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Consistency of the maximum likelihood estimator in
hidden Markov models with trends

L. Lehéricy∗, A. Touron∗†

Abstract

A hidden Markov model with trends is a hidden Markov model whose emission
distributions are translated by a trend that depends on the current hidden state and
on the current time. Unlike standard hidden Markov models, such processes are
not homogeneous and cannot be made homogeneous by a simple de-trending step.
We show that when the trends are polynomial, the maximum likelihood estimator
is able to recover the trends together with the other parameters and is strongly
consistent. More precisely, the supremum norm of the difference between the true
trends and the estimated ones tends to zero. The convergence of the maximum
likelihood estimator is illustrated on simulated data.

Keywords: hidden Markov model, maximum likelihood, inhomogeneous process, con-
sistency
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1 Introduction

A hidden Markov model (shortened HMM in the following) is a joint process (Xt, Yt)t>1

where (Xt)t>1 is an (unobserved) Markov chain and conditionally on (Xt)t>1, the ob-
servations (Yt)t>1 are independent and the distribution of Ys (the emission distribution)
depends only on Xs. In most generalizations of HMM, the joint process (Xt, Yt)t>1 is still
a Markov chain. We say that the process is inhomogeneous when this chain is inhomoge-
neous, that is when the distribution of (Xt, Yt) conditionally to (Xt−1, Yt−1) depends on t.
In particular, in inhomogeneous HMM, the transition matrix and emission distributions
may vary over time.

As far as we know, few inhomogeneous generalizations of HMM have been studied
theoretically. Let us review them before stating our contribution. They can be divided
in four categories.

Diehn et al. (2019) focus on the case where a rapidly fading phenomenon affects the
distribution of the observations. Their model is a trivariate process (Xt, Yt, Zt)t>1 where
only (Zt)t>1 is observed, such that (Xt, Yt)t>1 is an homogeneous HMM and (Xt, Zt)t>1 is
an inhomogeneous HMM. Their key assumption is that the distance between Zt and Yt
tends to zero fast enough when t tends to infinity. In this sense, the process (Zt)t>1 is a
perturbation of the process (Yt)t>1 by a rapidly fading inhomogeneous noise. The main
theoretical result of their article is that the estimators based on maximizing either the
true likelihood θ 7→ pZn1 |θ(Z

n
1 ) or a quasi-likelihood θ 7→ pY n1 |θ(Z

n
1 ) are consistent (here

pY n1 |θ is the density of the vector (Y1, . . . , Yn) under the parameter θ). This can be seen
as a proof that the maximum likelihood estimator for homogeneous HMM is robust to a
temporary perturbation of the data.

A second generalization has been considered by Touron (2018) to handle periodic
phenomenon. The author introduces periodic hidden Markov models, where the transi-
tion matrix and the emission densities vary periodically over time. He shows that such
models are identifiable under general assumptions and that the maximum likelihood es-
timator is consistent. The consistency proof relies on a transformation of the process
into an homogeneous HMM. Models with periodic parameters are of particular interest
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in the study of meteorological phenomena. For instance, Ailliot and Monbet (2012) use
Markov-Switching Autoregressive (MS-AR) models with periodic emission distributions
and transition matrices in order to account for both the daily and yearly seasonalities of
wind speed.

Inhomogeneity can also be introduced in the process by considering that the transition
probabilities of the hidden Markov chain depend on an exogeneous variable. Bellone
et al. (2000) and Hughes et al. (1999) chose this approach to model precipitations, taking
a vector of atmospheric variables as the exogeneous variable. However, no theoretical
results on the consistency of the MLE are given in these papers.

Finally, we may assume that the transition probabilities or the emission densities of
the HMM change over time in a way not encompassed by the previous cases. For example,
this allows to model phenomena with slow or long-term evolution, such as economic or
meteorological data recordings spanning over several decades, as in (Touron, 2019, Part
II), where the author is interested in generating realistic temperature recordings over
the last half century. To account for the global warming, he uses HMM with trends
similar to the ones studied here. We could not find any theoretical result on this type of
generalization outside of our paper.

Note that some models that are presented as time-inhomogeneous in the literature
are actually homogeneous according to our definition. This is the case of the Markov-
switching models considered since the work of Hamilton (1989) and more recently by
Pouzo et al. (2016) and Ailliot and Pene (2015) for instance. These models are a gener-
alization of HMM where the hidden state Xt depends both of the previous hidden state
Xt−1 and on previous observations, let’s say Yt−1 for an order one model, and where the
observation Yt depends both on the corresponding hidden state Xt and on previous obser-
vations. The authors state that this model is “non-homogeneous” because the transition
kernel of the hidden Markov chain depends on previous observations. Our motivation for
not calling these models inhomogeneous is that the joint process (Xt, Yt)t>1 is a homoge-
neous Markov chain. As such, their proofs are based on the same approach as for HMM
and other homogeneous generalizations such as the autoregressive models with Markov
regime of Douc et al. (2004).

In this paper, we introduce a new inhomogeneous generalization: hidden Markov
models with trends. A HMM with trends is a trivariate process (Xt, Yt, Zt)t>1 taking
values in X ×Rd×Rd for some finite set X and some integer d (which we assume to be 1
for the sake of simplicity) where only the process (Yt)t>1 is observed, such that (Xt, Zt)t>1

is a homogeneous HMM and that there exists a vector of functions (Tx)x∈X from N∗ to
Rd, the trends, such that

Yt = TXt(t) + Zt.

Here, the trends are polynomial functions of time. As a consequence, they may diverge.
Adding trends to a HMM allows to deal with non periodic and non vanishing inhomo-

geneities. However, this makes existing approaches such as Douc et al. (2004) inapplicable
since they rely heavily on the homogeneity of the process. Our main contribution is a
new method of proof that shows that the maximum likelihood estimator recovers the
parameter of the homogeneous HMM (Xt, Zt)t>1 as well as the trends with respect to the
supremum norm, see Theorem 1.

Let us give an overview of the proof of this theorem.
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First, we introduce the notion of “blocks”. This notion relies solely on the true
parameters. A block is a set of hidden states whose trends are equal up to translation.
In particular, since the trends are polynomials, if two trends are not in the same block,
they will eventually diverge from one another.

For each time t, let Bt be the block of Xt. The block variables (Bt)t>1 are unobserved,
yet the log-likelihood of the process (Yt)t>1 is asymptotically the same as the log-likelihood
of the process (Yt, Bt)t>1, see Theorem 3: since trends of different blocks diverge, it
eventually becomes apparent which block a given observation comes from.

Given a constant M > 0, we say that a function belongs to the tube of a block at
time n if its distance to the trends of this block remains bounded by M during the first
n time steps. In the following, the bound M on the distance must not depend on n.

The second step of the proof shows that the trends of the maximum likelihood esti-
mator end up in close proximity to the true trends: Theorem 5 shows that eventually, the
trends of the maximum estimator are all in the tube of a block and each tube contains
at least one trend of the maximum likelihood estimator.

Let us give an idea of the proof of Theorem 5. When a tube contains no estimated
trend, each observation from its block is far from the estimated trends, which inflicts a
heavy loss on the likelihood. On the other hand, if an estimated trend is in no tube,
then eventually it is far from all observations. We assume that the transition matrix is
lower bounded, so each state should be visited a non-zero proportion of the time. How-
ever, when a trend is far from all observations, the posterior proportion of observations
generated by the corresponding state tends to zero: each time this superfluous state isn’t
seen worsens the likelihood a little more, to the point that eventually, removing the trend
improves the likelihood of the estimator. Thus, asymptotically, each estimated trend is
in a tube and no tube is empty.

The third step is to de-trend the observations by substracting a representative T∗Bt of
the trends of the block:

Z ′t = Yt − T∗Bt(t).

The process (Xt, (Z
′
t, Bt))t>1 obtained this way is also a HMM with trends, yet it is

still not homogeneous under the parameter θ since the residual trends T θx −T∗b of (Z ′t)t>1

(where b is the block that contains T θx ), while bounded, are not constant. Fortunately,
as the number of observations grow, these residual trends become “flatter”, because they
are polynomials with bounded degree that are bounded on [0, n]. Thus, during small time
intervals, the de-trended process behaves like a homogeneous HMM under the parameter
θ, which allows to explicitly compute the limit of the log-likelihood, see Theorem 10.
The identifiability of the model and the consistency of the maximum likelihood estimator
follow from the properties of this limit.

Simulations based on two parametric models illustrate the consistency of the max-
imum likelihood estimator. Moreover, an empirical study of the rates of convergence
suggests that it converges with parametric rates.

Section 2 introduces the model and assumptions used in the following. Section 3
presents our main result: the consistency of the maximum likelihood estimator (Theo-
rem 1), as well as an outline of its proof. The technical proofs are postponed to the
appendices. Section 4 contains the numerical study. Finally, Appendices A to D contain
the proofs of the different steps of the consistency proof.
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Notation For each positive integer K, [K] denotes the set {1, . . . , K}. For a 6 b
integers, write Y b

a instead of (Ya, . . . , Yb).

2 Model and assumptions

Let K∗ be a positive integer. Let γ∗ = (γ∗x)x∈[K∗] be a vector of probability densities
on R with respect to the Lebesgue measure. Let (Xt)t>1 be a Markov chain on [K∗]
with transition matrix Q∗ and initial distribution π∗. For all x ∈ [K∗], let (Zx

t )t>1

be a sequence of i.i.d. random variables in R such that these sequences are mutually
independent and independent on (Xt)t>1 and such that for all x ∈ [K∗], Zx

1 has density
γ∗x with respect to the Lebesgue measure. Let Zmax

t = maxx∈[K∗] |Zx
t | and Zt = ZXt

t .
Finally, let T ∗ = (T ∗x )x∈[K∗] be a family of functions R+ −→ R and let Yt = Zt + T ∗Xt(t)
for all integers t > 1. The (T ∗x )x∈[K∗] are called trends.

The process (Xt, Zt)t>1 is a homogeneous hidden Markov model with parameter
(K∗, π∗, Q∗, γ∗) and (Xt, Yt)t>1 is a hidden Markov model with trends with parameter
(K∗, π∗, Q∗, γ∗, T ∗).

Remark. The random variables Zmax
t are i.i.d. and independent of (Xt)t>1. They allow

to bound Zt uniformly for all possible values of Xt.

Consider a sample (Y1, . . . , Yn) generated by a hidden Markov model with trends
(Xt, Yt)t>1 with parameter θ∗ := (K∗, π∗, Q∗, γ∗, T ∗), which we call the true parameter.
The goal is to recover this parameter. In the following, we write P∗ the distribution of
the process (Xt, Yt)t>1 and E∗ the corresponding expectation.

Let σ− ∈ (0, 1).

(Aerg) A stochastic matrix Q satisfies (Aerg) when all its coefficients are lower bounded
by σ−:

∀x, x′, Q(x, x′) > σ−.

For each K ∈ N∗, let Σ
σ−
K be the set of stochastic matrices of size K which satisfy

(Aerg) and ∆K be the set of probability vectors of size K. Let Γ be a set of density
functions on R and for each d ∈ N, write Rd[X] the set of polynomials whose degree is
at most d.

Let K and d be positive integers. The model considered in this paper is

Θ =
K⋃

K′=1

(
{[K ′]} ×∆K′ × Σ

σ−
K′ × ΓK

′ × (Rd[X])K
′
)

Each θ = (Kθ, πθ, Qθ, γθ, T θ) ∈ Θ is a parameter of a HMM with trends. Write Pθ
the distribution under the parameter θ. Assume that the true parameter belong to the
model: θ∗ ∈ Θ.

Endow Γ with the pointwise convergence topology (i.e. gn −→
n→∞

g if and only if for all

z ∈ R, gn(z) −→
n→∞

g(z)). Assume that Γ is compact.

We will use the following assumptions.
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(Amax) Envelope function. There exists a nonincreasing function g : R+ −→ R+ such
that g −→

+∞
0 and

∀γ ∈ Γ ∀z ∈ R γ(z) 6 g(|z|).

(Amin) Lower bound function. There exists a nonincreasing function m : R+ −→ R+

such that
∀γ ∈ Γ ∀z ∈ R γ(z) > m(|z|) > 0.

(Aint) Integrability of the lower bound function. The function m defined in (Amin)
satisfies

∀M > 0 E∗| logm(M + Zmax
t )| <∞.

(Acentering) Centering of the emission densities. 0 is a median of the emission densi-
ties, that is:

∀γ ∈ Γ

∫
z60

γ(z)dz =
1

2
.

(Aid) Identifiability. Q∗ is invertible and there exists t ∈ N such that the densities
(γ∗x(· − T ∗x (t)))x∈[K∗] are pairwise distinct.

Equivalently, Q∗ is invertible and the couples (γ∗x(·−∆(x)),b∗(x))x∈[K∗] are pairwise
distinct, where the functions b∗ and ∆ are defined in Definition 2.

(Areg) Regularity of the emission densities. There exists a modulus of continuity ω
(that is a nondecreasing function R+ −→ R+ ∪ {+∞} that is continuous at 0 and
such that ω(0) = 0) and a nondecreasing function L : R+ −→ R+ such that

∀(z, η) ∈ R2 ∀γ ∈ Γ

∣∣∣∣log
γ(z + η)

γ(z)

∣∣∣∣ 6 L(|z|)ω(|η|)

and such that
∀M > 0, E∗[L(M + Zmax

1 )] <∞.

As an example, consider Γ as the set of densities of the distributions N (0, s2) where
s ∈ [s−, s+] for 0 < s− 6 s+ < ∞. Then (Amax), (Amin) and (Acentering) are
immediate, (Aint) is straightforward since | logm| can be chosen as growing at most
quadratically to infinity, the part of (Aid) on the densities holds when all states with
equal trends have different variances, and the functions L and ω in (Areg) can be com-
puted explicitely.

3 Consistency of the MLE

Let n ∈ N∗. The maximum likelihood estimator θ̂n = (K θ̂n , πθ̂n , Qθ̂n , γ θ̂n , T θ̂n) is an
element of

arg max
θ∈Θ

1

n
log pθY n1 (Y n

1 ).

where pθY n1 is the density of the distribution of Y n
1 with respect to the Lebesgue measure

under the parameter θ.
The main result of this paper is the following theorem.
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Theorem 1. Assume that K∗ is known and that (Amax), (Amin), (Aint), (Acenter-
ing), (Aid) and (Areg) hold. Then almost surely, there exists a sequence of (random)
permutations τn of [K∗] such that

∀x, x′ ∈ [K∗], Qθ̂n(τn(x), τn(x′)) −→
n→∞

Q∗(x, x′),

∀z ∈ R, ∀x ∈ [K∗], γ θ̂nτn(x)(z) −→
n→∞

γ∗x(z),

∀x ∈ [K∗], ‖T θ̂nτn(x) − T ∗x‖∞,[0,n] −→
n→∞

0.

We say that the maximum likelihood estimator converges up to permutation of the
hidden states. Without convention on the ordering of the hidden states, it is not possible
to get rid of this permutation.

