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We consider a Lévy driven stochastic convolution, also called continuous time Lévydriven moving average model X(t) = t 0 a(t -s)dZ(s) where Z is a Lévy martingale and the kernel a(.) a deterministic function square integrable on R + . Given N i.i.d. continuous time observations (Xi(t)) t∈[0,T ] , i = 1, . . . , N , distributed like (X(t)) t∈[0,T ] , we propose two types of nonparametric projection estimators of a 2 under dierent sets of assumptions. We bound the L 2 -risk of the estimators and propose a data-driven procedure to select the dimension of the projection space, illustrated by a short simulation study. July 14, 2021

Introduction

In this paper, we consider the continuous time moving average (CMA) process, also called stochastic convolution, (1)

X(t) = t 0 a(t -s)dZ(s)
where (Z(t)) t≥0 is a Lévy process such that EZ(1) = 0, EZ 2 (1) = 1 and the kernel a(.) : R + → R is a deterministic square integrable function. Our aim is the nonparametric estimation of a 2 (.) from i.i.d. observations (X i (t), t ∈ [0, T ], i = 1, . . . , N ) distributed as (X(t), t ∈ [0, T ]).

Thus, we deal with a sample of innite dimensional data. Such data are often encountered in various elds, e.g. in econometrics (panel data) and more generally in the eld of functional data analysis (FDA), see [START_REF] Hsiao | Analysis of panel data[END_REF], [START_REF] Ramsay | Applied functional data analysis: Methods and case studies[END_REF], Wang et al. (2016).

CMA processes have been largely studied in the past decades. Indeed, they provide a large class of stochastic processes including the classical continuous time ARMA (CARMA) processes and also more involved models such as fractional Lévy processes. Generally, stationary versions of (X(t)) t≥0 are investigated, i.e. Y (t) = +∞ -∞ a(t -s)dZ(s) (see e.g. Rajput and Rosinski (1989), [START_REF] Brockwell | Continuous-time ARMA processes. Stochastic processes: theory and methods[END_REF], [START_REF] Marquart | Fractional Lévy Processes with an Application to Long Memory Moving Average Processes[END_REF], [START_REF] Brockwell | Existence and uniqueness of stationary Lévy-driven CARMA processes[END_REF], [START_REF] Bender | Finite Variation of Fractional Lévy Processes[END_REF], [START_REF] Brockwell | High-frequency sampling and kernel estimation for continuous-time moving average processes[END_REF]). These processes are well tted to modelling various phenomena in elds such as econometrics and nance (see [START_REF] Comte | Long memory continuous time models[END_REF]) or electricity prices (see [START_REF] Klüppelberg | Electricity spot price modelling with a view towards extreme spike risk[END_REF]). [START_REF] Schnurr | Well-balanced Lévy driven Ornstein-Uhlenbeck processes[END_REF] study the so-called well-balanced Ornstein-Uhlenbeck process and its correlation structure and show that this model can be used (1) : Université de Paris, CNRS, MAP5, UMR 8145, F-75006 Paris, FRANCE, email: fabienne.comte@parisdescartes.fr, valentine.genon-catalot@mi.parisdescartes.fr. as volatility process in stochastic volatility models. Estimation properties are generally studied from the observation of one sample path in stationary regime (like (Y (t)) t≥0 (see e.g. [START_REF] Brockwell | High-frequency sampling and kernel estimation for continuous-time moving average processes[END_REF]). In the same framework, Belomestny et al. (2019) are interested in estimation of the Lévy characteristics of (Z(t)) t≥0 . In our contribution, stationarity of the process is not required: T is xed and N is large. To our knowledge, few papers are concerned with statistical properties in this context. In a previous paper (Comte and Genon-Catalot (2021)), we restrict our attention to Gaussian CMA processes, i.e. Z(t) = W (t) is a Wiener process and provide nonparametric projection estimators of the function a 2 (.). Proofs, especially for the data-driven procedure, strongly rely on the Gaussian character of (X(t)) t≥0 and cannot be straightforwardly extended to the case where (Z(t)) t≥0 is a Lévy process. The question of this extension is studied here. In Section 2, we precise the model and the assumptions. In Section 3, we dene two collections of projection estimators depending on whether X(t) is a semi-martingale or not. Relying on results of [START_REF] Basse | Lévy driven moving averages and semipartingales[END_REF], we establish that the distinction between these two cases is the same as when Z = W is a Brownian motion, i.e. when a(.) is continuously dierentiable on [0, +∞) or not. The projection spaces are either, for xed T , spaces generated by the trigonometric basis of L 2 ([0, T ]) or for large T spaces generated by the Laguerre basis of L 2 (R + ). Bounds for the L 2 -risk of the estimators are provided. A short discussion deals with the impact of discretization of observed paths on estimators' risk bound. In Section 4, we propose a datadriven procedure to select the dimension of the projection space and obtain risk bounds for the resulting estimator proving that it is adaptive in the sense that its risk automatically achieves the compromise between the squared bias and the variance. The ndings are illustrated through a short simulation study with Z a compound Poisson process. Proofs, especially of the adaptive result, are completely dierent from the ones in Comte and Genon-Catalot (2021). Section 5 states some concluding remarks. Section 6 contains proofs. Finally Section 7 gives the necessary recap on Laguerre functions, the Talagrand inequality on which relies our proof of Section 4 and the way to compute or bound moments of (X(t)) t≥0 .

