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Abstract

Filamentous fungi can regulate their growth mechanisms to adapt to the environ-
ment and form different morphologies. On solid media, their first action is generally
to adhere to a surface and form an approximately planar shape on a flat substrate.
In a three-dimensional (3D) modelling approach, this environment is therefore het-
erogeneous along the z-direction. To clarify the interactions between hyphal be-
haviours and this heterogeneous environment, a 3D discrete model was developed.
This model applied a special lattice-based approach which eliminates the restric-
tion of lattice configuration to the simulated mycelia networks while maintaining
high computational efficiency. It incorporates explicitly the mechanisms of hyphal
elongation, apical and lateral branching, anastomosis and tropism, and is rigorously
validated by the experimental data on Postia placenta growth on malt extract agar.
Results compared with experimental data showed that the presence of substrate at
z = 0 bends the extension direction of hyphae towards the substrate surface. To
mimic the experimental data, the bending rate was determined by an exponential-
like tropism. Moreover, the branching direction was also constrained on the stage of
its emergence. Compared to a simpler 2D model, the simulations of the 3D model
were closer to actual growth, hence leading to a realistic mycelial network in terms
of both configuration and biomass density. This 3D model can be easily extended
to investigate fungal growth in other scenarios, such as for solid-state fermentation
in incorporating hyphal penetration, in obstructed environments and even in wood
panels.
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1. Introduction

Filamentous fungi can grow and survive in diverse habitats due to their highly-
branched and interconnected networks. It has been proposed that hyphae can sense
and then adapt their growth dynamics to the surroundings [1, 2, 3, 4]. Thus, different
morphologies of mycelium are formed depending on their growth environments. For5

example, fungal mycelia can form spherical pellets in submerged culture as well as
biofilms adhering to solid substrate surfaces [5]. The mycelial growth on flat sub-
strates is approximately planar since it tends to more likely enlarge its surface in
the xy-plane than its thickness in the z-direction. At the first phase of growth, the
mycelia generate a high density of hyphae to form a random network with a minus-10

cule height above the surface [6]. To investigate how hyphae behave to form this
dense layer, a mathematical modelling method was applied to simultaneously cap-
ture the mycelial morphology and biomass development in three-dimensional (3D)
space, in analysing the tropism produced by heterogeneity in the z-direction which
has been proved difficult in experimental studies.15

The discrete modelling approach is generally applied to studying the behaviours
of individual hyphae and describing the morphology of mycelia. Two methods are
widely used in deriving discrete models of mycelial growth. In the lattice-free models,
the mycelial networks are represented by a collection of connected line segments with20

no restrictions on the position of these segments [7, 8, 9, 10, 11, 12, 13, 14]. These
models can generate networks closely resembling realistic mycelia, which allows for
assessment of hyphal growth at the individual level and hence improved understand-
ing of interactions between hyphal behaviours and the environment. However, the
computational complexity is generally high and some mechanisms, such as lateral25

branching or anastomosis, are too complex to be incorporated. In contrast to the
lattice-free approach, lattice-based modelling is confined to a regular lattice used as
the geometrical basis for developing the mycelial network by formulating a series of
stochastic rules applied on the nodes of the lattice [15, 16, 17, 18, 19]. Due to the
presence of a regular lattice with a finite number of status transition rules, complex30

behaviours of hyphae can be modelled while significantly improving computational
efficiency. However, the artificial and predefined lattice greatly constrains the topol-
ogy of the mycelial network leading to an unrealistic morphology.

Thus far, few of those models have been rigorously validated and none can si-35

multaneously generate realistic mycelial morphology and predict biomass growth.
In the biotechnology and construction industries, the estimation of fungal biomass
is essential to improve the production or protection processes. As it is difficult to
separate mycelia from solid substrates, the measurement of biomass by experimen-
tal approaches is labour-intensive and time-consuming [20]. Thus, a model with40

predictive capacity could be an efficient tool to help understand and improve these
processes.

In this paper, a model was developed incorporating the main hyphal behaviours,
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including hyphal elongation, apical and lateral branching, anastomosis and tropism,45

in a cubic lattice to simulate the mycelial network in the 3D space. A novel algo-
rithm developed to simulate the elongation mechanism removed the restriction of the
lattice configuration to the hyphal extension direction, and hence allowed the gen-
eration of highly-realistic mycelia while maintaining high computational efficiency.
This work focuses on simulating the 3D mycelial growth on a flat substrate to inves-50

tigate dense hyphae layer formation. The simulation results allowed us to observe
that both the hyphal elongation direction and the emerging direction of branches are
affected by this environment. The model was rigorously validated by experimental
growth data of Postia placenta [21]. Model parameter estimation fully considered
biological uncertainties in the form of probability distributions instead of fixed val-55

ues. This statistical approach is increasingly considered a necessary feature instead
of a weakness for microbial systems [22]. The high correlation between the simulated
and experimental results confirms the predictive capacity of this model in terms of
both spatio-temporal biomass evolution and morphology. Moreover, this model can
be easily extended to other applications and we provided three examples in the last60

section: hyphal penetration into solid media, bent growth in an obstructed environ-
ment and fungal development in fibreboard.