Note that trends converge in supremum norm. This is considerably stronger than
assuming that the coefficients of the polynomial converge. It is also intrinsic in the sense
that it shows the convergence of the trends when seen as continuous functions and not
just as polynomials. Therefore, it could be extended to other types of continuous trends.

Since the trends are polynomial, two trends are either equal up to translation (we
say that they are in the same block) or diverge from one another. The first part of the
proof, resulting in Theorem 3, makes use of this fact to show that the block from which
an observation comes can be assumed observed once the number of observations is large
enough.

Definition 2 (Blocks of trends). Let R∗ be the equivalence relation defined on [K∗] by
xR∗x′ if and only if T ∗x − T ∗x′ is constant. Let

B∗ := [K∗]/R∗

be the set of “blocks” of true trends.
Let us denote by b∗ : [K∗] −→ B∗ the quotient mapping and let

Bt := b∗(Xt)

be the block from which the observation Yt is generated. For each b ∈ B∗, write

T∗b = T ∗min{x|x∈b}

the reference trend of block b and let

∆ : x∗ ∈ [K∗] 7−→ T ∗x∗(1)− T∗b∗(x∗)(1)

be the function which maps the index of a trend to the difference between the corresponding
trend and its reference trend.

For all θ ∈ Θ, write

`n(θ) := log pθY n1 (Y n
1 )

`(Y,B)
n (θ) := log pθ(Y,B)n1

((Y,B)n1 )

the log-likelihoods of θ with respect to the processes (Yt)t>1 and (Yt, Bt)t>1.
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T θ1
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Figure 1: Illustration of the tubes of trends and of a θ that is not in ΘOK
n (M).

Define the tube of size M of a block at time n as the set of functions R+ → R which
are at a distance smaller than M of the reference trend of this block on [0, n] (and as
a consequence is at a distance smaller than M during the first n time steps). Since the
observations (Yt)t>1 are clustered around the true trends (see Figure 3 for instance), the
estimated trends and the tubes will eventually match. This behaviour is formalized in
Theorem 5 below by proving that there exists a large enough M such that for n large
enough, θ̂n ∈ ΘOK

n (M), where for all M > 0 and n ∈ N, ΘOK
n (M) is the subset of Θ

defined by

∀θ ∈ ΘOK
n (M), ∀x∗ ∈ [K∗], ∃x ∈ [Kθ], ‖T ∗x∗ − T θx‖∞,[0,n] 6M (1)

and ∀x ∈ [Kθ], ∃x∗ ∈ [K∗], ‖T ∗x∗ − T θx‖∞,[0,n] 6M. (2)

If θ ∈ ΘOK
n (M), each tube of size M+‖∆‖∞ contains at least one trend T θx , x ∈ [Kθ], and

each trend T θx , x ∈ [Kθ] is in a tube of size M + ‖∆‖∞, see Figure 1 for an illustration.
The following theorem states that when θ ∈ ΘOK

n (M) (that is, informally, when
the trends are loosely identified) and provided that the number of observations is large
enough, the log-likelihood associated to the observed process (Yt)t>1 can be approximated
by the log-likelihood of the process (Yt, Bt)t>1 where we know which block of trend each
observation comes from.

Let us first specify what we mean by the log-likelihood of the process (Yt, Bt)t>1.
Since the true trends are either in the same block or diverge from one another, the
tubes eventually have empty intersection. Once this is the case, given θ ∈ ΘOK

n (M) and
x ∈ [Kθ], we may define bθ(x) as the block whose tube contains the trend T θx . The

log-likelihood `
(Y,B)
n (θ) is the log-likelihood of a inhomogeneous HMM whose emission

densities at time t are (y, b) ∈ R× B∗ 7→ γθx(y − T θx (t))1(b = bθ(x)) for each x ∈ [Kθ].
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Theorem 3 (Adding block information). Assume (Amax), (Amin) and (Aint). Then
for all M > 0, almost surely,

sup
θ∈ΘOK

n (M)

∣∣∣∣ 1n`n(θ)− 1

n
`(Y,B)
n (θ)

∣∣∣∣ −→n→+∞
0.

Theorem 3 in proved in Appendix A, together with the following corollary.

Corollary 4. Assume (Amax), (Amin) and (Aint). Then there exists a finite `(θ∗)
such that

1

n
`n(θ∗) −→

n→∞
`(θ∗).

Corollary 4 is a key argument in the proof of the following theorem, proved in Ap-
pendix B.

Theorem 5 (Localization of the maximum likelihood estimator). Assume (Amax),
(Amin) and (Aint). Then there exists M > 0 such that almost surely, there exists
nloc ∈ N such that for all n > nloc,

θ̂n ∈ ΘOK
n (M).

Let us give an intuition on the last steps of the proof. We know by Theorem 3
that 1

n
`n(θ) ' 1

n
`

(Y,B)
n (θ). That means we may de-trend the observations by letting

Z ′t = Yt−T∗Bt(t), and 1
n
`n(θ) ' 1

n
`

(Y,B)
n (θ) = 1

n
`

(Z′,B)
n (θ). Under a parameter θ ∈ ΘOK

n (M),
this new HMM with trends (Xt, (Z

′
t, Bt))t>1 is “locally homogeneous”. Let us explain

what this means.
Rescale the trends of Z ′t so that the time index lives in [0, 1] by defining

Dθ,n
x : u ∈ [0, 1] 7−→ T θx (nu)− T∗bθ(x)(nu). (3)

Since the functions Dθ,n
x are bounded and polynomial, they live in a relatively compact

subset of the continuous functions on [0, 1] for all n, x and θ ∈ ΘOK
n (M). In particular,

we control how fast they vary, and thus how well they can be approximated by piecewise
constant functions (see Figure 2), which correspond to a HMM with a succession of
homogeneous regimes.

Dθ,n
x (u)

0 1u

Figure 2: Approximation of one trend of the de-trended HMM (black) by the correspond-
ing trend in a succession of homogeneous HMM (purple).

Let 1
n
`

(Y,B)
n [N ] (θ) be the log-likelihood corresponding to such an approximation when

the sample (i.e. the time interval [0, n] before rescaling) is cut into N pieces, and let
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`hom(θ, n, u) be the limit of the normalized log-likelihood of a homogeneous HMM with
parameters given by θ frozen at time nu, that is of a homogeneous HMM (Xt, (Z

′
t, Bt))t>1

with transition matrix Qθ and emission densities (z′, b) 7→ γθx(z
′ −Dθ,n

x (u))1(b = bθ(x)),
x ∈ [Kθ]. The previous paragraph means that the following sequence of approximations
holds:

1

n
`n(θ) ' 1

n
`(Y,B)
n (θ)

' 1

n
`(Y,B)
n [N ] (θ)

' 1

N

N∑
i=1

`hom

(
θ, n,

i− 1

N

)
when n→∞

'
∫

[0,1]

`hom(θ, n, u)du by Riemann integration.

To conclude, we use that the latter quantity, the integrated log-likelihood, is maximized
only at the true parameters, as shown in Proposition 11.

Let us now state these intermediate results more rigorously. For all K ′ ∈ N∗, for all
K ′-uple γ = (γx)x∈[K′] of measurable functions and for all D = (Dx)x∈[K′] ∈ RK′ , let

τ(γ,D) := (z′ 7−→ γx(z
′ −Dx))x∈[K′]

be the vector of functions γ translated by the vector D.

Definition 6 (Log-likelihood of homogeneous HMM). Let K ′ ∈ N∗ be a positive integer,
π be a probability measure on [K ′], Q be a transition matrix of size K ′, γ be a vector
of K ′ emission densities on R and b be a function [K ′] −→ B∗. Let (Xt, (Z̃t, B̃t))t>1

be a homogeneous HMM taking values in [K ′] × (R × B∗) with parameter (π,Q, (γx ⊗
1b(x))x∈[K′]).

Denote by 1
n
`homn (π,Q, γ,b){(z̃, b̃)n1} (resp. `hom(Q, γ,b)) its normalized log-likelihood

associated with the observations (z̃, b̃)n1 (resp. the limit of the log-likelihood, if it exists),
that is

1

n
`homn (π,Q, γ,b){(z̃, b̃)n1} =

1

n
log

∑
xn1∈[K′]n

π(x1)Q(x1, x2) . . . Q(xn−1, xn)
n∏
t=1

γxt(z̃t)1b(xt)=b̃t

and

`hom(Q, γ,b) = lim
n→∞

1

n
`homn (π,Q, γ,b){(Z̃, B̃)n1}. (4)

The following Lemma ensures the existence of the limit of the normalized log-likelihood
in Definition 6. It relies on results from Douc et al. (2004) on homogeneous HMM.

Lemma 7. Assume (Amax), (Amin) and (Aint). Let K ′ ∈ N∗. Then almost surely,
for all Q ∈ Σ

σ−
K′ , γ ∈ ΓK

′
, D ∈ RK′ and b : [K ′] −→ B∗, the quantity

`hom(Q, τ(γ,D),b)

from Equation (4) exists, does not depend on the choice of the initial measure π and is
finite when (Z̃t, B̃t)t = (Yt − T∗Bt(t), Bt)t.

10



Definition 8 (Integrated log-likelihood). We call integrated log-likelihood the following
mapping:

`int : (Q, γ,D,b) ∈
K⋃

K′=1

Σ
σ−
K′×ΓK

′×L∞([0, 1])K
′×(B∗)K′ 7−→

∫ 1

0

`hom(Q, τ(γ,D(u)),b)du

For all M > 0, let

D(M) :=
⋃

n>4K(d+1)

{
Dθ,n
x | θ ∈ ΘOK

n (M), x ∈ [Kθ]
}

(5)

where Dθ,n
x is defined in Equation (3). By definition of ΘOK

n (M), D(M) is a subset of
L∞([0, 1]) uniformly bounded by M + ‖∆‖∞. Let Cl(D(M)) be its closure in L∞([0, 1]).

Proposition 9. Let M > 0. Assume (Amax) and (Amin). Then Cl(D(M)) is a
compact subset of C0([0, 1]).

Theorem 10. Assume (Amax), (Amin), (Aint) and (Areg). For all M > 0, the
function `int is continuous on

⋃K
K′=1 Σ

σ−
K′ ×ΓK

′×Cl(D(M))K
′× (B∗)K′ and almost surely,

sup
θ∈ΘOK

n (M)

∣∣∣∣ 1n`n(θ)− `int(Qθ, γθ, (Dθ,n
x )x,b

θ)

∣∣∣∣ −→n→∞ 0. (6)

Proposition 9 and Theorem 10 are proved in the first part of Appendix C.

Now, assume that K∗ is known and take K = K∗. The following proposition ensures
that the only maximizer of the integrated log-likelihood is the true parameter.

Proposition 11. Assume that (Amax), (Amin), (Aint), (Acentering), (Aid) and
(Areg) hold. Let (Q, γ,D,b) ∈ Σ

σ−
K ×ΓK ×Cl(D)K × (B∗)K be a maximizer of `int, then

D is constant and (Q, γ,D,b) = (Q∗, γ∗,∆,b∗) up to permutation of the hidden states.

The proof of Proposition 11 is in the second part of Appendix C.

We may now prove the consistency of the maximum likelihood estimator. By Theo-
rem 5, there exists M > 0 such that almost surely, there exists a (random) integer nloc

such that for all n > nloc, θ̂n ∈ ΘOK
n (M). For n > nloc, let
(Qn, γn) := (Qθ̂n , γ θ̂n),

Dn := (Dθ̂n,n
x )x∈[K],

bn := bθ̂n .

For all n > nloc, (Qn, γn,Dn,bn) ∈ Σ
σ−
K × ΓK × Cl(D)K × (B∗)K , and this set is

compact by compactness of Γ and Proposition 9. Let (Q, γ,D,b) be the limit of a
convergent subsequence (Qϕ(n), γϕ(n),Dϕ(n),bϕ(n))n>1, then by continuity of `int and by
the uniform convergence of equation (6),

1

ϕ(n)
`ϕ(n)(θ̂ϕ(n)) −→

n→∞
`int(Q, γ,D,b) 6 `int(Q∗, γ∗,∆,b∗) = `(θ∗),

11



by Proposition 11, and by definition of the maximum likelihood estimator

1

ϕ(n)
`ϕ(n)(θ

∗) 6
1

ϕ(n)
`ϕ(n)(θ̂ϕ(n)).

Hence `int(Q, γ,D,b) = `(θ∗) = `int(Q∗, γ∗,∆,b∗), which means that (Q, γ,D,b) =
(Q∗, γ∗,∆,b∗) up to permutation of the hidden states by Proposition 11. Thus, the MLE
sequence (Qn, γn,Dn,bn)n>1 has only one possible limit: the true parameter. Theorem 1
follows.

4 Simulations

4.1 First experiment: rate of convergence

In this first example, we consider the following HMM with trends (Xt, Yt)t>1 with K∗ = 3
states. The emission distributions are centered Gaussian distributions with respective
variances (σ∗1)2 = 5, (σ∗2)2 = 10 and (σ∗3)2 = 15. The trends are given by

T ∗1 (t) = α(t+ 104)2, T ∗2 (t) = T ∗1 (t)− 5, T ∗3 (t) = 3T ∗1 (t),

with α = 10−8. Thus T ∗1 and T ∗2 belong to the same block while T ∗3 diverges from the two
other trends. Finally, the transition matrix is

Q∗ =

0.7 0.2 0.1
0.2 0.6 0.2
0.1 0.1 0.8

 .

The model is as follows. The number of states K∗ = 3 is assumed known. The set Γ
of possible emission distributions is taken as the set of centered Gaussian distributions,
without constraint on the variance. The lower bound on the transition probabilities is
chosen as σ− = 0. Even if Γ is not compact and σ− is not positive, contrary to the
theoretical result, the maximum likelihood estimator is still able to recover the param-
eters. Finally, the maximum degree of the trends is d = 4. Note that the model is
over-parametrized, as it contains all the trends in R4[X] while the degree of the true
trends is only 2. This reflects the fact that in practice, we may not know the degree of
the true trends.

We simulate 10 independent realizations (Xt, Yt)16t6nmax with nmax = 105. Figure 3
shows the data points corresponding to one of these 10 trajectories. Figure 4 illustrates
the fact that for each x ∈ [K∗], ‖T ∗x − T θ̂nx ‖∞,[0,n] −→

n→∞
0, where T θ̂nx is the maximum

likelihood estimator of T ∗x computed from the first n observations.
For each simulated trajectory and for several n ∈ {1, . . . , nmax}, we compute:

• The errors on the trends ‖T ∗x − T θ̂nx ‖∞,[0,n], 1 6 x 6 K∗,

• The error on the transition matrix ‖Q∗−Qθ̂n‖F , where ‖ ·‖F denotes the Frobenius
norm,

• The error on the variances maxx |(σ∗x)2 − σ̂2
x|.

