posedness of the following reflected BSDE pY, Z, Kq P

S 2 ˆH 2 ˆK 1 $ ' ' ' & ' ' ' % piq Y t " ξ `ż T t f ps, Y s , Z s qds ´ż T t dK s ´ż T t Z s dW s , 0 ď t ď T, piiq Y t P D a.s., K t " ż t 0 npY s qdVar s pKq, 0 ď t ď T, (1.2) 
1 We drop this clarification in further definitions.

where n is the unit outward normal to BD, extended as zero into D:

npyq " ∇φpyq |∇φpyq| , @y P BD and npyq " 0, @y P D.

Assumption 1.2. We assume that ξ takes values in D, f p¨, y, zq is progressively measurable, f pt, ¨, ¨q is globally Lipschitz (K f,y -Lipschitz in y and K f,z -Lipschitz in z), uniformly in pt, ωq, and }|f p¨, 0, 0q|} L 8 ă 8. In addition, w.l.o.g. (in view of the boundedness of D), there exists a compact K Ă R d , s.t. f pt, y, zq " 0 whenever y R K.

Assumptions 1.1 and 1.2 hold throughout the rest of the paper even if not cited explicitly.

Geometric properties and a priori estimates

In this section, we derive useful geometric properties of the domain D, expressed via the corresponding properties of the function φ, and construct an auxiliary function ψ which is used in the next section to define a sequence of approximating equations to (1.2). We also present some key a priori estimates and properties of the solutions to the RBSDEs (1.2).

2.1.

Absolute continuity of the process K. As noticed in [START_REF] Gégout-Petit | Équations différentielles stochastiques rétrogrades réfléchies dans un convexe[END_REF], we can take advantage of the smoothness of D to show that the process K is absolutely continuous with respect to the Lebesgue measure.

Lemma 2.1. Assume that pY, Z, Kq P S 2 ˆH 2 ˆK 1 solves (1.2). Then, almost every path of K is absolutely continuous with respect to the Lebesgue measure.

Proof. Applying Itô's formula to t Þ Ñ φpY t q, we obtain dφpY t q " ˆ´∇φpY t q ¨f pt, Y t , Z t q `1 2 TrrZ J t ∇ 2 φpY t qZ t s ˙dt `∇φpY t q ¨dK t `∇φpY t q ¨Zt dW t (2.1) Then, the Itô-Tanaka formula applied to the positive part of the semi-martingale ´φpY t q reads

dr´φpY t qs `" 1 t´φpYtqą0u dr´φpY t qs `1 2 dL 0 t , (2.2)
where L 0 is the local time of the semi-martingale ´φpY q at zero. Since φpY t q ď 0, we have dr´φpY t qs `" ´dφpY t q which yields, combining (2.1)-(2.2), 1 tφpYtq"0u ˆ´∇φpY t q ¨f pt, Y t , Z t q `1 2 TrrZ J t ∇ 2 φpY t qZ t s ˙dt `|∇φpY t q|dVar t pKq `1tφpYtq"0u ∇φpY t q ¨Zt dW t `1 2 dL 0 t " 0 .

In particular, we deduce that |∇φpY t q|dVar t pKq ď 1 tφpYtq"0u

" ∇φpY t q ¨f pt, Y t , Z t q ´1 2 TrrZ J t ∇ 2 φpY t qZ t s  `dt, (2.3) 
which proves the absolute continuity of K. l 2.2. The exterior sphere property. The following lemma states the well known observation that, for any boundary point of a smooth domain, there exists a small enough tangent external sphere, see e.g. [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF].

Lemma 2.2. There exists R 0 ą 0, s.t.

py ´y1 q ¨npyq `1 2R 0 |y ´y1 | 2 ě 0 , @ y P BD, y 1 P D. (2.4)
Proof. Due to the smoothness of φ, for any y P BD and y 1 P D, there exists λ P r0, 1s, s.t. (2.5) 0 ě φpy 1 q " φpyq `py 1 ´yq ¨npyq|∇φpyq| `1 2 py ´y1 q J ∇ 2 φpλy `p1 ´λqy 1 qpy ´y1 q, It only remains to notice that: φ " 0 and |∇φ| is bounded away from zero on BD, and |∇ 2 φ| is bounded from above on D. Thus, we obtain the statement of the lemma.

Using the above lemma, we can define the projection operator that is used in the subsequent sections. To this end, we first define the set

Q " ty P R d : dpy, Dq ă R 0 u,

and the set-valued projection operator

Ppyq " argmin xP D|x ´y|, y P R d . Corollary 2.1. For any y P Q, Ppyq is a singleton.

Proof. It is easy to see that, for a ball B r pyq Ă R d , with radius r ą 0 and center at y, we have:

(2.6) px ´x1 q ¨y ´x |y ´x| `1 2r |x ´x1 | 2 " 0, @ x, x 1 P BB r pyq.
Next, assume that there exist y P R d z D and x ‰ x 1 P D, s.t.

|x ´y| " |x 1 ´y| " argmin zP D|z ´y|.

Then, it is clear that x, x 1 P BB r X BD, with r " min zP D |z ´y| ă R 0 , and the equations (2.4), (2.6) yield a contradiction. W.l.o.g., we will identify the value of Ppyq with its only element, for any y P Q. (5) inf yPR d zD |∇ψpyq| ą 0. (6) ψpyq " φpyq " 0, ∇ψpyq " ∇φpyq, and ∇ 2 ψpyq " ∇ 2 φpyq, for y P BD.

In the remainder of the paper, we fix pR, ǫ, κq as in the above lemma and consider the associated pseudo-distance function ψ. For convenience, we also extend the vector-valued function n to R d as follows:

npyq " 

1
P R d , z J ∇ 2 ψ 2 pyqz ě ´Cψpyq|z| 2 .
Proof. Notice that, for y P R d zD and z P R d ,

∇ 2 ψ 2 pyq " 2∇ψpyq∇ J ψpyq `2ψpyq∇ 2 ψpyq, z J ∇ 2 ψ 2 pyqz " 2p∇ψpyq ¨zq 2 `2ψpyqz J ∇ 2 ψpyqz ě 2ψpyqz J ∇ 2 ψpyqz.
Using the fact that ∇ 2 ψ is bounded (cf. the third property in Lemma 2.4) and the second property in Lemma 2.4, we complete the proof.

2.4.

A priori estimates. In this subsection, we prove a priori estimates in the case of general terminal condition ξ and generator f . We first introduce the appropriate "smallness assumption".

Assumption 2.1. We assume that at least one of the following four conditions is fulfilled with some θ ě 1:

(i) |φ C pξq| L 8 ă γR 0 θ and ∇φ C pyq¨f ps, y, zq ď 0, @s, y, z P r0, T sˆDzC ˆRdˆd 1 , (ii) or sup xPD φ C pxq ă γR 0 θ , (iii) or C is the Euclidean ball centered at 0 with radius λ ą 0, and

|ξ| 2 L 8 ă λ 2 `2R 2 0 θ
, ∇φ C pyq ¨f ps, y, zq ď 0, @s, y, z P r0, T s ˆDzC ˆRdˆd 1 , (iv) or C is the Euclidean ball centered at 0 with radius λ ą 0, and

sup xPD |x| 2 ă λ 2 `2R 2 0 θ ,
with R 0 satisfying (2.4) and γ appearing in Assumption 1.1.

It is worth mentioning that Assumption 2.1 is not our standing assumption and is cited explicitly whenever it is invoked. In particular, our well-posedness results in the Markovian framework do not require the smallness assumption, see Section 3 .

Next, we consider the following class of solution:

Definition 2.1. For any θ ě 1, we denote by U pθ, ξ, f, T q the set of all solutions pY, Z, Kq

P S 2 ˆH 2 ˆK 1 to (1.2) s.t. E " e θp R 0
Var T pKq ı ă 8, (2.9) with some p ą 1 and with R 0 satisfying (2.4).

In the sequel, we will generally drop pξ, f, T q in the notation for the class U . Note also that we will mainly consider θ " 1 or θ " 2.

The following proposition clarifies the link between Assumption 2.1 and the class U pθq. 

θ R 0 › › › › › sup tPr0,T s E t "ż T t dVar s pKq  › › › › › L 8 ă 1. (2.16)
Then, we apply the energy inequalities for non-decreasing processes with bounded potential (see, e.g., (105.1)-(105.2) in [START_REF] Dellacherie | Probabilités et potentiel. Chapitres V à VIII[END_REF]) to obtain (2.10) in this case. 2.b Let now Assumption 2.1-(ii) hold. Using (2.11)-(2.12) and recalling that |Y | is bounded, we obtain, for all 0 ď t ă t 1 ď T and for any ε ą 0,

γE t « ż t 1 t dVar s pKq ff ď sup yP D φ C pyq `C1 ε pt 1 ´tqp1 `|f p., 0, 0q| L 8 q `ε 2 E t « ż t 1 t |Z s | 2 ds ff .
Using the above inequality and (2.14) (with the same ε ą 0), we obtain:

pγ ´CεqE t « ż t 1 t dVar s pKq ff ď ε sup yP D |y| 2 `sup yP D φ C pyq `C2 ε pt 1 ´tqp1 `|f p., 0, 0q| L 8 q.
In particular, by taking ε small enough, we conclude that, for any ε 1 ą 0, there exists C ε 1 ą 0 such that

E t « ż t 1 t dVar s pKq ff ď sup yP D φ C pyq γ p1 `ε1 q `Cε 1 pt 1 ´tq. (2.17)
Next, using (2.17) and Assumption 2.1(ii), we conclude that there exist 0 ă ε 2 ă 1, p ą 1, and N ě 1, depending only on K f,y , K f,z , γ, sup yPD |y|, sup yP D φ C pyq `, }f p., 0, 0q} L 8 and R 0 , such that, a.s.:

E t « ż T pk`1q{N t dVar s pKq ff ď
R 0 θp p1 ´ε2 q, @0 ď k ă N, @t P rT k{N, T pk `1q{Ns.

(2.18)

Then, we apply the energy inequalities for non-decreasing processes with bounded potential (see, e.g., (105.1)-(105.2) in [START_REF] Dellacherie | Probabilités et potentiel. Chapitres V à VIII[END_REF]), to obtain, for all 0 ď k ă N,

E T k{N " e θp R 0 ş T pk`1q{N T k{N dVarspKq ı ď C, (2.19) with C that depends only on K f,y , K f,z , γ, sup yPD |y|, sup yP D φ C pyq `, }f p., 0, 0q} L 8 and R 0 . We now observe that E " e θp R 0 V ar T pKq ı " E " e θp R 0 Var T pN´1q{N pKq E T pN ´1q{N " e θp R 0 ş T T pN´1q{N dVarspKq ıı ď CE " e θp R 0 Var T pN´1q{N pKq ı ,
where we used (2.19) with k " N ´1 to obtain the last inequality. Iterating the above procedure concludes the proof of this case.

2.c Next, we let Assumption 2.1(iii) hold. Using (2.3), the linear growth of f , and Young's inequality, we have, for all ε ą 0,

Var T pKq ď C ε `1 `ε 2R 0 ż T 0 1 tφpYtq"0u |Z t | 2 dt. (2.20)
Moreover, we apply Itô-Tanaka formula to p|Y s | 2 ´λ2 q `to obtain, for all t ď t 1 ,

E t « ż t 1 t 1 tφpYsq"0u |Z s | 2 ds ff ď E t « ż t 1 t 1 tφ C pYsqą0u |Z s | 2 ds ff ďE t « p|Y t 1 | 2 ´λ2 q ``2 ż t 1 t 1 tφ C pYsqą0u |Y s |∇φ C pY s q ¨f ps, Y s , Z s qds ff , (2.21)
where we also recall that 1 tφ C pYsqą0u |Y s |∇φ C pY s q " 1 tφ C pYsqą0u Y s since C is a Euclidean ball centered at zero. Then, by taking t 1 " T in (2.21) and using Assumption 2.1(iii), we obtain, for ε ą 0 and p ą 1 small enough,

θpp1 `εq 2R 2 0 › › › › › sup tPr0,T s E t "ż T t 1 tφpYsq"0u |Z s | 2 ds  › › › › › L 8 ă 1.
It remains to apply the John-Nirenberg inequality for BMO Martingales (see Theorem 2.2 in [START_REF] Kazamaki | Continuous exponential martingales and BMO[END_REF]) and recall (2.20), to conclude that

E " e θp R 0 Var T pKq ı ď C ε E " e θpp1`εq 2R 2 0 ş T 0 1 tφpYsq"0u |Zs| 2 ds  ă `8,
which yields (2.10). 