Lévy driven moving averages

Consider a Lévy process (Z(t)) t≥0 with no Gaussian part and Lévy measure ν(dx) = n(x)dx satisfying

[H1]

R x 2 n(x)dx < +∞ and we assume that

R x 2 n(x)dx = 1.
The second part of [H1] is an identiability condition. Without it, we would estimate

R x 2 n(x)dx × a 2 (.)
. Below, we need stronger conditions near innity for the Lévy density summarized by :

[H2](p) k 2p := R x 2p n(x)dx < +∞.
We assume that the characteristic function of Z(t) is equal to:

Ee iuZ(t) = exp [t R e iux -1 -iux n(x)dx],
so that EZ(1) = 0, EZ 2 (1) = 1. Then, (Z(t)) is a Lévy martingale which can be written as:

Z(t) = (0,t] R
x(p(ds, dx) -dsn(x)dx),

where p(ds, dx) is the random Poisson measure associated with its jumps. We consider a càdlàg version of the Lévy moving average process:

(2)

X(t) = t 0 a(t -s)dZ(s)
where we aim at estimating g = a 2 under assumptions of type:

[H3](q) The function g(t) = a 2 (t) belongs to L q (R + ), i.e. +∞ 0 g q (s)ds = +∞ 0 a 2q (s)ds < +∞.

Assumptions [H1] and [H3]

(1) ensure the existence of (2) (see Section 6.1). Setting

(3)

G(t) = t 0 a 2 (s)ds = t 0 g(s)ds,
we have:

EX 2 (t) = t 0 R a 2 (t -s)dsx 2 n(x)dx = t 0 a 2 (u)du = G(t).
Two cases are to be distinguished:

(1) X(t) is a semi-martingale (more precisely, a (F Z t ) t≥0 -semimartingale where (F Z t ) t≥0 is the natural ltration of (Z t ) t≥0 ), (2) X(t) is not a semi-martingale. In Case (2), we cannot give sense to a stochastic integral t 0 H(s)dX(s) for a predictable process H(s). A sucient condition for case [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] to hold is stated in the following proposition. Proposition 1. Assume that t → a(t) belongs to C 1 ([0, +∞)). Then, (4)

X(t) = a(0)Z(t) + t 0 u 0 a (u -s)dZ(s) du, t ≥ 0.

Projection estimators on a fixed space.

