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Introduction

Wave propagation and scattering phenomenon appear in many fields of science, engineering and industry. It is of significant importance in geo-science, petroleum engineering, telecommunications, defense industry, and obviously acoustics. The simplest model of wave scattering by an object is the famous Helmholtz equation (recalled in section 1) which is the governing equation of acoustics in an homogeneous medium but also indirectly arises in more complex wave models (electromagnetism and elastodynamics). Despite its apparently simple form, it is a difficult equation to numerically solve as it is strongly indefinite and its solutions are oscillatory. These properties in turn make it hard to build a stable and efficient numerical scheme under practical mesh constraints. Another difficulty of this equation is that the propagation domain is generally infinite. Roughly speaking, two main families of approaches have been explored to overcome this numerical difficulty: solving the Helmholtz equation while bounding the computational domain with artificial boundary conditions (see for example the Perfectly Matched Layers (PML) [START_REF] Engquist | Radiation boundary conditions for acoustic and elastic wave calculations[END_REF][START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] and the references therein; or absorbing boundary conditions (see [START_REF] Antoine | Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape[END_REF] for example); or using integral equations (see [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF][START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF][START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF]). A coupling between a Finite Element Method (FEM) and a Boundary Element Method (BEM) also exists and can be preferred for some heterogeneous media [START_REF] Hiptmair | Coupling of finite elements and boundary elements in electromagnetic scattering[END_REF]. The integral equation related to the Helmholtz equation is known to be a powerful formalism when a large homogeneous propagation domain is considered. It consists in transforming the initial problem into an equivalent integral equation with its unknowns being Cauchy data living on the surface of the scattering object. In our study we choose to work in the scope of such methods and more precisely, the ones based on boundary integral equations. In real life applications, the scattering object is often large in comparison with the wavelength of interest. Moreover, the geometrical singularities of this object make the solution non-smooth. As a consequence a classical BEM requires a locally refined mesh in order to compute an accurate numerical solution.

Recent works were devoted to the development of a posteriori error estimates for BEMs in the context of wave equations [START_REF] Bakry | Fiabilité et optimisation des calculs obtenus par des formulations intégrales en propagation d'ondes[END_REF][START_REF] Jou | A posteriori boundary element error estimation[END_REF][START_REF] Carstensen | Residual-based a posteriori error estimate for hypersingular equation on surfaces[END_REF] . This enabled the development of auto-adaptive loop strategies with local refinement procedures [START_REF] Feischl | Adaptive boundary element methods[END_REF][START_REF] Kita | Error estimation and adaptive mesh refinement in boundary element method, an overview[END_REF]. Those constructions appear to be an elegant methodology to solve large problems with an optimal mesh size regarding a desired accuracy. Those auto-adaptive loops' computational efficiency could be largely improved by the use of non-conforming FEM, or DG schemes. Indeed, the absence of conformity constraint for the definition of the approximation space would allow a greater flexibility/ optimality in the mesh construction. In particular, this would enable to work with non-conforming meshes (hanging nodes), and to locally enrich the polynomial space (variation of the local polynomial order of the approximation space). This so-called non-conforming hp-refinement is difficult to accomplish with standard BEM. The use of a DG scheme would also ease the mesh generation process for complex geometries [START_REF] Peng | A discontinuous Galerkin integral equation method for time-harmonic electromagnetic problems[END_REF] (generation of a complex mesh per part and fusion). We see all those potential advantages as a motivation to investigate the use of DG approaches in the field of boundary integral equations.

Unfortunately, as far as we know relatively little is known about the non-conforming approximations of those integral operators. Most of the literature is focused on the case of the Laplace equation [START_REF] Heuer | Discontinuous Galerkin hp-bem with quasi-uniform meshes[END_REF][START_REF] Chouly | A Nitsche-based domain decomposition method for hypersingular integral equations[END_REF][START_REF] Heuer | Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen[END_REF]. The case of the oscillating kernel is less treated and the literature found was mostly focused on numerical study and validation [START_REF] Kong | A Discontinuous Galerkin Surface Integral Equation Method for Scattering From Multiscale Homogeneous Objects[END_REF][START_REF] Peng | A discontinuous Galerkin integral equation method for time-harmonic electromagnetic problems[END_REF]. As far as we know, only the paper [START_REF] Heuer | A nonconforming domain decomposition approximation for the Helmholtz screen problem with hypersingular operator[END_REF] proposes a theoretical study of the hyper-singular operator, in a domain decomposition fashion based on finite element patches separated by non-conforming interfaces. In this article, we present the first theoretical and numerical analysis of an Interior Penalty Discontinuous Galerkin (IPDG) approximation of the oscillating hypersingular operator used for solving the Helmholtz equation. The structure of the analysis differs from [START_REF] Heuer | A nonconforming domain decomposition approximation for the Helmholtz screen problem with hypersingular operator[END_REF]. Indeed, we propose an hp non-conforming error analysis of the symmetric and the anti-symmetric formulation defined on a closed surface for any wavenumber. In particular, hanging nodes and locally varying polynomial orders are allowed. Nevertheless, the triangulation must fulfill classical hypotheses of local regularity and maximum angle condition. As for the paper [START_REF] Heuer | A nonconforming domain decomposition approximation for the Helmholtz screen problem with hypersingular operator[END_REF], it analyzes the low-order polynomial approximation of the anti-symmetric scheme for open surface and low wavenumber. Also and contrary to [START_REF] Heuer | A nonconforming domain decomposition approximation for the Helmholtz screen problem with hypersingular operator[END_REF], one main specificity of our work is to propose an theoretical development based on a non-broken DG norm. Indeed it simplifies the analysis.

The main contributions of this article are:

• The ellipticity of the symmetric IPDG formulation for the Laplace problem (the antisymmetric case is proved in [START_REF] Heuer | Discontinuous Galerkin hp-bem with quasi-uniform meshes[END_REF]), see proposition 3.

• A continuity and a Gårding inequalities for the symmetric and the anti-symmetric sesquilinear forms for the Helmholtz problem (see proposition 6).

• An a priori error bound in a DG-norm and in the L 2 -norm. The bounds are quasi-optimal for the h-convergence and the p-convergence (see main theorems). The theorems are valid for non-conforming meshes.

• The definition and the use of a lifting sesquilinear form for the proof, and an error estimate of the residual function (see subsection 4.3).

• h and p numerical studies of convergence for the symmetric, natural and anti-symmetric formulations and for various choices of the penalty function's parameters.

The remainder of the article is organized as follows. We first give the model problem and the main integral operators in section 2.1 before we build the IPDG scheme in section 2.2. The construction is based on a non-trivial integration per part formula, which is recalled and briefly justified. We present afterward the main theorems of the article i.e. an a priori error estimate in a DG-norm and in the L 2 -norm. The choice of the penalty parameters in DG methods influences the error bounds (both numerically and theoretically). Several penalty functions' form are thus proposed and discussed. Section 4 contains the proof of the main results. The main ingredients are a conforming projector, the use of an original lifting operator, a Gårding-type inequality and a duality argument. Finally, section 5 deals with numerical convergence rates on an example to illustrate the theorem. The effect of the penalty function's parameters and the type of formulation will also be shortly discussed.

Notations: In all the rest of the document we denote a b (resp. a b or a b) if there exists c ∈ R + independent of the approximation parameters (i.e. h and p) such that a ≤ cb (resp. a ≥ cb or a = cb). But the constants can depend on the wavenumber, the geometry of the given problem, etc.

Construction of the Discontinuous Galerkin formulation

We start in part 2.1 by the presentation of the model problem and its main properties. Next the construction of the discontinuous Galerkin formulation is exposed (see part 2.2).

During all the rest of the article, we denote Γ a closed polyhedral and Lipschitz surface. This surface defines an interior open set Ω int ⊂ R 3 such that Γ = ∂Ω int . We denote (Γ i ) i∈ [1,N ] the faces of Γ. Nevertheless the construction of the DG scheme can be straightforwardly extended to open surfaces.

Model problem and integral operators

We use the standard surface fractional Sobolev spaces denoted H s (Γ) and Hs (Γ) for s ∈ R. For a complete description of those spaces, see [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] and [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF].

The model problem and its discontinuous Galerkin discretization are expressed with the help of two classical boundary integral operators. We recall that the classical simple layer potential V and the hypersingular potential W are formally defined by

Vu(x) = Γ g(x, y)u(y)dΓ(y) and Wu(x) = Γ ∂ n(y) g(x, y)u(y)dΓ(y), ∀x ∈ R 3 \ Γ, (1) 
where g(x, y) = e ik x-y 4π x -y is the Green kernel of the Helmholtz equation with k ∈ R + being the wavenumber and ∂ n(y) denotes the outer normal derivative with respect to the variable y. These pointwise defined operators can be extended to bounded linear operators:

V : H s (Γ) -→ H s+ 3 2 (U ) for (-1, 0] , W : H s (Γ) -→ H s+ 1 2 (U \ Γ) for (0, 1] , (2) 
where U ⊂ R 3 is an open set such that Γ ⊂ U . The integral operators used are the traces on Γ of V and W that we recall in the following definitions.

Definition 1 (Single layer operator).

Let s ∈ (-1, 0]. The single layer integral operator

V : H s (Γ) → H s+1 (Γ) is defined by: V = γ int o V, (3) 
where γ int o denotes the interior trace operator [START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF].

Definition 2 (Hypersingular operator). Let s ∈ (0, 1]. The hypersingular integral operator W : H s (Γ) → H s-1 (Γ) is defined by:

W = -γ int 1 W. ( 4 
)
where the operator γ int 1 denotes the interior conormal derivative [START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF].

See for example [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF][START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF][START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF] for an extensive description of those operators.

Our physical scope of interest is the scattering of an acoustic wave by a rigid obstacle in an homogeneous medium. The problem corresponding to this physical setting is based on the Helmholtz equation subjected to a non-homogeneous Neumann boundary condition: find u v : R 3 \ Ω → C the pressure or the velocity scattered field's potential such that:

∆u v (x) + k 2 u v (x) = 0 ∀x ∈ R 3 \ Ω, ∂u v ∂n (x) = f ∀x ∈ Γ, lim |x|→∞ |x| ∂u v (x) ∂|x| -iku v (x) = 0 ( 5 
)
where Ω is a bounded subset of R 3 with its surface Γ := ∂Ω being a weakly Lipschitz domain,

k ∈ R + is the wavenumber, f ∈ H -1 2 (Γ)
and n is the outward unit normal to Γ. The integral formalism is well-adapted for solving this kind of unbounded problem. This formalism is therefore used in this work. It consists in rewriting [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF] under an equivalent form by using the classical integral representation formulas (see for example [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF][START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Equations[END_REF] for details about this kind of construction). An extra-regularity of the right-hand side f ∈ L 2 (Γ) is necessary in order to build the DG formulation. In this case, the corresponding equivalent problem is the following boundary integral equation.

Problem 1 (Model problem). For a given

f ∈ L 2 (Γ), find u ∈ H 1 2 (Γ) such that: Wu = f. ( 6 
)
Remark 1. From [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], this problem admits an unique solution in H 1 2 (Γ), except for a discrete set of wavenumbers. It is well-known from the properties of W that the regularity of the right-hand side f implies u ∈ H 1 (Γ).

We finish by giving a fundamental identity which is essential for the analysis and the approximation of (6) (see [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF] for a proof of this result).

Proposition 1 (Relation between V and W).

The following relation exists between the hypersingular and the single layer operators:

∀u ∈ H 1 2 (Γ), Wu = curl Γ (Vcurl Γ u) -k 2 n • V(un), (7) 
where curl Γ being the surface curl operator on Γ and curl Γ its adjoint operator (see [START_REF] Heuer | Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen[END_REF] for more details about these operators).

Remark 2. The identity [START_REF] Hiptmair | Coupling of finite elements and boundary elements in electromagnetic scattering[END_REF] enables to decrease the order of singularity of the operator and will also be instrumental to construct the DG approximation of (6).

Discontinous Galerkin construction

Integration by parts formula

The construction of a DG method generally requires a local integration by parts formula in order to introduce the trace of the function on the mesh skeleton. In the case of classical PDE systems (Maxwell, Helmholtz, Poisson, etc.), one generally uses classical Stokes identities (see [START_REF] Melenk | General DG-Methods for Highly Indefinite Helmholtz Problems[END_REF][START_REF] Houston | Interior penalty method for the indefinite time-harmonic Maxwell equations[END_REF][START_REF] Hou | A Discontinuous Galerkin Augmented Electric Field Integral Equation for Low-Frequency Electromagnetic Scattering Analysis[END_REF]). The situation is a bit more difficult in the case of a field living on a surface. Indeed one has to be careful to ensure a well-defined trace operator on the mesh skeleton. Our need is an integration by parts formula in order to transform a term of the form curl Γ (Vcurl Γ u), v Γ . For smooth functions the result is straightforward. Indeed, applying a standard H 1 -type Green formula on a sufficiently regular sub-domain Q ⊂ Γ, one can get for u, v ∈ H 1 (Γ):

curl Q (Vcurl Γ u), v Q = Vcurl Γ u, curl Γ v Q + t Q • Vcurl Q u, v ∂Q , ( 8 
)
where t Q is the tangent unit vector of ∂Q with positive orientation (i.e. with respect to the outward unit normal vectors to Γ and ∂Q) and curl Q is the restriction of curl Γ to the sub domain Q.