2.d Finally

(resp. pY 1 , Z 1 , K 1 q P S 2 ˆH 2 ˆK 1 ) which solve the RBSDE (1.
2) with a domain D (resp. D 1 ), with a terminal condition ξ (resp. ξ 1 ), and with a generator f (resp. f 1 ). Assume, moreover, that there exists p ą 1 such that

(2.22) κ :" E " e p R 0 pVar T pKq`Var T pK 1 qq ı ă `8,
with R 0 satisfying (2.4) for D and D 1 . Let us denote by P (resp. P1 ) a measurable selection of the projection operator onto D (resp. D 1 ). Then, the following stability result holds: there exists a constant C ą 0, which depends only on

K f,y , K f 1 ,y , K f,z , K f 1 ,z (recall Assumption 1.
2), sup yPDYD 1 |y|, R 0 , and on κ, and is such that

}Y ´Y 1 } S 2 `}Z ´Z1 } H 2 `}K ´K1 } S 2 ďCEr|ξ ´ξ1 | 2p{pp´1q s pp´1q{p2pq `CE « ˆż T 0 |f ps, Y s , Z s q ´f 1 ps, Y s , Z s q|ds ˙2p{pp´1q ff pp´1q{p2pq `CE « sup sPr0,T s |Y s ´P 1 pY s q| p{pp´1q ff pp´1q{p2pq `CE « sup sPr0,T s |Y 1 s ´PpY 1 s q| p{pp´1q ff pp´1q{p2pq
.

Proof. We apply Itô's formula to the process

e βt`1 R 0 pVartpKq`VartpK 1 qq |Y t ´Y 1 t | 2
, with the constant β to be determined later on. By denoting

δf t :" f pt, Y t , Z t q ´f 1 pt, Y 1 t , Z 1 t q, δξ :" ξ ´ξ1 , Γ t :" e βt`1 R 0 pVartpKq`VartpK 1 qq , δY :" Y ´Y 1 , δZ " Z ´Z1 ,
we obtain

Γ t |δY t | 2 `ż T t Γ s |δZ s | 2 ds "Γ T |δξ| 2 `2 ż T t Γ s δY s ¨δf s ds ´2 ż T t Γ s δY s ¨dK s `2 ż T t Γ s δY s ¨dK 1 s ´β ż T t Γ s |δY s | 2 ds ´1 R 0 ż T t Γ s |δY s | 2 dVar s pKq ´1 R 0 ż T t Γ s |δY s | 2 dVar s pK 1 q ´2 ż T t Γ s δY s ¨δZ s dW s . (2.23)
Using the BDG inequality, the fact that |δY | is bounded, Hölder inequality (with q " p{pp ´1q ą 1 being the conjugate exponent), we obtain:

E « sup tPr0,T s ˇˇˇż t 0 Γ s δY s ¨δZ s dW s ˇˇˇff ď CE « ˆż T 0 |Γ s δZ s | 2 ds ˙1 2 ff ď CErpΓ T q p s 1 p E " p ż T 0 |δZ s | 2 dsq rq{2s  1 q ă 8,
where the last inequality is due to (2.22) and to the Energy Inequality (since Z, Z 1 P B 2 ). Hence, we conclude that the local martingale term in the right hand side of (2.23) is a true martingale. Next, we estimate the second term in the right hand side of (2.23) using the Lipschitz property of f 1 :

δY s ¨δf s ď |δY s ||f ps, Y s , Z s q ´f 1 ps, Y s , Z s q| `β|δY s | 2 `1 4 |δZ s | 2 ,
provided β ą 0 is large enough. In addition, the condition (1.2)(ii) and the exterior sphere property (recall (2.4)) yield

´2 ż T t Γ s δY s ¨dK s ´1 R 0 ż T t Γ s |δY s | 2 dVar s pKq " ´2 ż T t Γ s p PpY 1 s q ´Y 1 s q ¨dK s ´2 ż T t Γ s `Ys ´PpY 1 s q ˘¨dK s ´1 R 0 ż T t Γ s |δY s | 2 dVar s pKq " ´2 ż T t Γ s `Ys ´PpY 1 s q ˘¨dK s ´1 R 0 ż T t Γ s |Y s ´PpY 1 s q| 2 dVar s pKq `1 R 0 ż T t Γ s p| PpY 1 s q ´Y 1 s | 2 ´|δY s | 2 qdVar s pKq ´2 ż T t Γ s p PpY 1 s q ´Y 1 s q ¨dK s ďC ż T t Γ s | PpY 1 s q ´Y 1 s |dVar s pKq ď CΓ T sup sPr0,T s | PpY 1 s q ´Y 1 s |,
where for the last inequality, we used:

ş T t exp ´VarspKq R 0 ¯dVar s pKq ď R 0 exp ´Var T pKq R 0 ¯.
By the same arguments we obtain

2 ż T t Γ s δY s ¨dK 1 s ´1 R 0 ż T t Γ s |δY s | 2 dVar s pK 1 qq ď CΓ T sup sPr0,T s | P1 pY s q ´Ys |.
Using the above estimates, we take expectations on both sides of 2.23, with t " 0, and apply Hölder inequality to obtain

}Γ 1{2 δZ} H 2 ď E " Γ T |δξ| 2 `2 ż T 0 Γ s |δY s ||f ps, Y s , Z s q ´f 1 ps, Y s , Z s q|ds  1{2 `E « Γ T ˜sup sPr0,T s | P1 pY s q ´Ys | `| PpY 1 s q ´Y 1 s | ¸ff1{2 ď CEr|δξ| 2q s 1{p2qq `2E « sup sPr0,T s pΓ 1{2 s |δY s |qΓ 1{2 T ż T 0 |f ps, Y s , Z s q ´f 1 ps, Y s , Z s q|ds ff 1{2 `CE « sup sPr0,T s `| P1 pY s q ´Ys | `| PpY 1 s q ´Y 1 s | ˘qff 1{p2qq . (2.24)
Using (2.23) and (2.24), we apply BDG, Hölder and Young inequalities to obtain

}Γ 1{2 δY } S 2 ď CEr|δξ| q s 1{p2qq `CE « sup sPr0,T s pΓ 1{2 s |δY s |qΓ 1{2 T ż T 0 |f ps, Y s , Z s q ´f 1 ps, Y s , Z s q|ds ff 1{2 `CE « sup sPr0,T s `| P1 pY s q ´Ys | `| PpY 1 s q ´Y 1 s | ˘qff 1{p2qq ď CEr|δξ| q s 1{p2qq `1 2 }Γ 1{2 δY } S 2 `CE « ˆż T 0 |f ps, Y s , Z s q ´f 1 ps, Y s , Z s q|ds ˙2q ff 1{p2qq `CE « sup sPr0,T s `| P1 pY s q ´Ys | `| PpY 1 s q ´Y 1 s | ˘qff 1{p2qq . (2.25)
Then, combining (2.24), Young inequality, and (2.25), yields

}Y ´Y 1 } S 2 `}Z ´Z1 } H 2 ď }Γ 1{2 δY } S 2 `}Γ 1{2 δZ} H 2 ďCEr|ξ ´ξ1 | 2q s 1{p2qq `CE « ˆż T 0 |f ps, Y s , Z s q ´f 1 ps, Y s , Z s q|ds ˙2q ff 1{p2qq `CE « sup sPr0,T s `| P1 pY s q ´Ys | `| PpY 1 s q ´Y 1 s | ˘qff 1{p2qq . (2.26)
Finally, we recall that

K t ´K1 t " δY t ´δY 0 `ż t 0 f ps, Y s , Z s q ´f 1 ps, Y 1 s , Z 1 s qds ´ż t 0 δZ s dW s .
Then, the BDG inequality, the Lipschitz property of f 1 , as well as (2.26), yield

}K ´K1 } S 2 ďCEr|ξ ´ξ1 | 2q s 1{p2qq `CE « ˆż T 0 |f ps, Y s , Z s q ´f 1 ps, Y s , Z s q|ds ˙2q ff 1{p2qq `CE « sup sPr0,T s `| P1 pY s q ´Ys | `| PpY 1 s q ´Y 1 s | ˘qff 1{p2qq ,
which completes the proof of the proposition. l In a general non-Markovian framework, we obtain the following uniqueness result as a direct consequence of Proposition 2.2.

Corollary 2.2. The reflected BSDE (1.2) has at most one solution in the class U p2q.

Proof. Indeed, it suffices to check that, for any two solutions in the class U p2q, (2.22) holds. This follows directly from the Cauchy-Schwarz inequality. l This uniqueness result is improved in the Markovian setting: see Theorem 3.1 and Remark 3.5.

Well-posedness in a Markovian framework

In this section, we establish the existence and uniqueness of the solution to (3.3) under the assumption that the terminal condition and the generator of the reflected BSDE are functions of a Markov diffusion process X in R d 1 :

(3.1)

X t " x `ż t 0 bps, X s qds `ż t 0 σps, X s qdW s , x P R d 1 .
Namely, we make the following assumptions.

Assumption 3.1. We assume that pb, σq are bounded measurable functions, uniformly Lipschitz with respect to x, and such that σ J σ is uniformly positive definite (i.e., uniformly elliptic), which implies in particular that σ is invertible.

Assumption 3.2. We assume that ξ :" gpX T q and f pt, y, zq :" F pt, X t , y, zq, where g is α-Hölder and D-valued, F is measurable in all variables, globally Lipschitz in py, zq, and s.t. |F p¨, ¨, 0, 0q| is bounded.

Recall that Assumptions 1.1 and 1.2 hold throughout the paper, even if they are not cited explicitly.

3.1. Penalized equation. We begin by noticing that ψ 2 P C 1 pR d q and denote Ψpyq :"

1 2 ∇ψpyq 2 " ψpyq∇ψpyq, y P R d ,
where we extend (naturally) ∇ψ to D by zero. We also extend ∇ 2 ψ 2 to D by zero.

It is useful to note that there exist constants c, C, s.t.

(3.2) 0 ă cψ ď |Ψ| ď Cψ.
Next, we consider the following penalized equation:

Y n t " ξ `ż T t f ps, Y n s , Z n s qds ´ż T t nΨpY n s qp1 `|Z n s | 2 qds ´ż T t Z n s dW s . (3.3)
Let us remark that, contrarily to the convex framework tackled in [START_REF] Gégout-Petit | Équations différentielles stochastiques rétrogrades réfléchies dans un convexe[END_REF], it is natural (and necessary) to add a |z| 2 inside the penalization term due to (2.3). For convenience, we introduce the notation:

Φ n t :" ż t 0 nΨpY n s qds, Θ n t :" ż t 0 nΨpY n s q|Z n s | 2 ds, K n t :" Φ n t `Θn t . (3.4) 3.2.
Existence of a solution to the penalized equation. We start by considering the following family of approximating BSDEs, indexed by a pair of positive integers M " pM 1 , M 2 q:

Y n,M t " gpX T q `ż T t F n,M ps, X s , Y n,M s , Z n,M s qds ´ż T t Z n,M s dW s , (3.5) with F n,M pt, x, y, zq :" f pt, x, y, zq´nρ M 1 pψpyqq∇ψpyqp1`ρ M 2 p|z| 2 qq, ρ k pxq :" x^k.
The above BSDE has a globally Lipschitz generator and, therefore, is known to have a unique Markovian solution pY n,M , Z n,M q P S 2 ˆH 2 (see, e.g., Theorem 4.1 in [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]). The following Proposition uses the weak star-shape property of D, stated in Assumption 1.1, to establish a uniform estimate on pY n,M , Z n,M q. Lemma 3.1. There exists a constant C ą 0, s.t., for any n ě 1, any M " pM 1 , M 2 q, and any t P r0, T s, the following holds a.s.:

|Y n,M t | 2 `Et "ż T t |Y n,M s | 2 `|Z n,M s | 2 ds  ď C E t " |ξ| 2 `ż T t p1 `|f ps, 0, 0q| 2 qds  , (3.6) 
E t "ż T t nρ M 1 pψpY n,M s qqp1 `ρM 2 p|Z n,M s | 2 qqds  ď C E t " |ξ| 2 `ż T t p1 `|f ps, 0, 0q| 2 qds  .
(3.7)

Proof. W.l.o.g., we assume that φ C attains its minimum at zero. Then, we consider arbitrary t P r0, T s and constants α ą 0, β ą 0, to be fixed later, and define rt, T s ˆRd Q ps, yq Þ Ñ hps, yq :" e βps´tq `α|y| 2 `pφ C pyq ´φC p0qq 2 ˘P R.