We denote respectively by . T (resp. ., . T ) the norm (resp. the scalar product) of L 2 ([0, T ]) and . (resp. ., . ) the norm (resp. the scalar product) of L 2 (R + ). As a function of L 2 ([0, T ]) (resp. L 2 (R + )), when considering an orthonormal basis (ϕ j,T , j ≥ 0) (resp. (ϕ j , j ≥ 0) of these spaces, g may be developped into (5)

g = j≥0 θ j ϕ j,T (resp. g = j≥0 θ j ϕ j )
where θ j = g, ϕ j T (resp. θ j = g, ϕ j ). The estimation by projection method consists in dening estimators of the coecients θ j , say θj . A collection of projection estimators (ĝ m , m ≥ 0) is then by obtained by setting

ĝm = m j=0 θj ϕ j .
This requires rst the choice of appropriate orthonormal bases, second the choice of an adequate optimal or possibly data-driven m.

In this paragraph, we dene our bases and study the L 2 -risk of the projection estimators for xed m. According to the assumptions on the function a(.), dierent estimators of the coecients θ j are proposed. The optimal choice of m may be deduced from the risk bounds.

To build estimators of g, we use two collections of projection spaces.

(1) For xed T , we estimate g on [0, T ]. We dene the collection (S T rig m , m ≥ 0) of subspaces of L 2 ([0, T ]) where m is odd, generated by the orthonormal trigonometric basis (ϕ j,T ), ϕ 0,T (t) = 1/T 1 [0,T ] (t), ϕ 2j-1,T (t) = 2/T cos(2πjt/T )1 [0,T ] (t) and ϕ 2j,T (t) = 2/T sin(2πjt/T )1 [0,T ] (t) for j = 1, . . . , (m -1)/2. The following properties are useful

m-1 j=0 ϕ 2 j,T (t) = m T and T 0 ϕ 0,T (t)dt = √ T , T 0 ϕ j,T (t)dt = 0 for j = 0.
(2) For either T xed but large enough, or T tending to innity, we estimate g on R + . We dene the collection of subspaces of L 2 (R + ), generated by the orthonormal Laguerre basis (see Section 7.1): ( 6)

j (t) = √ 2L j (2t)e -t 1 t≥0 , j ≥ 0, L j (t) = j k=0 (-1) k j k t k k! .
We set S Lag m = span{ j , j = 0, . . . , m -1}, and the following holds

∀t ≥ 0, m-1 j=0 2 j (t) ≤ 2m and +∞ 0 j (t)dt = √ 2(-1) j .
3.1. Estimation of g = a 2 when (X(t)) t≥0 is a semimartingale. Here, we assume:

[H4] t → a(t) belongs to C 1 ([0, +∞)).
Lemma 1. Assume [H1], [H3](1) and [H4]. Denoting by θ j = g, ϕ j , we have

E +∞ 0 ϕ j (s)X(s -)dX(s) = 1 2 θ j -g(0) +∞ 0 ϕ j (s)ds , E   s≤T [∆X(s)] 2   = T g(0).
Relying on this lemma, we can set:

(7)

θ j = θ j (N, T ) = 2 1 N N i=1 T 0 ϕ j (s)X i (s -)dX i (s) + (g(0)) † T 0 ϕ j (s)ds.
where (g(0)) † is an estimator of g(0) equal to (8)

(g(0)) † = 1 T 1 N N i=1 s≤T (∆X i (s)) 2 .
The projection estimator of g on a xed space S m is given by:

g m = m-1 j=0 θ j ϕ j .
Remark 1. By the Ito formula with jumps, we have:

(9) - (0,T ] X 2 (s)ϕ j (s)ds = 2 (0,T ] ϕ j (s)X(s -)dX(s) + 0<s≤T ϕ j (s)(∆X(s)) 2 -ϕ j (T )X 2

T

where:

E 0<s≤t ϕ j (s)(∆X(s)) 2 = a 2 (0)E 0<s≤T ϕ j (s)(∆Z(s)) 2 = a 2 (0) T 0 ϕ j (s)ds.
This formula is useful to understand the link between θ j dened above and θ j dened in the second strategy below, but it only holds under [H4] (which is not assumed in the second case).