12



Figure 3: Left panel: a simulated trajectory of length 100000 of the observations of the
HMM with trends (Xt, Yt)t>1. Each color corresponds to a different state (state 1: black,
state 2: red, state 3: green). Right panel: a focus on 10000 6 t 6 20000.
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Figure 4: Convergence of the estimated trends T θ̂nx (dashed lines) to the true trends T ∗x
(solid lines).
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Figure 5: Rate of convergence of the maximum likelihood estimator. The red dots are the
means of the log-errors across the 10 simulations, the blue line is the linear fit to these
means and the black bars represent the range of the log-errors across the simulations.

We plotted the logarithm of these errors against log n (see Figure 5). These graphs
suggest a linear decrease of the logarithm of the errors with respect to log n. Therefore,
we can conjecture that as n tends to infinity, nα‖Q∗ − Qθ̂n‖F is bounded in probability
for some α > 0, and that the same property holds for the other parameters (possibly
with a different α). Based on this experiment, it seems reasonable to conjecture that
the maximum likelihood estimator achieves the parametric rate of convergence α = 0.5.
However, proving this claim would require further investigation that go beyond the scope
of this paper. It is also worth noting that in this example, we chose simple parametric
emission distributions, whereas the model described in Section 2 for which our main
result holds only requires the set of emission densities to be compact, not necessarily
finite-dimensional.

4.2 Second experiment: the trends have not diverged yet

In this section, we consider a HMM with trends whose trends have not diverged during
the experiment, which is an assumption on which the proofs rely heavily. We show that
the MLE is still able to recover the trends and the homogeneous parameter accurately.
This is especially relevant for practical applications where one may not have enough time
to see the trends diverge.

Fix the maximum number of observations to n = 10000 and consider the following
HMM with trends (Xt, Yt)t>1 with K∗ = 2 states. The trends are defined by T ∗1 (t) = 0

and T ∗2 (t) = 3
(
t−n

2
n
2

)2

−1. The emission distributions are centered gaussian distributions
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Figure 6: Simulated data points. The red lines are the true trends.

with respective variances (σ∗1)2 = 1 and (σ∗2)2 = 2 and the transition matrix is

Q∗ =

(
0.7 0.3
0.2 0.8

)
.

Figure 6 shows the simulated observations (Yt)16t6n as well as the true trends T ∗1 and
T ∗2 . The two states are not clearly separated: the trends will eventually diverge, but we
don’t have enough observations to make use of this. However, the maximum likelihood
estimator is able to recover the trends even in this situation.

The model is as follows. The number of states K∗ = 2 is assumed known. As in the
previous section, we take σ− = 0, Γ as the set of centered Gaussian distributions and
d = 4.

Figure 7 shows the estimated trends obtained using the EM algorithm (Dempster
et al., 1977) together with the true trends. The estimated transition matrix and variances
are

Q̂ =

(
0.74 0.26
0.22 0.78

)
, (σ̂2

1, σ̂
2
2) = (1.13, 2.11).

The precision of these estimations can be further improved by increasing the number
of data points. The trends and the homogeneous parameter are already well estimated.
An intuition to explain this convergence even when the trends have not diverged is that
the trends vary slowly enough for the homogeneous approximation of Theorem 10 to hold.

A Block approximation

In this appendix, we shall prove Theorem 3 and Corollary 4.
Let us begin with a few definitions. Let

E : t ∈ N∗ 7−→ inf
b,b′∈B∗ s.t. b6=b′

|T∗b(t)− T∗b′(t)|
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Figure 7: True (full lines) and estimated (dashed lines) trends.

be the minimum difference between the reference trends of two distinct blocks at time t.
Note that E(t) diverges to +∞ since the true trends are polynomials.

Let M > 0 and

n1(M) := inf{n ∈ N∗ | ∀t > n,E(t) > 2M}.

Let n > n1(M), so that the tubes of size M at time n have no intersection. Let
θ ∈ ΘOK

n (M −‖∆‖∞) and x ∈ [Kθ], where ∆ is as in Definition 2. Then, by equation (2),
there exists a block bθ(x) ∈ B∗ (which is unique since n > n1(M)) such that T θx is in the
tube of size M of bθ(x) a time n. In particular,

sup
t∈{1,...,n}

|T∗bθ(x)(t)− T
θ
x (t)| 6M. (7)

The proof aims to make the following approximations rigorous.

log pθ
Yt|Y t−1

1
(Yt|Y t−1

1 ) ≈ log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

≈ log pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(Yt, Bt|Y t−1
1 , Bt−1

1 ),

hence the two following steps.

A.1 Step 1: introduction of the trend block Bt in the log-
likelihood

Assume (Amax), (Amin) and (Aint). Let us show that the following quantity tends
to 0 uniformly in θ.

log pθ
Yt|Y t−1

1
(Yt|Y t−1

1 )− log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

= log


∑

xt∈[Kθ]

pθ(Xt = xt|Y t−1
1 )γxt(Yt − T θxt(t))∑

xt∈[Kθ]

pθ(Xt = xt|Y t−1
1 )γxt(Yt − T θxt(t))1bθ(xt)=Bt

 .
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This can be rewritten as

log pθ
Yt|Y t−1

1
(Yt|Y t−1

1 )− log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

= log(pθBt|Y t1 (Bt|Y t
1 )−1)

= log

({
1− pθBt|Y t1

(
{b ∈ B∗ s.t. b 6= Bt}|Y t

1

)}−1
)
. (8)

Intuitively, when t is large, since the trends get further from one another, the proba-
bility to get the wrong block converges to zero.

Lemma 12. Assume (Amax) and (Amin). Then for all t ∈ N∗,

sup
θ∈ΘOK

n (M−‖∆‖∞)

∣∣∣log pθ
Yt|Y t−1

1
(Yt|Y t−1

1 )− log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )
∣∣∣

6 log

({
1− g({E(t)−M − Zmax

t − ‖∆‖∞}+)

σ−m(M + Zmax
t + ‖∆‖∞)

}−1

+

∧ g(0)

σ−m(M + Zmax
t + ‖∆‖∞)

)
=: h(E(t), Zmax

t )

with the convention {z}−1
+ = +∞ if z 6 0.

Proof. Proof in Section A.4.1.

Summing in t results in

sup
θ∈ΘOK

n (M−‖∆‖∞)

∣∣∣∣∣ 1n`n(θ)− 1

n

n∑
t=1

log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

∣∣∣∣∣ 6 1

n

n∑
t=1

h(E(t), Zmax
t ).

The function e ∈ R+ 7−→ h(e, z) is non-negative, non-increasing for all z ∈ R and
tends to 0 as e tends to +∞. Moreover, under Assumption (Aint), h(0, Zmax

1 ) is in-
tegrable by definition of h. Thus, under Assumption (Aint), the law of large numbers
implies that for all E > 0

lim sup
n→∞

sup
θ∈ΘOK

n (M−‖∆‖∞)

∣∣∣∣∣ 1n`n(θ)− 1

n

n∑
t=1

log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

∣∣∣∣∣ 6 E∗[h(E,Zmax
1 )].

The dominated convergence theorem ensures that E∗[h(E,Zmax
1 )] −→ 0 as E −→ +∞.

Thus, we obtain the following uniform approximation of the normalized log-likelihood:

sup
θ∈ΘOK

n (M−‖∆‖∞)

∣∣∣∣∣ 1n`n(θ)− 1

n

n∑
t=1

log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

∣∣∣∣∣ −→n→∞ 0. (9)

A.2 Step 2: conditioning on the blocks Bt−1
1

Assume (Amax) and (Amin). The following lemma is a consequence of the lower bound
on the transition matrices, see for instance Lemma 1 and Corollary 1 of Douc et al. (2004).
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Lemma 13 (Exponential forgetting). There exists C > 0 such that for all n ∈ N∗,
yn1 ∈ Rn, θ ∈ Θ and for all probability measures π, π′ on [Kθ]:∑

x∈[Kθ]

|pθ
Xn|Y n−1

1
(x|yn−1

1 , X0 ∼ π)− pθ
Xn|Y n−1

1
(x|yn−1

1 , X0 ∼ π′)| 6 Cρn

with ρ = 1− σ−
1−σ− ∈ (0, 1).

Besides, under (Aerg), for all θ ∈ Θ, x ∈ [Kθ], yn−1
1 ∈ Rn and for all probability

measure π on [Kθ]:
pθ
Xn|Y n−1

1
(x|yn−1

1 , X0 ∼ π) > σ−.

Hence, using the inequality | log x − log y| 6 |x−y|
x∧y for all x, y > 0: for all n ∈ N∗,

θ ∈ Θ, yn1 ∈ Rn, b ∈ B∗ and for all probability measures π, π′ on [Kθ]:

| log pθ
Yn,Bn|Y n−1

1
(yn, b|yn−1

1 , X0 ∼ π)− log pθ
Yn,Bn|Y n−1

1
(yn, b|yn−1

1 , X0 ∼ π′)|

6

∑
x∈[Kθ]

|pθ
Xn|Y n−1

1
(x|yn−1

1 , X0 ∼ π)− pθ
Xn|Y n−1

1
(x|yn−1

1 , X0 ∼ π′)|pθYn,Bn|Xn(yn, b|x)

σ−
∑
x∈[Kθ]

pθYn,Bn|Xn(yn, b|x)

6
C

σ−
ρn.

Changing the constant C if necessary, for all a ∈ N∗:

sup
θ∈ΘOK

n (M−‖∆‖∞)

∣∣∣∣∣ 1n
n∑
t=1

log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

− 1

n

n∑
t=1

log pθ
Yt,Bt|Y t−1

1 ,Bt−a1
(Yt, Bt|Y t−1

1 , Bt−a
1 )

∣∣∣∣∣ 6 Cρa.

It remains to condition on Bt−1
t−a+1.

Lemma 14. Assume (Amax) and (Amin). Then for all a ∈ N∗,

sup
θ∈ΘOK

n (M−‖∆‖∞)

∣∣∣∣∣ 1n
n∑
t=1

log pθ
Yt,Bt|Y t−1

1 ,Bt−a1
(Yt, Bt|Y t−1

1 , Bt−a
1 )

− 1

n

n∑
t=1

log pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(Yt, Bt|Y t−1
1 , Bt−1

1 )

∣∣∣∣∣
6

2aK2

σ3
−

1

n

n−1∑
i=1

(
1 ∧ g({E(i)−M − Zmax

i − ‖∆‖∞}+)

m(M + Zmax
i + ‖∆‖∞)

)

=:
2aK2

σ3
−

1

n

n−1∑
i=1

h′(E(i), Zmax
i ).
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Proof. We show that when (Aerg) holds, for all θ ∈ ΘOK
n (M − ‖∆‖∞), t 6 n, a ∈ N∗,

yt1 ∈ Y t and bt1 ∈ (B∗)t,∣∣∣ log pθ
Yt,Bt|Y t−1

1 ,Bt−a1
(yt, bt|yt−1

1 , bt−a1 )− log pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(yt, bt|yt−1
1 , bt−1

1 )
∣∣∣

6
2

σ−
pθ
Bt−1

(t−a+1)∨1|Y
t−1
1 ,Bt−a1

(
(B∗)(a∧t)−1 \ {bt−1

(t−a+1)∨1}|y
t−1
1 , bt−a1

)
(10)

6
2K2

σ3
−

t−1∑
i=(t−a+1)∨1

sup
xi∈[Kθ] s.t. bθ(xi)6=bi

γθxi(yi − T
θ
xi

(i))∑
x∈[Kθ]

γθx(yi − T θx (i))
. (11)

Then, we show that under (Amax) and (Amin), for all θ ∈ ΘOK
n (M − ‖∆‖∞) and

i 6 n:

sup
xi∈[Kθ] s.t. bθ(xi) 6=Bi

γθxi(Yi − T
θ
xi

(i))∑
x∈[Kθ]

γθx(Yi − T θx (i))
6 1 ∧ g({E(i)−M − Zmax

i − ‖∆‖∞}+)

m(M + Zmax
i + ‖∆‖∞)

(12)

=: h′(E(i), Zmax
i ),

and the lemma follows by summing over t and i. The details of the proof can be found
in Section A.4.2.

Therefore, almost surely,

lim sup
n→+∞

sup
θ∈ΘOK

n (M−‖∆‖∞)

∣∣∣∣∣ 1n
n∑
t=1

log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

− 1

n

n∑
t=1

log pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(Yt, Bt|Y t−1
1 , Bt−1

1 )

∣∣∣∣∣
6 lim sup

n→+∞

(
Cρa +

2aK2

σ3
−

1

n

n−1∑
i=1

h′(E(i), Zmax
i )

)

6 Cρa +
2aK2

σ3
−

E∗[h′(E,Zmax
1 )]

6 C ′ (−E∗[h′(E,Zmax
1 )] logE∗[h′(E,Zmax

1 )])

for some explicit constant C ′ and for all E sufficiently large to have E∗[h′(E,Zmax
1 )] < 1/2

using Assumption (Adiv), the law of large numbers, the fact that the mapping e 7−→
h′(e, z) is non-negative, bounded by 0 and 1 and non-increasing for all z, and by taking

a = d logE∗[h′(E,Zmax
1 )]

log ρ
e. Since the function e 7−→ h′(e, z) tends to 0 as e tends to +∞ for

all z, the dominated convergence theorem ensures that almost surely,

sup
θ∈ΘOK

n (M−‖∆‖∞)

∣∣∣∣∣ 1n
n∑
t=1

log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

− 1

n

n∑
t=1

log pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(Yt, Bt|Y t−1
1 , Bt−1

1 )

∣∣∣∣∣ −→n→∞ 0.
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Let 1
n
`

(Y,B)
n (θ) = 1

n
log pθ(Y,B)n1

((Y,B)n1 ). Combining the above equation with equa-

tion (9) yields Theorem 3.

A.3 Application: existence and finiteness of the relative en-
tropy rate

Theorem 3 implies that Corollary 4 holds: since θ∗ ∈ ΘOK
n (M) for all n ∈ N∗ and M > 0,∣∣∣∣ 1n`n(θ∗)− 1

n
`(Y,B)
n (θ∗)

∣∣∣∣ −→n→+∞
0.

Let Z ′t = Yt − T∗Bt(t). Then 1
n
`

(Y,B)
n (θ∗) = 1

n
`

(Z′,B)
n (θ∗). Moreover, under θ∗, the

process (Xt, (Z
′
t, Bt))t>1 is a homogeneous and ergodic HMM with emission densities

(z′, b) 7−→ γ∗x∗(z
′ − ∆(x∗))1(b = b∗(x∗)) for x∗ ∈ [K∗] with respect to the measure

Leb⊗ µB∗ , where µB∗ is the counting measure on B∗.
Since it is homogeneous and ergodic, Barron (1985) shows that there exists `(θ∗) >

−∞ such that
1

n
`(Z′,B)
n (θ∗) −→ `(θ∗).

Then, all emission densities are upper bounded by g(0) under (Amax), so that the
positive part of their logarithm is integrable. Therefore, Leroux (1992) implies that
`(θ∗) < +∞ and Corollary 4 is proved.