We observe that pφ C ´φC p0qq 2 is convex and hps, yq ď e βpT ´sq c 0 |y| 2 , for some positive constant c 0 . Then, we apply Itô's formula to the process hps, Y n,M s q (recalling (3.3)), to obtain

α|Y n,M t | 2 ď hpt, Y n,M t q ď hpT, ξq `2 ż T t e βps´tq pαY n,M s `pφ C pY n,M s q ´φC p0qq∇φ C pY n,M s qq ¨f ps, Y n,M s , Z n,M s qds ´ż T t nρ M 1 pψpY n,M s qq∇ y hps, Y n,M s q ¨∇ψpY n,M s qp1 `ρM 2 p|Z n,M s | 2 qqds (3.8) ´2 ż T t ∇ y hps, Y n,M s q ¨Zn,M s dW s ´α ż T t e βps´tq |Z n,M s | 2 ds ´β ż T t e βps´tq |Y n,M s | 2 ds.
As Y n,M P S 2 and Z n,M P H 2 , the local martingale in the above representation is in M 1 and, hence, is a true martingale.

Next, we notice that the fourth property in Lemma 2.4 implies the existence of a constant c 1 ą 0, s.t.

∇φ C pY n,M s q ¨∇ψpY n,M s q ě c 1 1 tY n,m s RDu .
Then, there exist constants c 2 , c 3 ą 0 such that

´ż T t nρ M 1 pψpY n,M s qq∇ y hps, Y n,M s q ¨∇ψpY n,M s qp1 `ρM 2 p|Z n,M s | 2 qqds ď ´2 ż T t ne βps´tq ρ M 1 pψpY n,M s qqpc 1 pφ C pY n,M s q ´φC p0qq ´αc 2 |Y n,M s |qp1 `ρM 2 p|Z n,M s | 2 qqds ď ´2 ż T t ne βps´tq ρ M 1 pψpY n,M s qq " c 1 pφ C pY n,M s q ´φC p0qq
(3.9)

´αc 2 pφ C pY n,M s q `|P C pY n,M s q|q ‰ `1 `ρM 2 p|Z n,M s | 2 q ˘ds ď ´c3 ż T t ne βps´tq ρ M 1 pψpY n,M s qqp1 `ρM 2 p|Z n,M s | 2 qqds,
provided α is small enough. In the rest of the proof, we assume that α is chosen so that the above inequality holds.

Next, we remark that

ˇˇˇ2 ż T t e βps´tq `αY n,M s `pφ C pY n,M s q ´φC p0q ˘∇φ C pY n,M s qq ¨f ps, Y n,M s , Z n,M s qds ˇˇď C 1 ż T t e βps´tq `pα `1q|Y n,M s | ´φC p0q ˘`|f ps, 0, 0q| `C2 |Y n,M s | `C2 |Z n,M s | ˘ds ď ż T t e βps´tq ´C3 |Y n,M s | 2 `C3 `|f ps, 0, 0q| 2 `α 2 |Z n,M s | 2 ¯ds.
Combining the above estimates and (3.8), we conclude that, for a large enough β ą 0, there exists a constant C 4 ą 0, s.t.

α|Y n,M t | 2 `Et " c 3 ż T t nρ M 1 pψpY n,M s qq `1 `ρM 2 p|Z n,M s | 2 q ˘ds `α 2 ż T t |Y n,M s | 2 `|Z n,M s | 2 ds  ď e βpT ´tq E t " c 0 |ξ| 2 `ż T t pC 4 `|f ps, 0, 0q| 2 qds  ,
which yields the statement of the lemma. l Proposition 3.1. Under Assumptions 3.1 and 3.2, for any n ě 1, the BSDE (3.3) has a Markovian solution pY n , Z n q. In particular, there exists a measurable function u n such that Y n t " u n pt, X t q. Moreover, the estimates (3.6)-(3.7) hold with pY n,M , Z n,M q and ρ M i replaced, respectively, by any solution pY n , Z n q of (3.3) and by the identity function.

Proof. The main statement of the proposition follows from Theorem 2.8 in [START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF] (without the localization). To be able to apply the latter theorem, we first consider the following auxiliary BSDE, which can be viewed as a middle ground between (3.3) and (3.5):

Ỹ n,M 1 t " gpX T q `ż T t F n,M 1 ps, X s , Ỹ n,M 1 s , Zn,M 1 s qds ´ż T t Zn,M 1 s dW s , (3.10) 

with

F n,M 1 pt, x, y, zq :" f pt, x, y, zq ´nρ M 1 pψpyqq∇ψpyqp1 `|z| 2 q and ρ M 1 pxq " x ^M1 . We claim that the unique solution pY n,M , Z n,M q of (3.5) converges (along a subsequence) to a Markovian solution p Ỹ n,M 1 , Zn,M 1 q of (3.10), as M 2 Ñ 8. Indeed, this claim follows directly from Theorem 2.8 in [START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF]. To verify the assumptions of the latter theorem, we first notice that, due to (3.6), there exists a constant c ą 0 such that |Y n,M t | ď c, for all t P r0, T s and n, M. Moreover, for large enough C ą 0 (independent of n and M), hpyq :" C pα|y| 2 `pφ C pyq ´φC p0qq 2 q is a global c-Lyapunov function for pF n,M q M , in the sense of Definition 2.3 in [START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF], where α is the constant chosen in the proof of Lemma 3.1. Indeed, there exists a large enough C ą 0, s.t., for all |y| ď c, we have:

1 2 C Trrpzσq J p∇ 2 hpyqqzσs ´C∇hpyq ¨F n,M
ě Cα Trrpzσq J zσs ´2C rαy `pφ C pyq ´φC p0qq∇φ C pyqs ¨f pt, x, y, zq

`2Cn rαy `pφ C pyq ´φC p0qq∇φ C pyqs ¨∇ψpyqρ M 1 pψpyqqp1 `ρM 2 p|z| 2 qq ě |z| 2 ´C1 ,
where we used the uniform ellipticity of σ J σ, Assumption 1.2, and the fourth property in Lemma 2.4, and repeated the estimates used in (3.9). In addition, we have |F n,M pt, x, y, zq| ď C `Cn |z| 2 , with the constants pC, C n q independent of M 2 . Observing that F n,M converges to F n,M 1 locally uniformly, as M 2 Ñ 8, we conclude that the assumptions of Theorem 2.8 in [START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF] are satisfied and that (3.10) has a Markovian solution p Ỹ n,M 1 , Zn,M 1 q which is a limit point of

tpY n,M , Z n,M qu M 2 .
Next, we recall that, due to Lemma 3.2. Under Assumptions 3.1 and 3.2, there exists a constant C ą 0, s.t., for any n ě 1, any solution pY n , Z n q of (3.3), and any t P r0, T s, the following holds a.s.:

nψ 2 pY n t q`E t "ż T t n 2 |ΨpY n s q| 2 `1 `|Z n s | 2 ˘ds  ď C E t " |ξ| 2 `ż T t |f ps, 0, 0q| 2 ds  ,
and, in particular,

dpY n t , Dq ď Cn ´1{2 .
Proof. We begin by applying Itô's formula to |ψpY n t q| 2 , to obtain

ψ 2 pY n t q " 2 ż T t ΨpY n s q ¨f ps, Y n s , Z n s qds ´2 ż T t n|ΨpY n s q| 2 ds ´2 ż T t n|ΨpY n s q| 2 |Z n s | 2 ds ´2 ż T t ΨpY n s q ¨Zn s dW s (3.11) ´1 2 ż T t TrrpZ n s q J ∇ 2 ψ 2 pY n s qZ n s sds Remark 3.1.
Note that the Hessian of ψ 2 has a discontinuity at BD. To justify the use of Itô's formula, we approximate ψ 2 by a sequence of C 2 functions tg m u, so that g m , ∇g m and ∇ 2 g m converge, respectively, to ψ 2 , ∇ψ 2 and ∇ 2 ψ 2 everywhere in R d , and |∇g m |, |∇ 2 g m | are locally bounded uniformly over m. To construct such a sequence, we first define φpyq :" φpyqp1´ϑp|y|´R´1qq`ϑp|y|´Rq, ψpyq :" φpyq`κ|y|ϑp φpyq{ǫq, y P R d , where we recall the original function φ, appearing in Assumption 1.1, and use the same ϑ, R, and ǫ, as the ones used in Subsection 2.3 to define ψ (see (2.8)). It is clear that ψpyq " ψpyq, for y P R d zD, and that ψpyq " φpyq, for y P D. Thus, ψ is a smooth extension of ψ into D. Next, we consider an infinitely smooth nondecreasing function ρ : R Ñ R, such that ρpxq " ´1 for x ď ´1 and ρpxq " x for x ě 0, and define

g m pyq :" 1 m 2 ρ 2 ´m ψpyq ¯, y P R d .
It is easy to check by a direct computation that g m pyq, ∇g m pyq and ∇ 2 g m pyq converge to zero as m Ñ 8, for any y P D. On the other hand, g m pyq and its first two derivatives coincide with ψ 2 pyq and with its respective derivatives, for all y P R d zD and all m. Thus, we obtain the desired sequence tg m u. Applying Itô's formula to g m pY n t q and using the dominated convergence theorem to pass to the limit as m Ñ 8, we establish (3.11).

As |Ψ| is linearly bounded (see Lemma 2.4), we conclude, as in the proof of Lemma 3.1, that the local martingale in the above representation is a true martingale.

Next, we note that 2ΨpY n s q ¨f ps, Y n s , Z n s q ď n|ΨpY n s q| 2 `n´1 |f ps, Y n s , Z n s q| 2 , and use Lemma 3.1, to obtain:

E t ż T t 2ΨpY n s q ¨f ps, Y n s , Z n s qds (3.12) ď E t ż T t n|ΨpY n s q| 2 ds `Cn ´1E t " |ξ| 2 `ż T t p1 `|f ps, 0, 0q| 2 qds  .
In addition, Lemmas 2.4 and 2.5 yield 

TrrpZ n s q J ∇ 2 ψ 2 pY n s qZ n s s ě ´CΨpY n s q|Z n s | 2 . Then, ´n ˆ1 2 TrrpZ n s q J ∇ 2 ψ 2 pY n s qZ n s s `2n|ΨpY
ż T t `TrrpZ n s q J ∇ 2 ψ 2 pY n s qZ n s s `2n|ΨpY n s q| 2 |Z n s | 2 ˘ds (3.15) ď Cn ´1E t ż T t |Z n s | 2 ds ď Cn ´1E t " |ξ| 2 `ż T t p1 `|f ps, 0, 0q| 2 qds  .
Taking the conditional expectation in (3.11), multiplying both sides by n, and using (3.12), (3.15), we complete the proof. l

The following proposition improves the rate of convergence of Y n to D.

Proposition 3.2. Under Assumptions 3.1 and 3.2, there exist N, C ą 0, s.t. for any n ě N, any solution pY n , Z n q of (3.3), and any t P r0, T s, the following holds a.s.: Next, we apply Itô's formula to ppψpY n t q ´1{pǫnqq `q2 (the validity of Itô's formula for the function ppψ ´1{pǫnqq `q2 is justified similarly to Remark 3.1), to obtain

nψpY n t q ď C Proof. First,
ppψpY n t q ´1{pǫnqq `q2 " 2 ż T t Ψ n pY n s q ¨f ps, Y n s , Z n s qds ´2 ż T t n|ΨpY n s q||Ψ n pY n s q|ds ´2 ż T t n|ΨpY n s q||Ψ n pY n s q||Z n s | 2 ds ´2 ż T t Ψ n pY n s q ¨Zn s dW s (3.16) ´1 2 ż T t
TrrpZ n s q J HpY n s qZ n s sds.