The following proposition gives a bound for the L 2 -risk of g m in the case of xed T and the trigonometric basis. 

E( g m -g 2 T ) ≤ g m -g 2 T + 16g(0)G(T ) m N + 8C 1,T T N + 2g 2 (0) k 4 N (10) 
where

C 1,T := 3(G 2 (T ) + G 2 1 (T )) + k 4 ( g 2 T + g 1 2 T )
and

k 4 = x 4 n(x)dx, g 1 = (a ) 2 , G 1 (.) = . 0 g 1 (s)ds.
Recall that G is dened in [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF], that g m denotes the orthogonal projection of g on S T rig m and that u 2

T = T 0 u 2 (s)ds.
Now, we give risk-bounds in case of an orthonormal basis of L 2 (R + ) and a special inequality for the Laguerre basis. 

If (ϕ j ) is an orthonormal basis of L 2 (R + ), for all T ≥ 1, N ≥ 1, m ≥ 0, we have E( g m -g 2 ) ≤ g m -g 2 + 16g(0)G(T ) m N + 8C 2,T T N + 2g 2 (0) k 4 N + +∞ T g 2 (s)ds (11) 
where

C 2,T := 3(G 2 (T ) + G 2 1 (T )) + k 4 ( g 2 + g 1 2 )]
If (ϕ j ) is the Laguerre basis of L 2 (R + ) and T ≥ 6m -3, then

E( g m -g 2 ) ≤ g m -g 2 + 8CC 2,T m 2 N + 16g(0)G(T ) m N + 2 N k 4 g 2 (0) (12) 
+C a 2 m exp (-12γ 2 m)

where C, C and γ 2 are positive constants depending on the basis only.

The bounds obtained in Propositions 2 and 3 contain three types of terms: the rst one is the usual squared bias term g m -g 2 due to the projection method, decreasing when m increases, the second one is the variance term, increasing with m, and the last ones are residuals.

Let us comment [START_REF] Brockwell | Existence and uniqueness of stationary Lévy-driven CARMA processes[END_REF] and [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF]. If g(0) = 0, the variance order in both cases is m/N . For choosing m, a compromise must be done between the rst two terms. If g(0) = 0, the variance term vanishes, and m must be chosen as large as possible. Note that this case corresponds to (X(t)) derivable.

The dierence between [START_REF] Brockwell | Existence and uniqueness of stationary Lévy-driven CARMA processes[END_REF] and [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] lies in the additional term +∞ T g 2 (s)ds. In (10), T is xed and the residual term has negligible order 1/N . In [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], T must be large enough for the additional term to be small, but not too much because the other residuals terms are of order T /N (see numerical results in Table 1 of Comte and Genon-Catalot (2021)).

The result in [START_REF] Comte | Non parametric estimation for i.i.d. Gaussian continuous time moving average models[END_REF] is specic to the Laguerre basis with T ≥ 6m -3. The variance order m 2 /N is larger but the residual terms do not depend on T (G(T ) is bounded). The choice of m relies on a compromise between g -g m 2 and m 2 /N . We can consider here the case where T → +∞: if, in addition to the condition g 1 < +∞, it holds that (a ) 2 ∈ L 1 (R + ), then C 2,T is bounded independently of T .