Unfortunately, the term defined on the boundary ∂Q is not well-defined for v ∈ L 2 (Q) as the trace operator γ o : H s (Q) → H s-1 2 (∂Q) exists and is continuous only for s > 1 2 (see [START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF] for example). However formula (8) can be extended (see [START_REF] Heuer | Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen[END_REF] or [START_REF] Gatica | The boundary element method with Lagrangian multipliers[END_REF] for the details of the proof) through the definition of the following linear and bounded operator

t Q • Vcurl Γ u : u ∈ H 1 2 (Γ) : Wu ∈ L 2 (Γ) -→ H -(∂Q) u -→ t Q • Vcurl Γ u (9)
from the relation:

∀v ∈ H 1 2 + (Q), t Q • Vcurl Γ u, v ∂Q = curl Q (Vcurl Γ u), v Q -Vcurl Γ u, curl Q v Q , (10) 
with > 0.

The integration by parts formula [START_REF] Carstensen | Residual-based a posteriori error estimate for hypersingular equation on surfaces[END_REF] will be used for the construction of the DG formulation. This formula shows that the extra regularity H 1 2 + (Γ) for the test-function space seems to be required and consequently, raises the question about the construction of a general equivalent "broken" formulation of the model problem 1.

Mesh definition and hypothesis

Before presenting the DG scheme, we collect some definitions, notations and hypothesis about the mesh used in this paper. In particular, we detail where each hypothesis is required in the analysis. Let T h be a mesh whose elements are affine triangles. Those triangles K ∈ T h are closed sets and we denote

• K = K \ ∂K.
The set of edges of T h is denoted by E h . We also need the skeleton of the mesh γ h = e∈E h e.

Definition 3 (Local and global discretization parameters).

The discretization is locally defined by three parameters h K , ρ K and p K corresponding for each triangle K ∈ T h to its diameter (i.e. h K = max

x,y∈K x -y ), the diameter of its incircle and the local polynomial order of the DG scheme, respectively. The associated three global discretization parameters are then defined by h = max

K∈T h h K , ρ = max K∈T h ρ K and p = min K∈T h p K .

Hypothesis 1 (Regularity conditions).

The discretization is assumed to be locally regular in the sense of the following conditions: for (K,

K ) ∈ T 2 h such that K ∩ K = ∅, one has h K h K , ρ K ρ K and p K p K . ( 11 
)
In particular, this implies that ∀K ∈ T h , h h K , ρ ρ K and p p K .

Hypothesis 2 (Maximum angle condition). We suppose there exists θ o ∈ R + such that:

∀K ∈ T h , h K ρ K θ o . ( 12 
)
Hypothesis 3 (Non-conforming mesh condition). We assume that the mesh T h which can be a non-conformal i.e. with hanging nodes, is always obtained from an initial conforming mesh T 0 h via a finite number of local refinement/coarsening operations. This is required in [START_REF] Karakashian | A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems[END_REF]. It also implies the non-conforming requirement in [START_REF] Georgoulis | Inverse-type estimates on hp-finite element spaces and applications[END_REF].

Remark 3. The regularity and the non-conforming mesh conditions are required in order to use some inverse-type estimates proposed in [START_REF] Georgoulis | Inverse-type estimates on hp-finite element spaces and applications[END_REF]. The maximum angle and the non-conforming mesh conditions are imposed in order to use some results given in [START_REF] Karakashian | A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems[END_REF].

We finish this part by defining four piecewise constant functions associated to the local discretization parameters.

Definition 4 (h and p-discretization functions).

We define h Γ , p Γ , ρ Γ ∈ L ∞ (Γ) the h, p and ρ-discretization functions associated to the surface Γ such that:

∀K ∈ T h , h Γ | • K = h K , , p Γ | • K = p K and ρ Γ | • K = ρ K . ( 13a 
)
We also define their counterparts h γ h , p γ h ∈ L ∞ (γ h ) associated to the skeleton mesh γ h are defined as follows:

∀e = K 1 ∩ K 2 ∈ E h , h γ h | e = h K1 + h K2 2 and p γ h | e = p K1 + p K2 2 , ( 13b 
) with K 1 , K 2 ∈ T h .
The hypothesis 1 implies the following obvious properties:

Lemma 1. Under the hypothesis 1, one has: ∀K ∈ T h ,

h Γ | K h γ h | ∂K p Γ | K p γ h | ∂K . ( 14 
)
Our convergence study in presence of non-conformities demands to impose a last hypothesis in order to use some results about a Clement type interpolation.

Hypothesis 4 (Existence of a "convergence" coarse conforming mesh). Let (T h ) h>0 be a family of non-conforming meshes. We assume that for all h > 0, there exists a conforming mesh T c h obtained from T h via a finite number of coarsening operations such that:

∀K ∈ T h , ∃K ∈ T c h such that K ⊂ K , and h K h K . ( 15 
)
Moreover, we associate to these conforming meshes the following local polynomial distribution:

∀K ∈ T c h , p K = min K∈T h ,K⊂K p K . ( 16 
)
Remark 4. The hypothesis 4 is trivially satisfied if the meshes T h are all conforming.

Construction of the Discontinuous Galerkin formulations

Let T h be a mesh fulfilling the hypothesis 1, 2 and 3. We construct here the DG formulation. The idea is to get a "broken" formulation by splitting the expression on the mesh. Thanks to the L 2 -regularity of f , the duality product in equation ( 6) corresponds to an L 2 (Γ) scalar product. So by additivity of the integral, equation ( 6) becomes:

K∈T h Wu, v K = f, v Γ , ∀v ∈ L 2 (Γ). ( 17 
)
Then we use the integration by parts formula [START_REF] Carstensen | Residual-based a posteriori error estimate for hypersingular equation on surfaces[END_REF] and relation [START_REF] Hiptmair | Coupling of finite elements and boundary elements in electromagnetic scattering[END_REF] between V and W, equation [START_REF] Kong | A Discontinuous Galerkin Surface Integral Equation Method for Scattering From Multiscale Homogeneous Objects[END_REF] becomes: for all v ∈ L 2 (Γ) such that v| K ∈ H

1 2 + (K), K∈T h Vcurl Γ u, curl K v K -k 2 V(un), vn K + t K .Vcurl Γ u, v ∂K = f, v Γ . ( 18 
)
Following what is classically encountered in the DG literature, we write the mesh skeleton term as a sum over the edges so that the jumps of the test function appear. As for each edge e ∈ E h there is K 1 , K 2 ∈ T h such that e = K 1 ∩ K 2 , we obtain:

K∈T h t K .Vcurl Γ u, v ∂K = e=K1∩K2∈E h ⊂γ h ( t K1 .Vcurl Γ u, v e + t K2 .Vcurl Γ u, v e ) , ( 19 
)
with t K1 = -t K2 .

The previous assumptions induce a H 1 -regularity of the term Vcurl Γ u and consequently, lead to a weak continuity across the skeleton mesh i.e. for any e = K 1 ∩ K 2 ∈ E h , Vcurl Γ u| K1 = Vcurl Γ u| K2 almost everywhere on e. If we choose for each edge e ∈ E h an arbitrary but fixed tangent vector, for example t e = t K1 , we can rewrite the term [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF] as follows:

K∈T h t K • Vcurl Γ u, v ∂K = e∈E h t e • Vcurl Γ u, [[v]] e , ( 20 
)
where [[v]] := v| K1 -v| K2 is the jump of the function v across the edge e = K 1 ∩ K 2 .

If we choose the test-functions space H 1 (Γ), term [START_REF] Melenk | General DG-Methods for Highly Indefinite Helmholtz Problems[END_REF] vanishes as [[v]] = 0 for all edges of E h and formulation [START_REF] Heuer | A nonconforming domain decomposition approximation for the Helmholtz screen problem with hypersingular operator[END_REF] leads to the weak form used to construct a BEM. Nevertheless, equation ( 18) using [START_REF] Melenk | General DG-Methods for Highly Indefinite Helmholtz Problems[END_REF] accepts the following more general (broken) test-functions space:

H dg (T h ) = {v ∈ L 2 (Γ), v| K ∈ H 1 2 +ε (K) ∀K ∈ T h }. (21) 
with ε > 0. This latter yields a broken version of the initial problem (see proposition 2). In order to write it under a compact form, we need to define the broken counterpart curl h of the curl operator.

Let v ∈ H dg (T h ), ∀K ∈ T h , curl h (v)| K = curl K (v| K ). ( 22 
)
Proposition 2 (Broken version of initial problem). The solution u of problem (1) satisfies the following broken formulation:

∀v ∈ H dg (T h ), A(u, v) = f, v , (23) 
where

A(u, v) = Vcurl h u, curl h v Γ -k 2 V(un), vn Γ + t e .Vcurl h u, [[v]] γ h . ( 24 
)
Unfortunately, It is known that this kind of formulation does not imply stable numerical schemes (it will be showed later). Following the IPDG literature (see [START_REF] Fend | hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF][START_REF] Melenk | General DG-Methods for Highly Indefinite Helmholtz Problems[END_REF][START_REF] Houston | Interior penalty method for the indefinite time-harmonic Maxwell equations[END_REF][START_REF] Hou | A Discontinuous Galerkin Augmented Electric Field Integral Equation for Low-Frequency Electromagnetic Scattering Analysis[END_REF] for example), a penalty term is added to stabilize the formulation. It has the following general shape:

P σ (v, w) = σ h [[v]], [[w]] γ h , ∀v, w ∈ H dg (T h ), (25) 
where σ h : γ h → R + is the penalty function to determine.

For numerical and practical reasons, we choose to look for a numerical approximation of u in the following broken polynomial space:

X hp (T h ) = {v ∈ L 2 (Γ), v| K ∈ P p K (K) ∀K ∈ T h } ⊂ H dg (T h ). ( 26 
)
Where P p K (K) is the polynomial space of total degree at most p K on K.

Finally, we derive from proposition 2 the following DG formulation:

Problem 2 (Discontinuous Galerkin formulation). Find u h ∈ X hp (T h ) such that: ∀v ∈ X hp (T h ), A θ h (u h , v) = f, v (27) 
where

A θ h (u, v) = Vcurl h u h , curl h v Γ -k 2 V(u h n), vn Γ + T u h , [[v]] γ h + P σ (u h , v) + θ T v, [[u h ]] γ h , ( 28 
) with θ = -1, 0, 1 and T u, v γ h = t e • Vcurl h u, v γ h simply being an abbreviate notation. Remark 5. A consistent term T v, [[u h ]] γ h , in the sense that it vanishes if u h = u (i.e
. the exact solution), is added in the sesquilinear form.

The θ values {-1, 0, 1} respectively lead to the "anti-symmetric", "natural" and "symmetric" formulation, respectively. This latter is expected to have better numerical properties (see [START_REF] Riviere | Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation[END_REF] for example).

A priori error estimates: main results

All the results presented from now are obtained by assuming that we work with a family of approximation spaces (X hp (T h )) with meshes T h and associated discretization parameters (h, p, ρ) fulfilling the hypotheses 1, 2, 3, 4.

The main result of the article is an hp a priori error analysis for the DG formulation defined in problem 2. The nature of the operators and the spaces involved in the formulation guided us in the definition of a suited norm for this study. More precisely, we equip the space H dg (T h ) with the following "DG-norm":

u dg := curl h u 2 H -1 2 (Γ) + u 2 L 2 (Γ) + σ 1 2 h [[u]] 2 L 2 (γ h ) 1 2 . ( 29 
)
Remark 6. The DG norm has to control in the same time the jump of the numerical solution and the expected regularity

H 1 2 (Γ) of the solution. The term curl h u H -1 2 (Γ)
indirectly controls this regularity and avoids the use of a classical broken norm such as

K∈T h |u| 2 H 1 2 (K) 1 2 
. According to us, the non-classical and global DG norm allows a simplification of the analysis.

The error analysis can be accomplished using a suited penalty function which ensures the stability of the DG formulation. We specify, in definition 5, the required behavior for σ h .