As |Ψ n | is linearly bounded (see Lemma 2.4), we conclude, as in the proof of Proposition 3.1, that the local martingale in the above representation is a true martingale.

Next, we note that 2Ψ n pY n s q ¨f ps, Y n s , Z n s q ´n|ΨpY n s q||Ψ n pY n s q| ď |Ψ n pY n s q| p2|npY n s q ¨f ps, Y n s , Z n s q| ´nψpY n s q|∇ψpY n s q|q . Notice that, whenever Ψ n pY n s q ą 0, we have ψpY n s q ě 1{pǫnq and, hence, nψpY n s q ě 1{ǫ. Then, since ǫ ą 0 satisfies TrrpZ n s q J HpY n s qZ n s s ě pψpY n s q ´1{pǫnqq `TrrpZ n s q J ∇ 2 ψpY n s qZ n s s and, hence,

ǫ ď ˜ε `2 sup yPBD,
´1 2
TrrpZ n s q J HpY n s qZ n s s ď }∇ 2 ψpY n s q} ˚pψpY n s q ´1{pǫnqq `|Z n s | 2 . In addition,

´|ΨpY n s q||Ψ n pY n s q||Z n s | 2 " ´|∇ψpY n s q| 2 ψpY n s q pψpY n s q ´1{pǫnqq `|Z n s | 2 .
Collecting the two equations above, we deduce

´1 2 TrrpZ n s q J HpY n s qZ n s s ´n|ΨpY n s q||Ψ n pY n s q||Z n s | 2 ď pψpY n s q ´1{pǫnqq `|Z n s | 2 `}∇ 2 ψpY n s q} ˚´|∇ψpY n s q| 2 nψpY n s q ˘.
Recall that, whenever ψpY n s q ě 1{pǫnq, we have nψpY n s q ě 1{ǫ. Corollary 3.1. Under Assumptions 3.1 and 3.2, there exist constants N ě 1, α 1 P p0, 1s, and C ą 0 (independent of n), s.t., for any n ě N, the BSDE (3.3) has a Markovian solution pY n , Z n q, with Y n t " u n pt, X t q, and any such solution satisfies

sup pt,xq‰pt 1 ,x 1 q |u n pt, xq ´un pt 1 , x 1 q| |t ´t1 | α 1 {2 `|x ´x1 | α 1 ď C. (3.19)
Proof. The statement of the corollary follows from Theorem 2.5 in [START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF] (without the localization). To verify the assumptions of the latter theorem, we consider the following capped version of (3.3):

Ŷ n,N t " gpX T q `ż T t F n,N ps, X s , Ŷ n,N s , Ẑn,N s qds ´ż T t Ẑn,N s dW s , (3.20)

with

F n,N pt, x, y, zq :" f pt, x, y, zq ´ρN pnψpyqq∇ψpyqp1 `|z| 2 q and ρ N pxq " x^N. Propositions 3.1 and 3.2 imply the existence of (large enough) N, N ą 0, s.t., for every n ě N, there exists a Markovian solution pY n , Z n q of (3.3), with Y n t " u n pt, X t q, and any such solution also solves (3.20). Moreover, there exists c ą 0 such that |u n | ď c for all n.

Next, we fix N as above and verify easily (as in the proof of Proposition 3.1) that, for large enough C ą 0 and small enough α ą 0 (independent of n), Cpα|y| 2 `pφ C pyq ´φC p0qq 2 q is a global c-Lyapunov function for p F n,N q n , in the sense of Definition 2.3 in [START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF]. In addition, | F n,N pt, x, y, zq| ď C `CN |z| 2 , with the constants pC, C N q independent of n. Thus, Theorem 2.5 in [START_REF] Xing | A class of globally solvable Markovian quadratic BSDE systems and applications[END_REF] yields the uniform boundedness of the Hölder norm of u n . l W.l.o.g. we assume that the statements of Proposition 3.2 and Corollary 3.1 hold with N " 1. From Corollary 3.1, we deduce that there exists a subsequence of tu n u ně1 converging locally uniformly to a function u satisfying (3.19). To alleviate the notation, this subsequence is still denoted pu n q ně1 . Recalling that Y n t " u n pt, X t q and introducing Y t :" upt, X t q, for t P r0, T s, we observe that

E « sup tPr0,T s |Y n t ´Yt | 2 ff ÝÑ nÑ`8 0 , (3.21)
since t Þ Ñ pt, X t q is a.s. continuous and t|Y n |u is bounded uniformly by a constant, see Lemma 3.2.

We conclude this section with the following lemma, which is used in the next section. This lemma provides a uniform upper bound on the second moment of the auxiliary process

Γ n,m t :" exp ˆż t 0 ´1 `| 9 K n s | `| 9 K m s | ¯ds ˙, t P r0, T s,
where we recall (3.4).

Lemma 3.3. Under Assumptions 3.1 and 3.2, for any ε ą 0, there exists N ě 1 (independent of n) such that, for all n ě 1 and all 0 ď k ă N, we have a.s.:

E t « ż T pk`1q{N t |Z n s | 2 `| 9 K n s |ds
ff ď ε, @t P rT k{N, T pk `1q{Ns.

In particular, for any β ą 0, there exists a constant C " Cpβq (independent of pn, mq), s.t.

ErpΓ n,m T q β s ď C, for all n, m ě 1.

Remark 3.2. It is worth noticing that the constant C, appearing in Lemma 3.3, does not depend on the initial value x of the diffusion X, as follows from the proof of the lemma.

Proof. The proof of the first statement of the lemma is an improvement of the estimates in the proof of Lemma 3.1, with the use of Corollary 3.1. We fix t ă t 1 P r0, T s, β 1 ą 0 and α ą 0, and apply Itô's formula to the process pe β 1 ps´tq pα|Y n s | 2 `pφ C pY n s q ´φC p0qq 2 q sPrt,t 1 s (recall (3.3)) to obtain, as in the proof of Lemma 3.1,

|Y n t | 2 `cE t « ż t 1 t |Z n s | 2 `| 9 K n s |ds ff ď E t « e β 1 pt 1 ´tq |Y n t 1 | 2 `C ż t 1 t
e β 1 ps´tq p1 `|F ps, X s , 0, 0q| 2 qds ff , which holds for large enough β 1 and small enough α. Then, by using the upper bounds on |Y n |, see Proposition 3.2 and on |F p., ., 0, 0q|, see Assumption 3.2, we obtain:

E t « ż t 1 t |Z n s | 2 `| 9 K n s |ds ff ďE t « e β 1 pt 1 ´tq |Y n t 1 | 2 ´|Y n t | 2 `C ż t 1 t e β 1 ps´tq p1 `|F ps, X s , 0, 0q| 2 qds ff ďE t " pe β 1 pt 1 ´tq ´1q|Y n t 1 | 2 `|Y n t 1 `Y n t ||u n pt 1 , X t 1 q ´un pt, X t q| `C β 1 pe β 1 pt 1 ´tq ´1q  ďCpβ 1 qpt 1 ´tq `CE t " pt 1 ´tq α 1 {2 `|X t 1 ´Xt | α 1 ı ď C 1 pβ 1 qpt 1 ´tq α 1 {2 ,
where C 1 is independent of n, and we made use of Jensen's inequality and of standard SDE estimates on X in the last inequality. The above proves the first statement of the lemma.

To prove the second statement, we fix an arbitrary β ą 0 and consider N corresponding to ε " 1{p8βq. Then, the first statement of the lemma and the John-Nirenberg inequality yield:

E " e 2β ş T 0 | 9 K n s |`| 9 K m s |ds ı ď E " e 2β ş T pN´1q{N 0 | 9 K n s |`| 9 K m s |ds E T pN ´1q{N " e 2β ş T T pN´1q{N | 9 K n s |`| 9 K m s |ds ıı ď 2E " e 2β ş T pN´1q{N 0 | 9 K n s |`| 9 K m s |ds ı .
Iterating the above, we obtain the desired estimate. l Remark 3.4. It is worth noticing that every exponential moment of Var T pKq can be bounded by a constant that does not depend on the initial value x of the diffusion X, as follows from Remark 3.2 and from the proof of Theorem 3.1.

3
Proof. 1.a We first prove the uniqueness of the solution in the desired class. For any solution pY 1 , Z 1 , K 1 q in U p1q, we have

(3.23) E " e p 1 R 0 Var T pK 1 q  ă `8,
for some p 1 ą 1. Setting 1 ă p :" p1`p 1 q{2 ă p 1 , q 1 :" p 1 {p ą 1 and q " q 1 {pq 1 ´1q, we obtain, using Hölder inequality,

E " e p R 0 pVar T pKq`Var T pK 1 qq ı ď E " e qp R 0
Var T pKq 2. Turning to the existence part of the proof, we have already obtained the convergence of tY n u -recall (3.21). Moreover, it follows easily from Proposition 3.2 that, with probability one, Y t takes values in D for all t P r0, T s.

ı 1 q E " e q 1 p R 0 Var T pK 1 q  1 q 1 . ( 3 
We now turn to the convergence of tZ n u. For n, m ě 1, we denote δf t :" f pt, Y n t , Z n t q ´f pt, Y m t , Z m t q, δK :" K n ´Km , δY :" Y n ´Y m , δZ " Z n ´Zm . Applying Itô's formula to pe β 1 s |δY s | 2 q sPrt,T s , we obtain

|δY t | 2 `ż T t e β 1 ps´tq |δZ s | 2 ds " 2 ż T t e β 1 ps´tq δY s ¨δf s ds ´2 ż T t e β 1 ps´tq δY s ¨δ 9 K s ds ´2 ż T t e β 1 ps´tq δY s ¨δZ s dW s ´β1 ż T t e β 1 ps´tq |δY s | 2 ds. (3.26)
Choosing a large enough β 1 ą 0 and using the standard estimates, we deduce

E "ż T 0 |δZ s | 2 ds  ď CE "ż T 0 ˇˇδY s ¨δ 9 K s ˇˇds  . (3.27)
Note that Lemma 3.3 yields the existence of a constant C, s.t. E " ´şT

0 |δ 9 K s |ds ¯2 ď
C, for all n, m. Then, using the Cauchy-Schwartz inequality, we obtain

E "ż T 0 |δY s ¨δ 9 K s |ds  ď E « sup sPr0,T s |δY s | 2 ff 1 2 « E ˆż T 0 |δ 9 K s |ds ˙2ff 1 2 .
The above estimate, along with (3.27) and (3.21), implies that tZ n u ně1 is a Cauchy sequence. Thus, there exists pY, Zq P S 2 ˆH 2 such that pY n , Z n q Ñ pY, Zq.

Next, we recall that

K n t " Y n t ´Y n 0 `ż t 0 f ps, Y n s , Z n s qds ´Mn t , M n t :" ż t 0 Z n s dW s .
Doob's maximal inequality implies that tM n u converges in S 2 to M, with M t :" ş t 0 Z s dW s . As f pt, ¨, ¨q is Lipschitz, we conclude that (3.28)

}K n ´K} S 2 Ñ 0,
with the continuous process K defined as

K t :" Y t ´Y0 `ż t 0 f ps, Y s , Z s qds ´ż t 0 Z s dW s .
We now prove that K P K 1 , and that dK t is directed along n and is active only when Y touches the boundary. To this end, we define the auxiliary nondecreasing processes The above implies that the measure induced by d p Kt on r0, T s converges a.s. to d Kt . Then, for any bounded continuous process χ and any 0 ď t 1 ă t 2 ď T ,

η p pt 1 , t 2 q :" ż t 2 t 1 χ t Np ÿ r"p λ p r rψpY r t qp1 `|Z r t | 2 qdt " ż t 2 t 1 χ t d p Kt Ñ ż T 0 χ t d Kt , a.s. (3.30)
From the first statement of Lemma 3.3 (with the use of Proposition 3.2), we conclude that, for any ε ą 0, there exists N ě 1 (independent of n) such that, for all p and all 0 ď k ă N, we have a.s.:

E t r|η p pt, T pk `1q{Nq|s ď ε, @t P rT k{N, T pk `1q{Ns.