A.4 Proofs

A.4.1 Proof of Lemma 12 (current block)

First note that this quantity is non-negative: the denominator contains less terms, and
all of them are non-negative. Hence it is enough to find an upper bound. To this aim we
will use Assumptions (Amax), (Amin) and (Aerg):∣∣∣log pθ

Yt|Y t−1
1

(Yt|Y t−1
1 )− log pθ

Yt,Bt|Y t−1
1

(Yt, Bt|Y t−1
1 )

∣∣∣
6 log

 g(0)

σ− sup
xt∈[Kθ] s.t. bθ(xt)=Bt

m(|Yt − T θxt(t)|)


6 log

g(0)

σ−
+
∑

x∗t∈[K∗]

1Xt=x∗t

(
− logm

(
inf

xt∈[Kθ] s.t. bθ(xt)=b∗(x∗t )
|Zt + T ∗x∗t (t)− T

θ
xt(t)|

))
.

When Xt = x∗t ,

inf
xt∈[Kθ] s.t. bθ(xt)=b∗(x∗t )

|Zt + T ∗x∗t (t)− T
θ
xt(t)|

6 |Zt|+ inf
xt∈[Kθ] s.t. bθ(xt)=b∗(x∗t )

|T∗b∗(x∗t )(t)− T θxt(t)|+ ∆(x∗t )

6 Zmax
t +M + ‖∆‖∞
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using equation (7), hence

− logm

(
inf

xt∈[Kθ] s.t. bθ(xt)=b∗(x∗t )
|Zt + T ∗x∗t (t)− T

θ
xt(t)|

)
6 − logm(M + Zmax

t + ‖∆‖∞).

This yields∣∣∣log pθ
Yt|Y t−1

1
(Yt|Y t−1

1 )− log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )
∣∣∣ 6 log

g(0)

σ−m(M + Zmax
t + ‖∆‖∞)

.

Let us show the second bound. We can rewrite it as

log pθ
Yt|Y t−1

1
(Yt|Y t−1

1 )− log pθ
Yt,Bt|Y t−1

1
(Yt, Bt|Y t−1

1 )

= − log

1−

∑
xt∈[Kθ]

pθ(Xt = xt|Y t−1
1 )γxt(Yt − T θxt(t))1bθ(xt)6=Bt∑

xt∈[Kθ]

pθ(Xt = xt|Y t−1
1 )γxt(Yt − T θxt(t))



= − log


1−

∑
x∗t∈[K∗]

1Xt=x∗t

∑
xt∈[Kθ]

pθ(Xt = xt|Y t−1
1 )γxt(Zt + T ∗x∗t (t)− T

θ
xt(t))1bθ(xt)6=Bt∑

xt∈[Kθ]

pθ(Xt = xt|Y t−1
1 )γxt(Zt + T ∗x∗t (t)− T

θ
xt(t))︸ ︷︷ ︸

(*)


.

Using (Amax), (Amin) and (Aerg),

(*) 6

sup
xt∈[Kθ] s.t. bθ(xt) 6=Bt

g(|Zt + T ∗x∗t (t)− T
θ
xt(t)|)

σ−
∑

xt∈[Kθ]

m(|Zt + T ∗x∗t (t)− T
θ
xt(t)|)

6

sup
xt∈[Kθ] s.t. bθ(xt) 6=Bt

g({|T ∗x∗t (t)− T
θ
xt(t)| − Z

max
t }+)

σ− sup
xt∈[Kθ]

m(|T ∗x∗t (t)− T
θ
xt(t)|+ Zmax

t )
.

Let x ∈ [Kθ] such that bθ(x) 6= Bt. When Xt = x∗t ,

|Yt − T θx (t)| = |Zt + T ∗x∗t (t)− T
θ
x (t)|

> |T∗Bt(t)− T
θ
x (t)| − Zmax

t −∆(x∗t )

> |T∗Bt(t)− T∗bθ(x)(t)| −M − Z
max
t − ‖∆‖∞

> E(t)−M − Zmax
t − ‖∆‖∞

and

sup
xt∈[Kθ]

m(|T ∗x∗t (t)− T
θ
xt(t)|+ Zmax

t ) 6 m( inf
xt∈[Kθ]

|T ∗x∗t (t)− T
θ
xt(t)|+ Zmax

t )

6 m(M + Zmax
t + ‖∆‖∞)
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using equation (7). Therefore,

(*) 6
g({E(t)−M − Zmax

t − ‖∆‖∞}+)

σ−m(M + Zmax
t + ‖∆‖∞)

. (13)

A.4.2 Proof of Lemma 14 (recent blocks)

Proof of equation (10) Without loss of generality, one may assume a 6 t (otherwise,
the proof holds by replacing a by a ∧ t).

pθ
Yt,Bt|Y t−1

1 ,Bt−a1
(yt, bt|yt−1

1 , bt−a1 )

= pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(yt, bt|yt−1
1 , bt−1

1 )

× pθ
Bt−1
t−a+1|Y

t−1
1 ,Bt−a1

(bt−1
t−a+1|yt−1

1 , bt−a1 )

+ pθ
Yt,Bt|Y t−1

1 ,Bt−a1 ,Bt−1
t−a+1

(yt, bt|yt−1
1 , bt−a1 , (B∗)a−1 \ {bt−1

t−a+1})

× pθ
Bt−1
t−a+1|Y

t−1
1 ,Bt−a1

((B∗)a−1 \ {bt−1
t−a+1}|yt−1

1 , bt−a1 ),

hence

|pθ
Yt,Bt|Y t−1

1 ,Bt−a1
(yt, bt|yt−1

1 , bt−a1 )− pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(yt, bt|yt−1
1 , bt−1

1 )|

6 pθ
Bt−1
t−a+1|Y

t−1
1 ,Bt−a1

((B∗)a−1 \ {bt−1
t−a+1}|yt−1

1 , bt−a1 )
[
pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(yt, bt|yt−1
1 , bt−1

1 )

+ pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(yt, bt|yt−1
1 , bt−a1 , (B∗)a−1 \ {bt−1

t−a+1})
]

6 2pθ
Bt−1
t−a+1|Y

t−1
1 ,Bt−a1

((B∗)a−1 \ {bt−1
t−a+1}|yt−1

1 , bt−a1 )
∑
x∈[Kθ]

pθYt,Bt|Xt(yt, bt|x).

Finally, since under (Aerg)

pθ
Yt,Bt|Y t−1

1 ,Bt−a1
(yt, bt|yt−1

1 , bt−a1 ) =
∑
x∈X

pθYt,Bt|Xt(yt, bt|x)pθ
Xt|Y t−1

1 ,Bt−a1
(x|yt−1

1 , bt−a1 )

> σ−
∑
x∈X

pθYt,Bt|Xt(yt, bt|x)

and the same inequality holds for pθ
Yt,Bt|Y t−1

1 ,Bt−1
1

(yt, bt|yt−1
1 , bt−1

1 ), we obtain equation (10)

using | log x− log y| 6 |x−y|
x∧y for all x, y > 0.

Proof of equation (11) Since

(B∗)a−1 \ {bt−1
t−a+1} =

t−1⋃
i=t−a+1

(
(B∗)i−(t−a+1) × (B∗ \ {bi})× (B∗)t−1−i) ,
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by union bound,

pθ
Bt−1
t−a+1|Y

t−1
1 ,Bt−a1

((B∗)a−1 \ {bt−1
t−a+1}|yt−1

1 , bt−a1 )

6
t−1∑

i=t−a+1

pθ
Bi|Y t−1

1 ,Bt−a1
(B∗ \ {bi}|yt−1

1 , bt−a1 )

=
t−1∑

i=t−a+1

∑
xi∈[Kθ]

pθBi|Xi(B
∗ \ {bi}|xi)pθXi|Y t−1

1 ,Bt−a1
(xi|yt−1

1 , bt−a1 )

=
t−1∑

i=t−a+1

∑
xi∈[Kθ]

1bθ(xi)6=bi

∑
xi−1,xi+1∈[Kθ]

pθXi|Yi,Xi−1,Xi+1
(xi|yi, xi−1, xi+1)

× pθ
Xi−1,Xi+1|Y t−1

1 ,Bt−a1
(xi−1, xi+1|yt−1

1 , bt−a1 ).

Then, use that for all xi−1, xi+1 ∈ [Kθ],

pθ
Xi−1,Xi+1|Y t−1

1 ,Bt−a1
(xi−1, xi+1|yt−1

1 , bt−a1 ) 6 1

and that by the Markov property and (Aerg) for all xi−1, x, xi+1 ∈ [Kθ]

pθXi|Xi−1,Xi+1
(x|xi−1, xi+1) =

pθXi+1|Xi(xi+1|x)pθXi|Xi−1
(x|xi−1)

pθXi+1|Xi−1
(xi+1|xi−1)

> Qθ(x, xi+1)Qθ(xi−1, x)

> σ2
−,

so that

pθXi|Yi,Xi−1,Xi+1
(xi|yi, xi−1, xi+1)

=
pθXi|Xi−1,Xi+1

(xi|xi−1, xi+1)γθxi(yi − T
θ
xi

(i))∑
x∈[Kθ]

pθXi|Xi−1,Xi+1
(x|xi−1, xi+1)γθx(yi − T θx (i))

6
pθXi|Xi−1,Xi+1

(xi|xi−1, xi+1)γθxi(yi − T
θ
xi

(i))

σ2
−

∑
x∈[Kθ]

γθx(yi − T θx (i))
.

Thus,

pθ
Bt−1
t−a+1|Y

t−1
1 ,Bt−a1

((B∗)a−1 \ {bt−1
t−a+1}|yt−1

1 , bt−a1 )

6
t−1∑

i=t−a+1

∑
xi−1,xi+1∈[Kθ]

∑
xi∈[Kθ]

1bθ(xi)6=bip
θ
Xi|Xi−1,Xi+1

(xi|xi−1, xi+1)γθxi(yi − T
θ
xi

(i))

σ2
−

∑
x∈[Kθ]

γθx(yi − T θx (i))

6
K2

σ2
−

t−1∑
i=t−a+1

sup
xi∈[Kθ] s.t. bθ(xi)6=bi

γθxi(yi − T
θ
xi

(i))∑
x∈[Kθ]

γθx(yi − T θx (i))
.
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Proof of equation (12) Using (Amax) and (Amin),

sup
xi∈[Kθ] s.t. bθ(xi)6=Bi

γθxi(Yi − T
θ
xi

(i))∑
x∈[Kθ]

γθx(Yi − T θx (i))
6

1 ∧
sup

xi∈[Kθ] s.t. bθ(xi)6=Bi
g(|Yi − T θxi(i)|)

sup
x∈[Kθ]

m(|Yi − T θx (i)|)



6
∑

x∗i∈[K∗]

1Xt=x∗i

1 ∧
sup

xi∈[Kθ] s.t. bθ(xi) 6=b∗(x∗i )

g(|Zi + T ∗x∗i (i)− T
θ
xi

(i)|)

sup
x∈[Kθ]

m(|Zi + T ∗x∗i (i)− T
θ
x (i)|)


6 1 ∧ g({E(t)−M − Zmax

i − ‖∆‖∞}+)

m(M + Zmax
i + ‖∆‖∞)

by the same arguments as in the control of (*) in equation (13).

B Localization of the MLE

In this section we shall prove Theorem 5. Assume (Aerg), (Amin), (Amax) and
(Aint).

B.1 Preliminary: compactness results

Recall that for all M > 0 and n ∈ N, ΘOK
n (M) is the subset of Θ defined by

∀θ ∈ ΘOK
n (M), ∀x∗ ∈ [K∗], ∃x ∈ [Kθ], ‖T ∗x∗ − T θx‖∞,[0,n] 6M (14)

and ∀x ∈ [Kθ], ∃x∗ ∈ [K∗], ‖T ∗x∗ − T θx‖∞,[0,n] 6M. (15)

To prove that the maximum likelihood estimator belongs to such a set, we consider
relaxed versions of (14) and (15). Let

In,D(x, x∗, θ) :=
{
t ∈ {1, . . . , n} : |T ∗x∗(t)− T θx (t)| 6 D

}
,

T (α, n,D) :=

θ ∈ Θ :

∣∣∣∣∣∣
⋂

x∗∈[K∗]

⋃
x∈[Kθ]

In,D(x, x∗, θ)

∣∣∣∣∣∣ > nα

 ,

U(α, n,D) :=

θ ∈ Θ : ∀x ∈ [Kθ],

∣∣∣∣∣∣
⋃

x∗∈[K∗]

In,D(x, x∗, θ)

∣∣∣∣∣∣ > nα

 .

T corresponds to a relaxation of (14) and contains the parameters θ such that all
true trends are close to at least one parameter trend during most of the first time steps.
Likewise, U corresponds to a relaxation of (15) and contains the parameters θ whose
trends are close to at least one true trend during most of the first time steps.

By construction of these sets, for each θ ∈ T (α, n,D) (resp. θ ∈ U(α, n,D)) and for
each x∗ ∈ [K∗] (resp. x ∈ [Kθ]), there exists at least one x ∈ [Kθ] (resp. x∗ ∈ [K∗]) such
that In,D(x, x∗, θ) > nα/K.
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Figure 8: Rescaled trends of a parameter in U(β, n,B). Every parameter trend is at
bounded distance of at least one true trend. However, some true trends may be far from
all parameter trends.

Proposition 15. For all α ∈ (0, 1] and D > 0, there exists M(α,D) > 0 and n0 :=
4K(d+ 1)/α such that

∀n > n0, ∀θ ∈ Θ, ∀x ∈ [Kθ], ∀x∗ ∈ [K∗],

|In,D(x, x∗, θ)| > nα/K ⇒ ‖T ∗x∗ − T θx‖∞,[0,n] 6M(α,D).

It follows that θ ∈ T (α, n,D) (resp. θ ∈ U(α, n,D)) is equivalent to (14) (resp. (15))
up to changing M :

Definition 16. Let α ∈ (0, 1], n > 1 and D > 0.

— For all θ ∈ T (α, n,D) and x∗ ∈ [K∗], let x(θ, x∗, n, α,D) be the smallest x ∈ [Kθ]
such that In,D(x, x∗, θ) > nα/K.

— For all θ ∈ U(α, n,D) and x ∈ [Kθ], let x∗(θ, x, n, α,D) be the smallest x∗ ∈ [K∗]
such that In,D(x, x∗, θ) > nα/K.

In the following, we omit the dependency in α and D and write x∗(θ, x, n) and x(θ, x∗, n).

Corollary 17. For all α ∈ (0, 1] and D > 0, there exists M(α,D) > 0 and n0 :=
4K(d+ 1)/α such that

∀n > n0,

{
θ ∈ T (α, n,D)⇒ ∀x∗ ∈ [K∗], ‖T ∗x∗ − T θx(θ,x∗,n)‖∞,[0,n] 6M(α,D),

θ ∈ U(α, n,D)⇒ ∀x ∈ [Kθ], ‖T ∗x∗(θ,x,n) − T θx‖∞,[0,n] 6M(α,D).