3.2. Estimation of g = a 2 when (X(t)) is not a semi-martingale. In this section, we assume that the basis functions are dierentiable on their support. The following Lemma allows to dene another estimator. Lemma 2. Assume that [H1], [H3](1) hold and that (ϕ j ) j is dierentiable on [0, T ], then

E T 0 ϕ j (s)X 2 (s)ds = ϕ j (T )G(T ) - T 0 g(u)ϕ j (u)du.
Therefore, we can set ( 13)

θ j = - 1 N N i=1 T 0 ϕ j (s)X 2 i (s)ds + ϕ j (T ) G(T ) and G(T ) = 1 N N i=1 X 2 i (T ). If ϕ j = ϕ j,T is the trigonometric basis, then ϕ 0,T (T ) = 1/ √ T , ϕ 2j-1,T (T ) = 2/T , ϕ 2j,T (T ) = 0, j ≥ 1.
Then we dene the estimator by

g m = m-1 j=0 θ j ϕ j .
We introduce the assumption:

[H5] 

Proposition 4. Assume [H1] and [H3](2).

• If (ϕ j = ϕ j,T ) the trigonometric basis, then

E( g m -g 2 T ) ≤ g m -g 2 T + 2 N (3G 2 (T ) + k 4 g 2 T ) 4π 2 m 2 T + m T . (14) 
• Let (ϕ j = j ) be the Laguerre basis.

Then, for all

T ≥ 1, N ≥ 1, m ≥ 0, E( g m -g 2 ) ≤ g m -g 2 + 4C 3,T m N + 4 T N (3G 2 (T ) + k 4 g 2 T ) + ∞ T g 2 (s)ds with C 3,T := 3G 2 (T ) + k 4 g 2 T + 2 T 0 s -1 [3G 2 (s) + k 4 g 2 s ]ds
where, if, in addition, [H5] holds,

T 0 s -1 [3G 2 (s) + k 4 g 2 s ]ds ≤ (3 + k 4 ) c 0 + log(T ) g 2 T .
If T ≥ 6(m -1) + 3 = 6m -3 and (ϕ j ) is the Laguerre basis, then

E( g m -g 2 ) ≤ g m -g 2 + c 1 (3G 2 (T ) + k 4 g 2 T ) m 3 N + c 2 a 2 m N exp (-12γ 2 m) (15) 
where c 1 , c 2 , γ 2 are constants depending on the basis only.

Comments on the bounds obtained in Proposition 4 are similar to the comments given after Proposition 2 and 3. Inequality ( 14) can be compared to [START_REF] Brockwell | Existence and uniqueness of stationary Lévy-driven CARMA processes[END_REF] and we mainly notice that the variance term increases from m/N to m 2 /N . Inequality [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] corresponds to [START_REF] Comte | Non parametric estimation for i.i.d. Gaussian continuous time moving average models[END_REF] with variance increase from m 2 /N to m 3 /N . These losses are due to the more general assumptions. In Inequality [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF], we can consider T → +∞.

Moreover, we refer to Section 3 of Comte and Genon-Catalot (2021) for a discussion on optimal theoretical choice of m and on rates of convergence that can be deduced from Propositions 2, 3 and 4, on dedicated function spaces: periodic Fourier-Sobolev spaces for the trigonometric basis and Sobolev-Laguerre spaces for the Laguerre basis.

3.3. About the impact of discretisations. It is now commonly admitted that a ne discrete sampling of continuous time processes can be obtained (high frequency data) which is very close to a continuous time record. This justies our sampling scheme.

However, even if it makes sense to consider the continuous time set-up to build up an estimation theory, it is important to quantify the impact of discretisations on our estimators and this is the aim of the result below.

We restrict our attention to the second type of estimators under assumptions [H0]-[H1]. Suppose we observe (X i (k∆), k = 1, . . . , n, i = 1, . . . , N ) with ∆ = ∆ n = T /n and consider the estimators

g ∆ m = m-1 j=0 θ ∆ j ϕ j , where (16) 
θ ∆ j = - 1 N N i=1 n k=1 ∆ϕ j (k∆)X 2 i (k∆) + ϕ j (T ) G(T ). Proposition 5. Assume [H0]-[H1]. Then, E g ∆ m -g 2 ≤ E g m -g 2 + C∆ 2 G 2 (T )(m 3 + m 5 ) + CEX 4 (T ) 1 N (∆ 2 m 5 + ∆m α )
with α = 2 for the trigonometric basis, α = 3 for the Laguerre basis.