Then, repeating the last part of the proof of Lemma 3.3, we conclude that, for any β ą 0, there exists a constant C, s.t.

E " e βη p p0,T q ‰ ď C, @ p.

Thus, the family texppβη p p0, T qqu p is uniformly integrable. The latter implies, in particular, that the convergence in (3.30) holds in L 1 and that all exponential moments of KT are finite. Next, we define

p K t :" Np ÿ r"p λ p r K r t , t P r0, T s.
We also denote by Ą ∇ψ a Lipschitz extension of ∇ψ into D (constructed as in Remark 3.1). Then, for any event A and any t P r0, T s, we have:

Er p K t 1 A s " E « ż t 0 Np ÿ r"p λ p r Ą ∇ψpY r s qrψpY r s qp1 `|Z r s | 2 qds 1 A ff " E « ż t 0 Ą ∇ψpY s q Np ÿ r"p λ p r rψpY r s qp1 `|Z r s | 2 qds 1 A ff `O ˜E« Np ÿ r"p λ p r sup sPr0,ts |Y r s ´Ys | ż t 0 p1 `|Z r s | 2 qds ffŅ E "ż t 0 Ą ∇ψpY s qd Ks ds 1 A  ,
where we used (3.30), and its L 1 version, and the estimate

E « sup sPr0,ts |Y r s ´Ys | ż t 0 p1 `|Z r s | 2 qds ff ď C}Y r ´Y } S 2 E " e ş t 0 p1`|Z r s | 2 q ı 1{2 ď C}Y r ´Y } S 2 ,
which follows from Lemma 3.3.

On the other hand, as K n converges to K in S 2 , Er p K t 1 A s converges to ErK t 1 A s, and since A is arbitrary and K ¨is continuous, we conclude:

(3.31) P ˆKt " ż t 0 Ą ∇ψpY s qd Ks ds, @ t P r0, T s ˙" 1.
Note that the integrability of KT and the above representation, in particular, imply K P K 1 . It only remains to show that (3.32)

ż T 0 1 D pY t qd Kt " 0.
To this end, we choose an arbitrary Lipschitz f supported in D and any event A, to obtain:

E "ż T 0 f pY t qd Kt 1 A  " lim nÑ8 E « ż T 0 f pY t q Np ÿ r"p λ p r rψpY r t qp1 `|Z r t | 2 qdt 1 A ff " lim nÑ8 E « ż T 0 Np ÿ r"p λ p r f pY r t qrψpY r t qp1 `|Z r t | 2 qdt 1 A ff `O ˜E« Np ÿ r"p λ p r sup tPr0,T s |Y r t ´Yt | ż T 0 p1 `|Z r t | 2 qdt ff¸" 0.
As A is arbitrary, we conclude that, for any Lipschitz f supported in D, we have ş T 0 f pY t qd Kt " 0 a.s.. Approximating 1 D with a sequence of such f , we, e.g., use the monotone convergence theorem to deduce (3.32). Combining the latter with (3.31), we obtain (1.2)(ii) and conclude the proof of the first part of Theorem 3.1. l Remark 3.5. Theorem 3.1 implies that, under Assumptions 3.1, 3.2 and 2.1 with θ " 1, there exists a unique solution to (1.2) in pY, Z, Kq P S 2 ˆH 2 ˆK 1 .

4.

Well-posedness beyond Markovian framework 4.1. Discrete path-dependent framework. In this subsection, we extend the existence and uniqueness result obtained in a Markovian framework, see Theorem 3.1, to a discrete path-dependent framework.

Assumption 4.1. Let ℓ be an arbitrary strictly positive integer and consider the partition 0 " t 0 ă t 1 ă ... ă t ℓ " T of r0, T s. We assume that ξ " gpX t 1 , ..., X t ℓ q and f ps, y, zq " F ps, X t 1 ^s, ¨¨¨, X t ℓ ^s, y, zq where (i) g is α-Hölder and takes values in D, (ii) F is measurable in all variables, globally Lipschitz in py, zq, uniformly over px 1 , ..., x ℓ q, and globally α-Hölder in px 1 , ..., x ℓ q, uniformly over py, zq, and |F p¨, ¨¨¨, 0, 0q| is bounded.

We note that ℓ " 1 corresponds to the Markovian framework with an extra regularity assumption on the generator with respect to x. We also recall that Assumptions 1.1 and 1.2 hold throughout Section 4 even if not cited explicitly. Proof. Once the finiteness of the exponential moments of Var T pKq is proven, the uniqueness of the solution in the class U p1q follows from the same arguments as in step 1.a of the proof of Theorem 3.1. Let us now prove the existence part of the theorem. To this end, we use the backward recursion to construct a solution on each interval rt i , t i`1 s for 0 ď i ď ℓ ´1.

Since the case ℓ " 1 corresponds to the already treated Markovian framework, we assume that ℓ ą 1 and we consider the interval time rt ℓ´1 , T s. For any pt, xq P r0, T s ˆRd 1 , we denote by X t,x the unique solution of (3.1) on rt, T s, which starts from x at time t. We reserve the notation X for the original diffusion started at time zero. For any x " px 1 , ..., x ℓ´1 q P pR d 1 q ℓ´1 , we denote by pY x , Z x , K x q the solution of (1.2) on rt ℓ´1 , T s, with the terminal condition gpx, X t ℓ´1 ,x ℓ´1 T q and with the generator F p., x, X t ℓ´1 ,x ℓ´1 . , ., .q, whose existence is ensured by Theorem 3.1 and whose uniqueness in an appropriate class follows from Theorem 2.2.

Next, we denote by pY x,n , Z x,n q a Markovian solution of the penalized BSDE (3.3) on rt ℓ´1 , T s, whose existence is ensured by Proposition 3.1. In particular, there exist measurable functions u n px, ., .q and v n px, ., .q such that

Y x,n t " u n px, t, X t ℓ´1 ,x ℓ´1 t q, Z x,n t " v n px, t, X t ℓ´1 ,x ℓ´1 t q.
By considering a sequence of Lipschitz approximations of (3.3), given by (3.5), we apply Theorem 5.4 in [START_REF] Hu | Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with continuous coefficients[END_REF] and, passing to the limit for the Lipschitz approximations as in the proof of Proposition 3.1, we conclude that a Markovian solution to (3.3) can be constructed so that u n and v n are jointly measurable in all variables. Passing to the limit in n along a subsequence, we use Theorem 3.1 and the uniform Hölder estimate in Corollary 3.1, to deduce the existence of jointly measurable functions u and v satisfying (4.1)

Y x t " upx, t, X t ℓ´1 ,x ℓ´1 t q, Z x t " vpx, t, X t ℓ´1 ,x ℓ´1 t q.
Then, by denoting X " pX t 1 , ...X t ℓ´1 q, we consider the progressively measurable processes pY X t , Z X t q tPrt ℓ´1 ,T s and define

K X t :" Y X t ´Y X t ℓ´1 `ż t t ℓ´1 F ps, X, X t ℓ´1 ,Xt ℓ´1 s , Y X s , Z X s qds´ż t t ℓ´1 Z X s dW s , t ℓ´1 ď t ď T.
We note that X t ℓ´1 ,Xt ℓ´1 s " X s and that pY X t , Z X t , K X t q tPrt ℓ´1 ,T s is a solution of (1.2) on the time interval rt ℓ´1 , T s satisfying K X t ℓ´1 " 0. In order to iterate this construction and to extend the solution to the time interval rt ℓ´2 , t ℓ´1 s, we have to ensure that the associated terminal condition Y X t ℓ´1 of the reflected BSDE (1.2) on rt ℓ´2 , t ℓ´1 s is an α-Hölder function of X. To this end, we recall the function u in (4.1) and define, for all x " px 1 , ..., x ℓ´2 q P pR d 1 q ℓ´2 and x ℓ´1 P R d 1 , the deterministic function gpx, x ℓ´1 q :" upx, x ℓ´1 , t ℓ´1 , x ℓ´1 q " Y x,x ℓ´1 t ℓ´1 .

Let us prove that this function is α-Hölder. Indeed, for any x :" px, x ℓ´1 q P pR d 1 q ℓ´1 and x 1 :" px 1 , x 1 ℓ´1 q P pR d 1 q ℓ´1 , Proposition 2.2 with p " 2 yields |gpxq ´gpx

1 q| ď }Y x ´Y x 1 } S 2 ďCE " ˇˇgpx, X t ℓ´1 ,x ℓ´1 T q ´gpx 1 , X t ℓ´1 ,x 1 ℓ´1 T q ˇˇ4  1{4 `CE « ˆż T 0 |F ps, x, X t ℓ´1 ,x ℓ´1 s , Y x s , Z x s q ´F ps, x 1 , X t ℓ´1 ,x 1 ℓ´1 s , Y x s , Z x s q|ds ˙4ff 1{4 ďC ˜|x ´x1 | α `E " sup 0ďsďT |X t ℓ´1 ,x ℓ´1 s ´Xt ℓ´1 ,x 1 ℓ´1 s | 4α  1{4 ¸,
with a constant C that does not depend on x (see Remark 3.4). Then, the Jensen's inequality and the standard SDE estimates yield

|gpxq ´gpx 1 q| ď C|x ´x1 | α ,
which gives us the α-Hölder property of g. Considering the reflected BSDE (1.2) on rt ℓ´2 , t ℓ´1 s, with the terminal condition Y X t ℓ´1 " gpX t 1 , ..., X t ℓ´1 q and with the generator F ps, X t 1 ^s, ..., X t ℓ´2 ^s, X t ℓ´1 ^s, X t ℓ´1 ^s, y, zq, we deduce, as in the first part of the proof, that it has a solution in the form (4.1).

Finally, iterating the above construction, we concatenate the "Y " and "Z" parts of the solutions constructed in individual sub-intervals, and we sum up the "K" parts (assuming that every individual "K" part is extended continuously as a constant to the left and to the right of the associated sub-interval). It is easy to see that the resulting process pY, Z, Kq P S 2 ˆH 2 ˆK 1 is a solution of (1.2) on r0, T s. l 4.2. General case.

Theorem 4.2. Let Assumption 2.1 hold with θ " 2. Then, there exists a triplet pY, Z, Kq P S 2 ˆH 2 ˆK 1 that solves (1.2), and this solution is unique in the class U p2q.

Proof. The uniqueness part of the theorem is a direct consequence of Proposition 2.1 and Corollary 2.2. Let us now prove the existence part: To do so, we shall construct a Cauchy sequence of approximating reflected BSDEs. First, we observe that the terminal condition ξ can be approximated by a sequence of random variables of the form ξ n :" g n pW t 1 , ..., W tn q, where g n is infinitely differentiable. The sequence pξ n q nPN ˚can be chosen so that it converges to ξ in L q , for any q ě 1 (see, e.g., [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]). In particular, (4.2)

lim nÑ8 E " |ξ ´ξn | 2p{pp´1q ‰ " 0,
with p ą 1 appearing in Proposition 2.1. Replacing g n by g n ^}ξ} L 8 , we can assume }ξ n } L 8 ď }ξ} L 8 . We observe that ξ n satisfies Assumption 4.1(i) for X " W . Second, to approximate the generator, for every n P N ˚, we denote by K n the closed ball in R dˆd 1 of radius n centered at zero, and choose a sequence of numbers ǫ n Ó 0. We set ℓ n :" }f p¨, 0, 0q} L 8 `Kf,y sup yP D |y| `nK f,z , recalling Assumption 1.2. For each n, we introduce L n the compact convex subset of C p D ˆKn q (the space of continuous function endowed with the uniform norm denoted }¨} s ) consisting of Lipschitz functions, with the Lipschitz coefficients K f,y in the variable y P D and K f,z in the variable z P K n , and whose (uniform) norm is bounded by ℓ n . Note that f |K n is valued in L n . We are now going to build an approximation of f | DˆK n in L n satisfying Assumption 4.1 (for X " W ). Let tφ m n u Mn m"1 be an ǫ n -cover of the compact set L n with M n a positive integer. We denote by f n pt, ¨q the (measurable selection of the) proximal projection of f | DˆK n pt, ¨q on tφ m n u Mn m"1 . It satisfies

f n pt, ¨q " Mn ÿ m"1
φ m n p¨qpη n t q m ": φ n p¨qη n t and } f n pt, ¨q ´f| DˆK n pt, ¨q} s ď ǫ n a.s.

with ηn a progressively measurable process which takes its value on the (non zero) extremal points of S Mn :" tx P R Mn | 0 ď x m ď 1, ř Mn m"1 x m ď 1u. Then, using the dominated convergence theorem, we have

E "ż T 0 }f | DˆK n pt, ¨q ´f n pt, ¨q} 2p{pp´1q s dt  ď T pǫ n q 2p{pp´1q . (4.3)
We now classically approximate pη n t q tPr0,T s by an adapted process pη n t q tPr0,T s piecewise constant on a grid Π n :" tt 0 " 0 ă ¨¨¨ă t n k ă ¨¨¨ă t n κn " T u. This process can be chosen to be S Mn -valued and satisfying

E "ż T 0 |η n t ´η n t | 2p{pp´1q dt  ď ǫ n pM n ℓ 2 n q p{pp´1q . Setting f n pt, ¨q " κn´1 ÿ k"0 φ n p¨qη n t n k 1 pt n k ,t n k`1 s ptq, (4.4)
which is L n -valued, as a random convex combination of the tφ m n u Mn m"1 , we compute

E "ż T 0 } f n pt, ¨q ´f n pt, ¨q} 2p{pp´1q s dt  ď ǫ n . (4.5)
Then, we apply the approximation result of [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] In view of (4.8), the right hand side of the above vanishes as n, m Ñ 8. Collecting (4.2), (4.9) and (4.10), we conclude:

}Y n ´Y m } S 2 `}Z n ´Zm } H 2 `}K n ´Km } S 2
n,mÑ`8

Ý ÝÝÝÝÝ Ñ 0.