Definition 5 (Penalty function). We define the penalty function σ

h : γ h -→ R + as follows: σ h = σ 0 p np γ h h n h γ h , ( 30 
)
where n p ≥ 1, n h > 1 and σ 0 > 0 are real constants, called the penalty function's parameters.

Error estimate in DG-norm

From now and for all the rest of the study, we suppose that the wavenumber k is not an eigenvalue of the operator W in order to ensure the well-posedness character of the continuous problem.

Let us now introduce the main results of this paper.

Theorem 1 (Main result: a priori error estimate). Let u ∈ H r (Γ), with r ≥ 1, be the solution of problem 1. Let u h be the solution of problem 2 with a penalty function from definition 5 with parameters n h > 2 and n

p > 1. Let X h i ,p i (T i h ) be a nested sequel of approximation spaces i.e. for i < j, X h i p i (T i h ) ⊂ X h j p j (T j h ), and such that i∈N X h i p i (T i h ) = H -1 2 (Γ). ( 31 
)
Then there exist i 0 ∈ N and a constant C > 0 depending on Γ, the regularity parameters of the hypotheses 1 and 2, k w and r, but not on p Γ , h Γ and u such that for any i > i 0 , the following estimate holds:

u -u h dg ≤ C inf v∈X h i p i (T i h )∩C 0 (Γ) v -u H 1 2 (Γ) + log h Γ p Γ 5/2 h n h -3 2 +min(p Γ +1,r) Γ p np -2 2 +r Γ L ∞ (Γ) u H r (Γ)    . ( 32 
)
A proof of this theorem will be given in section 4. Following the approach proposed in [START_REF] Vardapetyan | hp-adaptive finite elements in electromagnetics[END_REF], the theorem 1 also enables to prove the existence of u h .

Corollary 1 (Existence and uniqueness of the DG solution).

Under the assumptions of theorem 1, the solution u h ∈ X hp (T h ) of DG formulation [START_REF] Riviere | Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation[END_REF] exists and is unique.

Proof. Using a finite dimensional argument, we just have to prove that u h = 0 when the righthand side f = 0. If f = 0, then u = 0 and then the a priori estimate (32) immediately leads to u h dg ≤ 0.

By using standard interpolation theory results (see [START_REF] Steinbach | Numerical approximation methods for elliptic boundary value problems: finite and boundary elements[END_REF][START_REF] Ern | Theory and practice of finite elements[END_REF] for example), the following explicit hp error estimate can be derived from [START_REF] Melenk | hp-interpolation of nonsmooth functions and an application to hp-a posteriori error estimation[END_REF].

Corollary 2 (Explicit hp error estimate).

Under the assumptions of theorem 1 with r = 1 (i.e. H 1 (Γ)), there exist i 0 ∈ N and a constant C > 0 depending on Γ, the regularity parameters of the hypotheses 1 and 2 and k w , but not on p Γ , h Γ and u such that for any i > i 0 , the following explicit hp error estimate holds:

u -u h dg ≤ C   1 + log h Γ p Γ 5/2 h n h -2 2 Γ p np-1 2 Γ   h 1 2 Γ p 1 2 Γ L ∞ (Γ) u H 1 (Γ) . ( 33 
)

Error estimate in L 2 (Γ) norm

Theorem 1 guarantees the reliability of the numerical scheme. Another estimate in the L 2norm can be obtained, and is relevant from a physical and practical point of view.

Theorem 2 (L 2 -error estimate). Under the assumptions of theorem 1, there exists i 0 ∈ N and a constant C > 0 depending on Γ, the regularity parameters of the hypotheses 1 and 2, k w and r, but not on p Γ , h Γ and u such that for any i > i 0 , the following L 2 -error estimate holds:

u -u h L 2 (Γ) ≤ C inf v∈X h i p i (T i h )∩C 0 (Γ) v -u L 2 (Γ) + log h Γ p Γ 5/2 h n h -2 2 +min(p Γ +1,r) Γ p np -1 2 +r Γ L ∞ (Γ) u H r (Γ)    . ( 34 
)
In a same manner as before, we use standard interpolation theory result to obtain an explicit hp estimate.

Corollary 3 (hp-version of L 2 -error estimate).

Under the assumptions of theorem 1, there exist i 0 ∈ N and a constant C > 0 depending on Γ, the regularity parameters of the hypotheses 1 and 2 and k w , but not on p Γ , h Γ and u such that for any i > i 0 , the following hp explicit error estimate holds, with r = 1:

u -u h L 2 (Γ) ≤ C   1 + log h Γ p Γ 5/2 h n h -2 2 Γ p np -1 2 Γ   h Γ p Γ L ∞ (Γ) u H 1 (Γ) . ( 35 
)

Proofs of the error estimates

This section is devoted to the proofs of the error estimates in the DG and L 2 -norms. After having recalled some useful technical lemmas in subsection 4.1, and deriving the needed properties of the problem's sesquilinear form in subsections 4.2, 4.3, we will carry out the a priori error analysis in subsection 4.4.1.

Auxiliary results

We need some intermediate results in order to prove the theorem, mostly about function approximation theory and integral and surface differential operators' properties.

Some classical interpolation and projection operators

The error estimate requires the use of interpolation and projection operators. We first recall those classical results.

We start with the standard L 2 -projection Π 2 : L 2 (Γ) → X hp (T h ), with s ∈ R + . There exists the following local and global error estimates.

Lemma 2 (Local L 2 -error estimate for Π 2 ). Let K ∈ T h and f ∈ H s (K) for s ∈ R + . For all 0 ≤ q ≤ s, the following error estimate holds:

Π 2 f -f H q (K) h min(p K +1,s)-q K p s-q K f H s (K) . ( 36 
)
The classical stability estimate holds:

Π 2 f H q (K) f H q (K) . ( 37 
)
Proof. The proof for integer Sobolev index can be found in [START_REF] Ern | Theory and practice of finite elements[END_REF] and its extension to real index by using the interpolation theory between Sobolev spaces is given in [START_REF] Chandler-Wilde | Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples[END_REF], for example.

Lemma 3 (Global L 2 -error estimate for Π 2 ). Let f ∈ H s (Γ) for s ∈ R + .
For all s ≥ 0 and q ≤ 0, the following error estimate holds:

Π 2 f -f H q (Γ) max K∈T h h min(p k +1,s)+min(p k +1,-q) K p s-q K f H s (Γ) . ( 38 
)
The classical stability estimate holds:

Π 2 f H q (Γ) f H q (Γ) . ( 39 
)
Proof. The definition of the dual norm and the orthogonality of the L 2 -projector give:

Π 2 f -f H q (Γ) = sup φ∈H -q (Γ)\{0} Π 2 f -f, φ φ H -q (Γ) = sup φ∈H -q (Γ)\{0} Π 2 f -f, φ -Π 2 φ φ H -q (Γ) (40) 
We then use the fact that Π 2 f -f ∈ L 2 (Γ) and Π 2 φ -φ ∈ L 2 (Γ) and the Cauchy-Schwarz inequality to obtain:

Π 2 f -f H q (Γ) = sup φ∈H -q (Γ)\{0} K∈T h (Π 2 f -f, φ -Π 2 φ) K φ H -q (Γ) ≤ sup φ∈H -q (Γ)\{0} K∈T h Π 2 f -f L 2 (K) φ -Π 2 φ L 2 (K) φ H -q (Γ) (41) 
The Hölder inequality, lemma 2 and the inequality (see [START_REF] Gatica | The boundary element method with Lagrangian multipliers[END_REF]): ∀φ ∈ H s (Γ),

K∈T h φ 2 H s (K) φ 2 H s (Γ) (with s ∈ [0, 1]) end the proof.
Our error analysis requires the use of an operator which approximates a piecewise polynomial function by a continuous one. Following what is done in other DG studies (see [START_REF] Melenk | General DG-Methods for Highly Indefinite Helmholtz Problems[END_REF][START_REF] Houston | Interior penalty method for the indefinite time-harmonic Maxwell equations[END_REF][START_REF] Hou | A Discontinuous Galerkin Augmented Electric Field Integral Equation for Low-Frequency Electromagnetic Scattering Analysis[END_REF] for example), we have the existence of a projector Π c : X hp (T h ) → X hp (T h ) ∩ C 0 (Γ) which has the following properties.

Lemma 4 (Conforming reconstruction operator Π c ).

There exists an operator Π c :

X hp (T h ) → X hp (T h ) ∩ C 0 (Γ) such that: ∀w ∈ X hp (T h ), w -Π c w 2 L 2 (Γ) h 1 2 γ h [[w]] 2 L 2 (γ h ) (42) and curl h (w -Π c w) 2 L 2 (Γ) h -1 2 γ h [[w]] 2 L 2 (γ h ) , ( 43 
)
where h γ h from definition 4.

Proof. One can find a constructive (and rather simple) proof in [START_REF] Karakashian | A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems[END_REF]. Note that this result is also valid for a non-conforming mesh respecting the hypothesis 3.

This initial result serves to obtain more useful error estimates for our analysis.

Lemma 5. The reconstruction operator Π c defined in lemma 4 verifies the following properties:

∀w ∈ X hp (T h ), (i) w -Π c w 2 dg h -1 2 γ h [[w]] 2 L 2 (γ h ) . (ii) ∀v ∈ H 1 2 +ε (Γ) (with ε > 0), w -Π c w L 2 (Γ) max K∈T h    h n h +1 2 K p np 2 K    w -v dg .
Proof. These results are directly proved by using lemma 4. (i) is obvious. (ii) is also easy by using lemma 1 and the following elementary calculation:

w -Π c w 2 L 2 (Γ) h 1 2 γ h [[w]] 2 L 2 (γ h ) h n h 2 γ h h - n h 2 γ h p np 2 γ h p - np 2 γ h h 1 2 γ h [[w]] 2 L 2 (γ h ) max K∈T h h n h +1 K p np K σ 1 2 h [[w -v]] 2 L 2 (γ h ) . ( 44 
)
We finish this part by reminding some results about a Clement-type interpolation for hp non-conforming meshes.

Lemma 6 (Clement interpolation). Let s ≥ 1. There exists a Clément interpolation operator

I c : H s (Γ) → X hp (T h ) ∩ C 0 (Γ)
which respects the following approximation property:

∀u ∈ H s (Γ), ∀q ∈ [0, 1], u -I c u H q (Γ) K∈T h h K p K s-q u H s (K) . ( 45 
)
Proof. The hypotheses 1, 2, 3, 4 immediately implies:

X hp (T c h ) ⊂ X hp (T h ) (46) 
and

∀K ∈ T c h and K ∈ T h such that K ⊂ K , h K p K h K p K . ( 47 
)
Now by using [START_REF] Melenk | hp-interpolation of nonsmooth functions and an application to hp-a posteriori error estimation[END_REF], we have the existence of a Clément interpolation operator

I c : H s (Γ) → X hp (T c h ) ∩ C 0 (Γ)
for integer Sobolev indexes which can be extended to the real indexes by using the interpolation theory between Sobolev spaces (see [START_REF] Chandler-Wilde | Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples[END_REF], for example). In particular, we have the following error estimate:

∀u ∈ H s (Γ), ∀q ∈ [0, 1], u -I c u H q (Γ) K ∈T c h h K p K s-q u H s (K ) . ( 48 
)
Finally, ( 46) and (47) leads to the result.

Operators' properties and trace inequalities

We collect here some properties about the integral (W and V) and the surface curl operators, as well as some useful trace inequalities. Throughout the paper, we denote V o and W o the operators associated with the Laplace kernel (i.e. k = 0). We remind their basic properties: Lemma 7. There is:

(i) Let s ∈ [-1, 0]. The operator V o : H s (Γ) → H s+1 (Γ) is continuous and elliptic i.e. ∀u ∈ H -1 2 (Γ), V o u, u Γ u 2 H -1 2 (Γ) . ( 49 
) (ii) Let s 1 ∈ [-1, 0] and s 2 ∈ [0, 1]. The operators V : H s1 (Γ) → H s1+1 (Γ) and W : H s2 (Γ) → H s2-1 (Γ) are continuous. (iii) Let s ∈ [-1, 0]. The operator Ṽ = V -V o : H s (Γ) → H s+2 (Γ) is continuous.
Proof. The result (i) can be found in [START_REF] Heuer | Discontinuous Galerkin hp-bem with quasi-uniform meshes[END_REF] whereas (ii) and (iii) are proved in [START_REF] Costabel | Boundary Integral Operators on Lipschitz Domains: Elementary Results[END_REF], for example.

We will also need trace inequalities in order to control some quantities living on the skeleton mesh γ h . For that, we will use the two following lemmas.

Lemma 8 (Multiplicative trace inequality).