2. Modeling

In this model, the space is discretised by a 3D cubic lattice with a side length of δ.65

Each node (xi, yj, zk) in the lattice has two potential statuses, either vacant or occu-
pied by a hypha. Hyphal tips locate in their corresponding nodes and are defined by
three variables: O(i, t), ~n(i, t) and R(i, t) which denote respectively the location, the
tip growth direction and the extension rate of tip i at time t. Since the elongation of a
hypha occurs only at its tip, each hypha consists of a set of linked nodes which are the70

time-sequence of the previous tip positions in the model. The three main behaviours
of mycelial growth, hyphal elongation, apical and lateral branching and anastomo-
sis, and the response of hyphal tips to environmental stimuli are implemented into
the 3D cubic lattice. These biological behaviours of hyphae are illustrated in Table 1.

75

2.1. Hyphal elongation

Without external stimuli, hyphal elongation proceeds in a relatively straight di-
rection with frequent meandering for most fungi. From time to time, hyphae abandon
the original growth direction and establish a new one with a minor directional change
of approximately 10◦ due to the shift Spitzenkörper trajectory [24]. To model the80

hyphal elongation, a unit vector ~n is determined to represent the tip extension di-
rection. At each time step, the tip can advance into one of the three neighbouring
nodes adjacent to this direction, respectively along the x-, y- and z-axis, as shown in
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Table 1. Illustration of fungal growth behaviors [23].

Growth Behavior Growth Pattern

Hyphal elongation

Lateral branching

Apical branching

Anastomosis

Tropism

Obstacle
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Fig. 1(A)I, or remain in its actual position according to the probabilities as follows:
Px(i, t) = τ

δ
R(i, t)~n(i, t) · ~ex,

Py(i, t) = τ
δ
R(i, t)~n(i, t) · ~ey,

Pz(i, t) = τ
δ
R(i, t)~n(i, t) · ~ez,

Pnone(i, t) = 1− [Px(i, t) + Py(i, t) + Pz(i, t)],

(1)

where τ is the duration of each time step; ~ex, ~ey and ~ez are the standard basis for the85

3D Euclidean space. The probability of the movement into the other three nodes is
consequently set to be zero. After several iterations, the successive biased random
walks of the tip form a pathway globally along the elongation direction (Fig. 1(A)II).
Note that if the tip extension rate R > 0, the tip is active and if R = 0, the tip is
dormant and does not elongate.90

As hyphae change their growth axis periodically, the tip extension direction is
updated with probability Pdir to decide whether a small directional change occurs
or not. When it happens, the direction varies by 10◦ with respect to its former di-
rection. Since all the satisfied vectors constitute a conical surface around the former95

direction vector, one of them is selected randomly.

2.2. Branching

Hyphae generate new tips by branching, of which two types, apical and lat-
eral branching, are defined according to their emerging sites and their growth pat-100

terns [25]. Apical branching occurs at hyphal tips and divides one tip into two which
develop symmetrically around the original tip. Lateral branches emerge from the
sub-apical part of one hypha. According to statistical analysis, the selection of lat-
eral/apical branch sites is almost equiprobable throughout the whole mycelium/tips
independent of the hyphal age or the branch density [21, 23]. However, it is observed105

that the proximity of a hyphal tip or an existing branch inhibits the emergence of a
new lateral branch [26].

In this model, a probability P l
b is defined to determine the frequency of lateral

branching during a time step. The number of lateral branches to be formed at time
t is calculated as follows:110

∆N l
b(t) = N l

b(t)−N l
b(t− τ) =

⌊
P l
bNp(t)

⌋
+ 1A1(ω) (2)

where Np(t) is the total number of tips at time t; ”bc” a floor function mapping
the real number to the largest previous integer; 1A1 an indicator function which
has the value 1 if ω ∈ A1; ω a number randomly picked in the interval [0, 1];
A1 = {x|x ∈ (0, P l

bNp(t)−
⌊
P l
bNp(t)