In other words, pY n , Z n , K n q nPN ˚is a Cauchy sequence in S 2 ˆH 2 ˆS 2 . Then, there exists pY, Z, Kq P S 2 ˆH 2 ˆS 2 such that pY n , Z n , K n q nÑ`8

Ý ÝÝÝ Ñ pY, Z, Kq. Moreover, Y takes values on D. As pY n , Z n , K n q is the unique solution to (1.2) associated to the terminal condition ξ n and the generator f n , and since we have

E "ż T t |f n ps, Y n s , Z n s q ´f ps, Y s , Z s q|ds  ďE "ż T t |f n ps, Y s , Z s q ´f ps, Y s , Z s q|ds  `CE "ż T t |Y n s ´Ys | `|Z n s ´Zs |ds  ,
we can easily pass to the limit in (1.2)(i) to show that pY, Z, Kq satisfies (1.2)(i).

It remains to prove that K P K 1 , that dK t is directed along npY t q and that it is active only when Y touches the boundary (the latter two properties will be shown via the alternative characterization given by Lemma 2.3). Repeating the derivation of (2.11)-(2.12) for pY n , Z n , K n q, but without taking the conditional expectations, and with β " 0, we obtain:

ż T 0 dVar s pK n q ď C ˆ|ξ n | 2 `ż T 0 2Y n s ¨f ps, Y n s , Z n s qds ´ż T 0 2Y n s Z n s dW s ˙,
where the constant C does not depend on n. The right hand side of the above inequality converges in probability, hence it also converges a.s. up to a subsequence which we still denote tpY n , Z n , K n qu. Then, tVar T pK n qu nPN ˚is a.s. bounded uniformly over n, and Fatou's lemma yields that Var T pKq is a.s. bounded -i.e. K is a bounded variation process. Thanks to Proposition 2.1, tVar T pK n qu nPN ˚is uniformly integrable and, hence, K P K 1 . As pY n , Z n , K n q solve (1.2) with the terminal condition ξ n and the generator f n , Lemma 2.3 yields the existence of a constant c, independent of n, such that, for all continuous adapted process V with values in D, we have ż T 0 pY n s ´Vs qdK n s `c|Y n s ´Vs | 2 npY n s qdK n s ě 0 a.s.

Finally, we use Lemma 5.8 in [START_REF] Gégout-Petit | Équations différentielles stochastiques rétrogrades réfléchies dans un convexe[END_REF] to pass to the limit in the above inequality, to obtain ż T 0 pY s ´Vs qdK s `c|Y s ´Vs | 2 npY s qdK s ě 0 a.s.

and complete the proof of the theorem via another application of Lemma 2.3. l

Connection to Brownian Γ-martingales

It turns out that the solutions to reflected BSDEs in non-convex domains, defined via (1.2) and constructed in the previous sections, are naturally connected to the notion of martingales on manifolds (a.k.a. Γ-martingales -see [START_REF] Émery | Stochastic calculus in manifolds[END_REF]). In this section, we investigate this connection more closely, in particular, discovering a new proof of the existence and uniqueness of a Brownian martingale with a prescribed terminal value on a section of a sphere and showing the sharpness of the weak star-shape property in Assumption 1.1.

The connection to martingales on manifolds is made precise by the following proposition, which states that, under certain assumptions, the Y -component of the solution to (1.2) always stays on the boundary of the domain D. Treating BD as a manifold and expressing dK t via ∇ 2 φpY t q and Z t , we discover that Y satisfies the definition of a Brownian Γ-martingale on the manifold BD given in [START_REF] Émery | Stochastic calculus in manifolds[END_REF]. Finally, Y is a Γ-martingale, with the prescripted terminal value ξ, in the manifold BD endowed with the Riemannian structured inherited from R d and its canonical connection Γ, as defined in [START_REF] Émery | Stochastic calculus in manifolds[END_REF].

Remark 5.1. It is worth mentioning that the assumptions made in Proposition 5.1 imply that the set A cannot be smooth. To obtain an intuitive understanding of what the set A may look like, we refer the reader to the example that follows.

Proof. We apply Itô's formula for general convex functions (in the form of an inequality, as in [START_REF] Bouleau | Formules de changement de variables[END_REF]) to the process dpY t , Aq to obtain

0 ď dpY t , Aq ď E t " dpξ, Aq ´ż T t 1 tYsPBDz Āu ∇dpY s , AqdK s  ď 0, t P r0, T s,
which gives us Y P Ā X D Ă BD. Applying Itô's formula to φpY t q yields (5.1). Finally, using (5.1), the fact that dK t is orthogonal to the tangent space of BD at the point Y t , as well as (4.9), (4.10), (5.6)(ii) from [START_REF] Émery | Stochastic calculus in manifolds[END_REF], we conclude that Y is a Γ-martingale on BD. l In the remainder of this section, we assume f " 0 and present a simple example of the domains D and A for which the assumptions of Proposition 5.1 hold. This example allows us to obtain an alternative proof of a known result on Γ-martingales using the reflected BSDEs and, on the other hand, to illustrate the sharpness of the weak star-shape assumption (see Assumption 1.1) using the martingales on manifolds.

In this example, we construct the functions φ and φ C , which define the domains D and C as in Assumption 1.1, first, in the plane P :" R ˆt0u d´2 ˆR of R d . These functions are built symmetric with respect to the y d -axis, as the domains are themselves symmetric, see the precise description below. Then, we extend them to R d via φpyq " φpprpyq, 0, ..., 0, y d qq, φ C pyq " φ C pprpyq, 0, ..., 0, y d qq, with rpyq :" ´řd´1

i"1 |y i | 2

¯1{2

. By an abuse of notation we denote by the same names the associated domains D and C constructed in R d and their intersections with P.

We consider the three parameters α P p0, π{2q, η ą 0, ε P p0, π{2 ´αq, and the domains D α,η,ε , C α,η , A α,ε given in Figure 1, which satisfy the following properties.

' C α,η is a square centered at p0, ´1 ´η ´sinpαqq, with length 2 sinpαq `2η, with the edges parallel to axes and with rounded corners (obtained by modifying the square in the η-neighborhoods of these corners), such that BC α,η is a C 2 curve and C α,η is convex, ' D α,η,ε is symmetric w.r.t. the axis y d . ' BD α,η,ε is C 2 and is made up of the following pieces:

the arc S α of angle 2α, symmetric w.r.t. the axis y d , of the circle centered at zero and with the radius 1, -the arc of angle 2α, symmetric w.r.t. the axis y d , of the circle centered at zero and with the radius p2 sinpαq `2η `1q{ cospαq, -and two smooth curves L 1 and L 2, , symmetric to each other w.r.t. the axis y d , which connect the two arcs described above forming a C 2 closed curve that does not intersect itself nor C α,η . ' We denote by A 1 (respectively, A 2 ) the end point of the curve S α that belongs to the right (respectively, left) half-plane w.r.t. the axis y d . ' Let us assume that L 1 (respectively, L 2 ) belongs to the right (respectively, left) half-plane w.r.t. the axis y d . We also assume that the curve L 1 is constructed so that, in its natural parameterization with the starting point A 1 , the slope of its tangent vector has exactly one change of monotonicity. Namely, we assume that there exists a point B 1 ε , such that the angle between B 1 ε and A 1 relative to zero is ε and such that the derivative of the slope of the aforementioned tangent vector is continuous, nonincreasing, and equal to zero at B 1 ε . The curve L 2 , then, satisfies the analogous property due to symmetry, with the associated point B 2 ε . ' As the curve BD α,η,ε is C 2 , closed, and without self-intersections, we construct φ as the signed distance to BD α,η,ε in a neighborhood of BD α,η,ε and, then, extend it in a smooth way to R 2 . φ C is constructed similarly.

' We define S α,ε as the concatenation of the curves

" B 2 ε A 2 , S α , " A 1 B 1
ε , and we define A α,ε as the interior of the convex hull of S α,ε . ' Finally, we always assume that η ą 0 is small enough, such that C α,η is included in the triangle with vertices P 1 , 0 and P 2 , as shown in Figure 1. This ensures that Cα,η Ă D α,η,ε for any ε ą 0.

D α,η,ε C α,η A α,ε S α L 1 L 2 ' A 1 ' A 2 ' B 1 ε ' B 2 ε ' P 1 ' P 2 ' aα,η 1 η η η η α ε ' 0 Figure 1. Domains D α,η,ε , C α,η , A α,ε
Let us now consider a terminal condition ξ P S α and verify that D α,η,ε , A α,ε and ξ satisfy the desired assumptions. We easily deduce that R 0 " 1. Then, for any α P p0, π{2q and η ą 0, there exists ε 0 P p0, π{2 ´αq, such that, for all 0 ă ε ă ε 0 , the condition (1.1) holds up to a shift of coordinates in R d that maps the origin to a α,η :" p0, ..., 0, ´1 ´η ´sinpαqq. The other conditions of Assumption 1.1 follow easily.

Next, we notice that, in the discrete path-dependent framework and under Assumption 4.1, we can apply Theorem 4.1 to conclude that there exists a unique (in U p1q) triplet pY ε , Z ε , K ε q P S 2 ˆH 2 ˆK 1 that solves (1.2) in the domain D " D α,η,ε (we suppress the dependence of the solution on η and α as they are fixed in what follows). Proposition 5.1 applied to D " D α,η,ε and A " A α,ε (whose assumptions are satisfied by the construction of A α,ε , L 1 and L 2 ) states that Y ε lives in S α,ε . Then, the stability result of Proposition 2.2 yields that tpY 1{n , Z 1{n , K 1{n qu 8

n"1 is a Cauchy sequence and, hence, has a limit pY, Z, Kq. It is clear that Y lives on S α . Then, applying the arguments similar to those used in the proof of Theorem 3.1, one can deduce that pY , Z , K q solve the reflected BSDE (1.2) in the domain D " D α,η,ε 1 , for any ε 1 P p0, ε 0 q. Applying Proposition 5.1 once more and recalling that Y lives on S α , we conclude that Y is a Γ-martingale on the manifold S α with the terminal condition ξ. The uniqueness part of Theorem 4.1 yields that such a Γ-martingale is unique (in U p1q). Now, let us come back to a general terminal condition. We first notice that Proposition 2.1 holds for any solution pY, Z, Kq P S 2 ˆH 2 ˆK 1 of (1.2) that lives in S α and satisfies Assumption 2.1(i) with γ replaced by γ α :" inf yPSα ∇φ C pyq ¨∇φpyq |∇φpyq| .