Hence, for all α, β ∈ (0, 1], for all M > 0 and D,B >M and for all n,

ΘOK
n (M) ⊂ T (α, n,D) ∩ U(β, n,B) ⊂ ΘOK

n (M(α,D) ∨M(β,B)). (16)

Proposition 15 is a direct consequence of Arzelà–Ascoli’s theorem and of the following
result.
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Figure 9: Rescaled trends of a parameter in T (α, n,D). Every true trend is at bounded
distance of at least one parameter trend. However, some parameter trends may be far
from all true trends.

Definition 18. For all θ ∈ Θ, n ∈ N∗ and x ∈ [Kθ], let

Sθ,nx : u ∈ [0, 1] 7−→ T θx (nu)

be the trend T θx whose time variable has been rescaled from [0, n] to [0, 1]. Likewise, define
S∗,nx∗ the rescaled true trend corresponding to the state x∗.

Theorem 19. Let ε ∈ (0, 1] and D > 0. Then the set

S :=
⋃
n>n0

⋃
θ∈Θ

⋃
(x,x∗)∈[Kθ]×[K∗] s.t. |In,D(x,x∗,θ)|>nε

{Sθ,nx − S
∗,n
x∗ }

is relatively compact in the set of continuous functions (C0([0, 1]), ‖ · ‖∞).

Remark. This result, together with Arzelà–Ascoli’s theorem, entails that S is uniformly
equicontinuous in addition to being a bounded subset of L∞([0, 1]). This will be used in
Section C.

Proof. Let ε ∈ (0, 1] and D > 0. Let us first give another representation of the elements
of S.

Lemma 20. For any S ∈ S, there exists (uS1 , . . . , u
S
d+1) ∈ [0, 1]d+1 such that{

∀i 6= j, |uSi − uSj | > ε
4K(d+1)

,

∀i, |S(uSi )| 6 D.
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Proof. For S ∈ S, let n(S) > n0, θ, x ∈ [Kθ] and x∗ ∈ [K∗] be such that S = Sθ,nx − S
∗,n
x∗

and |In,D(x, x∗, θ)| > nε. Let us define (uS1 , . . . , u
S
d+1) iteratively. Let A0 = In,D(x, x∗, D)

and, for all i > 1,

• tSi ∈ Ai−1 ;

• Ai = Ai−1 \ B̄
(
tSi ,

ε
4K(d+1)

n
)

.

The closed ball B̄
(
tSi ,

ε
4K(d+1)

n
)

contains at most 1 +
⌊
2 ε

4K(d+1)
n
⌋
6 3 ε

4K(d+1)
n ele-

ments since ε
4K(d+1)

n > 1. Thus, for all i > 0,

|Ai| > n
ε

K

(
1− 3

4(d+ 1)
i

)
.

In particular, Ai 6= ∅ for all i ∈ {0, . . . , d + 1}, which makes it possible to define

(tSi )16i6d+1. Taking uSi =
tSi
n(S)

for all i ∈ {1, . . . , d+ 1} concludes the proof.

The next lemma is a straightforward consequence of the Lagrange form of the inter-
polation polynomial.

Lemma 21. The mapping{
(ui)i ∈ [0, 1]d+1 s.t. inf

i 6=j
|ui − uj| > 0

}
× Rd+1 7−→

(
C0([0, 1]), ‖.‖∞

)
(u1, . . . , ud+1, s1, . . . , sd+1) 7−→ Pu,s

(17)

is continuous, where Pu,s is the only polynomial with degree at most d such that P (ui) = si
for all i ∈ {1, . . . , d+ 1}.

To conclude, note that S is a subset of the image of the compact set {(ui)i ∈
[0, 1]d+1 s.t. infi 6=j |ui − uj| > ε/(4K(d+ 1))} × [−D,D]d+1 by the mapping (17).

B.2 The MLE is in T (α, n,D)

The key idea of this section is that if one of the true trends is far from all parameter
trends, then the observations coming from this true trend will significantly reduce the
likelihood.

Let α ∈ (0, 1), n > 1, D > 0 and θ /∈ T (α, n,D), then∣∣∣∣∣∣
⋃

x∗∈[K∗]

⋂
x∈[Kθ]

In,D(x, x∗, θ){

∣∣∣∣∣∣ > n(1− α)

with the notations of Section B.1. In particular, there exists x∗T (θ) ∈ [K∗] such that∣∣∣∣∣∣
⋂

x∈[Kθ]

In,D(x, x∗T (θ), θ){

∣∣∣∣∣∣ > n
1− α
K∗

. (18)
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Write I far
n (θ) :=

⋂
x∈[Kθ] In,D(x, x∗T (θ), θ){, then

1

n
`n(θ) =

1

n

n∑
t=1

log pθ(Yt|Y t−1
1 )

6 log g(0) +
1

n

∑
t∈Ifarn (θ)

1Xt=x∗T (θ) log
g({D − Zmax

t }+)

g(0)
. (19)

We used the fact that under Assumption (Amax),

pθ(Yt|Y t−1
1 ) =

∑
x∈[Kθ]

pθ(Xt = x|Y t−1
1 )γθx(Yt − T θx (t))

6
∑

x∗∈[K∗]

1Xt=x∗ sup
x∈[Kθ]

γθx(Zt + T ∗x∗(t)− T θx (t))

6
∑

x∗∈[K∗]

1Xt=x∗ sup
x∈[Kθ]

g({|T ∗x∗(t)− T θx (t)| − Zmax
t }+)

6
∑

x∗∈[K∗]

1Xt=x∗g( inf
x∈[Kθ]

{|T ∗x∗(t)− T θx (t)| − Zmax
t }+).

Lemma 22. For all θ ∈ Θ, D > 0 and x∗ ∈ [K∗], the set⋂
x∈[Kθ]

{t ∈ [0, n] : |T ∗x∗(t)− T θx (t)| > D} (20)

has at most A := (d+ 1)K connected components.

Note that I far
n (θ) = (20) ∩ {1, . . . , n}.

Proof. The functions (t 7−→ T ∗x∗(t)−T θx (t))x∈[Kθ] are polynomials whose degree is at most
d. Their derivatives vanish at most d − 1 times, and the set of times t where they are
larger than D in absolute value is a union of segments containing either, a zero of their
derivative, +∞ or−∞. Hence there are at most d+1 such segments. Thus, Ĩn,D,x∗(θ) is an
intersection of at most K sets, each of them having at most d+ 1 connected components.
Therefore, one may take A = (d+ 1)K .

Definition 23. For all n ∈ N∗, D > 0, x∗ ∈ [K∗] and θ ∈ Θ, write J(n,D, x∗, θ) the
largest connected component of (20). In case of tie, choose the first one for the usual
order in R.

Thus, by the pigeonhole principle and equation (18),

|J(n,D, x∗T (θ), θ) ∩ {1, . . . , n}| > n
1− α
AK∗

.

Write J far
n (θ) := J(n,D, x∗T (θ), θ) ∩ {1, . . . , n}, then using equation (19):

1

n
`n(θ) 6 log g(0) +

1

n

∑
t∈J far

n (θ)

1Xt=x∗T (θ) log
g({D − Zmax

t }+)

g(0)
. (21)
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Lemma 24. Let δ > 0 and assume (Aerg). Then, almost surely,

lim inf
n→∞

inf
S⊂{1,...,n}
S segment

|S|>δn

inf
x∗∈[K∗]

1

n

∑
t∈S

1Xt=x∗ >
δσ−

4
.

By “segment”, we mean a set of the form [a, b] ∩ Z for some (a, b) ∈ R2.

Proof. The idea is to split {1, . . . , n} into segments of size δ
2
n and to control the infimum

of the empirical mean over each segment. Each segment of size larger than δn contains
at least one of those segments. The proof is detailled in Section D.1.

Apply Lemma 24 to S = J far
n (θ): almost surely,

lim inf
n→∞

inf
θ/∈T (α,n,D)

1

n

∑
t∈J far

n (θ)

1Xt=x∗T (θ) >
(1− α)σ−

4AK∗
. (22)

Lemma 25. Let δ ∈ (0, 1), (Ut)t>1 a sequence of i.i.d. non-positive integrable random
variables and (δn)n>1 a non-decreasing sequence of [0, 1]-valued random variables such
that lim infn→∞ δn > δ a.s. For all β ∈ [0, 1], let us denote by qU(β) the β-quantile of U1,
i.e.

qU(β) = inf{u s.t. P(U1 6 u) > β}.

Then, almost surely,

lim sup
n→∞

sup
S⊂{1,...,n}
|S|>δnn

1

n

∑
t∈S

Ut 6 E[U11U1>qU (1−δ)].

Equivalently, if (Vt)t>1 is a sequence of non-negative i.i.d. integrable random vari-
ables and (δn)n>1 a non-increasing sequence of [0, 1]-valued random variables such that
lim supn→∞ δn 6 δ a.s., almost surely

lim sup
n→∞

sup
S⊂{1,...,n}
|S|6δnn

1

n

∑
t∈S

Vt 6 E[V11V1>qV (1−δ)].

Remark. The supremum is taken over all subsets S, not only segments.

Proof. Proof in Section D.2.

For all t > 1 and D > 0, let UD
t = log

g({D−Zmax
t }+)

g(0)
. UD

t is non-positive by definition.
Then, taking 

δ = (1−α)σ−
4AK∗

,

δn = inf
m>n

inf
θ/∈T (α,m,D)

1

m

∑
t∈J far

m (θ)

1Xt=x∗T (θ),
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one has lim infn→∞ δn > δ by equation (22). Therefore, Lemma 25 combined with equa-
tion (21) implies that almost surely,

lim sup
n→∞

sup
θ/∈T (α,n,D)

1

n
`n(θ) 6 log g(0) + E[UD

1 1
UD1 >q

UD
(1− (1−α)σ−

4AK∗ )
].

Note that UD
t = fD(Zmax

t ) 6 0 where fD : z ∈ R+ 7−→ log g({D−z}+)
g(0)

. fD is non-

decreasing, so qfD(Zmax)(1− δ) 6 fD(qZmax(1− δ)) for all δ > 0. Thus, for all z > 0,

1z>qZmax (1−δ) 6 1fD(z)>fD(qZmax (1−δ)) 6 1fD(z)>q
UD

(1−δ),

and since UD
1 6 0,

E[UD
1 1

UD1 >q
UD

(1− (1−α)σ−
4AK∗ )

] 6 E[UD
1 1

Zmax
1 >qZmax (1− (1−α)σ−

4AK∗ )
].

Then, for all δ > 0, the monotone convergence theorem applied to the right-hand side
entails

E[UD
1 1UD1 >q

UD
(1−δ)] −→

D→+∞
−∞.

Thus, under the assumptions of Corollary 4, there exists D(α) <∞ such that

lim sup
n→∞

sup
θ/∈T (α,n,D(α))

1

n
`n(θ) 6 `(θ∗)− 1,

so that almost surely, for n large enough,

θ̂n ∈ T (α, n,D(α)).

B.3 The MLE is in U(β, n,B)

Let α, β ∈ (0, 1), n > 4K(d+1)
1−α , D > 0, B > M(α,D) and θ ∈ T (α, n,D) \ U(β, n,B).

Since θ /∈ U(β, n,B), one of its trends is far from all true trends. We show that removing
the state of this trend increases the likelihood of the observations. An interpretation is
that because of (Aerg), a proportion at least σ− of the observations is supposed to come
from the (superfluous) state, but no observations appears in the vicinity of its trend,
which penalizes the likelihood.

By definition of U(β, n,B), there exists xU(θ) ∈ [Kθ] such that∣∣∣∣∣∣
⋂

x∗∈[K∗]

In,B(xU(θ), x∗, θ){

∣∣∣∣∣∣ > n(1− β). (23)

Write IUn (θ) :=
⋂
x∗∈[K∗] In,B(xU(θ), x∗, θ){ and let θU be the parameter of the HMM

with Kθ − 1 hidden states, with hidden state space X θU = [Kθ] \ {xU(θ)} and other
parameters defined by

∀x ∈ X θU , πθ
U

(x) = πθ(x)
1−πθ(xU (θ))

,

∀x, x′ ∈ X θU , QθU (x, x′) = Qθ(x,x′)
1−Qθ(x,xU (θ))

,

∀x ∈ X θU , γθ
U

x = γθx,

∀x ∈ X θU , T θ
U

x = T θx .
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By construction of Θ, θU ∈ Θ. Note that for all x, x′ ∈ X θU ,

πθ
U

(x) = Pθ(X1 = x |X1 6= xU(θ))

= Pθ(X1 = x | ∀t > 1, Xt 6= xU(θ))

and

∀s > 1, QθU (x, x′) = Pθ(Xs+1 = x′ |Xs = x,Xs+1 6= xU(θ))

= Pθ(Xs+1 = x′ |Xs = x,∀t > 1, Xt 6= xU(θ)),

so that
∀ ∈ σ(Yt | t > 1), PθU (A) = Pθ(A | ∀t > 1, Xt 6= xU(θ)).

Then

1

n
`n(θU) =

1

n

n∑
t=1

log pθ(Yt |Y t−1
1 , xU(θ) /∈ X t

1),

with the abuse of notation x ∈ X t
1 ⇔ (∃s ∈ {1, . . . , t} Xs = x). By Assumption (Aerg),

pθ(Yt |Y t−1
1 ) = pθ(Yt |Xt = xU(θ))pθ(Xt = xU(θ) |Y t−1

1 )

+ pθ(Yt |Xt 6= xU(θ), Y t−1
1 )pθ(Xt 6= xU(θ) |Y t−1

1 )

6 (1− σ−)pθ(Yt |Xt = xU(θ)) + (1− σ−)pθ(Yt |Xt 6= xU(θ), Y t−1
1 ),

hence

1

n
`n(θ)− 1

n

n∑
t=1

log pθ(Yt |Xt 6= xU(θ), Y t−1
1 )︸ ︷︷ ︸

(i)

6 log(1− σ−)

+
1

n

n∑
t=1

log

(
1 +

pθ(Yt |Xt = xU(θ))

pθ(Yt |Xt 6= xU(θ), Y t−1
1 )

)
︸ ︷︷ ︸

(ii)

.

The next steps are:

• Prove that (i) is close to 1
n
`n(θU) for large enough n.

• Prove that (ii) goes to zero uniformly in θ ∈ T (α, n,D) \ U(β, n,B).

First step: controlling (i) We shall prove that for an adequate choice of β and B,
almost surely

lim sup
n→∞

sup
θ∈T (α,n,D)\U(β,n,B)

∣∣∣∣(i)− 1

n
`n(θU)

∣∣∣∣ 6 − log(1− σ−)

3
.