Let K ∈ T h and u ∈ H 1 (K). The following trace estimate holds:

u 2 L 2 (∂K) u L 2 (K) |u| H 1 (K) + 1 h K u 2 L 2 (K) . ( 50 
)
Proof. See [START_REF] Prudhomme | Review of a priori error estimation for discontinuous Galerkin methods[END_REF].

Lemma 9 (Trace estimate). Let v ∈ X hp (T h ) and w ∈ H 1 (Γ). For any α, β > 0, the following estimate holds:

| [[v]], w γ h | p β γ h h α γ h [[v]] L 2 (γ h )   h α Γ p β Γ L ∞ (Γ) w 1 2 L 2 (Γ) |w| 1 2 H 1 (Γ) + h α-1 2 Γ p β Γ L ∞ (Γ) w L 2 (Γ)   .
(51)

Proof. The Cauchy-Schwarz inequality and lemma 1 first give:

| [[v]], w γ h | = p β γ h h α γ h [[v]], h α γ h p β γ h w γ h p β γ h h α γ h [[v]] L 2 (γ h ) K∈T h h 2α K p 2β K w 2 L 2 (∂K) 1 2 . ( 52 
)
We now focus on the right-hand side term. The use of the multiplicative trace inequality (50) gives:

K∈T h h 2α K p 2β K w 2 L 2 (∂K) K∈T h h 2α K p 2β K w L 2 (K) |w| H 1 (K) + h 2α-1 K p 2β K w 2 L 2 (K) h α Γ p β Γ 2 L ∞ (Γ) K∈T h w L 2 (K) |w| H 1 (K) + h α-1 2 Γ p β Γ 2 L ∞ (Γ) w 2 L 2 (Γ) . ( 53 
)
Finally, by using the Hölder inequality:

K∈T h w L 2 (K) |w| H 1 (K) ≤ w L 2 (Γ) |w| H 1 (Γ) (54) 
and the identity

√ a + b ≤ √ a + √ b for a, b ≥ 0, we obtain the announced result.
We present an hp inverse-type estimate which is instrumental in our analysis.

Lemma 10 (Inverse type estimate). Let X hp (T h ) be an approximation space respecting the hypothesis 1 and 3. Let s ∈ [0, 1] and α, α, β,

β ∈ R 4 such that -∞ ≤ α ≤ α ≤ ∞ and -∞ ≤ β ≤ β ≤ ∞. Then ∀v ∈ X hp (T h ), ρ s+α Γ p 2s+β Γ v L 2 (Γ) ρ α Γ p β Γ v H -s (Γ) , ( 55 
)
uniformly in α ∈ [α, α] and β ∈ [β, β].
Proof. See [START_REF] Georgoulis | Inverse-type estimates on hp-finite element spaces and applications[END_REF].

Remark 7. The inverse-type estimate above is shown in [START_REF] Georgoulis | Inverse-type estimates on hp-finite element spaces and applications[END_REF] to be optimal regarding the discretization parameters ρ Γ and p Γ . The optimality of this estimate is necessary in order to derive the quasi-optimal a priori error bounds of theorem 1.

We finish this part by given some properties of the surface curl operator which are instrumental in our analysis. But before that, we recall a classical integration by parts formula which will be used to prove these properties and be an essential tool to analyze the residual function associated to the DG scheme.

Lemma 11 ("Broken" Green identity version). Let

f ∈ H 1 (Γ) 3 and v ∈ H 1 (T h ), which is a broken H 1 space H 1 (T h ) = {L 2 (Γ)| ∀K ∈ T h v| K ∈ H 1 (K)}.
It holds:

Γ curl h v(x) • f(x)dΓ(x) = Γ v(x)curl Γ f(x)dΓ(x) + γ h f(x) • [[v(x)n e × n]]dγ(x) (56) 
with n e | K being the outward unit normal to ∂K (with e ∈ E h and K ∈ T h ) and n the outward unit normal to Γ.

Proof. The proof is straightforward using a classical Green identity on each element with the definition of the surface curl operator and then summing over the elements of the meshes.

Remark 8. The formula above restricted to v ∈ H 1 (Γ) coincides with the well-known identity of [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF] page 73.

Lemma 12 (Surface curl operator properties).

The following continuity properties are fulfilled by the surface curl operator.

(i) The surface curl operator curl Γ is continuous from

H 1 2 (Γ) to H -1 2 (Γ) 3 .
(ii) For s ∈ [0, 1] and for all face Γ i of Γ, curl Γi :

H s (Γ i ) → (H s-1 (Γ i )) 3 is continuous. (iii) The broken surface curl operator curl h is continuous from X hp (T h ) ⊂ L 2 (Γ) to (X hp (T h )) 3 ⊂ H -1 (Γ) 3 .
The following estimates hold: ∀u ∈ X hp (T h ),

curl h u H -1 (Γ) max K∈T h p K h K u L 2 (Γ) (57) 
and

curl h u H -1 (Γ) u L 2 (Γ) + 1 h 1 2 γ h [[u]] L 2 (γ h ) . ( 58 
) (iv) There is, ∀u ∈ H 1 2 (Γ): |u| H 1 2 (Γ) curl Γ u H -1 2 (Γ) . ( 59 
)
Proof. For (i) and (ii) see [START_REF] Heuer | Discontinuous Galerkin hp-bem with quasi-uniform meshes[END_REF] and [START_REF] Heuer | Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen[END_REF]. For (iv) see lemma 4.1 of [START_REF] Gatica | The boundary element method with Lagrangian multipliers[END_REF]. Let us prove (iii). Let u ∈ X hp (T h ). By definition of the dual norm, we have:

curl h u H -1 (Γ) = sup Φ∈(H 1 (Γ)\{0}) 3 curl h u, Φ Γ Φ H 1 (Γ) . ( 60 
)
The integration by parts formula from lemma 11 gives:

curl h u H -1 (Γ) = sup Φ∈(H 1 (Γ)\{0}) 3 u, curl Γ Φ Γ + Φ, [[u]]n e × n γ h Φ H -1 (Γ) . ( 61 
)
The first term of the right-hand side is estimated as follows:

sup

Φ∈(H 1 (Γ)\{0}) 3 u, curl Γ Φ Γ Φ H -1 (Γ) = sup Φ∈(H 1 (Γ)\{0}) 3 N i=1 u, curl Γi Φ Γi Φ H -1 (Γ) ≤ sup Φ∈(H 1 (Γ)\{0}) 3 N i=1 u L 2 (Γi) curl Γi Φ L 2 (Γi) Φ H -1 (Γ) . ( 62 
)
The item (ii) immediately leads to:

sup

Φ∈(H 1 (Γ)\{0}) 3 u, curl Γ Φ Γ Φ H -1 (Γ) u L 2 (Γ) . ( 63 
)
A broken Cauchy-Schwarz inequality is used to estimate the mesh skeleton term:

Φ, [[u]]n e × n γ h K∈T h Φ L 2 (∂K) u L 2 (∂K) . ( 64 
)
By using lemma 8, we have:

Φ 2 L 2 (∂K) Φ L 2 (K) |Φ| H 1 (K) + 1 h K Φ 2 L 2 (K) 1 h K Φ 2 H 1 (K) . ( 65 
)
and by using again lemma 8 and the hp inverse inequality from lemma 10, we can write:

u 2 L 2 (∂K) u L 2 (K) |u| H 1 (K) + 1 h K u 2 L 2 (K) u L 2 (K) p 2 K h K u L 2 (K) + 1 h K u 2 L 2 (K) p 2 K h K u 2 L 2 (K) . ( 66 
)
By injecting (65) and (66) in (64), we now obtain:

Φ, [[u]]n e × n γ h K∈T h p K h K Φ H 1 (K) u L 2 (K) max K∈T h p K h K Φ H 1 (Γ) u L 2 (Γ) . ( 67 
)
Finally, by combining (63) and (67), we have proved (57).

In the case of relation (58), the only modification in the proof is the estimate of the mesh skeleton term in equation (61). More precisely, we use in this case:

Φ, [[u]]n e × n γ h = h 1/2 γ h Φ, h -1/2 γ h [[u]]n e × n γ h h -1/2 γ h [[u]] L 2 (γ h ) K∈T h h 1/2 K Φ 2 L 2 (∂K) 1 2 . ( 68 
)
We conclude by using estimate (65).

Some continuity and ellipticity results

This section is devoted to the collection of ellipticity and continuity results which are needed to establish the main theorem. We begin by the definitions of two sesquilinear forms associated to the DG scheme. Definition 6. The static sesquilinear form A θ o,h is defined by: ∀u, v ∈ X hp (T h ),

A θ o,h (u, v) = V o curl h u, curl h v Γ + T o u, [[v]] γ h + P σ (u, v) + θ T o v, [[u]] γ h , ( 69 
)
where θ = {-1, 0, 1} and T o corresponds to the operator T for a null wavenumber (i.e. k = 0).

Definition 7.

We define the oscillating sesquilinear form Ãθ h as follows:

∀u, v ∈ X hp (T h ), Ãθ h (u, v) = Ṽcurl h u, curl h v Γ + T u, [[v]] γ h + θ T v, [[u]] γ h -k 2 V(un), (vn) Γ , ( 70 
)
where

Ṽ = V -V o and T = T -T o .
The study of A θ h is eased by splitting it between its static and oscillating part:

∀u, v ∈ X hp (T h ), A θ h (u, v) = A θ o,h (u, v) + Ãθ h (u, v). ( 71 
)
Proposition 3 (Discrete ellipticity of A θ o,h ). Let h i Γ , p i Γ i∈N be a set of discretization functions associated to a family of meshes T i h i∈N . We assume that for all i ∈ N,

h i γ h n h -1 p i γ h np-1 ≤ h 0 γ h n h -1 p 0 γ h np-1 , (72) 
where (h i γ h , p i γ h ) are the associated discretization functions defined on the mesh skeleton.

There exists σ min 0 > 0 such that ∀σ 0 ≥ σ min 0 , the following ellipticity property holds: ∀i ∈ N,

∀u ∈ X h i p i (T i h ), |A θ o,h (u, u)| σ 1 2 h [[u]] 2 L 2 (γ h ) + curl h u 2 H -1 2 (Γ) . ( 73 
)
In particular, the condition (72) is satisfied if n h = n p = 1 or if n h , n p ≥ 1 with approximation spaces verifying the condition: ∀i ∈ N * ,

X h i-1 p i-1 (T i-1 h ) ⊂ X h i p i (T i h ). ( 74 
)
In particular for θ = -1 (anti-symmetric formulation) the form has an unconditional ellipticity.

Proof. In this proof, X hp (T h ) denotes a generic approximation space which corresponds to one of the spaces X h i p i (T i h ). The result is trivial for θ = -1 using the ellipticity of the single layer potential V o . We prove the property for θ = 0 (the case θ = 1 is obtained the same way). Let u ∈ X hp (T h ). There is:

A 0 o,h (u, u) V o curl h u, curl h u Γ + σ h [[u]], [[u]] γ h -T o u, [[u]] γ h . ( 75 
)
We now introduce an arbitrary function α h : γ h -→ R + \ {0} in order to estimate the last term of (75).

A 0 o,h (u, u) V o curl h u, curl h u Γ + σ h [[u]], [[u]] γ h -α h T o u, 1 α h [[u]] γ h V o curl h u, curl h u Γ + σ h [[u]], [[u]] γ h -α h T o u L 2 (γ h ) 1 α h [[u]] L 2 (γ h ) . ( 76 
)
Let β be a strictly positive parameter. Using the classical Young's Inequality a • b ≤ a 2 2β + βb 2 2 , with a, b > 0 leads to:

A 0 o,h (u, u) V o curl h u, curl h u Γ + σ h [[u]], [[u]] γ h - 1 2β α h T o u 2 L 2 (γ h ) - β 2 1 α h [[u]] 2 L 2 (γ h ) . ( 77 
)
For sake of clarity, we introduce the following decomposition:

A 0 o,h (u, u) A o,1 (u) + A o,2 (u), ( 78 
) with A o,1 (u) = V o curl h u, curl h u Γ - 1 2β α h T o u 2 L 2 (γ h )
and

A o,2 (u) = σ h [[u]], [[u]] γ h - β 2 1 α h [[u]] 2 L 2 (γ h )
.

We will then use the parameters β, α h to balance the apparent lack of positiveness of the expression. We now estimate A o,1 (u) and A o,2 (u) separately.