⌋
]}. The ∆N l

b positions of branch emergence are
randomly selected from the set involving all the nodes occupied by hyphae except115

those that have already emerged branches. In addition, one node is also considered
inhibited either by apical dominance when the distance of this node to the tip is less
than lad, or by an adjacent existing branch when the distance of this node to the
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Fig. 1. Main mechanisms of hyphal growth. (A)I Hyphal elongation rules: consider the tip
at location (xi, yj , zk) and the six nodes adjacent to it; tip movement with Px, Py and Pz to select
randomly one of the three nodes, (xi + δ, yj , zk), (xi, yj − δ, zk) and (xi, yj , zk + δ), adjacent to the
tip extension direction identified by ~n, as the target node during the next time step. (A)II The
global shape as an emergence of the local rules: after many iterations, the successive movements
of the tip form a pathway globally along the elongation direction. (B)I Free branching: the
emerging direction is a vector ~nb randomly selected among the cone having the angle θb with the
hyphal direction ~nh. All positions of the circle of unit length of this cone (red circle of the figure)
are equiprobable. (B)II Constrained branching: the emerging direction is selected from two arcs of
this unit length circle. These arcs (red curve) range over an angle ±σp around the two
intersection points (red points) between this circle and the plane span by the tip direction ~nh and
its orthogonal direction belonging to the substrate plane. (C)I Unidirectional tropisms: the
updated tip extension direction for the next time step ~n(i, t+ τ) is obtained by applying the

unidirectional tropism ~T to ~n(i, t); υ is the reaction rate of hyphae. (C)II Thigmotropism:

calculation of the thigmotropism ~S applied to the tip i located at (xi, yj , zk) at time t; ~n⊥ is the
unit normal vector of the solid surface, ~n denotes the tip extension direction, and ~ng is the vector
projection of ~n on the tangent of the solid surface.

branch is less than lnobr.
120

Since the apical branching occurs at the active tips, a probability P a
b is applied

to all active tips, then the number of apical branching during the time increment is
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obtained as follows:

∆Na
b (t) = Na

b (t)−Na
b (t− τ) = bP a

b Nap(t)c+ 1A2(ω) (3)

where Nap(t) is the total number of active tips (R > 0) at time t; 1A2 an indicator
function which has the value 1 if ω ∈ A2; ω a random number in the interval [0, 1];125

A2 = {x|x ∈ (0, P a
b Nap(t) − bP a

b Nap(t)c]}. ∆Na
b (t) tips are randomly selected from

all active tips.

After selection of the branch sites, the emerging direction of the new branches
should be determined. A basic method is constructed to simulate the free emergence130

of branches in 3D space as shown in Fig. 1(B)I. Then, according to observation of
Postia placenta growth on solid media, hyphae are likely to extend initially along
the surface to cover it. Therefore, a constrained method is established to lead the
emerging branches with a direction approaching or along the surface.

2.2.1. Free branching135

The tangent direction to a hypha at a node (xi, yj, zk) is determined by a unit
vector ~nh = (x, y, z) and is equal to the tip extension direction when the tip was at
this position. The extension direction of a lateral branch emerging from the node
(xi, yj, zk) forms an angle of θb, which is named the branching angle determined as
a normal distribution, with ~nh. As shown in Fig. 1(B)I-1, in 3D space, all of the140

possible directions ~nb form a cone. To randomly select one vector from the cone, two
intermediate vectors, ~n⊥ and ~nb0, should be calculated. First, the vector ~n⊥, which
is located in the plane perpendicular to ~nh, is determined as follows:

~n⊥ = −a
√

1

1− a2
~nh +

√
1

1− a2
~a, (4)

where ~a = (x, 0, 0) if |x| ≤ |y| ≤ |z| and so forth. Then, an angle θ is randomly
selected from the interval [0, 2π] to identify the vector ~nb0 which is also located in145

the perpendicular plane but at an angle of θ to ~n⊥ (Fig. 1(B)I-2):

~nb0 = cos θ~n⊥ + sin θ(~nh ∧ ~n⊥). (5)

Finally, the emerging direction of the new branch denoted by ~nb (Fig. 1(B)I-3) is
calculated as the vector simultaneously in the cone and in the plane determined by
~nh and ~nb0 by the following expression:

~nb = cos θb~nh + sin θb~nb0. (6)

For the apical branching, the same method is applied using the extension direction150

of that tip ~n instead of ~nh. After the determination of the emerging direction of one
branch denoted by ~nb1, the other one denoted by ~nb2 can be calculated with ~nb1 and
~n (Eq. 7), since the two new branches are symmetrical with respect to the previous
tip direction.

~nb2 = 2 · (~n · ~nb1) · ~n− ~nb1. (7)
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2.2.2. Constrained branching155

As shown in Fig. 1(B)II, the objective is to limit the emerging direction of branch-
ing to a small band around the plane A determined by the direction of the mother
hypha ~nh = (x, y, z) and the unit vector ~ex or ~ey. More specifically, the branching
direction ~nb is no more randomly selected among all the possible directions which
constitute a cone around ~nh, but is determined by an amplitude angle θp which is160

determined as a normal distribution θp ∼ N (0◦, σp) (Fig. 1(B)II-2,3). To determine
~nb, firstly, the normal vector ~n⊥ of the plane A determined by ~nh and ~a is calculated
by the equations: 

~n⊥ · ~nh = 0,

~n⊥ · ~a = 0,

‖~n⊥‖ = 1.