The following forgetting property allows to control what happens in the distant past.
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Lemma 26. For all t > 1, θ ∈ Θ, for any probability measures µ and ν on [Kθ], for all
x ∈ [Kθ] and Y t

0 ,

| log pθ(Yt |Y t−1
0 , Xt 6= x,X0 ∼ µ)− log pθ(Yt |Y t−1

0 , Xt 6= x,X0 ∼ ν)| 6 Cρt

where ρ = 1− σ−
1−σ− and C = 2

ρ(1−ρ)3
.

Proof. Proof in Section B.4.1.

Let a ∈ N∗. It follows from Lemma 26 that for all t, almost surely,∣∣log pθ(Yt |Y t−1
1 , Xt 6= xU(θ))− log pθ(Yt |Y t−1

1 , Xt 6= xU(θ), xU(θ) /∈ X t−a
1 )

∣∣ 6 Cρa. (24)

It remains to add X t−1
t−a+1 to the conditioning. This is the goal of the following lemma.

Lemma 27. Assume (Amax) and (Amin). Then for all a ∈ N∗,

sup
θ∈T (α,n,D)\U(β,n,B)

∣∣∣∣∣ 1n
n∑
t=1

log pθ(Yt|Y t−1
1 , Xt 6= xU(θ), xU(θ) /∈ X t−a

1 )

− 1

n

n∑
t=1

log pθ(Yt|Y t−1
1 , xU(θ) /∈ X t

1)

∣∣∣∣∣
6

2aK2

σ3
−

(
β +

1

n

n−1∑
i=1

(
1 ∧ g({B − Zmax

i }+)

m(Zmax
i +M(α,D))

))

=:
2aK2

σ3
−

(
β +

1

n

n−1∑
i=1

hU(B,Zmax
i )

)
.

Overview of the proof. First, show that for all θ ∈ T (α, n,D) \ U(β, n,B), t 6 n, a ∈ N∗
and yt1 ∈ Y t,∣∣∣ log pθ(yt|yt−1

1 , Xt 6= xU(θ), xU(θ) /∈ X t−a
1 )− log pθ(yt|yt−1

1 , xU(θ) /∈ X t
1)
∣∣∣

6
2

σ−
pθ
(
xU(θ) ∈ X t−1

(t−a+1)∨1|y
t−1
1 , Xt 6= xU(θ), xU(θ) /∈ X t−a

1

)
(25)

6
2K2

σ3
−

t−1∑
i=(t−a+1)∨1

γθxU (θ)(yi − T θxU (θ)(i))∑
x∈[Kθ]

γθx(yi − T θx (i))
. (26)

Then, under (Amax) and (Amin), for all θ ∈ T (α, n,D) \ U(β, n,B) and i 6 n

γθxU (θ)(Yi − T θxU (θ)(i))∑
x∈[Kθ]

γθx(Yi − T θx (i))
6

 1 ∧ g({B − Zmax
i }+)

m(Zmax
i +M(α,D))

=: hU(B,Zmax
i ) if i ∈ IUn (θ),

1 if i /∈ IUn (θ).

(27)

32



so that

1

n

n∑
i=1

γθxU (θ)(Yi − T θxU (θ)(i))∑
x∈[Kθ]

γθx(Yi − T θx (i))
6

1

n

∑
i/∈IUn (θ)

1 +
1

n

∑
i∈IUn (θ)

hU(B,Zmax
i )

6 β +
1

n

n∑
i=1

hU(B,Zmax
i )

since |IUn (θ)| > n(1 − β) by Equation (23) and hU(b, z) > 0 for all b, z > 0. The lemma
follows by summing equation (26) over t. The details of the proof can be found in
Section B.4.2.

Thus, equation (24) and Lemma 27 imply

lim sup
n→∞

sup
θ∈T (α,n,D)\U(β,n,B)

∣∣∣∣(i)− 1

n
`n(θU)

∣∣∣∣ 6 Cρa +
2aK2

σ3
−

(β + E∗ [hU(B,Zmax
i )]) .

Now choose a large enough that

Cρa 6
− log(1− σ−)

9
,

then β such that

2aK2

σ3
−
β 6

− log(1− σ−)

9
.

Finally, note that 0 6 hU(b, z) 6 1 for all b, z > 0 and that hU(b, z) −→ 0 when
b −→ ∞ for all z, so that by the dominated convergence theorem, there exists B such
that

2aK2

σ3
−

E∗ [hU(B,Zmax
i )] 6

− log(1− σ−)

9
,

which ensures that for all α ∈ (0, 1) and D > 0, there exists β ∈ (0, 1) and B > 0 such
that

lim sup
n→∞

sup
θ∈T (α,n,D)\U(β,n,B)

∣∣∣∣(i)− 1

n
`n(θU)

∣∣∣∣ 6 − log(1− σ−)

3
.

This concludes the proof of the first step.

Second step: controlling (ii)
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Lemma 28. Assume (Amax) and (Amin). Then

sup
θ∈T (α,n,D)\U(β,n,B)

(ii)

6
1

n

n∑
t=1

log

(
1 +

g({B − Zmax
t }+)

σ−m(Zmax
t +M(α,D))

)
+

1

n

n∑
t=1

1t/∈IUn (θ) log

(
g(0) + σ−m(Zmax

t +M(α,D))

g({B − Zmax
t }+) + σ−m(Zmax

t +M(α,D))

)
=:

1

n

n∑
t=1

h′U(B,Zmax
t ) +

1

n

∑
t/∈IUn (θ)

V B
t .

Proof. We show that

pθ(Yt |Xt = xU(θ))

pθ(Yt |Xt 6= xU(θ), Y t−1
1 )

6


g({B − Zmax

t }+)

σ−m(Zmax
t +M(α,D))

if t ∈ IUn (θ),

g(0)

σ−m(Zmax
t +M(α,D))

if t /∈ IUn (θ).

The lemma follows by summing over t. The details of the proof can be found in
Section B.4.3.

Note that under Assumption (Aint),

E∗[− logm(Zmax
t +M(α,D))] <∞.

Hence,

E∗|h′U(0, Zmax
t )| 6 E∗

[
{log (σ−m (Zmax

t +M(α,D)) + g(0))}+

]
+ E∗[− log(σ−m(Zmax

t +M(α,D)))]

6 log 2 + | log g(0)|+ E∗[− logm(Zmax
t +M(α,D))]− log σ−

<∞.

Thus, since b 7−→ h′U(b, z) is nonincreasing and converges to zero when b −→ ∞ for
all z, the dominated convergence theorem together with the law of large numbers imply
that there exists B such that

lim sup
n→∞

1

n

n∑
t=1

h′U(B,Zmax
t ) 6

− log(1− σ−)

6
.

Then, apply Lemma 25 to the i.i.d. non-negative random variables (V B
t )t>1 using the

fact that |IUn (θ)| > n(1− β), which yields

lim sup
n→∞

sup
θ∈T (α,n,D)\U(β,n,B)

1

n

∑
t/∈IUn (θ)

V B
t 6 E∗[V B

1 1V B1 >q
V B

(1−β)].

Note that

E∗V B
1 6 log((1 + σ−)g(0))− log σ− + E∗[− logm(Zmax

t +M(α,D))],
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which is finite thanks to (Aint). Thus,

E∗[V B
1 1V B1 >q

V B
(1−β)] −→

β→0
0,

so that there exists β such that

lim sup
n→∞

sup
θ∈T (α,n,D)\U(β,n,B)

1

n

∑
t/∈IUn (θ)

V B
t 6

− log(1− σ−)

6
.

Hence, we proved that there exists β(α,D) ∈ (0, 1) and B(α,D) > 0 such that

lim sup
n→∞

sup
θ∈T (α,n,D)\U(β,n,B)

(ii) 6
− log(1− σ−)

3
,

which ends the second step.
Putting together the results of the two steps, one gets that for all α ∈ (0, 1) and

D > 0, there exists β ∈ (0, 1) and B > 0 such that almost surely,

lim sup
n→∞

(
sup

θ∈T (α,n,D)\U(β,n,B)

1

n
`n(θ)− sup

θ∈Θ

1

n
`n(θ)

)
6

log(1− σ−)

3
< 0,

so that for n large enough, θ̂n /∈ (T (α, n,D) \ U(β, n,B)).
Together with Section B.2, this implies that for all α ∈ (0, 1), there exists β ∈ (0, 1)

and D,B > 0 such that θ̂n ∈ T (α, n,D) ∩ U(β, n,B) for n large enough, which entails
Theorem 5 by equation (16).

B.4 Proofs

B.4.1 Proof of Lemma 26

We shall use the inequality

| logCµ − logCν | 6
|Cµ − Cν |
Cµ ∧ Cν

with Cµ = pθ(Yt | Y t−1
0 , Xt 6= x,X0 ∼ µ) and Cν = pθ(Yt | Y t−1

0 , Xt 6= x,X0 ∼ ν).

|Cµ − Cν | =
∣∣∣∣pθ(Yt, Xt 6= x | Y t−1

0 , X0 ∼ µ)

pθ(Xt 6= x | Y t−1
0 , X0 ∼ µ)

− pθ(Yt, Xt 6= x | Y t−1
0 , X0 ∼ ν)

pθ(Xt 6= x | Y t−1
0 , X0 ∼ ν)

∣∣∣∣
=:

∣∣∣∣Bµ

Aµ
− Bν

Aν

∣∣∣∣ .
One has

Bµ =
∑
x′ 6=x

pθ(Yt | Xt = x′)pθ(Xt = x′ | Y t−1
0 , X0 ∼ µ)

=
∑
x′ 6=x

pθ(Yt | Xt = x′)
∑

x′′∈[Kθ]

Qθ
x′′x′p

θ(Xt−1 = x′′ | Y t−1
0 , X0 ∼ µ),
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which yields

σ−
∑
x′ 6=x

pθ(Yt | Xt = x′) 6 Bµ 6 (1− σ−)
∑
x′ 6=x

pθ(Yt | Xt = x′)

and the same result holds for Bν . Besides,

Aµ =
∑
x 6=x′

pθ(Xt = x′ | Y t−1
0 , X0 ∼ µ)

=
∑
x′ 6=x

∑
x′′∈[Kθ]

Qθ
x′′x′p

θ(Xt−1 = x′′ | Y t−1
0 , X0 ∼ µ).

Hence,

σ− 6 Aµ 6 1− σ−

and the same result holds for Aν . Then, letting φµ(x′) = pθ(Xt−1 = x′ | Y t−1
0 , X0 ∼ µ),

we get, using the above expressions:

|Aµ − Aν | 6 (1− σ−)‖φµ − φν‖1

|Bµ −Bν | 6 (1− σ−)
∑
x′ 6=x

pθ(Yt | Xt = x′)‖φµ − φν‖1.

Thus,

|Cµ − Cν | =
∣∣∣∣Bµ

Aµ
− Bν

Aν

∣∣∣∣
6

1

AµAν
(Bµ|Aµ − Aν |+ Aµ|Bµ −Bν |)

6
2(1− σ−)2

σ2
−

∑
x′ 6=x

pθ(Yt | Xt = x′)‖φµ − φν‖1.

Furthermore,

1

Cµ ∧ Cν
6

(1− σ−)

σ−
∑

x′ 6=x p
θ(Yt | Xt = x′)

Finally,

| logCµ − logCν | 6
2

(1− ρ)3
‖φµ − φν‖1.

It remains to prove that ‖φµ−φν‖1 6 ρt−1, which follows from the geometric ergodicity
of the HMM. See for instance Corollary 1 of Douc et al. (2004) or Proposition 2.1 of
De Castro et al. (2017).
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B.4.2 Proof of Lemma 27

Proof of equation (25) For all t > 1 and yt1 ∈ Rt,

pθ(yt | yt−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))

= pθ(yt | yt−1
1 , xU(θ) /∈ X t

1)pθ(xU(θ) /∈ X t−1
(t−a+1)∨1 | y

t−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))

+ pθ(yt | yt−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ), xU(θ) ∈ X t−1
(t−a+1)∨1)

× pθ(xU(θ) ∈ X t−1
(t−a+1)∨1 | y

t−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ)),

so that

|pθ(yt | yt−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))− pθ(yt | yt−1
1 , xU(θ) /∈ X t

1)|
6 pθ(xU(θ) ∈ X t−1

(t−a+1)∨1 | y
t−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))

×
(
pθ(yt | yt−1

1 , xU(θ) /∈ X t
1) + pθ(yt | yt−1

1 , xU(θ) /∈ X t−a
1 , Xt 6= xU(θ), xU(θ) ∈ X t−1

t−a+1)
)

6 2pθ(xU(θ) ∈ X t−1
(t−a+1)∨1 | y

t−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))
∑

x∈[Kθ]\{xU (θ)}

γθx(yt − T θx (t)).

In addition, under (Aerg),

pθ(yt | yt−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))

=
∑

x∈[Kθ]\{xU (θ)}

pθ(yt|Xt = x)pθ(Xt = x | yt−1
1 , xU(θ) /∈ X t−a

1 )

> σ−
∑

x∈[Kθ]\{xU (θ)}

γθx(yt − T θx (t))

and the same holds for pθ(yt | yt−1
1 , xU(θ) /∈ X t

1), so that using that | log x− log y| 6 |x−y|
x∧y

for all x, y > 0, we obtain that for all t > 1 and yt1 ∈ Rt

| log pθ(Yt |X t−a
1 6= xU(θ), Xt 6= xU(θ), Y t−1

1 )− log pθ(Yt |X t
1 6= xU(θ), Y t−1

1 )|

6
2

σ−
pθ(xU(θ) ∈ X t−1

(t−a+1)∨1 | y
t−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ)).
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Proof of equation (26) By union bound,

pθ(xU(θ) ∈ X t−1
(t−a+1)∨1 | y

t−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))

6
t−1∑

i=(t−a+1)∨1

pθ(Xi = xU(θ) | yt−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))

=
t−1∑

i=(t−a+1)∨1

∑
xi−1,xi+1∈[Kθ]

pθ(Xi = xU(θ) | yi, Xi−1 = xi−1, Xi+1 = xi+1)

× pθ(Xi−1 = xi−1, Xi+1 = xi+1 | yt−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))

6
t−1∑

i=(t−a+1)∨1

∑
xi−1,xi+1∈[Kθ]

pθ(Xi = xU(θ) | yi, Xi−1 = xi−1, Xi+1 = xi+1)

=
t−1∑

i=(t−a+1)∨1

∑
xi−1,xi+1∈[Kθ]

pθ(Xi = xU(θ) |Xi−1 = xi−1, Xi+1 = xi+1)γθxU (θ)(yi − T θxU (θ)(i))∑
x∈[Kθ]

pθ(Xi = x |Xi−1 = xi−1, Xi+1 = xi+1)γθx(yi − T θx (i))
.

Using the Markov property and (Aerg), for all xi−1, xi+1 ∈ [Kθ],

pθ(Xi = x |Xi−1 = xi−1, Xi+1 = xi+1) ∈ [σ2
−, 1].