Thus, the risk of the discretized estimator is incremented by terms of order of order ∆ 2 m 5 + ∆m 2 /N for the trigonometric basis and of order ∆ 2 m 5 + ∆m 3 /N for the Laguerre basis.

In the case of the trigonometric basis, assume that m 2 ≤ N so that the variance term of

E g m - g 2 is bounded. Then, if ∆ N -7/4 , ∆ 2 m 5 + ∆m 2 /N 1/N .
In the case of the Laguerre basis, assume that

m 3 ≤ N to bound the variance term of E g m -g 2 . Then, if ∆ N -4/3 , ∆ 2 m 5 + ∆m 3 /N 1/N .
4. Adaptation 4.1. Theoretical result. Considering the main terms of all risk bounds, we can see that a compromise must be done between the squared bias terms which decrease when m increases while the variance terms increase. In this section, we describe a procedure allowing for a data driven selection of m and we prove that the nal estimator reaches an eective tradeo in term of its integrated L 2 -risk bound. For sake of conciseness, we only study the procedure for g m and the trigonometric basis. Let M N = {m ∈ N, m 2 ≤ N T } be a collection of models such that the variance of g m is bounded and set [START_REF] Marquart | Fractional Lévy Processes with an Application to Long Memory Moving Average Processes[END_REF] 

m = arg min m∈M N -g m 2 + pen(m) ,
where, for a constant κ precised below,

pen(m) = κ log N m 2 N T EX 4 (T )
Theorem 1. Consider the collection of estimators g m in the trigonometric basis on [0, T ], with model selection m given by [START_REF] Marquart | Fractional Lévy Processes with an Application to Long Memory Moving Average Processes[END_REF]. Assume N ≥ 3, [H1], [H2](4) and [H3](4). Then, there exists a numerical constant κ 0 such that, for all κ ≥ κ 0 , the following holds:

E g m -g 2 ≤ inf m∈M N (3 g m -g 2 + 4pen(m)) + C log N N .
The inmum in the risk bound implies that the L 2 -risk of g m achieves automatically the best compromise between the square bias term and the variance term.

In practice, we replace the unknown term EX 4 (T ) in the penalty by its empirical estimator

N -1 N i=1 X 4 i (T )
. Theorem 1 can be extended to this substitution. For the implementation, the constant κ must be xed. It is standard that the numerical value for κ 0 given in the proof is too large. This is why it must rather be calibrated by preliminary simulation experiments; this is done in Section 5 of 

Short numerical illustration.

In this section we provide some elements about practical implementation of the method. To that aim, we consider the case where

Z(t) = N (t)
k=1 ξ k is a compound Poisson process with (N (t)) t≥0 a Poisson process with intensity λ and (ξ k , k ≥ 1) a sequence of i.i.d. random variables independent of the Poisson process (N (t)). We assume that

Eξ 1 = 0, Eξ 2 1 = σ 2 and λσ 2 = 1. If a(.) ∈ C([0, +∞)), then, X(t) = n:τn≤t a(t -τ n )ξ n
where (τ n ) is the sequence of jumps times of (N (t)). We have X(t) = 0 on (N (t) = 0) and

X(t) = n k=1 a(t -τ k )ξ k on (N (t) = n). Thus, X(t) = 0 for t ∈ [0, τ 1 ) X(t) = n k=1 a(t -τ k )ξ k for t ∈ [τ n , τ n+1 ), n ≥ 1.
The jump times of X are the sequence

(τ n , n ≥ 1) with X(τ - n ) = n-1 k=1 a(τ n -τ k )ξ k and X(τ n ) = n k=1 a(τ n -τ k )ξ k . The jump of X at τ n is ∆X(τ n ) = a(0)ξ n . If a(0) = 0, the process (X(t))
is continuous, see also [START_REF] Basse | Lévy driven moving averages and semipartingales[END_REF].