(8)

where ~a = ~ex if |x| ≤ |y| and ~a = ~ey if not. Then, the intersected vector ~nb0 of the
plane A and the cone constituting all possible branching directions is determined as165

follows: 
~nb0 · ~nh = ‖~nb0‖ · ‖~nh‖ · cos θb,

~nb0 · ~n⊥ = 0,

‖~nb0‖ = 1.

(9)

Finally, the branching direction ~nb is calculated with an amplitude angle θp be-
tween it and ~nb0: 

~nb · ~nh = ‖~nb‖ · ‖~nh‖ · cos θb,

~nb · ~nb0 = ‖~nb‖ · ‖~nb0‖ · cos θp,

‖~nb‖ = 1.

(10)

To calculate the apical branching direction, the same method is applied using the
tip direction ~n instead of ~nh.170

2.3. Anastomosis

Anastomosis is the fusion between two hyphae in contact with each other to yield
an interconnected mycelial network [27]. The advantage is to facilitate communica-
tion and translocation among hyphae. This mechanism is simply incorporated in the
model by assuming that it occurs when a hyphal tip contacts another hypha. After175

the fusion, the tip no longer exists.

2.4. Tropisms

Hyphal growth, particularly growth direction, responds to environmental stim-
uli, [28, 4, 3, 29, 30]. In considering the environmental features, two types of tropisms180

are incorporated into this model, unidirectional tropism and thigmotropism. The uni-
directional tropism leads the growth of hyphae more or less rapidly in one direction
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which is determined by the location of the stimuli, while the thigmotropism makes
hyphae elongate along or bend around the surface of obstacles.

As shown in Fig. 1(C)I, the unidirectional tropism is represented by a vector field185

~T (xi, yj, zk, t) of which the magnitude represents the intensity of this tropism. In
addition to the tropism intensity, different species may have different reaction rates
so that a coefficient of hyphal reaction rate υ is defined. The tip extension direction
~n is changed by the tropism ~T at each time step as follows:

~n(i, t+ τ) =
~n(i, t) + ∆~n(i, t)

‖~n(i, t) + ∆~n(i, t)‖
,

∆~n(i, t) = υ[~T (xi, yj, zk, t)− ~n(i, t)].

(11)

The thigmotropism ~S(i, xi, yj, zk, t) is related to both the presence of solids and190

the direction of tips. As shown in Fig 1(C)II, the direction of the thigmotropism is
within the plane tangent to the surface. The intensity of this tropism depends on the
extension direction of the tip i arriving at (xi, yj, zk) (i.e., ~n(i, t)) and the intensity
coefficient cs(xi, yj, zk) with cs > 0 for the nodes surrounding the solids and cs = 0
for the others. The thigmotropism vector is calculated as follows:195

~S(i, xi, yj, zk, t) = cs(xi, yj, zk)
~ng(i, xi, yj, zk, t)

‖~ng(i, xi, yj, zk, t)‖2

~ng(i, xi, yj, zk, t) = ~n(i, t)− [~n(i, t) · ~n⊥(xi, yj, zk)]~n⊥(xi, yj, zk)

(12)

where ~n⊥ is the normal vector of the surface at the point (xi, yj, zk) and ~ng is the
projection of the tip direction vector on the tangent plane. Due to the divisor ‖~ng‖2

in Eq. 12, the intensity of the thigmotropism decreases as the tip direction is getting
closer to the plane of the surface. Since Eq. 11 is linear, this equation can be simply
applied with the total tropism ~Ttot obtained by the sum of tropisms (i.e. ~Ttot = ~T+~S).200

2.5. Calibration

This model was calibrated for the growth of P. Placenta on malt extract agar via
our 2D model [23] which has been validated by experimental observation [21]. Most
parameters adopt directly the values determined in the 2D model, while some, such205

as the branching probabilities, are obtained by Eq. 13 in rescaling their values. In
Eq. 13, P denotes the probability, τ is the time step, and the subscripts 3D and 2D
represent the parameter value, respectively, in the 3D and 2D models. The time step
τ2D is 1.5min and τ3D is set as 1.3min, as calculated by Eq. 14 where δ = 3µm and
Rmax = 80µm/h. The lattice spacing δ = 3 is set as the average diameter of hyphae210

of P. Placenta. This constraint is required to incorporate the initial inoculum into
the lattice and to compare the simulated and observed results, namely in terms of
mass density. The active tips are selected from all active and dormant tips by a
proportion Pactive = 70% just as in the 2D model. The description and the value of
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the principal parameters are listed in table 2.215

P3D = P2D
τ3D

τ2D

. (13)

τ ≤ δ√
3Rmax

. (14)

Table 2. Description and values of the principal modeling parameters [23].