We can easily compute γ α " cospαq. Moreover, we also have R 0 " 1 and |φ C pξq| L 8 ď 1 ´cospαq.

Thus, we conclude that Assumption 2.1(i) is fulfilled with θ " 2 as long as cospαq ą 2{3. Considering a sequence of discrete path-dependent terminal conditions that approximate the given (general) terminal condition and take values in S α , we repeat the proof of Theorem 4.2 obtaining a unique (in U p2q) triplet pY , Z , K q P S 2 ˆH 2 ˆK 1 that solves (1.2) in the domain D " D α,η,ε 1 , for any ε 1 P p0, ε 0 q, and is such that Y lives in S α . Applying Proposition 5.1 once more, we conclude that Y is a Γ-martingale on the manifold S α with the terminal condition ξ. The uniqueness part of Theorem 4.1 yields that such a Γ-martingale is unique in U p2q.

To sum up, the above construction proves the existence and uniqueness result for a Brownian Γ-martingale with a prescribed discrete path-dependent terminal condition ξ, satisfying Assumption 4.1, on any sector of the sphere S d´1 (we understand a sector as an intersection of a sphere and a half-space) that is strictly contained in a hemisphere. For a general terminal condition ξ, we are only able to tackle the case α ă arccosp2{3q. Thus, our results provide an alternative proof of a particular case of [START_REF] Kendall | Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence[END_REF][START_REF] Picard | Martingales on Riemannian manifolds with prescribed limit[END_REF], where the existence and uniqueness for any α ă π{2 is established. Considering the case α " π{2, we notice that, for any D that is included in the outside of a sphere and whose boundary contains a hemisphere, it is impossible to find a convex domain C Ă D that can "see" all points on the boundary of this hemisphere with a strictly positive angle: in other words, (1.1) can not be fulfilled. Therefore, our existence and uniqueness results fail for the case of a hemisphere. On the other hand, considering directly the problem of existence and uniqueness of a Brownian Γ-martingale with a prescribed terminal condition on a closed hemisphere of S d´1 , we notice the major challenge that is due to the non-uniqueness of geodesics, when d ě 3. Indeed, assume that ξ takes its values in the set tz 1 , z 2 u consisting of two antipodes on the sphere (i.e., the line connecting the two points goes through the center of the sphere) and note that S π{2 does contain such points. Then, for any shortest arc " z 1 z 2 Ă S π{2 , there exists a Γ-martingale on the manifold " z 1 z 2 with the terminal condition ξ. As the arc " z 1 z 2 is a geodesic, we conclude that the resulting Γ-martingale is also a Γ-martingale in the larger manifold S π{2 . Assuming that ξ takes each of its two values with strictly positive probability and recalling that there are infinitely many geodesic arcs " z 1 z 2 on S π{2 , we conclude that the uniqueness of a Γ-martingale on S d´1 with the terminal condition ξ does not hold. This observation, in particular, illustrates the sharpness of the weak star-shape property in Assumption 1.1 (condition (1.1)) in the case of a general terminal condition and general d ě 2.

Let us also mention that the non-uniqueness described above does not occur for d " 2, which indicates that it may be possible to relax our assumptions for reflected BSDEs in planar non-convex domains. In particular, we refer to [START_REF] Picard | Martingales sur le cercle[END_REF] for a complete treatment of Γ-martingales on S 1 . The latter result also yields the existence and uniqueness of a solution to the reflected BSDE in the domain D " ty P R 2 , 1 ă |y| ă 2u, which does not possess the weak star-shape property, with zero generator and with a terminal condition satisfying |ξ| " 1.

Moreover, in Section 3 of [START_REF] Picard | Martingales on Riemannian manifolds with prescribed limit[END_REF], Picard was able to prove the existence and uniqueness of a Brownian Γ-martingale with a prescribed terminal condition in a closed hemisphere of S d´1 , and in an even bigger domain, for a small enough T and under a smoothness assumption on the terminal condition 3 . The latter indicates that in a smooth Markovian or discrete path-dependent framework, under an additional smallness assumption, it may also be possible to relax the requirement of a weak star-shape property even for d ą 2.

Finally, let us give a simple example showing that the a priori estimates of Proposition 2.1 are not sharp. 4 Mimicking [START_REF] Picard | Martingales sur le cercle[END_REF], we consider a F T -measurable random variable ν with values in r´α, αs, where 0 ă α ă π{2 is a given parameter, and let pθ t , η t q tPr0,T s be the solution of the BSDE θ t " ν ´şT t η s dW s for t P r0, T s. We set Y t " pcospθ t q, sinpθ t qq J for all t P r0, T s and we easily check that Y is a solution to the BSDE

Y t " ξ `ż T t |Z s | 2 2 Y s ds ´ż T t Z s dW s , 0 ď t ď T,
where ξ " pcospνq, sinpνqq J and Z t " p´η t sinpθ t q, η t cospθ t qq J . Notice that this multidimensional quadratic BSDE can also be seen as a reflected BSDE in the domain D α,η,ε , with sufficiently small η, ε ą 0, rotated by π{2. Indeed, Y lives on (rotated) S α and the reflecting term is always pointing along the outer normal vector to (rotated) S α . Recall that D α,η,ε satisfies the weak star-shape property and note that dVar t pKq " |ηt| 2 2 . Then, an application of Itô's formula to θ Moreover, the above becomes an equality for t " 0 and ν " signpW T qα. Then, recalling that R 0 " 1 for D α,η,ε , we deduce from the John-Nirenberg inequality 3 To be precise, it is assumed that the process Z, defined by ξ " Erξs `şT 0 Z s dW s , has sufficiently small ş T 0 ess sup Ω |Z s | 2 ds. 4 Note that these estimates are not needed in a Markovian or discrete path-dependent case. for some p ą 1, provided α ă 1, which is weaker than the condition α ă arccosp2{3q ă 1 required by Assumption 2.1(i) with θ " 2, as computed earlier in this subsection.
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 33 (3.6), |Y n,M | is bounded uniformly over M. Hence, | Ỹ n,M 1 | can be bounded uniformly over M 1 ě 1, and, in turn, p Ỹ n,M 1 , Zn,M 1 q solve (3.3) for any large enough M 1 ą 0.The estimates (3.6)-(3.7) are obtained by repeating the proof of Lemma 3.1 for the equation (3.3) in place of(3.5).l A priori estimates. The following result relies on the asymptotic convexity of the squared pseudo-distance function, stated in Lemma 2.5.

 ă 8 .

 8 Then using (3.22), which is proved below, we obtain E " e p R 0 pVar T pKq`Var T pK 1 qq ı ă `8. (3.25) Proposition 2.2, then, yields the uniqueness stated in the theorem. 1.b The fact that K is absolutely continuous is proved in Lemma 2.1.

  n s | 2 qds, t P r0, T s. From Lemma 3.1 we deduce the existence of a constant C, s.t. E " Kn T ı ď C for all n. Then, using Proposition 3.4 in [5], we know that there exists a nondecreasing nonnegative process K, two sequences of integers tp ď N p u, with p Ñ 8, and a family of numbers tλ p r u, with ř Np r"p λ p r " 1, such that P ˜p Kt :" Kr t Ñ Kt , @t P r0, T s ¸" 1 . (3.29)

Theorem 4 . 1 .

 41 Let Assumptions 3.1 and Assumption 4.1 hold. Then, there exists a triplet pY, Z, Kq P S 2 ˆH 2 ˆK 1 that solves (1.2). Moreover, all exponential moments of Var T pKq are finite, and this solution is unique in the class U p1q (recall Definition 2.1).

  1 F Tmeasurable random variables ξ (with values in a Euclidean space), s.t. }ξ} L p :" Er|ξ| p s 1{p ă 8. The space L 8 stands for all F T -measurable essentially bounded random variables. We also define H 2 as the space of progressively measurable processes (with values in a Euclidean space) Z, s.t. }Z} H

2 :" E " ş T 0 |Z t | 2 dt ı 1{2 ă 8. Next, for p ě 1, we define M p as the space of all continuous local martingales M with }M} M p :" E " xMy p{2 T ı 1{p ă 8. For p P r1, 8s, we denote by S p the set of continuous adapted process U such that › › sup tPr0,T s |U t | › › L p ă 8.

  Remark 2.1. Thanks to (2.5) and to (2.3) we easily deduce for any solution pY, Z, Kq P S 2 ˆH 2 ˆK 1 to (1.2) that Lemma 2.3. Assume that pY, Z, Kq P S 2 ˆH 2 ˆK 1 solves (1.2)(i) and Y t P D a.s. for all t P r0, T s. Then npY s qdVar s pKq, t P r0, T s, holds if and only if there exists a constant c ą 0, depending only on D, such that for all essentially bounded continuous adapted process V in D, we have ż T One implication is a direct consequence of Lemma 2.2. The other implication is a mere generalization of Lemma 2.1 in[START_REF] Gégout-Petit | Équations différentielles stochastiques rétrogrades réfléchies dans un convexe[END_REF].It is clear that ψ P C 2 pR d z Dq and that its derivatives up to the second order are locally Lipschitz-continuous on R d zD. It is also easy to see that φpyq P p0, ǫs if and only if y P B R`1 p0qzD and φpyq ď ǫ, in which case y P B R p0q, φpyq " φpyq, ∇ φpyq " ∇φpyq, and ∇φ C pyq ¨∇ψpyq ě ∇φ C pyq ¨∇φpyq ą 0, where we also observed that inf yPR d zD ∇φ C pyq ¨y{|y| ą 0, which follows from the convexity of C and from the fact that 0 P C. If φpyq ď 0, then y P D. If φpyq ą ǫ, then ∇φ C pyq ¨∇ψpyq " ∇φ C pyq ¨∇ φpyq `κ∇φ C pyq ¨y |y| , which can be made positive for all y P R d zD by choosing large enough κ ą 0, as |∇ φ| is bounded on R d zD and inf yPR d zD ∇φ C pyq ¨y{|y| ą 0. The following lemma summarizes the above properties of ψ and states several additional properties which can be easily verified. There exist constants c, C ą 0, s.t. c dpy, Dq ď ψpyq ď C dpy, Dq for y P R d . (3) ψ P C 2 pR d z Dq, and its derivatives up to the second order are globally Lipschitz-continuous in R d zD. (4) inf yPR d zD ∇φ C pyq ¨∇ψpyq ą 0.

	dVar t pKq ď 1 tφpYtq"0u	˜" ∇φpY t q |∇φpY t q|	¨f pt, Y t , Z t q	 ``1 2R 0	|Z t | 2 ¸dt,
	with R 0 satisfying (2.4).				
	The following lemma provides an alternative to (1.2)(ii), and it becomes useful
	in the subsequent sections.				
	ż t			
	K t "				
		0			
	Lemma 2.4. There exist constants R, ǫ, κ ą 0, s.t. the function ψ defined in
	(2.8) satisfies the following properties.			
	(1) ψ is globally Lipschitz-continuous in R d .	
	(2)				
						l
	2.3. The pseudo-distance function. In this subsection, we modify the function
	φ in order to construct a new smooth function ψ which satisfies the inequality
	(1.1) in R d zD instead of BD. We denote by ϑ : R Ñ r0, 1s an infinitely smooth
	nondecreasing function which is equal to zero on p´8, 0s and to one on r1, 8q.
	We also choose a large enough R ą 1, s.t. D Ă B R´1 p0q, and a small enough
	ǫ P p0, 1q, s.t., for all y P B R`1 p0qzD, we have:		
	φpyq ď ǫ ñ y P B R p0q, ∇φ C pyq ¨∇φpyq ą 0.
	Then, we define				
	(2.8) φpyq :" φ `pyqp1´ϑp|y|´R´1qq`ϑp|y|´Rq, ψpyq :" φpyq`κ|y|ϑp φpyq{ǫq,
	for an arbitrary constant κ ą 0.			
	We refer to ψ as the pseudo-distance function.	
	Notice that				
	∇φ C pyq ¨∇ψpyq " ∇φ C pyq ¨∇ φpyq `κ∇φ C pyq	¨y |y|	ϑp φpyq{ǫq
	`κ∇φ C pyq ¨∇ φpyq|y|ϑ 1 p φpyq{ǫq{ǫ " ∇φ C pyq ¨∇ φpyq ´1 `κ|y|ϑ 1 p φpyq{ǫq{ǫ ¯`κ∇φ C pyq	¨y |y|	ϑp φpyq{ǫq.