Hence,

pθ(xU(θ) ∈ X t−1
(t−a+1)∨1 | y

t−1
1 , xU(θ) /∈ X t−a

1 , Xt 6= xU(θ))

6
t−1∑

i=(t−a+1)∨1

∑
xi−1,xi+1∈[Kθ]

γθxU (θ)(yi − T θxU (θ)(i))

σ2
−

∑
x∈[Kθ]

γθx(yi − T θx (i))

6
K2

σ2
−

t−1∑
i=(t−a+1)∨1

γθxU (θ)(yi − T θxU (θ)(i))∑
x∈[Kθ]

γθx(yi − T θx (i))

which concludes the proof.

Proof of equation (27) This quantity is always bounded by 1 since all terms are
nonnegative. In addition, under Assumptions (Amax) and (Amin), for all i ∈ IUn (θ),

γθxU (θ)(Yi − T θxU (θ)(i))∑
x∈[Kθ]

γθx(Yi − T θx (i))
6
∑
x∈[K∗]

1Xi=x∗

1 ∧
γθxU (θ)(Zi + T ∗x∗(i)− T θxU (θ)(i))

sup
x∈[Kθ]

γθx(Zi + T ∗x∗(i)− T θx (i))



6 1 ∧
g

({
inf

x∗∈[K∗]
|T ∗x∗(i)− T θxU (θ)(i)| − Zmax

i

}
+

)
m

(
Zmax
i + sup

x∗∈[K∗]

inf
x∈[Kθ]

|T ∗x∗(i)− T θx (i)|

) .
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Since θ ∈ T (α, n,D)\U(β, n,B), Corollary 17 ensures that infx∈[Kθ] |T ∗x∗(i)−T θx (i)| 6
M(α,D) for all x∗ ∈ [K∗] and i ∈ {1, . . . , n}. Moreover, by definition of IUn (θ), infx∗∈[K∗] |T ∗x∗(i)−
T θxU (θ)(i)| > B for all i ∈ IUn (θ), so that

γθxU (θ)(Yi − T θxU (θ)(i))∑
x∈[Kθ]

γθx(Yi − T θx (i))
6 1 ∧ g({B − Zmax

i }+)

m(Zmax
i +M(α,D))

for all i ∈ IUn (θ), which concludes the proof.

B.4.3 Proof of Lemma 28

Under Assumption (Amax),

pθ(Yt |Xt = xU(θ)) = γθxU (θ)(Yt − T θxU (θ)(t))

=
∑

x∗∈[K∗]

1Xt=x∗γ
θ
xU (θ)

(
Zt + T ∗x∗(t)− T θxU (θ)(t)

)
6 sup

x∗∈[K∗]

g
({
|T ∗x∗(t)− T θxU (θ)(t)| − Zmax

t

}
+

)
6 g

({
inf

x∗∈[K∗]
|T ∗x∗(t)− T θxU (θ)(t)| − Zmax

t

}
+

)
,

hence, for all θ ∈ T (α, n,D) \ U(β, n,B),

pθ(Yt |Xt = xU(θ)) 6

{
g({B − Zmax

t }+) if t ∈ IUn (θ),

g(0) otherwise.
(28)

On the other hand, under Assumptions (Amin) and (Aerg),

pθ(Yt |Xt 6= xU(θ), Y t−1
1 ) =

pθ(Yt, Xt 6= xU(θ) |Y t−1
1 )

pθ(Xt 6= xU(θ) |Y t−1
1 )

>
∑

x∈[Kθ],x 6=xU (θ)

pθ(Yt |Xt = x, Y t−1
1 )pθ(Xt = x |Y t−1

1 )

> σ−
∑

x∈[Kθ],x 6=xU (θ)

pθ(Yt |Xt = x)

= σ−
∑

x∈[Kθ],x 6=xU (θ)

γθx(Yt − T θx (t))

= σ−
∑

x∗∈[K∗]

1Xt=x∗
∑

x∈[Kθ],x 6=xU (θ)

γθx(Zt + T ∗x∗(t)− T θx (t))

> σ− inf
x∗∈[K∗]

sup
x∈[Kθ],x 6=xU (θ)

m(Zmax
t + |T ∗x∗(t)− T θx (t)|)

> σ−m

(
Zmax
t + sup

x∗∈[K∗]

inf
x∈[Kθ],x 6=xU (θ)

|T ∗x∗(t)− T θx (t)|

)
.
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Using θ /∈ T (α, n,D) and Corollary 17, for all x∗ ∈ [K∗],

inf
x∈[Kθ],x 6=xU (θ)

|T ∗x∗(t)− T θx (t)| 6M(α,D).

For example, we can choose x = x(θ, x∗, n) (defined in Definition 16). We know that
xU(θ) 6= x(θ, x∗, n) because we chose B > M(α,D), so that |T ∗x∗(i)−T θxU (θ)(i)| > M(α,D)

for at least one i ∈ {1, . . . , n}, and because |T ∗x∗(i) − T θx(θ,x∗,n)(i)| 6 M(α,D) for all

i ∈ {1, . . . , n}. Therefore, for all θ ∈ T (α, n,D) \ U(β, n,B),

pθ(Yt |Xt 6= xU(θ), Y t−1
1 ) > σ−m(Zmax

t +M(α,D)),

which concludes the proof together with equation (28).

C Integrated log-likelihood

In this section, we use the fact that the observed process (Yt)t>1 may be replaced by the
process (Yt−T∗Bt(t), Bt)t>1. While this process is not homogeneous under the parameter
θ, its distribution varies slowly over time. We take advantage of this property to show
the uniform convergence of the log-likelihood by approximating (Yt − T∗Bt(t), Bt)t>1 by a
process that is locally (in time) homogeneous under the parameter θ. The limit can be
written as an integral of limits of log-likelihoods of homogeneous HMM, hence the name
integrated log-likelihood.

C.1 Convergence of the log-likelihood to the integrated log-
likelihood

Assume (Aerg), (Amax), (Amin), (Aint) and (Areg). In this section we shall prove
Theorem 10. Let M > 0.

The normalized log-likelihood associated with the HMM (Yt, Bt)t>1 can be written as

1

n
`(Y,B)
n (θ) =

1

n
log

∑
xn1 s.t.

∀t, bθ(xt)=Bt

πθ(x1)Qθ(x1, x2) . . . Qθ(xn−1, xn)
n∏
t=1

γθxt(Yt − T
θ
xt(t))

=
1

n
log

∑
xn1 s.t.

∀t, bθ(xt)=Bt

πθ(x1)Qθ(x1, x2) . . . Qθ(xn−1, xn)
n∏
t=1

γθxt

(
Z ′t −Dθ,n

xt

(
t

n

))
,

(29)

with Dθ,n
x : u ∈ [0, 1] 7→ T θx (nu) − T∗

bθ(x)
(nu) and Z ′t := Yt − T∗Bt(t). Note that Z ′t =

Zt + ∆(Xt). Recall that D(M) is defined by Equation (5).
Theorem 19 implies that Cl(D(M)) is compact, where Cl(·) denotes the closure with

respect to the supremum norm topology, hence Proposition 9 holds. Together with
Arzelà–Ascoli’s theorem, this entails that D(M) is uniformly equicontinuous and uni-
formly bounded by M . Hence there exists a continuity modulus ν such that for all δ > 0
and all (s, u) ∈ [0, 1]2,

|s− u| 6 δ ⇒ sup
n>4K(d+1)

sup
θ∈ΘOK

n (M)

sup
x∈[Kθ]

|Dθ,n
x (s)−Dθ,n

x (u)| 6 ν(δ). (30)
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Figure 10: Construction of the trends of the homogenized process.

Definition 29 (Log-likelihood of the homogenized process). For each η > 0 and θ ∈
ΘOK
n (M), let

1

n
`(Y,B)
n [η](θ) :=

1

n
log

∑
xn1 s.t. ∀t, bθ(xt)=Bt

πθ(x1)Qθ(x1, x2) . . . Qθ(xn−1, xn)

×
n∏
t=1

γθxt

(
Z ′t −Dθ,n

xt

(
η

⌊
t

ηn

⌋))
,

be the normalized log-likelihood of the process where each residual trend is made constant
over segments of length η.

Remark. This quantity is indeed a log-likelihood: 1
n
`

(Y,B)
n [η](θ) = 1

n
`

(Y,B)
n (θ[N, n]), where

the parameter θ[N, n] is defined by πθ[N,n] = πθ, Qθ[N,n] = Qθ, γθ[N,n] = γθ, bθ[N,n] = bθ

and

∀x ∈ [Kθ], T θ[N,n]
x (t) = T∗bθ(x)(t) +Dθ,n

x (bN t

n
c). (31)

However, θ[N, n] has piecewise polynomial trends instead of polynomial trends, so that
it does not belong to Θ.

1
n
`

(Y,B)
n [η](θ) is an approximation of the log-likelihood of equation (29). Assumption

(Areg) together with Equation (30) ensure that for all δ > 0, n > 1, θ ∈ ΘOK
n (M),

x ∈ [Kθ] and t ∈ {1, . . . , n},

γθxt

(
Z ′t −Dθ,n

xt

(
t

n

))
∈
[
e−L(|Z′t|+M)ω(ν(δ)), eL(|Z′t|+M)ω(ν(δ))

]
γθxt

(
Z ′t −Dθ,n

xt

(
δ

⌊
t

δn

⌋))
,

hence, for all δ > 0 and n > 1,

sup
θ∈ΘOK

n (M)

∣∣∣∣ 1n`(Y,B)
n (θ)− 1

n
`(Y,B)
n [δ](θ)

∣∣∣∣ 6 ω(ν(δ))× 1

n

n∑
t=1

L(|Z ′t|+M)

6 ω(ν(δ))× 1

n

n∑
t=1

L(‖∆‖∞ +M + Zmax
t ). (32)

Remark. Under (Areg), the law of large numbers entails that almost surely, for all
N > 1,

lim sup
n→+∞

sup
θ∈ΘOK

n (M)

∣∣∣∣ 1n`(Y,B)
n (θ)− 1

n
`(Y,B)
n

[
1

N

]
(θ)

∣∣∣∣
6 ω

(
ν

(
1

N

))
E∗[L(‖∆‖∞ +M + Zmax

1 )].
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Recall the following notation. For all K ′ ∈ N∗, for all K ′-uple γ = (γx)x∈[K′] of
measurable functions and for all D = (Dx)x∈[K′] ∈ RK′ , let

τ(γ,D) := (z′ 7−→ γx(z
′ −Dx))x∈[K′]

the vector of functions γ translated by the vector D.

Definition 30. Let π be a probability measure on [K ′], Q be a K ′×K ′ transition matrix,
γ be a vector of K ′ emission densities on R and b be a function [K ′] −→ B∗. Let
(Xt, (Z̃t, B̃t))t>1 be a homogeneous HMM taking values in [K ′]× (R×B∗) with parameter
(π,Q, (γx ⊗ 1b(x))x∈[K′]).

Denote by 1
n
`homn (π,Q, γ,b){(z̃, b̃)n1} (resp. `hom(Q, γ,b)) the normalized log-likelihood

of the parameter (π,Q, γ,b) for the observations (z̃, b̃)n1 (resp. the limit of the log-
likelihood, if it exists), that is

1

n
`homn (π,Q, γ,b){(z̃, b̃)n1} =

1

n
log

∑
xn1∈[K′]n

π(x1)Q(x1, x2) . . . Q(xn−1, xn)
n∏
t=1

γxt(z̃t)1b(xt)=b̃t

and

`hom(Q, γ,b) = lim
n→∞

1

n
`homn (π,Q, γ,b){(Z̃, B̃)n1}. (33)

The following Lemma ensures the existence of the limit of the normalized log-likelihood
in Definition 30 as well as its uniform continuity with respect to the parameter. It is a
consequence of a result concerning homogeneous HMM stated in Douc et al. (2004).

Lemma 31. Assume (Amax), (Amin), (Aint) and (Areg). Let K ′ ∈ N∗. The
following points hold.

• Almost surely, for all Q ∈ Σ
σ−
K′ , γ ∈ ΓK

′
, D ∈ RK′ and b : [K ′] −→ B∗, the quantity

`hom(Qθ, τ(γθ,D),b)

from Equation (33) exists and is finite almost surely under P∗ when (Z̃t, B̃t)t =
(Z ′t, Bt)t.

• For all K ′ ∈ N∗, the mapping

(Qθ, γθ,D, u,b) ∈ Σ
σ−
K′ × ΓK

′ × Cl(D(M))K
′ × [0, 1]× (B∗)K′

7−→ `hom(Qθ, τ(γθ,D(u)),b)

is continuous and its domain is compact, so that it is uniformly continuous.

• Almost surely, for all N ∈ N∗,

sup
(π,Q,γ,D,u,b)

sup
s∈{0,...,(N−1)n}

∣∣∣∣∣ 1n`homn (π,Q, τ(γ,D(u)),b){(Z ′, B)s+ns+1}

− `hom(Q, τ(γ,D(u)),b)

∣∣∣∣∣ −→n→∞ 0

where the supremum is taken for (π,Q, γ,D, u,b) ∈ ∆K′×Σ
σ−
K′×ΓK

′×Cl(D(M))K
′×

[0, 1]× (B∗)K′.
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Proof. Proof in Section C.3

As a consequence, the family of functions

K⋃
K′=1

{u ∈ [0, 1] 7−→ `hom(Q, τ(γ,D(u)),b)}Q∈Σ
σ−
K′ ,γ∈ΓK′ ,D∈D(M)K′ ,b∈(B∗)K′

is uniformly equicontinuous, which ensures the following result.

Corollary 32 (Riemann approximation of the integral). The quantity

RN := sup
n>n1(M)

sup
θ∈ΘOK

n (M)

∣∣∣∣∣ 1

N

N−1∑
i=0

`hom
(
Qθ, τ

(
γθ,Dθ,n

(
i

N

))
,bθ
)

−
∫ 1

0

`hom
(
Qθ, τ

(
γθ,Dθ,n(u)

)
,bθ
)
du

∣∣∣∣∣ (34)

satisfies
RN −→

N→+∞
0.

The integrated log-likelihood `int from Definition 8 is continuous by uniform continuity
of `hom. We may now prove the main result of this section, that is the convergence of the
normalized log-likelihood to the integrated log-likelihood.

Proof of Theorem 10 By the triangle inequality and using Equations (34) and (32),
for all n > n1(M) and N ∈ N∗,

sup
θ∈ΘOK

n (M)

∣∣∣∣ 1n`(Y,B)
n (θ)− `int(Qθ, γθ,Dθ,n,bθ)

∣∣∣∣
6 ω

(
ν

(
1

N

))
1

n

n∑
t=1

L(‖∆‖∞ +M + Zmax
t ) +RN

+ sup
θ∈ΘOK

n (M)

∣∣∣∣∣ 1n`(Y,B)
n

[
1

N

]
(θ)− 1

N

N−1∑
i=0

`hom

(
Qθ, τ

(
γθ,Dθ,n

(
i

N

))
,bθ
)∣∣∣∣∣ .