Parameter Description Value
τ Duration of time step 1.3min
δ Lattice spacing 3µm

R
Tip extension rate
distribution

F ′Γ(R;α, β) = FΓ(α =
1.51, β = 0.09) + 4.65×
10−6(RmaxR− 1

2
R2)(Rmax =

1.33µmmin−1)
Pactive Probability of tip activation 70%
θb Branching angle N (µ = 77.6◦, σ = 12.3◦)
lad Length of apical dominance 5µm

lnobr
Length of inhibition of lateral
branching

10µm

P lat
br

Probability of lateral
branching

8.7× 10−4

P api
br

Probability of apical
branching

2.5× 10−4

Pdir
Probability of variation of tip
direction

0.01

2.6. Initial field and simulation

To be consistent with the experimental observation, the dimension of the lattice
in the following simulations is defined as 12mm × 12mm × 0.6mm in x-, y- and
z-direction. A cylindrical inoculum of constant height ( 0.23mm) and bottom base
area ( 0.55mm2) as the observed one is put on the bottom surface of the lattice,220

in the centre of the xy-plane as the initial field (Fig.A1(A)). Only the nodes on the
side of the cylinder can generate tips, and the initial tip direction is perpendicular to
the z-axis and radially outward. The boundaries of the lattice are regarded as solid
obstacles which engender thigmotropism in the adjacent hyphae. The simulations
have been executed respectively in applying the two branching mechanisms with or225

without incorporating the unidirectional tropism which forces the hyphal growth to-
wards the substrate surface (i.e. the xy-plane at zk = 0µm). For all the simulations,
we assigned the value 0.001 and 100.0 to the two coefficients, υ and cs in the tropism
mechanism (equations 11 and 12). Moreover, two formulations of the tropism have
been tested :230

10



Constant tropism ~T (zk) = −a~ez, (15)

Exponential tropism ~T (zk) = −a(ezk/h0 − 1)~ez, (16)

where a and h0 are two constants. An example of simulation in applying the con-
strained branching and exponential tropism mechanisms is shown in Fig.A1(B).

3. Results and discussion

3.1. Validation for mycelial growth on a flat medium

We first compared the profiles in the xz-plane of the simulated results with the235

column-averaged hyphal density of the 12-day-old experimental mycelium observed
using confocal microscopy (CLSM) [21]. Four simulations were carried out in dif-
ferent combinations of two conditions: (i) free or constrained branching mechanisms
and (ii) application of the tropism or not. As reported by the simulation results,
without tropism, the mycelium expanded in all directions, even though the branch-240

ing direction was constrained (Fig.2(B)(C)). This is obvious for the free growth as
no limits were imposed on the hyphal growth direction as shown in the zoom of
Fig.2(B). When the hyphal direction is constrained (zoom of Fig.2(C)), after a long-
term growth, the mycelium eventually expanded upwards, although this expansion
is much slower than for the free growth. However, the mycelium tended to cling to245

the substrate surface (Fig.2(A)). To force the hyphae to develop near the substrate
surface, a downward tropism was applied (Fig.2(D)(E)). Nevertheless, since hyphae
grew along all directions without constraints on the branching, those growing up-
wards were bent by the tropism, producing an unrealistic morphology, as shown in
the zoom of Fig.2(D). In conclusion, both the tropism and the constrained branching250

mechanism are essential to reproduce the mycelial growth on agar. It is notable that
in 3D space, the medium is highly non-uniform in the z-direction. This implies that
for the real development of mycelia, this spatial variation generates a tropism for
hyphal elongation direction and simultaneously affects the branching mechanism to
adapt to this environment. The tropism may be explained by the need for water255

and nutrients for the mycelial growth, while the new branches should account for the
presence of the substrate from the emergence phase.

In order to better understand the combined effects of tropism and constrained
angle, a constant tropism was tested first (tropism value independent of z). As260

shown in Fig. 3(A), the 12-day-old mycelium observed using confocal microscopy
was mapped into a 2D projection image and divided into a series of rings, of which
the gap was ∆r = 60µm. The normalized radial density of hyphal biomass denoted
by ρ(r) was calculated as the proportion of occupied pixels for each radius increment.
For the simulation results, one must keep in mind that a single realization contains265

fluctuations due to the numerous stochastic processes in the model. The simulated
radial density B(r) is, therefore, the average over 50 simulations performed with the
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Fig. 2. Simulated profiles in the xz-plane and column averaged hyphal density
obtained by the experimental observation. (A) Experimental result: the normalized column
averaged hyphal density of the 12-day-old mycelium. Simulation results in applying: (B) Free
branching mechanism without tropism; (C) Constrained branching mechanism (θp ∼ N (0◦, 3◦))

without tropism; (D) Exponential tropism (~T = −1.0(ezk/45.0 − 1)~ez) with free branching

mechanism; (E) Exponential tropism (~T = −1.0(ezk/45.0 − 1)~ez) with constrained branching
mechanism (θp ∼ N (0◦, 3◦)).

same parameters. As shown in Fig. 3(B), when the tropism intensity
∥∥∥~T∥∥∥ = 2.0, the

simulated density of the marginal part of the colony approximates with the observed
density, but not for the central part. If we increased the tropism intensity to reduce270

the density in the center, the hyphae in the marginal part would also be largely
decreased. According to these curves, a strong tropism is required to drive the hy-
phae far away from the agar surface to quickly grow downwards, while the marginal
part needs only a relatively weak tropism to maintain a certain colony thickness.
The tropism intensity must, therefore, depend on the distance between the hyphae275

and the agar surface. Hence, a method was established to estimate the tropism for
identifying the averaged z-position of hyphae and the necessary tropism intensity
respectively for the central and marginal parts.