0

`pY s ´Vs q `c|Y s ´Vs | 2 npY t q ˘dK s ě 0 .

(2.7)

Proof.

  |∇ψpyq| ∇ψpyq 1 tR d zDu pyq.2.3.1.Asymptotic convexity of the squared pseudo-distance. Due to Lemma 2.4, the Hessian of ψ 2 , denoted ∇ 2 ψ 2 , is well defined in R d zD (it is extended to the boundary of the latter set by continuity). The following lemma shows that ∇ 2 ψ 2 , viewed as a bilinear form, becomes positive semidefinite close to D.

	Lemma 2.5. There exists a constant C ą 0, s.t., for all y P R d zD and z

consider an arbitrary ε ą 0 and apply Itô's formula to ε|Y t | 2 between t and t 1 , to obtain:

  Proposition 2.1. Let pY, Z, Kq P S 2 ˆH 2 ˆK 1 be a solution to the RBSDE (1.2). Then, Z P B 2 . Moreover, if Assumption 2.1 holds for some θ ě 1, then, there exist constants C and p ą 1, which depend only on K f,y , K f,z , γ, λ, sup yPD |y|, sup yP D φ C pyq, }φ C pξq} L 8 , }f p., 0, 0q} L 8 and R 0 (recall Assumption 1.1 and (2.4)), such that

	Setting t 1 " T and ε " 1 in the previous inequality and combining it with (2.13),
	(2.10) we obtain "ż T 1 2 E t t	|Z s | 2 ds		ďE t	E |ξ| 2 `C1 " e θp R 0 Var T pKq "  ı φ C pξq γ "ż T	ď C. `CE t	"ż T t	p1 `|f ps, 0, 0q|qds 	
	Thus, under Assumption 2.1, any solution pY, Z, Kq belongs to U pθ, ξ, f, T q. t `C γ E ∇φ C pY s q ¨f ps, Y s , Z s qds . (2.15)
	Proof. 1. We start by applying Itô-Tanaka's formula to φ C pY t q (note that φ C is convex): for all t ď t 1 , E t « ż t 1 t ∇φ C pY s q ¨dK s ff ď E t « φ C pY t 1 q `ż t 1 t ∇φ C pY s q ¨f ps, Y s , Z s qds ff . Now, we observe that "ż T  « ż t 1 ff "ż T C 1 γ E t ∇φ C pY s q ¨f ps, Y s , Z s qds ď CE t t p1 `|f ps, 0, 0q|qds E t |Z s | 2 ds `1 4 t (2.11) Inserting the previous estimate back into (2.15), we get	
	In the equation above and the proofs below, we use the shorter notation E t r¨s for Er¨|F t s. "ż T  "  "ż T  1 4 E t t |Z s | 2 ds ďE t t |ξ| 2 `C γ φ C pξq `CE t p1 `|f ps, 0, 0q|qds .
	Recalling Assumption 1.1, we also have This proves that Z P B 2 .
	« ż t 1 2. We now turn to the estimation of the exponential moments of Var T pKq, under ff « ż t 1 ff « ż t 1 (2.12) the smallness Assumption 2.1.	ff
	γE t	dVar s pKq	ď E t			∇φ C pY s q ¨npY s qdVar s pKq	" E t	∇φ C pY s q ¨dK s	.
	t													t		t
	This yields, for t 1 " T , that	
	(2.13)		γE t	"ż T	dVar s pKq		ď E t	" φ C pξq	`ż T	∇φ C pY s q ¨f ps, Y s , Z s qds		.
						t										t
	Next, we εE t	« ż t 1	|Z s | 2 ds	ff		ďεE t	"	|Y t 1 | 2 ‰	`C1 εE t	« ż t 1	p1 `|f ps, 0, 0q| `|Z s |qds	ff
			t													« ż t 1	t	ff
													`εC 1 E	dVar s pKq	,
																t
	where we used that |Y | is bounded. The above inequality implies
	ε 2 (2.14) E t « ż t 1 t	|Z s | 2 ds	ff	ďεE t	"	|Y t 1 | 2 ‰	`Cε E t	t « ż t 1	p1 `|f ps, 0, 0q|qds	ff	`εC 1 E	t « ż t 1	dVar s pKq	ff	.

2.a First, combining Assumption 2.1(i) with (2.13), we obtain

  , the proof in the case of Assumption 2.1(iv) follows from (2.20) and (2.21), by partitioning r0, T s into small time intervals as in step 2.b. To avoid the redundant calculations, we skip the details.

l 2.5. Stability and uniqueness in U pθq. Using the a priori estimates established in the previous subsection, we prove the following stability property of the solutions to (1.2). Proposition 2.2. Let us consider pY, Z, Kq P S 2 ˆH 2 ˆK 1

  we denote by }∇ 2 ψpyq} ˚the maximum absolute value across all negative parts of the entries of the matrix ∇ 2 ψpyq. Next, we fix arbitrary ǫ, ε ą 0 satisfying

	ǫ ď ˆε `sup yPBD	}∇ 2 ψpyq} |∇ψpyq| 2	˙´1	, ǫ ď ˜ε `2	sup yPBD, zPR dˆm , sPr0,T s	}npyq ¨f ps, y, zq} L 8 |∇ψpyq|	¸´1	,
	and define							
	Ψ n pyq :" pψpyq ´1{pǫnqq `∇ψpyq " Hpyq :" ∇ 2 `pψpyq ´1{pǫnqq `˘2 " 2∇ψpyq∇ J ψpyq 1 ψě1{pǫnq `2pψpyq´1{pǫnqq `∇2 ψpyq. 1 ∇ `pψpyq ´1{pǫnqq `˘2 , 2

  .[START_REF] Briand | Particles systems for mean reflected BSDEs[END_REF]. Existence and uniqueness. We denote by tpY n , Z n qu ně1 a sequence of Markovian solutions to (3.3) satisfying (3.21) (whose existence is established in the previous subsection). The goal of this subsection is to establish that tpY n , Z n , K n q P S 2 ˆH 2 ˆK 1 u ně1 (with K n defined in (3.4)) 2 converges to a solution of the reflected BSDE (1.2) and that this solution is unique in the appropriate class.Moreover, this solution is unique in the class U p1q (recall Definition 2.1). If, in addition to Assumptions 3.1 and 3.2, g and F are globally Lipschitz in x (i.e., α " 1 in Assumption 3.2), then there exists a constant C such that |Z| ď C, dt ˆdP-a.e.Indeed, using the same arguments as in the proof of Corollary 3.1, we conclude that the conditions of Theorem 2.16 in[START_REF] Harter | A stability approach for solving multidimensional quadratic BS-DEs[END_REF] are satisfied. The latter theorem yields the existence of a constant C, s.t. |Z n t | ď C for a.e. pt, ωq and for all n. Then, it follows that |Z| ď C.

	(3.22)	E "	e βVar T pKq ‰	ă 8 .
	Remark 3.3.			

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Then, there exists a triplet pY, Z, Kq P S 2 ˆH 2 ˆK 1 , such that

lim nÑ8 p}Y n ´Y } S 2 , }Z n ´Z} H 2 , }K n ´K} S 2 q " 0 .

which solves (1.2). The process K is absolutely continuous and satisfies, for all β ą 0,

  for each ηn |f pt, y, zq ´f n pt, y, zq| 2p{pp´1q dt " 0.We extend f n pt, y, ¨q to R dˆd 1 zK n as a constant in each radial direction, so that its uniform norm and Lipschitz coefficient do not change.When, moreover, f satisfies Assumption 2.1-(i) (resp. Assumption 2.1-(iii)), the above construction allow to build an approximating sequence f n having the same properties. One simply works with Ln instead of L n , where Ln is the closed convex subset of L n whose function satisfies Assumption 2.1-(i) (resp. Assumption 2.1-(iii)). Now, since, for any n P N ˚, ξ n and f n satisfy Assumption 4.1, we can invoke Theorem 4.1 to obtain an unique solution pY n , Z n , K n q P S 2 ˆH 2 ˆK 1 to (1.2) associated with this data. Thanks to Proposition 2.1, we are allowed to apply Proposition 2.2: for all n, m P N }Y n ´Y m } S 2 `}Z n ´Zm } H 2 `}K n ´Km } S 2

	t n Applying the Cauchy-Schwartz, Jensen's, and Chebyshev's inequalities, we ob-k . Introducing, if necessary, a finer grid ℜ n Ă Π n , we set tain
		E «	0 ˆż T	η n t n k :" P S t |q1 t|Z n p1 `|Z n t |ąnu dt ˙2p{pp´1q ff " r n k `pW r q rPℜn,rďt n k ˘‰ ,
	where r n k is a smooth function with values in R Mn and P S the (orthogonal) pro-jection onto S Mn . We can chose r n « ˆż T ˙2p{pp´1q ff 1{2 "ż T  1{2 k such that E " |η n t k ´η n t k | 2p{pp´1q ‰ ď ď T p{pp´1q´1{2 E 0 p1 `|Z n t |q 2 dt E 1 t|Z n t |ąnu dt 0 ǫ n pM n ℓ 2 n q p{pp´1q . (4.6) Setting f n pt, ¨q " ř κn´1 k"0 φ n p¨qη n t n k 1 pt n k ,t n k`1 s ptq, which belongs to L n , we have ď « ˆż T ˙2p{pp´1q ff 1{2 "ż T  1{2 T p{pp´1q´1{2 0 0 n E p1 `|Z n t |q 2 dt E |Z n t | 2 dt .
	E "ż T Using Proposition 2.1 and the energy inequality for BMO martingales, we can } f n pt, ¨q ´f n pt, ¨q} 2p{pp´1q s dt  ď T ǫ n . ´şT ¯2p{pp´1q (4.7) estimate E 0 p1 `|Z n uniformly over n. Then, for all m ě n, we t |q 2 dt 0 obtain from the above estimate:
	Collecting the above, we conclude that (4.8) lim nÑ8 E « ˙2p{pp´1q ff pp´1q{p2pq ˆż T ż T 0 E 0 |f n pt, Y n t , Z n t q ´f m pt, Y n t , Z n t q|dt sup yP D, zPK n « ˆż T ˙2p{pp´1q ff pp´1q{p2pq
	ď CE			0	p1 `|Z n t |q1 t|Z n t |ąnu dt
	(4.10)	«	ˆż T	˙2p{pp´1q ff pp´1q{p2pq
		`CE			0	|f n pt, Y n t , Z n t q ´f m pt, Y n t , Z n t q|1 t|Z n t |ďnu dt
	ď	n pp´1q{p2pq `CE C "ż T 0	|f n pt, Y n t , Z n t q ´f pt, Y n t , Z n t q| 2p{pp´1q 1 tY n t P D,|Z n t |ďnu dt  pp´1q{p2pq
		"ż T	 pp´1q{p2pq
		`CE			0	˚, t q ´f pt, Y n t , Z n |f m pt, Y n t , Z n t q| 2p{pp´1q 1 tY n t P D,|Z n t |ďmu dt	.
	(4.9)			ď CE	"	|ξ n ´ξm | 2p{pp´1q ‰ pp´1q{p2pq
					«	ˆż T	˙2p{pp´1q ff pp´1q{p2pq
					`CE	|f n ps, Y n s , Z n s q ´f m ps, Y n s , Z n s q|ds	,
					0
	with a constant C that does not depend on n and m.

  Proposition 5.1. Assume the following: ' there exists a convex domain A, satisfying Ā X D Ă BD, ' 1 tyPBDz Āu ∇dpy, Aq ¨∇φpyq ě 0, ' f " 0 and ξ P Ā X BD almost surely, ' pY, Z, Kq P S 2 ˆH 2 ˆK 1 solve (1.2). Then, Y P Ā X D Ă BD almost surely. Moreover, we have

			"	 `dt.
	(5.1)	dVar t pKq "	´1 2	TrrZ J t ∇ 2 φpY t qZ t s

The fact that K n P K 1 follows from the inequality (3.7) and the second statement of Proposition

3.1.