Estimate of A o,1 (u):

We first focus on the term α h T o u 2 L 2 (γ h ) , which is the more complicated. As u ∈ X hp (T h ), then curl h u belongs to L 2 (Γ) and by lemma 7, we have V o curl h u ∈ H 1 (Γ). We can then locally use the multiplicative trace inequality (see lemma 8):

α h T o u 2 L 2 (γ h ) K∈T h α h 2 L ∞ (∂K) V o curl h u 2 L 2 (∂K) K∈T h α h 2 L ∞ (∂K) V o curl h u L 2 (K) |V o curl h u| H 1 (K) + 1 h K V o curl h u 2 L 2 (K) . ( 79 
)
The function α h is now particularized as follow:

α h = h 1/2 γ h (80)
in order to control the h -1 K explosive factor. Lemma 1 gives:

α h T o u 2 L 2 (γ h ) K∈T h h K V o curl h u L 2 (K) |V o curl h u| H 1 (K) + V o curl h u 2 L 2 (Γ) . ( 81 
)
The left-hand side term of equation ( 81) is separated by using the Hölder inequality:

α h T o u 2 L 2 (γ h ) (V o curl h u) L 2 (Γ) K∈T h h K ∇ Γ V o curl h u 2 L 2 (K) 1 2 + (V o curl h u) 2 L 2 (Γ) . ( 82 
)
Now the continuity of V o and ∇ Γ lead to:

K∈T h h K ∇ Γ V o curl h u 2 L 2 (K) 1 2 h curl h u L 2 (Γ) . ( 83 
)
We then use the inverse inequality from lemma 10 to obtain a negative norm:

h curl h u L 2 (Γ) p curl h u H -1 2 (Γ) . ( 84 
)
Finally, by using the relation

V o curl h u 2 L 2 (Γ) curl h u 2 H -1 (Γ) curl h u 2 H -1 2 (Γ)
, we estimate the term T o in the following way:

αT o u 2 L 2 (γ h ) p V o curl h u L 2 (Γ) curl h u H -1 2 (Γ) + V o curl h u 2 L 2 (Γ) p curl h u 2 H -1 2 (Γ) . ( 85 
)
We conclude the analysis of A o,1 by using the ellipticity of V o (see lemma 7) and we can write the stability estimate:

A o,1 (u) C ell - p β curl h u 2 H -1 2 (Γ) , ( 86 
)
where C ell > 0 denotes the ellipticity constant of the operator V o .

One has to set a sufficiently large parameter β in order to get a positive constant. We take the following expression: β p (more precisely, we take β = δp with δ > 1/C ell ) in order to eliminate the polynomial order dependency.

Estimate of A o,2 (u):

This term can be rewritten as follows:

A o,2 (u) = σ h - β 2α 2 h [[u]], [[u]] L 2 (γ h ) . ( 87 
)
We need to estimate the expression by the jump part of the discontinuous Galerkin norm, in order to get an ellipticity property. We would get the announced property if there exists C ∈ R + such that:

σ h - β 2α 2 h = σ h - β 2h γ h ≥ Cσ h =⇒ 1 - δp 2σ h h γ h ≥ C, (88) 
since we would be able to write:

A o,2 (u) σ 1 2 h [[u]] 2 L 2 (γ h ) . ( 89 
)
If the penalty function's shape is then injected into the constraint (88), we obtain:

1 - δp h n h -1 γ h 2σ 0 p np γ h ≥ C. ( 90 
)
Now, by using the hypothesis 1, there exists a constant γ > 0 independent of the discretization parameters such p ≤ γp γ h (x), ∀x ∈ γ h and the condition (90) becomes:

1 - δγ h n h -1 γ h 2σ 0 p np-1 γ h ≥ C. ( 91 
)
Finally, the hypothesis (72) leads to:

∀i ∈ N * , 1 - δγ h i γ h n h -1 2σ 0 p i γ h np-1 ≥ 1 - δγ h 0 γ h n h -1 2σ 0 p 0 γ h np-1 ≥ C, ( 92 
)
and we obtain the result by taking σ 0 sufficiently large.

Proposition 4 (Discrete continuity). The sesquilinear form

A θ h is continuous i.e. ∀(u, v) ∈ X hp (T h ) 2 , A θ h (u, v) u dg v dg . ( 93 
)
Proof. We estimate each term of ( 23) separately. First:

| Vcurl h u, curl h v Γ | curl h u H -1 2 (Γ) Vcurl h v H 1 2 (Γ) . ( 94 
)
The use of lemma 12 then gives:

| Vcurl h u, curl h v Γ | curl h u H -1 2 (Γ) curl h v H -1 2 (Γ) . ( 95 
)
The others terms are estimated in a similar manner as in the proof of proposition 3

Proposition 5 (Perturbed form continuity). For any β ∈ R + there is:

∀(u, v) ∈ X hp (T h ) 2 , Ãθ h (u, v) u L 2 (Γ) v L 2 (Γ) + β 2 σ 1 2 h [[v]] 2 L 2 (γ h ) + 1 2β u 2 L 2 (γ h ) . ( 96 
)
Proof. The proof uses the same estimate techniques as before, with the use of the extraregularity of the operator Ṽ given in lemma 7, the curl continuity lemma 12 part (iii) and a Young inequality to exhibit β-terms.

Contrary to the static problem, the sesquilinear form defining the DG problem 2 is not elliptic. However, we can obtain the following weaker property.

Proposition 6 (Gårding inequality).

Let h i Γ , p i Γ i∈N be a set of discretization functions associated to a family of meshes T i h i∈N . We assume that for all i ∈ N,

h i γ h n h -1 p i γ h np-1 ≤ h 0 γ h n h -1 p 0 γ h np-1 , (97) 
where (h i γ h , p i γ h ) are the associated discretization functions defined on the mesh skeleton.

There exists σ min 0 > 0 such that ∀σ 0 ≥ σ min 0 , the following Gårding property holds: ∀i ∈ N,

∀u ∈ X h i p i (T i h ), |A θ h (u, u)| u 2 dg -u 2 L 2 (Γ) . ( 98 
)
In particular, inequality (98) holds if n h , n p ≥ 1 with approximation spaces verifying the condition: ∀i ∈ N * ,

X h 0 p 0 (T 0 h ) ⊂ X h i p i (T i h ). ( 99 
)
Proof. We first have:

A θ h (u, u) = A θ o,h (u, u) + Ãθ h (u, u) ≥ A θ o,h (u, u) -Ãθ h (u, u) . ( 100 
)
Proposition 3 implies the existence of σ min 0 > 0 such that ∀σ 0 ≥ σ min 0 and ∀i ∈ N,

∀u ∈ X h i p i (T i h ), A θ o,h (u, u) curl h u 2 H -1 2 (Γ) + σ 1 2 h [[u]] 2 L 2 (γ h ) . ( 101 
)
Moreover, by using the continuity of Ãθ h given in proposition 5, we can write:

∀σ 0 ≥ σ min 0 and ∀i ∈ N, ∀u ∈ X h i p i (T i h ), A θ h (u, u) curl h u 2 H -1 2 (Γ) + σ 1 2 h [[u]] 2 L 2 (γ h ) -(1 + 1 2β ) u 2 L 2 (Γ) + β 2 σ 1 2 h [[u]] 2 L 2 (γ h ) . ( 102 
)
This estimate can be rewritten as follows:

A θ h (u, u) u 2 L 2 (Γ) + curl h u 2 H -1 2 (Γ) + 1 - β 2 σ 1 2 h [[u]] 2 L 2 (γ h ) -(2 + 1 2β ) u 2 L 2 (Γ) . ( 103 
)
Finally, choosing β sufficiently small ends the proof.

Lifting operator and residual function

One of the main difficulty in the error analysis of the DG method is that expressions of the form A h (u -u h , v) (with u ∈ H 1 2 (Γ)) are not well-defined as the trace of u on the skeleton mesh γ h does not exist. To overcome this difficulty, we build (in the same philosophy as [START_REF] Melenk | General DG-Methods for Highly Indefinite Helmholtz Problems[END_REF][START_REF] Houston | Interior penalty method for the indefinite time-harmonic Maxwell equations[END_REF][START_REF] Hou | A Discontinuous Galerkin Augmented Electric Field Integral Equation for Low-Frequency Electromagnetic Scattering Analysis[END_REF]) a sesquilinear form A l,θ h that extends A θ h to the space V (h) = H 1 2 (Γ) + X hp (T h ). More fundamentally, the extension gathers in the same sesquilinear form, the continuous and the discrete problem, providing us a powerful demonstration tool. Let us first define the jump on γ h for functions of V (h).

Definition 8 (Generalized jump). Let

u = u 1 + u 2 ∈ V (h) with u 1 ∈ H 1 2 (Γ) and u 2 ∈ X hp (T h ). The jump function [[•]] : V (h) → C is defined as follows: (i) if u 2 = 0 then [[u]] = 0, (ii) if u 2 = 0 then [[u]] = [[u 2 ]].

The lifting operator can now be defined. It can be interpreted as a generalization of the term T u, [[v]] γ h of A θ

h . Definition 9 (Lifting operator). We define L : V (h) → X hp (T h ) by the following relation:

∀w ∈ X hp (T h ), L(v), Vw Γ = γ h [[v]]t.Vcurl h wdγ, ( 104 
)
for any v ∈ V (h).

Proposition 7. Let X h i p i (T i h ) i∈N be a nested sequel of approximation spaces i.e. for i < j, X h i p i (T i h ) ⊂ X h j p j (T j h ), such that:

i∈N X h i p i (T i h ) = H -1 2 (Γ).
Then there exists i 0 ∈ N such that ∀i ≥ i 0 , the lifting operator L : V (h) → X h i p i (T i h ) exists and verifies the continuity estimate: ∀i ≥ i 0 , ∀s ∈ (1/2, 1] and ∀u, v ∈ V (h),

| L(u) , Vv | 1 (s -1/2) 3/2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ (Γ) p np 2 γ h h n h 2 γ h [[u]] L 2 (γ h ) v 2 L 2 (Γ) + curl Γ v 2 H -1/2 (Γ) 1/2 . ( 105 
)
Proof. Problem (104) simply corresponds to a finite element approximation of the single-layer potential V. It is a Fredholm type problem (see the proof of theorem 3.4.1 of [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF]) which is known to satisfy an uniform discrete inf-sup condition when the approximation is sufficiently fine (see theorem 2 of [START_REF] Demkowicz | Asymptotic convergence in finite and boundary element methods: Part 1: Theoretical results[END_REF] for example). There exists i 0 ∈ N and a ∈ R + such that ∀i ≥ i 0 , inf

v h ∈X h i p i (T i h )\{0} sup w h ∈X h i p i (T i h )\{0} v h , Vw h Γ v h H -1 2 (Γ) w h H -1 2 (Γ) ≥ a > 0. ( 106 
)
In particular, we have the existence of L

(v) ∈ X h i p i (T i h ). Let u, v ∈ V (h) such that u = u 1 + u 2 and v = v 1 + v 2 with u 1 , v 1 ∈ H 1/2 (Γ) and u 2 , v 2 ∈ X h i p i (T i h ). It comes immediately: | L(u) , Vv | ≤ | L(u 2 ) , Vv 1 | + | L(u 2 ) , Vv 2 | ≤ | L(u 2 ) , V(v 1 -Π 2 v 1 | + γ h [[u 2 ]] t • Vcurl h Π 2 v 1 dγ + γ h [[u 2 ]] t • Vcurl h v 2 dγ ≤ T 1 + T 2 + T 3 , ( 107 
)
where Π 2 v 1 ∈ X h i p i (T i h ) is the L 2 projection of v 1 defined in lemma 3. Before estimating the three term T 1 , T 2 , T 3 , we establish a first estimate.

Preliminary result:

Let v, w ∈ X h i p i (T i h ). We have:

γ h [[v]]t.Vcurl h wdγ p β γ h h α γ h [[v]] L 2 (γ h ) K∈T h h 2α K p 2β K Vcurl h w 2 L 2 (∂K) 1 2 . ( 108 
)
Where α = n h 2 and β = n p 2 .