As shown in Fig. 3(C-D), for the four different ranges of the branching amplitude280

angle θp (presented in Eq.10), we tested numerous constant tropisms to make the
simulated results correspond to the observed hyphal density either in the central
part or in the marginal part. Among all the tested tropisms, ~T = −30.0~ez best fits
the density in the central part for all the four angles, while for the marginal part,
the tropism intensity augments from 0.5 to 2.5 with an increase of amplitude angles.285

When the tropism is low, the greater the range of the amplitude angle, and the higher
the tropism needs to be to compensate. However, if the tropism is strong enough,
the effect of the amplitude angle is negligible. After determination of the tropism
intensity for the two parts, the corresponding z-position of hyphae were estimated
by selecting three radii-points evenly distributed in each of the central and marginal290
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Fig. 3. Normalized radial density of hyphae obtained from the experimental
observation and simulations under constant tropisms. Radial hyphal density of 12-day-old
mycelium, observed (A) in the experiment (dashed line) and obtained by simulations: (B) in

applying three constant tropisms respectively with the intensity of
∥∥∥~T∥∥∥ = 4.0, 3.0 and 2.0, and the

constrained branching mechanism with θp ∼ N (0◦, 3◦); in fitting the biomass density respectively
(C) in the central part and (D) in the marginal part with different couples of range of amplitude

angle and constant tropism (θp, ~T ).

parts. Then, the thicknesses of the colony at these three radii were measured and
averaged as the mean z-direction distance between hyphae and the substrate surface
for the central (i.e., 160µm) and the marginal part (i.e., 50µm), respectively. Thus,
an exponential equation (Eq. 15) for each amplitude angle was determined from the

three points, the origin (0,0) and the two couples of (zk,
∥∥∥~T∥∥∥) (Fig. 4(A)). Theoreti-295

cally, with a greater range of θp, the space for hyphal growth enlarges and hence the
biomass increases, especially for the marginal part. Accordingly, the tropism inten-
sity should augment to compress the space enlarged by θp just as shown in Fig. 4(A).

Simulations were performed with these couples of exponential tropisms and ampli-300

tude angles to determine how well they fit the experimental data. Results show that
all combinations concurred with the observed results (Fig. 4(B-I)), except for a minor
difference in the variation of the curve slope along the radius. For example, compared
with θp ∼ N (0◦, 0◦), the curve steepness obtained in applying θp ∼ N (0◦, 5◦) flattens
faster with radius. The tropism over-compressed the biomass in the central part and305

insufficiently in the marginal part. The relative error between the simulated and
observed results was calculated by Eq. 17, where ρ(rk) and B(rk) are respectively

13



N
or

m
al

iz
ed

hy
ph

al
de

ns
ity

Radius (mm)

T

z (μm)

A

B-I

0.0
0.6

0.0

0.6

0.0

0.6

𝐳 (𝐦𝐦)
0.0

0.6

0.0

0.6

Observation

N
or

m
al

iz
ed

de
ns

ity 1.0

0.0𝛉𝒑~𝓝 𝟎°, 𝟏°

𝛉𝒑~𝓝 𝟎°, 𝟑°

𝛉𝒑~𝓝 𝟎°, 𝟓°

𝐱 (𝐦𝐦)
0.0 5.0-5.0

𝛉𝒑~𝓝 𝟎°, 𝟎°

θ𝑝~𝒩 0°, 0° , T = 0.10(𝑒 Τ𝑧𝑘 28.11 − 1)
θ𝑝~𝒩 0°, 1° , T = 0.17(𝑒 Τ𝑧𝑘 31.05 − 1)
θ𝑝~𝒩 0°, 3° , T = 0.63(𝑒 Τ𝑧𝑘 41.28 − 1)
θ𝑝~𝒩 0°, 5° , T = 1.65(𝑒 Τ𝑧𝑘 54.03 − 1)

Observation

B-II

Fig. 4. The simulated results under tropism for four ranges of branching amplitude
angle compared with the experimental results. (A) Exponential curves passing through the

original point and the two points (zk,
∥∥∥~T∥∥∥), respectively, identified for the central and marginal

parts to determine the appropriate global tropism. (zk - averaged distance between hyphae and

the substrate surface,
∥∥∥~T∥∥∥ - corresponding constant tropism intensity.) Comparison of (B)-I the

simulated radial densities and (B)-II the lateral profiles of the simulated mycelia in the xz-plane
obtained in applying the four ranges of amplitude angle and their corresponding tropisms with the
experimental results.