For the sake of simplicity, assume that n
N

is an integer. By Equation (31), for all
θ ∈ ΘOK

n (M), there exists θ[N, n] such that

1

n
`(Y,B)
n

[
1

N

]
(θ) =

1

n
`(Y,B)
n (θ[N, n]),

so that

1

n
`(Y,B)
n

[
1

N

]
(θ) =

1

n

N−1∑
i=0

log pθ[N,n]
(

(Y,B)
n
N

+i n
N

1+i n
N
| (Y,B)

i n
N

1

)
=

1

N

N−1∑
i=0

1
n
N

`hom
n
N

(
π
θ[N,n]
i n
N

, Qθ, τ

(
γθ,Dθ,n

(
i

N

))
,bθ
){

(Z ′, B)
n
N

+i n
N

1+i n
N

}
,

43



where π
θ[N,n]
i n
N

is defined as the distribution of X1+i n
N

conditionally to (Y,B)
n
N

+i n
N

1+i n
N

under

the parameter θ[N, n]. Hence, Lemma 31 implies that almost surely,

lim sup
n→+∞

sup
θ∈ΘOK

n (M)

∣∣∣∣ 1n`(Y,B)
n (θ)− `int(Qθ, γθ,Dθ,n,bθ)

∣∣∣∣
6 inf

N∈N∗

[
ω

(
ν

(
1

N

))
E∗[L(‖∆‖∞ +M + Zmax

1 )] +RN

]
= 0.

The conclusion follows from Theorem 3.

C.2 Maximizers of the integrated log-likelihood and identifia-
bility

In this section we prove Proposition 11. Assume (Amax), (Amin), (Areg), (Aid) and
(Acentering) and assume that K∗ = K is known.

Remark. Assumptions (Areg), (Amax) and (Amin) can be replaced by
∀θ ∈ Θ, ∀x ∈ [K∗], z ∈ R 7−→ γθ(z) is continuous,

∀x ∈ [K∗], γ∗x(z) −→
|z|→+∞

0

∀x ∈ [K∗], ∀z ∈ R, γ∗x(z) > 0.

The maximum of `int is reached at (Q, γ,D = (Dx)x∈[K∗],b) if and only if the integrand
is maximal for almost every u ∈ [0, 1], which means under (Aid) that(

Q,
(
γ(· −Dx(u))⊗ 1b(x)

)
x∈[K∗]

)
=
(
Q∗,

(
γ∗x(· −∆(x))⊗ 1b∗(x)

)
x∈[K∗]

)
up to permutation of the hidden states for all u ∈ [0, 1].

Let us assume that the permutation is not constant at u. Since there are only a finite
number of possible permutations of [K∗], there exist two sequences (ui)i>1 and (vi)i>1

converging to u, one corresponding to a permutation p and the other to a permutation
p′ 6= p, that is

∀i > 1, ∀x ∈ [K∗],

{
γx(· −Dx(ui)) = γ∗p(x)(· −∆(p(x))) and b(x) = b∗(p(x))

γx(· −Dx(vi)) = γ∗p′(x)(· −∆(p′(x))) and b(x) = b∗(p′(x))

Therefore, by continuity, for all x ∈ [K∗]

(γ∗p(x)(· −∆(p(x))),b∗(p(x))) = (γ∗p′(x)(· −∆(p′(x))),b∗(p′(x))),

so that p = p′ according to (Aid), which contradicts the assumption that the permutation
is not constant in u. Therefore, the permutation does not depend on u.

One may assume without loss of generality that the permutation is the identity, in
other words Q = Q∗, b = b∗ and

∀u ∈ [0, 1], ∀x ∈ [K∗], γx(· −Dx(u)) = γ∗x(· −∆(x)).
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Here, we took u in the whole segment [0, 1] instead of a subset with measure 1 because
the mapping u ∈ [0, 1] 7−→ γx(·−Dx(u)) is continuous under (Areg). IfDx is not constant
at some x ∈ [K∗], this entails that γ∗x is invariant by translation, so that it is constant,
which contradicts (Amax). Therefore, D is constant.

Finally,

∀x ∈ [K∗],
1

2
=

∫
z6Dx

γx(z −Dx)dz =

∫
z6Dx

γ∗x(z −∆(x))dz

using (Acentering), so that Dx is a median of γ∗x. To conclude, note that under (Amin)
and (Acentering), ∆(x) is the only median of γ∗x.

C.3 Uniform convergence of the homogeneous log-likelihood

Let us prove Lemma 31. The following theorem is a reformulation of Proposition 2
of Douc et al. (2004). Note that their proof also works when the space of parameters is
not parametric.

Theorem 33. Let V be a Polish space and write D(V) the set of nonnegative functions
of V. Let K ′ ∈ N∗. Let QK′ be the set of transition matrices of size K ′ and ∆K′ the set
of probability measures on [K ′]. Let (Vt)t>1 be an ergodic and stationary process taking
values in V with distribution P∗.

Consider a compact metric space Ω and mappings ω 7−→ Qω ∈ QK′ and ω 7−→
γω ∈ D(V)K

′
. Assume that ω 7−→ Qω is continuous and for all v ∈ V, the mapping

ω 7−→ γω(v) ∈ RK′
+ is continuous. Finally, assume that there exists a constant σ− > 0

such that

inf
ω∈Ω

inf
x,x′∈[K′]

Qω(x, x′) > σ−, (35)

sup
ω∈Ω

sup
x∈[K′]

sup
v∈V

γωx (v) <∞, (36)

E∗
sup
ω∈Ω

(
log

∑
x∈[K′]

γωx (V1)
)
−

 <∞. (37)

For all π ∈ ∆K′, ω ∈ Ω and vn1 ∈ Vn, let

1

n
ln(π,Qω, γω){vn1 } :=

1

n
log

∑
xn1∈[K′]n

π(x1)Qω(x1, x2) . . . Qω(xn−1, xn)
n∏
t=1

γωxt(vt)

be the log-likelihood corresponding to the HMM with parameters (π,Qω, γω) and to the
observations vn1 .

Then for all π ∈ ∆K′ and ω ∈ Ω, there exists a finite l(Qω, γω) such that almost
surely,

1

n
ln(π,Qω, γω){V n

1 } −→
n→∞

l(Qω, γω).

In addition, for all N ∈ N∗, the mapping ω 7−→ l(Qω, γω) is continuous and

sup
ω∈Ω

sup
π∈∆K′

∣∣∣∣ 1nln(π,Qω, γω){V n
1 } − l(Qω, γω)

∣∣∣∣ −→n→∞ 0

almost surely.
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Let us check these assumptions. First, let V = R× B∗, Vt = (Z ′t, Bt) and

Ω =
{
ω = (Q, γ,D, u,b) ∈ Σ

σ−
K′ × ΓK

′ × Cl(D(M))K
′ × [0, 1]× (B∗)K′

}
.

By Proposition 9, Ω is compact. It is also metrizable under (Areg): for instance, let
(xi)i>1 be a dense sequence in R, endow Γ with the distance

dΓ(γ, γ′) =
∑
i>1

2−i(|γ(xi)− γ′(xi)| ∧ 1)

and thus Ω is metrizable as a product of metric spaces.
By the uniform continuity of Cl(D(M)), the mappings{

ω = (Q, γ,D, u,b) ∈ Ω 7−→ Qω := Q

ω = (Q, γ,D, u,b) ∈ Ω 7−→ γω(z′, b) := (γx(z
′ −Dx(u))1b(x)(b))x∈[K′]

are continuous for all (z′, b) ∈ R× B∗. The lower bound (35) on the transition matrices
is ensured by (Aerg) and the upper bound (36) on the densities is implied by (Amax).
Finally, the integrability condition (37) follows from the fact that for all ω = (Q, γ,D =
(Dx)x∈[K′], u,b) ∈ Ω,∑

x∈[K′]

γωx (Z ′1, B1) > inf
x∈[K′]

γx(Z
′
1 −Dx(u)) > m(M + Zmax

1 )

by (Amin), and E∗[− logm(M + Zmax
1 )] <∞ by (Aint).

Thus, the previous theorem holds, which shows that the application

ω 7−→ l(Qω, γω) =: lhom(Q, τ(γ,D(u)),b)

is continuous on Ω. For the uniform convergence, let πU be the uniform distribution on
[K ′] and let

Ss,n(ω) =
1

n
ln(πU , Q

ω, γω){V s+n
s+1 }

for all s, n ∈ N∗ and ω ∈ Ω.
The theorem implies that almost surely,

lim
n→∞

sup
ω∈Ω

∣∣∣∣ 1nS0,n(ω)− l(Qω, γω)

∣∣∣∣ = 0.

Hence, for all ε > 0, there exists a (random) n(ε) such that,

∀n > n(ε), sup
ω∈Ω

∣∣∣∣ 1nS0,n(ω)− l(Qω, γω)

∣∣∣∣ 6 ε. (38)

The following Lemma is a reformulation of Lemma 2 of Douc et al. (2004) for compact
nonparametric parameter spaces.

Lemma 34. Under the same assumptions as the previous theorem, for all vn1 ∈ Vn,

sup
ω∈Ω

sup
π∈∆K

|ln(π,Qω, γω){vn1 } − ln(πU , Q
ω, γω){vn1 }| 6

1

σ2
−
.
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Therefore,

|nSs,n(ω)− ln(πXs+1|V s1 ,X1∼πU , Q
ω, γω){V s+n

s+1 }| 6
1

σ2
−
.

Note that

ln(πXs+1|V s1 ,X1∼πU , Q
ω, γω){V s+n

s+1 } = ls+n(πU , Q
ω, γω){V s+n

1 } − ls(πU , Qω, γω){V s
1 }

= (s+ n)S0,s+n(ω)− sS0,s(ω),

so that

|nSs,n(ω)− (s+ n)S0,s+n(ω)− sS0,s(ω)| 6 1

σ2
−
.

Thus, equation (38) entails that for all s > 1, n > n(ε) and ω ∈ Ω,

|nSs,n(ω)− nl(Qω, γω)| 6 (2s+ n)ε+
1

σ2
−
.

Therefore, by Lemma 34, for all n > n(ε) and s ∈ {0, . . . , (N − 1)n}:

sup
ω∈Ω

sup
π∈∆K′

∣∣∣∣ 1nln(π,Qω, γω){V s+n
s+1 } − l(Qω, γω)

∣∣∣∣ 6 (2N − 1)ε+
2

nσ2
−
,

which concludes the proof.

D Miscellaneous proofs

D.1 Proof of Lemma 24

Let us first state a Hoeffding inequality for uniformly ergodic Markov chains using (Aerg)
(see e.g. Glynn and Ormoneit (2002)): for all ε > 0, x1 ∈ [K∗] and n > 1

2εσ−
,

P

(
P(X1 = x∗)− 1

n

n∑
t=1

1Xt=x∗ > ε
∣∣∣ X1 = x1

)
6 exp

(
−
σ2
−ε

2

2
n

)
.

The value of P(X1 = x∗) in the inequality is the one corresponding to the stationary
distribution, so it is bounded below by σ− using (Aerg). Thus, for all δ > 0, ε > 0,
n > 1

δεσ−
and x1 ∈ [K∗],

P

 2

δn

δn/2∑
t=1

1Xt=x∗ 6 σ− − ε
∣∣∣ X1 = x1

 6 exp

(
−
σ2
−ε

2δ

4
n

)
.

Assume n > 2
δ(σ−)2

. Choose ε = σ−/2 and apply a union bound on a covering R of

{1, . . . , n} in at most 2n/δ segments of size δn/2:

P

(
inf
S∈R

1

n

∑
t∈S

1Xt=x∗ 6
δσ−

4

)
6

2n

δ
exp

(
−
σ4
−δ

16
n

)
.

Borel-Cantelli’s lemma yields the result.
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D.2 Proof of Lemma 25

Without loss of generality, we assume δn −→ δ almost surely (this is possible by replacing
δn by δn ∧ δ in the first statement and δn ∨ δ in the second).

Let us first show that the two statements are equivalent. Assume that the second one
holds. Let (Ut)t>1 and (δn)n as in the first statement. Apply the second one to the i.i.d
sequence of non-negative integrable random variables (−Ut)t>1:

lim sup
n→∞

sup
S⊂{1,...,n}
|S|6δnn

1

n

∑
t∈S

(−Ut) 6 E[(−U1)1−U1>−qU (δ)]

6 −E[U11U16qU (δ)].

Add E[U1] on each side and use the law of large numbers:

lim sup
n→∞

sup
S⊂{1,...,n}
|S|6δnn

1

n

∑
t/∈S

Ut 6 E[U11U1>qU (δ)].

Finally, replace δn by 1 − δn, δ by 1 − δ and the sets S by their complementary to
obtain the first statement.

Let us now show the second statement (regarding non-negative random variables).
Given a random vector (V1, . . . , Vn), we write V(1) 6 V(2) 6 . . . 6 V(n) its order statistics.
Let δ ∈ (0, 1) and let (δn)n be a non-increasing sequence of [0, 1]-valued random variables
whose limit is δ almost surely.

For all β ∈ (0, 1), write q̂V (β) := V(bβnc) the empirical β-quantile. Then

sup
S⊂{1,...,n}
|S|6δnn

1

n

∑
t∈S

Vt =
1

n

n∑
t=1

Vt1Vt>q̂V (1−δn).

Let us show that almost surely∣∣∣∣∣ 1n
n∑
t=1

Vt1Vt>q̂V (1−δn) −
1

n

n∑
t=1

Vt1Vt>qV (1−δ)

∣∣∣∣∣ −→n→∞ 0

and the result will follow by the law of large numbers. Thus we have to show that

1

n

n∑
t=1

Vt
(
1qV (1−δ)6Vt6q̂V (1−δn) + 1q̂V (1−δn)6Vt6qV (1−δ)

)
goes to 0 almost surely. Using Hoeffding’s inequality, for all β ∈ (0, 1),

P

(∣∣∣∣ |{t ∈ {1, . . . , n} s.t. Vt > qV (β)}|
n

− P(V1 > qV (β))

∣∣∣∣ >
√

log n

n

)
6 2n−2.

In particular, taking β = 1− δ, Borel-Cantelli’s lemma shows that almost surely, for
large enough n,

q̂V

(
1− δ −

√
log n

n

)
6 qV (1− δ) 6 q̂V

(
1− δ +

√
log n

n

)
,
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so that there are at most
√
n log n terms between qV (1− δ) and q̂V (1− δ). Hence there

are at most
√
n log n + (δn − δ)n terms between qV (1 − δ) and q̂V (1 − δn). As (δn)n is

non-increasing, this yields

q̂V (1− δn) 6 q̂V (1− δ) 6 qV

(
1− δ +

√
log n

n

)
,

which ensures that these terms are bounded above by qV (1− δ +
√

logn
n

). Thus, almost

surely, for n large enough,

1

n

n∑
t=1

Vt
(
1qV (1−δ)6Vt6q̂V (1−δn) + 1q̂V (1−δn)6Vt6qV (1−δ)

)
6

[√
log n

n
+ (δn − δ)

]
qV (1− δ/2),

which indeed converges to 0.
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