Let K ∈ T h and u ∈ [H 1 (K)] 3 . We have:

u 2 L 2 (∂K) = ∂K |u| 2 dγ h K u • F K 2 L 2 (∂ K) , ( 109 
)
where F K is the affine transformation which maps the unit reference triangle K onto K. We now use the point (ii) of lemma 4.2 given in [START_REF] Heuer | Discontinuous Galerkin hp-bem with quasi-uniform meshes[END_REF]:

∀s ∈ (1/2, 1] and ∀u ∈ [H s (K)] 3 , u • F K L 2 (∂ K) 1 s -1/2 u • F K H s ( K) . ( 110 
)
We proceed as in [START_REF] Ervin | An adaptive boundary element method for the exterior Stokes problem in three dimensions[END_REF] and we introduce the following functional space in order to have a better control on the h K scaling factor: ∀K ∈ T h ,

H s h (K) := [L 2 (K), H 1 h (K)] s , s ∈ (0, 1), ( 111 
)
where H 1 h (K) is defined by using the h-weighted norm:

• 2 H 1 h (K) := h -2 K • 2 L 2 (K) + | • | 2 H 1 (K) . ( 112 
)
In particular, we have:

• 2 H s h (K) = h -2s K • 2 L 2 (K) + | • | 2 H 1 (K) . ( 113 
)
We also naturally define the dual space:

Hs h (K) := (H -s h (K)) , s ∈ [-1, 0). ( 114 
)
Moreover, lemma 3.1 of [START_REF] Ervin | An adaptive boundary element method for the exterior Stokes problem in three dimensions[END_REF] gives us:

∀K ∈ T h , v 2 H s h (K) h 2-2s K v • F K 2 H s ( K) , s ∈ (-1, 1). ( 115 
)
By combining ( 110) and ( 115), we can write: ∀s ∈ (1/2, 1] and ∀u ∈ [H s (K)] 3 ,

h 1-s K u • F K L 2 (∂ K) 1 s -1/2 u H s h (K) . ( 116 
)
And (109) becomes: ∀s ∈ (1/2, 1]

h 1-2s K u 2 L 2 (∂K) 1 s -1/2 u 2 H s h (K) . ( 117 
)
Let us get back to our problem. By using the previous results and the mapping property of the single layer operator, we can write: ∀s ∈ (1/2, 1],

K∈T h h 2α K p 2β K Vcurl h w 2 L 2 (∂K) 1 s -1/2 K∈T h h 2α-1+2s K p 2β K Vcurl h w 2 H s h (K) 1 s -1/2 K∈T h h 2α-1 K p 2β K Vcurl h w 2 L 2 (K) + h 2α-1+2s K p 2β K |Vcurl h w| 2 H s (K) 1 s -1/2   h 2α-1 Γ p 2β Γ L ∞ (Γ) Vcurl h w 2 L 2 (Γ) + h 2α-1+2s K p 2β K L ∞ (Γ) |Vcurl h w| 2 H s (Γ)   1 s -1/2   h 2α-1 Γ p 2β Γ L ∞ (Γ) curl h w 2 H -1 (Γ) + h 2α-1+2s K p 2β K L ∞ (Γ) curl h w 2 H s-1 (Γ)   . ( 118 
)
And by applying the square root operator: ∀s ∈ (1/2, 1],

K∈T h h 2α K p 2β K Vcurl h w 2 L 2 (∂K) 1/2 1 (s -1/2) 1/2   h α-1/2 Γ p β Γ L ∞ (Γ) curl h w H -1 (Γ) + h α-1/2+s K p β K L ∞ (Γ) curl h w H s-1 (Γ)   . ( 119 
)
By using the following property:

∀s ∈ [-1, 0], ∀u ∈ L 2 (Γ), u H s (Γ) ≤ K∈T h u Hs (K) =: u Hs (T h ) , ( 120 
)
we can rewrite (119): ∀s ∈ (1/2, 1],

K∈T h h 2α K p 2β K Vcurl h w 2 L 2 (∂K) 1/2 1 (s -1/2) 1/2   h α-1/2 Γ p β Γ L ∞ (Γ) curl h w H-1 (T h ) + h α-1/2+s Γ p β Γ L ∞ (Γ) curl h w Hs-1 (T h )   . ( 121 
)
We use lemma 6 from [START_REF] Heuer | Discontinuous Petrov-Galerkin boundary elements[END_REF] in order to get the following estimate: ∀s ∈ (1/2, 1],

curl h w Hs-1 (T h ) 1 s -1/2 |w| H s (T h ) . ( 122 
)
Lemma 12 (iii) then gives ∀w ∈ X h i p i (T i h ):

curl h w H-1 (T i h ) p Γ h Γ w L 2 (Γ) . ( 123 
)
Moreover, the inverse inequalities given in lemma 10 imply: ∀w ∈

X h i p i (T i h ), |w| H s (T i h ) p 2s+1 Γ h s+1/2 Γ w H -1/2 (Γ) (124a) 
and

curl h w H -1 (Γ) p 2 Γ h 3 2 Γ w H -1 2 (Γ) . ( 124b 
)
Finally, estimates (124a) and (124b) lead to: ∀s ∈ (1/2, 1],

K∈T h h 2α K p 2β K Vcurl h w 2 L 2 (∂K) 1/2 1 (s -1/2) 3/2 h α-2 Γ p β-2s-1 Γ L ∞ (Γ) w H -1/2 (Γ) . ( 125 
)
Now, (106) and (125) yield: ∀i ≥ i 0 , ∀s ∈ (1/2, 1] and ∀v ∈ V (h),

L(v) H -1 2 (Γ) ≤ 1 a sup w h ∈X h i p i (T i h )\{0} L(v), Vw h Γ w h H -1 2 (Γ) ≤ 1 a 1 (s -1/2) 3/2 h α-2 Γ p β-2s-1 Γ L ∞ (Γ) p β γ h h α γ h [[v]] L 2 (γ h ) . (126) 
Now, we can estimate T 1 , T 2 and T 3 .

Estimation of T 3 :

By using (119) and a classical inverse estimate, we obtain: ∀s ∈ (1/2, 1],

T 3 1 (s -1/2) 1/2 h α-1/2 Γ p β-2s+1 Γ L ∞ (Γ) p β γ h h α γ h [[u 2 ]] L 2 (γ h ) curl h v 2 H -1/2 (Γ) . ( 127 
)

Estimation of T 2 :

Using the same approach as for estimating T 3 , we have:∀s ∈ (1/2, 1],

T 2 1 (s -1/2) 1/2 h α-1/2 Γ p β-2s+1 Γ L ∞ (Γ) p β γ h h α γ h [[u 2 ]] L 2 (γ h ) curl h Π 2 v 1 H -1/2 (Γ) . (128) 
Equation ( 120) combined with estimate (122), an inverse-type inequality, the stability of the L 2 projection from lemma 3 and the fact that

v 1 ∈ H 1 2 (Γ) give ∀s ∈ (1/2, 1], curl h Π 2 v 1 H -1/2 (Γ) curl h Π 2 v 1 H-1/2 (T h ) curl h Π 2 v 1 Hs-1 (T h ) 1 s -1/2 |Π 2 v 1 | H s (T h ) 1 s -1/2 p s-1/2 Γ h s-1/2 2 Γ L ∞ (Γ) |Π 2 v 1 | H 1/2 (T h ) 1 s -1/2 p s-1/2 Γ h s-1/2 2 Γ L ∞ (Γ) |v 1 | H 1/2 (Γ) 1 s -1/2 p s-1/2 Γ h s-1/2 2 Γ L ∞ (Γ) v 1 2 L 2 (Γ) + curl Γ v 1 2 H -1/2 (Γ) 1/2 , ( 129 
) where the last estimate is obtained by using the point (iv) of lemma 12. Finally, we obtain: ∀s ∈ (1/2, 1],

T 2 1 (s -1/2) 3/2 h α-s/2+1/4 Γ p β-3s+3/2 Γ L ∞ (Γ) p β γ h h α γ h [[u 2 ]] L 2 (γ h ) v 1 2 L 2 (Γ) + curl Γ v 1 2 H -1/2 (Γ) 1/2 . ( 130 
)
Estimation of T 1 :

By using the continuity of V, lemma 6 and point (iiii) of lemme 12, we can write:

T 1 L(u 2 ) H -1 2 (Γ) v 1 -Π 2 v 1 H -1 2 (Γ) h Γ p Γ L ∞ (Γ) L(u 2 ) H -1 2 (Γ) v 1 H 1/2 (Γ) h Γ p Γ L ∞ (Γ) L(u 2 ) H -1 2 (Γ) v 1 2 L 2 (Γ) + curl Γ v 1 2 H -1/2 (Γ) 1/2 . ( 131 
)
Estimate (126) then gives: ∀s ∈ (1/2, 1],

T 1 1 (s -1/2) 3/2 h α-1 Γ p β-2s+1/2 Γ L ∞ (Γ) p β γ h h α γ h [[u 2 ]] L 2 (γ h ) v 1 2 L 2 (Γ) + curl Γ v 1 2 H -1/2 (Γ) 1/2 .
(132) Combining ( 127), ( 130), (132), s/2 -1/4 < 1 and 2s -1/2 ≥ 3s -3/2 leads to the result. Proposition 8. The following property holds:

H 1 2 (Γ) ⊂ Ker(L). ( 133 
)
Proof. This result comes from the definition of the generalized jump (see def. 8).

We can now introduce the lifted sesquilinear form.

Definition 10 (Lifted sesquilinear form). We define the following sesquilinear form A l,θ h :

∀(u, v) ∈ V (h) × V (h), A l,θ h (u, v) = Vcurl h u, curl h v Γ -k 2 V(un), vn Γ + σ 1 2 h [[u]], σ 1 2 h [[v]] γ h + L(v), Vu Γ + θ L(u), Vv Γ . (134)
This generalization is an essential tool for the error analysis. The definition of L and A l,θ h have got the following interesting properties.

Proposition 9 (Consistency with the continuous and DG formulations and symmetry).

We have the following consistency property:

∀(u, v) ∈ X hp (T h ) × X hp (T h ), A l,θ h (u, v) = A θ h (u, v) (135) 
and:

∀(u, v) ∈ H 1 2 (Γ) × H 1 2 (Γ), A l,θ h (u, v) = A(u, v). ( 136 
)
For ε > 0, there is:

∀(u, v) ∈ H 1 2 +ε (Γ) × X hp (T h ), A θ h (u, v) = A l,θ h (u, v) -L(v), Vu Γ + Vcurl h u, [[v]] γ h . ( 137 
)
The ε regularity is required in order to have A θ h (u, v) well defined. There is the following symmetry property:

∀u, v ∈ H 1 2 (Γ) + X hp (T h ), A l,θ h (u, v) = A l,θ h (v, u) + (1 -θ) L(v), Vu Γ + (θ -1) L(u), Vv Γ . ( 138 
)
In particular, it shows that the sesquilinear form is hermitian when θ = 1.

Proof. Direct consequence of the definition of the lifting operator.

Proposition 10 (Continuity of

A l,θ h ). Let X h i p i (T i h ) i∈N be a nested sequel of approxima- tion spaces i.e. for i < j, X h i p i (T i h ) ⊂ X h j p j (T j h ) such that: i∈N X h i p i (T i h ) = H -1 2 (Γ).
Then there exists i 0 ∈ N such that ∀i ≥ i 0 , the lifted sesquilinear form satisfies the following continuity estimate: ∀s ∈ (1/2, 1] and ∀u

, v ∈ V (h) = H 1/2 (Γ) + X h i p i (T i h ), A l,θ h (u, v) C l (s, h, p) u dg v dg , (139) 
with

C l (s, h, p) = max      1 , 1 (s -1/2) 3/2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ (Γ)      .
In particular, this constant can be taken independent of the discretization parameters if n h ≥ 2 and n p ≥ 4s -1.

Proof. Using proposition 7 and lemmas 12 and 7 gives:

A l,θ h (u, v) curl h u H -1 2 (Γ) curl h v H -1 2 (Γ) + u L 2 (Γ) v L 2 (Γ) + σ 1 2 h [[u]] L 2 (γ h ) σ 1 2 h [[v]] L 2 (γ h ) + 1 + |θ| (s -1/2) 3/2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ (Γ) u dg v dg ( 140 
)
and we obtain immediately the result.

The lifted sesquilinear form also enables us to define a discontinuous version of the standard residual function. This definition will naturally appear in the a priori error estimate.

Definition 11 (DG residual function).

Let u ∈ H 12 (Γ) be the exact solution of problem 1. The DG residual function is defined as follows:

∀v ∈ V (h), r h (v) := A l,θ h (u, v) -f, v Γ , (141) 
with f ∈ L 2 (Γ) being the right-hand side of the initial problem 1.

Lemma 13 (Residual's basic properties).

The residual has the following basic properties: (i) Let u h ∈ X hp (T h ) be the DG solution. There is

∀v ∈ X hp (T h ), r h (v) = A l,θ h (u -u h , v). (142) 
(ii) Orthogonality of the residual:

∀v ∈ H 1 2 (Γ), r h (v) = 0. ( 143 
)
Proof. (i) is obtained using the first part of proposition 9:

For v ∈ X hp (T h ): r h (v) = A l,θ h (u, v) -A θ h (u h , v) = A l,θ h (u, v) -A l,θ h (u h , v) = A l,θ h (u -u h , v
). (ii) comes using the second part of proposition 9: for v ∈ H Proposition 11. Let u being the solution of problem 1 such that u ∈ H r (Γ) with r ≥ 1. Let X h i p i (T i h ) i∈N be a nested sequel of approximation spaces i.e. for i < j, X

h i p i (T i h ) ⊂ X h j p j (T j h ) such that: i∈N X h i p i (T i h ) = H -1 2 (Γ).
Then there exists

i 0 ∈ N such that ∀i ≥ i 0 , ∀s ∈ (1/2, 1], ∀w ∈ X h i p i (T i h ), |r h (w)| 1 (s -1/2) 5/2 h n h -2-2s 2 +µ Γ Γ p np -6s+1 2 +r Γ L ∞ (Γ) p np 2 γ h h n h 2 γ h [[w]] L 2 (γ h ) u H r (Γ) , (144) 
with µ Γ = min(1 + p Γ , r).