the observed and simulated radial density of biomass:

Error =

√√√√√√√√
N∑
k=1

(ρ(rk)−B(rk))2

N∑
k=1

ρ2(rk)

. (17)

By considering both the shape of the curves and the errors listed in Table 3, one
can conclude that the most relevant simulation is obtained with θp ∼ N (0◦, 1◦) and310

the corresponding tropism. This result is also confirmed by the xz-plane mycelium
profiles shown in Fig. 4(B-II), which shows a variation of colony thickness with radius
very similar to that of the experiment. This result implies that on a solid substrate,
the mycelial growth mechanisms, including the hyphal elongation and the branching
emergence, are established to force the hyphae to adhere to the substrate surface315

within a controlled deviation. According to the simulated results, the tropism is
greater when the hyphae are further away from the surface and moreover, its reduc-
tion rate slows while the hyphae approach the surface to achieve a stable state.
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Table 3. Relative error between the observed and simulated density of biomass.

θp ~T Relative error

N (0◦, 0◦) −0.10(ezk/28.11 − 1)~ez 0.0814

N (0◦, 1◦) −0.17(ezk/31.05 − 1)~ez 0.0505

N (0◦, 3◦) −0.63(ezk/41.28 − 1)~ez 0.0785

N (0◦, 5◦) −1.65(ezk/54.03 − 1)~ez 0.0999

The 3D model better matches the observed results than our previous 2D model [23]320

as shown in Fig. 5. The 3D model is an improvement in terms of the replication of
growth environments and the growth mechanisms of fungi. Hyphae are able to ex-
tend in the z-direction either for elongation or for branching. Moreover, anastomosis
occurs in nature when two hyphae touch each other and therefore does not depend
on a probability parameter such as that in the 2D model. In the 3D model, the oc-325

currence of anastomosis relies on the local hyphal quantity and their actual occupied
space, which is more reliable.

7

Observation
2D model
3D model

Fig. 5. Comparison the simulated densities obtained by the 2D and 3D models with
the experimental data.

Finally, the evolution of the modelled mycelial colony over time was compared
with the observed results at different time points (Fig. 6). The 3D model matches330

the data well at 7 and 12 days, but less so at 5 days. At first, the initial conditions
supplied to the model were rather simple compared to the complexity of the real
inoculum used in the experiment. In addition, the mycelium requires a certain time
after inoculation to adapt to its environment. These two reasons explain why the
simulated results poorly match the experimental data at the shortest growth times.335

As shown in Fig. 7, the mycelial network on the 5th day is denser in the simulation
than in the experiment. Fig. 7 proposes a representation of the 3D morphology of
fungal colonies. Accounting for the great variability of biological behaviours and the
number of random processes existing in real mycelial growth as well as in the model,
it is impossible to reproduce the same mycelial network. Nevertheless, this 3D model340
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derived from the individual hyphal behaviours is able to capture the global morphol-
ogy, the colony dimension, the local hyphal distribution and the spatio-temporal
evolution of biomass for the growth of P. placenta.

8

Observation
Simulation
12-day growth
7-day growth
5-day growth

Fig. 6. Evolution of biomass density versus time: observed and simulated density
curves at three specific times during the growth period.
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Fig. 7. 3D mycelial networks on agar obtained by the simulation and in the
experiment at two specific times during the growth period.

3.2. Model potential345

Generic mechanisms of hyphal growth were incorporated in this model so that
it could be easily extended to many other configurations and growth features, such
as penetrative hyphae, investigation of hyphal growth in fibrous media or negative
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tropisms due to toxicity. Three examples are provided in Fig. 8. Hyphae can pen-
etrate into solid media for absorbing more water and nutriments. The penetrative350

hyphae tend to grow vertically downward [6] and at an elongation rate reduced by
the presence of the solid medium. As shown in Fig. 8(A), the lattice was divided into
aerial and substrate parts by the surface at z = 0. For the substrate part, a pene-
trative probability Ppenetrate was added into the elongation mechanism (Eq. 18) and
a constant, downward tropism was applied to the penetrative hyphae. Results show355

that the penetrative probability can be adjusted to control hyphal penetration rate
and hence the number of hyphae penetrated into the medium, while the intensity of
tropism greatly influences the penetration direction. These two parameters can be
optimized to validate the penetration mechanism.