Proof. We get from the definition of A l,θ h :

r h (w) = Vcurl Γ u, curl h w Γ -k 2 V(un), (wn) Γ + L(w), Vu Γ -f, w Γ . ( 145 
)
We introduce the conforming projection Π c w ∈ X hp (T h ) ∩ C 0 (Γ) of w from lemma 4. It will serve to introduce the continuous bilinear form A. Indeed we have:

Vcurl Γ u, curl h w + curl Γ Π c w -curl Γ Π c w Γ -k 2 V(un), n(w + Π c w -Π c w) Γ = A(u, Π c w) + Vcurl Γ u, curl h w -curl h Π c w Γ -k 2 V(un)n, n(w -Π c w) Γ = f, Π c w Γ + Vcurl Γ u, curl h w -curl h Π c w Γ -k 2 V(un), n(w -Π c w) Γ , (146) 
by definition of the continuous problem. We need to use the integration by parts formula from lemma 11, identifying the duality product with an L 2 (Γ)-inner product in order to modify the middle term in the right-hand side of (146). It gives:

Vcurl Γ u, curl h w -curl h Π c w Γ = curl Γ (Vcurl Γ u) , w -Π c w Γ + Vcurl Γ u, [[w]]n e × n Γ γ h . ( 147 
)
In order to estimate each term, we have to introduce the L 2 projection from lemma 3, denoted by Π 2 . Definition 9 of the lifting operator leads to:

L(w), Vu Γ = L(w), V(u + Π 2 u -Π 2 u) Γ = L(w), VΠ 2 u Γ + L(w), V(u -Π 2 u) Γ = t.Vcurl h Π 2 u , [[w]] γ h + L(w), V(u -Π 2 u) Γ . ( 148 
)
The advantage of having introduced the projections above will be exhibited afterward. We will use the error estimate of the projections to bound the residual function.

The residual can therefore be decomposed the following way:

r h (w) = curl Γ (Vcurl Γ u) -k 2 n • V(nu) -f , w -Π c w Γ + L(w), V(u -Π 2 u) Γ + Vcurl Γ u, [[w]]n e × n Γ γ h + t.Vcurl h Π 2 u , [[w]] γ h = r h,1 (w) + r h,2 (w) + r h,3 (w). (149) 
We have obviously r h,1 (w) = 0 and each other term of the decomposition can now be estimated separately.

Estimation of r h,2 (w):

Proposition 7 gives us: there exists i 0 ∈ N such that ∀i ≥ i 0 and ∀s ∈ (1/2, 1],

|r h,2 (w)| 1 (s -1/2) 3/2 h n h -2 2 Γ p np-4s+1 2 Γ L ∞ (Γ) × p np 2 γ h h n h 2 γ h [[w]] L 2 (γ h ) u -Π 2 u 2 L 2 (Γ) + curl h (u -Π 2 u) 2 H -1/2 (Γ) 1/2 . ( 150 
)
By using (120), (122) and lemma 3, we have: ∀s ∈ (1/2, 1],

curl h (u -Π 2 u) H -1/2 (Γ) 1 s -1/2 u -Π 2 u H s (T h ) 1 s -1/2 h µ Γ -s Γ p r-s Γ L ∞ (Γ) u H r (Γ) , (151) 
where µ Γ|K = min(p Γ|K + 1, r). Finally, ∀s ∈ (1/2, 1],

|r h,2 (w)| 1 (s -1/2) 5/2 h n h -2-2s 2 +µ Γ Γ p np -6s+1 2 +r Γ L ∞ (Γ) p np 2 γ h h n h 2 γ h [[w]] L 2 (γ h ) u H r (Γ) . ( 152 
)
Estimation of r h,3 (w):

First, we rewrite r h,3 (w) as follows:

r h,3 (w) = -Vcurl h Π 2 u, [[w]]t γ h + t.Vcurl Γ u , [[w]] γ h = t.Vcurl Γ u , [[w]] γ h -t.Vcurl h Π 2 u, [[w]] γ h = t.(Vcurl h (u -Π 2 u)) , [[w]] γ h . ( 153 
)
First of all, we note that estimate (121) which has been proved for functions in X h i p i (T i h ), holds in the space H 1 (T h ). Indeed, it is constructed from (118) and (120) which mainly use the fact that curl h w ∈ L 2 (Γ) 3 (and consequently, Vcurl h w ∈ H 1 (Γ) 3 ). This property is always true in H 1 (T h ). Now, by using this extension, estimate (122), and lemma 3, we have: ∀s ∈ (1/2, 1],

|r h,3 (w)| 1 (s -1/2) 3/2 h n h -1 2 Γ p np 2 Γ L ∞ (Γ) p np 2 γ h h n h 2 γ h [[w]] L 2 (γ h ) u -Π 2 u H s (T h ) 1 (s -1/2) 3/2 h n h -1-2s 2 +µ Γ Γ p np -2s 2 +r Γ L ∞ (Γ) p np 2 γ h h n h 2 γ h [[w]] L 2 (γ h ) u H r (Γ) . ( 154 
)
Finally, by combining all the estimates above, we obtain the result.

Proof of the main theorem

We now have all the tools to end the proof of the main theorem. We suppose u ∈ H r (Γ) (with r ≥ 1) the solution of the exact problem and u h the solution of the discrete problem. Moreover, let X h i p i (T i h ) i∈N be a nested sequel of approximation spaces i.e. for i < j, X h i p i (T i h ) ⊂ X h j p j (T j h ) such that:

i∈N X h i p i (T i h ) = H -1 2 (Γ).

Proof of the error estimate in DG norm

Step 1: Decomposition of the error. Following [START_REF] Houston | Interior penalty method for the indefinite time-harmonic Maxwell equations[END_REF], we first split the error into two contributions by introducing an element v ∈ X hp (T h ) ∩ C 0 (Γ), such that:

u -u h dg ≤ u -v dg + v -u h dg , ( 155 
)
where X hp (T h ) denotes here a space X h i p i (T h ) with i ∈ N. The error can be separated into the non-conformity default and the error between u and its best conforming approximation. The term u -v dg will be treated easily using a Clément type interpolation. Let us focus on the other one. We use the Gårding inequality given in proposition 6: there exists σ min

0 > 0 such that ∀σ 0 ≥ σ min 0 such that ∀i ∈ N, u h ∈ X h i p i (T i h ) and v ∈ X h i p i (T i h ) ∩ C 0 (Γ): v -u h 2 dg A θ h (v -u h , v -u h ) + v -u h , v -u h Γ . ( 156 
)
We then use proposition 9 to replace the discrete sesquilinear form by the lifted one:

v -u h 2 dg |A l,θ h (v -u h , v -u h )| + v -u h , v -u h Γ , (157) 
in order to introduce the exact solution:

v -u h 2 dg |A l,θ h (v -u h + u -u, v -u h )| + v -u h , v -u h Γ . ( 158 
)
We then separate the contributions:

v -u h 2 dg |A l,θ h (v -u, v -u h )| + |A l,θ h (u -u h , v -u h )| + v -u h , v -u h Γ . ( 159 
)
The residual function appears naturally:

v -u h 2 dg |A l,θ h (v -u, v -u h )| + |r h (v -u h )| + v -u h + u -u, v -u h Γ |A l,θ h (v -u, v -u h )| + |r h (v -u h )| + v -u, v -u h Γ + u -u h , v -u h Γ . ( 160 
)
Dividing by v -u h dg (obviously if v = u h ) leads to:

v -u h dg A l,θ h (v -u, v -u h ) v -u h dg + R h + v -u, v -u h Γ v -u h dg + u -u h , v -u h Γ v -u h dg , (161) 
with

R h := sup w∈X hp (T h )\{0} |r h (w)| w dg . ( 162 
)
The estimate of R h is straightforward using proposition 11. More precisely, there exists i 0 ∈ N such that ∀i ≥ i 0 , ∀s ∈ (1/2, 1],

R h 1 (s -1/2) 5/2 max K∈T h    h n h -2-2s 2 +µ K K p np -6s+1 2 +r K    u H r (Γ) , ( 163 
)
with µ K = min(1 + p K , r).

The third term of equation ( 161) is estimated using a Cauchy-Schwarz inequality:

v -u, v -u h Γ v -u h dg ≤ v -u L 2 (Γ) v -u h L 2 (Γ) v -u h dg ≤ v -u L 2 (Γ) (164) 
and then will be absorbed by v -u L 2 (Γ) in (155). Now, by defining the following notation:

E h (u -u h ) = sup w∈X hp (T h )\{0} | u -u h , w Γ | w dg ( 165 
)
we can write

v -u h dg |A l,θ h (v -u, v -u h )| v -u h dg + R h + v -u L 2 (Γ) + E h (u -u h ). ( 166 
)
The only tricky term is E h . We estimate it thanks to a duality approach.

Step 2: Estimate of E h and duality approach.

Proposition 12 (estimate of E h ). Let u be the solution of problem 1 and u h the solution of problem 2 with a penalty function from definition 5. Let X h i ,p i (T i h ) be a nested sequel of approximation spaces i.e. for i < j, X h i p i (T i h ) ⊂ X h j p j (T j h ), and such that i∈N

X h i p i (T i h ) = H -1 2 (Γ). ( 167 
)
Then there exists i 0 ∈ N such that for any i > i 0 and ∀s ∈ (1/2, 1], the following estimate holds: sup

w∈X h i p i (T i h )\{0} | u -u h , w Γ | w dg C l (h, p, s) h Γ p Γ 1 2 L ∞ (Γ) u -u h dg (168) with C l (h, p, s) = max      1 , 1 (s -1/2) 3/2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ (Γ)      . ( 169 
)
Proof. We will use here a duality approach to write E h in terms of the operators of the problem. Their properties will then be used to estimate the term. Let w ∈ X hp (T h ).

Problem 3 (dual problem).

We define the intermediate unknown z ∈ H 1 2 (Γ) being the solution of:

Wz = w. (170) Having w ∈ X hp (T h ) ⊂ L 2 (Γ) leads to z ∈ H 1 (Γ).
Next, we denote e h = u -u h the error (the quantity to estimate). Testing the dual problem 3 with the error e h as the test function gives:

Wz, e h Γ = w, e h Γ .

(171)

The right-hand side of the upper expression is the term we first wanted to estimate. We see that the use of the dual approach linked w, e h Γ with the initial problem. Proposition 9 and the Clément-interpolation of z give:

Wz, e h Γ = Wz, u Γ -Wz, u h Γ = A(z, u) -A θ h (z, u h ) = A l,θ h (z, u) -A l,θ h (z, u h ) -L(u ), Vz Γ + Vcurl h z, [[u h ]] γ h = A l,θ h (z, e h ) + L(u h ), Vz Γ -t e • Vcurl h z, [[u h ]] γ h = A l,θ h (e h , z) -(2 -θ) L(e h ), Vz Γ + t e • Vcurl h z, [[e h ]] γ h = A l,θ h (e h , z -I c z) -(2 -θ) L(e h ), Vz Γ + t e • Vcurl h z, [[e h ]] γ h = A l,θ h (e h , z -I c z) + (θ -2) L(e h ), V (z -I c z) Γ + t e • Vcurl h z, [[e h ]] γ h -(θ -2) L(e h ), VI c z Γ = T 1 + T 2 + T 3 . ( 172 
)
Where each term is estimated separately.