Px(i, t) = Ppenetrate[
τ
δ
R(i, t)~n(i, t) · ~ex],

Py(i, t) = Ppenetrate[
τ
δ
R(i, t)~n(i, t) · ~ey],

Pz(i, t) = Ppenetrate[
τ
δ
R(i, t)~n(i, t) · ~ez],

Pnone(i, t) = 1− [Px(i, t) + Py(i, t) + Pz(i, t)],

(18)
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Fig. 8. Extension of model application. (A) Hyphal penetration into solid media

(z ≤ 0.0mm) with I Ppenetrate = 0.1,
∥∥∥~T∥∥∥ = 0.05; II Ppenetrate = 0.1,

∥∥∥~T∥∥∥ = 1.0; III

Ppenetrate = 0.2,
∥∥∥~T∥∥∥ = 0.05. (Ppenetrate - penetrative probability of hyphae,

∥∥∥~T∥∥∥ - intensity of

tropism.) (B) Mycelial growth in an obstructed environment: intensity of the thigmotropism
cs = 100.0. (C) Mycelial growth in a fibreboard from a spore located at
(x = 0µm, y = 750mum, z = 750mum).

Another possible modelling scenario is the mycelial growth in an obstructed en-360

vironment (Fig. 8(B)). Cuboids of 0.75× 0.75× 0.3mm were evenly distributed on a
surface and the thigmotropism was applied at the surfaces of these cuboids. Hyphae
changed their extension direction to pass around the cuboids when they meet an ob-
stacle. Thigomotropism impacted hyphal growth in two ways. When the intensity of
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the thigmotropism is small, the change rate of the hyphal direction is low, leading to365

a reduction of the elongation rate and hence slightly decreasing the expansion of the
colony. We also noticed that some hyphae climbed onto the lateral side of the cuboids
even under the downward tropism since the thigmotropism can also greatly impact
hyphal elongation direction. If the thigmotropism is high enough, hyphae might
climb onto the cuboids. The experimental observation of the mycelial growth in this370

environment but with different materials for the cuboids is currently in progress to
develop a better understanding of the interaction of hyphae and obstacles and hence
to validate this mechanism in the model. The model can also be extended to sim-
ulate the mycelial growth in a more complex, fibrous medium (Fig. 8(C)). The real
morphology of a tiny block of fibreboard is visualized and reconstructed using nano-375

tomography and is then incorporated in the cubic lattice. A fungal spore is located
at the bottom of the block at (x = 0µm, y = 750mum, z = 750mum) from which
the mycelium had expanded. The mycelial growth is constrained in the fibreboard
assuming that the block border is covered by solid materials. Hyphae pass around
the fibres and explore the space gradually from the bottom to the top. A calibration380

experiment is also in progress in our laboratory. Based on the fungal distribution in
wood, the next step is to incorporate the translocation and degradation mechanisms
to model fungal decomposition of wood.

4. Conclusion

This paper proposes a lattice-based model able to simulate the 3D growth of fungi.385

It includes five fundamental biological mechanisms: hyphal elongation, branching,
anastomosis, unidirectional tropism and thigmotropism. The 3D model was de-
veloped from our previous 2D model and therefore inherits its particularity which
eliminates the restriction of the lattice configuration to hyphal elongation and con-
nection angle while maintaining the simple algorithm and high computing efficiency.390

Therefore, the mycelium generated by this model, even if confined to the lattice, is
very close to a realistic fungal network. This model was calibrated by experimental
data on the growth of Postia placenta on malt-extracted agar and focuses on the
investigation of the mycelial growth on a solid medium.

395

The 3D model provides a more realistic representation than the 2D model, both
in terms of mycelial morphology and biomass density. Indeed, the 3D model involves
biological mechanisms in a more realistic way and can better reproduce the growth
environment. As the environment is no longer homogeneous in 3D space, our ob-
jective is to clarify the interactions between hyphae and this environment which is400

heterogeneous in the z-direction. We found that two mechanisms, tropism towards
the surface and constraint of the emerging branching directions, are essential. The
tropism intensity should increase rapidly with the distance to the substrate. An
exponential expression was derived in this work. The constrained branching mech-
anism works particularly well when the tropism is low and very near the substrate405

and its effect is to limit the newly-generated hyphae inside a small band around the
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surface.

Due to higher computing efficiency (especially RAM but also CPU time) of the
2D model, it is still useful for modelling superficial growth of fungi. However, the410

3D model is essential for its application to configurations that the 2D model cannot
handle, such as the penetration of hyphae in a solid medium or growth in a porous
medium with complex morphology. Therefore, this model can be applied in studying
solid-state fermentation or mycelial growth in wood or fibreboard. Due to the lattice
structure, the actual wood morphology observed in nano-tomography can be directly415

integrated into our model. In the future, efforts should be made to study degradation
mechanisms by combining translocation in both directions of experimentation and
modelling.
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This appendix contains the figure showing the initial field, the simulation geom-
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[29] H. Watts, A. Véry, T. Perera, J. Davies, N. Gow, Thigmotropism and stretch-
activated channels in the pathogenic fungus Candida albicans , Microbiology
144 (Pt 3) (1998) 689–695. doi:10.1099/00221287-144-3-689.520

[30] J. Schumacher, P. Tudzynski, Morphogenesis and pathogenicity in fungi, Top.
Curr. Genet. 22 (2012) 243–264. doi:10.1007/978-3-642-22916-9.

22