Estimate of T 1 :

The continuity of A l,θ h (proposition 10) yields: there exists i 0 ∈ N such that for all X hp (T h ) = X h i p i (T i h ) with i ≥ i 0 , ∀s ∈ (1/2, 1], we have:

A l,θ h (e h , z -I c z) C l (h, p, s) e h dg z -I c z dg , (173) 
with

C l (h, p, s) = max      1 , 1 (s -1/2) 3/2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ (Γ)      .
The regularity of z -I c z ∈ H 1/2 (Γ) and lemma 12 enable to estimate the Galerkin norm such that:

A l,θ h (e h , z -I c z) C l (h, p, s) e h dg z -I c z H 1 2 (Γ) . ( 174 
)
Lemma 6 leads to:

|T 1 | C l (h, p, s) h Γ p Γ 1 2 L ∞ (Γ) e h dg z H 1 (Γ) . ( 175 
)

Estimate of T 2 :

From proposition 7, noting that z -I c z ∈ H 1 2 (Γ) and by using lemma 6, we obtain:

| L(e h ), V (z -I c z) Γ | 1 (s -1 2 ) 3 2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ e h dg z -I c z H 1 2 (Γ) 1 (s -1 2 ) 3 2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ h Γ p Γ 1 2 L ∞ (Γ) e h dg z H 1 (Γ) .
(176)

Estimate of T 3 :

We have

| t e • Vcurl h z, [[e h ]] γ h | | t e • Vcurl h z, [[e h ]] γ h | + | L(e h ), VI c z Γ | | t e • Vcurl h z, [[e h ]] γ h | + | t e • Vcurl h I c z, [[e h ]] γ h | . ( 177 
)
By using estimate (121) which can be trivially extended for the functions of H 1 (T h ), we have:

∀s ∈ (1/2, 1], | t e • Vcurl h z, [[e h ]] γ h | 1 (s -1/2) 1/2 h n h -1 2 Γ p np 2 Γ L ∞ (Γ) e h dg z H 1 (Γ) 1 (s -1/2) 1/2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ (Γ) h Γ p Γ 1 2 L ∞ (Γ) e h dg z H 1 (Γ) .
(178) Now, by using (130), we have immediately: ∀s ∈ (1/2, 1],

| t e • Vcurl h I c z, [[e h ]] γ h | 1 (s -1/2) 1/2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ (Γ) h Γ p Γ 1 2 L ∞ (Γ) e h dg z H 1 (Γ) . (179) 
So, we obtain: ∀s ∈ (1/2, 1],

|T 3 | 1 (s -1/2) 1/2 h n h -2 2 Γ p np-4s+1 2 Γ L ∞ (Γ) h Γ p Γ 1 2 L ∞ (Γ) e h dg z H 1 (Γ) . (180) 
Now, by combining (175), ( 176) and (180) and by using the fact that W :

H 1 (Γ) → L 2 (Γ), we have: for all X hp (T h ) = X h i p i (T i h ) with i ≥ i 0 , ∀s ∈ (1/2, 1], | w , e h Γ | max      1 , 1 (s -1/2) 3/2 h n h -2 2 Γ p np -4s+1 2 Γ L ∞ (Γ)      h Γ p Γ 1 2 L ∞ (Γ) e h dg w L 2 (Γ) , (181) 
and we obtain the result.

Remark 9. One shall notice that the term limiting the asymptotic convergence of the E h is the continuity constant of the lifted sesquilinear form A l,θ h .

Step 3: Final proof of the main theorem. Now we just have to collect all the estimates above to end the proof. By using proposition 10 and 12 and estimate (163), equation (166) becomes:

v -u h dg C l (h, p, s) v -u dg + 1 (s -1/2) 5/2 h n h -2-2s 2 +µ Γ Γ p np -6s+1 2 +r Γ L ∞ (Γ) u H r (Γ) + v -u L 2 (Γ) + C l (h, p, s) h Γ p Γ 1 2 L ∞ (Γ) u -u h dg . ( 182 
)
Let us now inject this estimate in the initial error decomposition equation (155). There holds:

  1 -C l (h, p, s) h Γ p Γ 1 2 L ∞ (Γ)   u -u h dg (1 + C l (h, p, s)) v -u dg + 1 (s -1/2) 5/2 h n h -2-2s 2 +µ Γ Γ p np -6s+1 2 +r Γ L ∞ (Γ) u H r (Γ) . (183) Now, by choosing s = 1 2 + 1 log h p
, n h > 2, n p > 1 and a sufficiently fine approximation i.e.

h/p small enough, we have:

C l (s, h, p) = max              1 , log h p 3/2 h n h -2 2 Γ p np -1 2 - 2 | log ( h p )| Γ L ∞ (Γ)              = 1
and we obtain the main result.

Proof of the L 2 error estimate

Let v ∈ X hp (T h ). We have:

u -u h L 2 (Γ) ≤ u -v L 2 (Γ) + v -u h L 2 (Γ) ≤ u -v L 2 (Γ) + sup w∈X hp (T h )\{0} | v -u h , w | w L 2 (Γ) ≤ 2 u -v L 2 (Γ) + sup w∈X hp (T h )\{0} | u -u h , w | w L 2 (Γ) . ( 184 
)
Estimate (181) immediately leads to:

u -u h L 2 (Γ) ≤ 2 inf v∈X hp (T h ) u -v L 2 (Γ) + C l (h, p, s) h Γ p Γ 1 2 L ∞ (Γ) u -u h dg . ( 185 
)
This ends the proof.

Numerical results

In this section we conduct some numerical experiments in order to observe the numerical rate of convergence of the DG scheme, both for the h-convergence and the p-convergence. We will then compare the numerical rates with those predicted by the analysis. We also present a qualitative experiment in order to illustrate the stability of the numerical scheme in a non-conforming context Physical problem. We consider the model problem 1 of acoustic scattering by a unit cube of boundary

Γ = ∂([0, 1] × [0, 1] × [0, 1]). The right-hand side is f (x) = ∂ n u i (x) with x ∈ Γ and u i (x) = e ikve•x
being an incident plane wave. The vector v e is the propagation direction of the wave. The wavenumber k = 1 and an incident wave with v e = (0, 0, 1) considered. The surface being closed with geometrical singularities, it is well known that the exact solution u belongs to H 1 (Γ).

Numerical error estimate. We denote u θ h the numerical DG solution obtained with the θ-formulation and u the exact solution. Since the latter is unknown, the error

curl h (u -u θ h ) 2 H -1 2 (Γ) + u -u θ h 2 L 2 (Γ) + σ 1 2 h [[u θ h ]] 2 L 2 (γ h ) 1 2 
(186) cannot be computed directly, except for σ

1 2 h [[u θ h ]] L 2 (γ h )
. To overcome this difficulty, we use a reference solution u θ ref computed with a refined mesh (a reference mesh). We then compute u θ h -u θ ref DG

instead of u θ h -u DG . We highlight the fact that each formulation θ has its own reference solution. As a consequence, the quantities curl h (u θ h -u θ ref )

H -1 2 (Γ)
and

u θ h -u θ ref L 2 (Γ)
give an estimate of the convergence rates, but they do not give any insight over the actual value of the error. A comparison of the accuracy of each formulation is out of our scope, but for the jump part of the error. The curl part of the norm cannot be directly estimated. It is computed using the Laplace single layer potential V o because V o u, u Γ defines an equivalent norm of u

H -1 2 (Γ)
(from lemma 7). In the next sections this estimate serves to compute the error and the convergence rate of the discontinuous Galerkin method.

h-convergence

In this subsection we maintain a fixed polynomial order p = 1 and observe the h-convergence rate of the DG method. The formulations with θ ∈ {-1, 0, 1} are considered. We also observe the potential influence of the penalty coefficient σ h = σ 0 h n h with n h ∈ {1, 3 2 , 2, 3}. We take σ 0 = 1. We consider a sequence of conforming and regular triangular meshes T i , with i ∈ [START_REF] Engquist | Radiation boundary conditions for acoustic and elastic wave calculations[END_REF][START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF] such that T i ⊂ T i+1 . Each mesh T i+1 is obtained by uniform refinement of T i . So h i = hi-1 4 . The mesh T 5 is used to compute the reference solution. A description of the meshes' parameters can be seen on table 1.

In the table 2 the convergence rates for the total error for each formulation and for distinct penalty parameters' values n h are available. In order to have a better insight on the error's behavior, we separately observe the convergence rates of each contribution to the error: the L 2 solutions used to compute the effective errors. They could suffer a lack of accuracy and therefore do not properly capture the singular behavior of the analytical solution. It results in an apparently smooth exact solution. p-convergence studies are generally conducted on smooth problems. Unfortunately, there is no smooth geometry which is also a closed polyhedral surface.

• A last possibility is a preasymptotic effect. In this context of a "poor" regularity of the solution, the convergence of the numerical scheme is relatively slow. It may be necessary to run simulations with higher polynomial order to avoid this phenomenon. Moreover, we encountered practical difficulties in computing solutions of higher order.

As a consequence, one has to be careful with the announced rates of convergence for the p-version of the DG scheme. A more extensive numerical study would be required in order to assess more precisely the behavior of the numerical scheme regarding the p-convergence. It is left for further investigation. However, the numerical experiment present here gives us some relevant insight over the DG scheme. Interestingly, the table 8 reveals that the symmetric formulation reestablishes way better the continuity of the numerical solution in p-convergence. This phenomenon is not predicted by our theoretical study and should therefore be investigated.

Non-conforming experiment

As depicted in the introduction, one main advantage of the DG scheme is its ability to naturally handle hp non-conforming meshes. We illustrate here the stability of the method when considering polynomial (varying polynomial order) and geometrical (hanging nodes) nonconformities. To do so, we compare a solution obtained with a non-conforming mesh with references solutions given by conforming meshes. Their main properties are showed in table 10. We consider the same geometry as before and a wavenumber k = 5. The incident wave is a plane wave of direction (1, 1, 1 The meshes 1, 2 and 3 are available on figures 2(d),(e),(f). Solutions from meshes 1 and 2 are the reference solutions. The non-conforming solution from the third mesh can then be compared with the others. The real part of the solutions can be observed in figures 2(a),(b),(c). They are visually identical. This example indicates that the non-conformity does not seem to introduce any noticeable numerical error. It tends to proof the robustness of the DG method in presence of hanging nodes and varying polynomial order. However, more numerical experiments should be conducted in order to confirm the good behavior of the numerical scheme on more complex and realistic configurations. This is left for further investigations.

Conclusion

In this paper we presented an hp non-conforming a priori error analysis for the IPDG approximation of the Helmholtz hypersingular integral equation problem. The derived bound was showed to be quasi-optimal. Work still has to be made in order to analyze the differences between each formulation. Indeed, the numerical observations showed the symmetric formulation to reestablish better the continuity of the numerical solution. More extended numerical studies should also be pursued in order to assess the benefit of each formulation. Those comparison should be made at low and high frequencies. Also the L 2 -error seems to converge even for low values of the penalty function's parameters. Extension of the theoretical analysis should therefore explain this numerical behavior. This analysis tends to indicate that the IPDG in integral equation can be used in more complex set up, where the use of the flexibility provided by the hp non-conforming capability of the scheme could be beneficial. Particularly, the study of the IPDG's performances in an auto-adaptive loop with a hp refinement procedure is under investigation.

Figure 2 :

 2 Figure 2: Visual comparison of the solutions obtained via conforming meshes (solutions (a) and (b) got with meshes (d) and (f)) and the non-conforming solution (solution (c) obtained with mesh (f). Accurate visualization obtained thanks to the work of [37].

Table 10 :

 10 ). Description of the meshes.

	mesh number hanging nodes polynomial conformity nb of DOF polynomial order
	1	no	yes	9216	P 2
	2	no	yes	5760	P 4
	3	yes	no	7488	P 2 /P 4

(Γ): r h (v) = A(u, v) -l(v) = 0.The error estimate in section 4.4.1 will require a sharp estimate of the residual function. It has the following important property.

for the h-convergence.

The observed convergence rates correspond to those predicted by the a priori error estimate. The penalty function's parameter n h has an impact of the jump part of the error. We note that the symmetric formulation has a higher rate of convergence for the jump contribution of the error. The terms u -

numerically converge at the optimal rate independently of the value taken by n h . It shows a robustness of the numerical scheme regarding this parameter.

p-convergence

In this subsection we numerically analyze the pconvergence behavior of the DG method. To do so we consider the first mesh of the table 1 and observe the error for polynomial orders varying from p = 1 to p = 6 (the latter being the reference solution). An illustration of the corresponding mesh is available on figure 1. For each formulation we consider a penalty function σ h = σ 0 p np with n p = { 1 2 , 1, 2, 3} and σ 0 = 1. The convergence rate of the total error is available on table 6. The convergence rate of each part of the error can be seen of the tables 7, 8 and 9. 

for the p-convergence. 

for the p-convergence.

The tables 6, 7, 8 and 9 seem to present higher rates of convergence than predicted by the theory. Many reasons could explain this numerical phenomenon:

• The a priori error estimates given in the part 3.1 could be not sharp with respect to p.

Nevertheless, such sub-optimality can not occur because our estimate exhibits the same rate of converge that the one of the best p-polynomial approximation i.e. 1/ √ p (see lemma 6). It tends to show that our a priori error analysis is quasi-optimal regarding the p-convergence.

• The analytical solution could have an unexpected regularity. It seems unlikely in view of the regularity of the scattering surface (cube) and the nature of the source i.e. normal derivative of a plane wave. This argument is supported by the h-convergence which can also detect a higher regularity of the solution but the numerical rates of convergence are in accordance with the H 1 -regularity. Another reason may come from the numerical reference