In practice, we took the ξ k 's as Gaussian N (0, σ 2 ), with λ = 8 and σ = 1/ √ λ. The observations are generated as

X(k∆) ≡ j,τ j ≤k∆ a(k∆ -τ j )ξ j for k = 1, . . . , n
with n = 100 random variables τ j in all cases; the parameters are such that τ n has order (slightly more than) 10 in all cases. Indeed we have T = 10 = n∆ with n = 2000 and ∆ = 0.1/20. The number of observations in the results presented here is N = 4000. We consider four functions: a function denoted by a 0 and functions a 2 , a 3 and a 7 borrowed from [START_REF] Comte | Non parametric estimation for i.i.d. Gaussian continuous time moving average models[END_REF] (in all cases, recall that

g i (t) = a 2 i (t)):
(1) a 0 (t) = (t -5)/ω 1/2 0 , so that g 0 (0

) = a 2 0 (0) = 0, ω 0 = √ 1250 is such that 10 0 g 2 0 (u)du = 1,
(2) a 2 (t) = (β(3, 3, t/10)/ω 1/2 2 ) 1/2 where β(p, q, x) is the density of a β(p, q) distribution at point x and ω 2 = 14.157 is such that

R + g 2 2 (u)du ≈ 1.
(3) a 4 (t) = 10b(6t)/(ω 4 ) 0.25 with b(t) = 0.3Γ(3, 2, t) + 0.7Γ (7, 4, t) where Γ(p, q, x) is the density of a Γ(p, q) distribution at point x and ω 4 = 0.03048 is such that

R + g 2 4 (u)du ≈ 1.
(4) a 7 (t) = t -0.125 e -t/5 , where

R + g 2 7 (u)du ≈ 2.
The estimators are computed in the trigonometric basis, relying on formula [START_REF] Comte | Long memory continuous time models[END_REF] for the coecients θ j of g m = m-1 j=0 θ j ϕ j,T for m ∈ {1, . . . , 45} where m selected with [START_REF] Marquart | Fractional Lévy Processes with an Application to Long Memory Moving Average Processes[END_REF] and κ = 0.2 in the penalty pen(m). Figures 1234illustrate the results obtained with the estimation algorithm. Left plots represent one path of t → X(t) on [0, 10], clearly it has jumps in Figure 1 for a 0 , a 0 (0) = 0 while it is continuous for a 2 and a 4 in Figures 23which are such that a 2 (0) = a 4 (0) = 0. Right plots show beams of 25 estimators for each function, with associated MISE given below. The mean of the selected dimensions are also given. They can be compared to the MISE and mean dimension of the best estimator among the collection called "oracle" because it is computed by using the knowledge of the true function. The orders of the MISEs are comparable to the oracles, the selected dimensions seem to be in all cases a little smaller than the oracle. This means that the penalty constant is probably slightly too large, but we kept the choice made in [START_REF] Comte | Non parametric estimation for i.i.d. Gaussian continuous time moving average models[END_REF]. Slight over-penalization is known to be more safe, at least compared to under-penalization, in term of MISEs orders. Left: example of one simulated path. Right: 25 estimated functions. MISE= 0.018 (oracles 0.016), mean of selected dimensions: 4.9 (of oracles 6.4). N = 4000, T = 10

Concluding remarks

In this paper, we study the nonparametric estimation of a 2 from i.i.d. observations (X i (t), t ∈ [0, T ]), i = 1, . . . , N ) distributed as [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]. We proceed by projection method on nite dimensional subspaces of L 2 (R + ). Two dierent types of estimators are proposed depending on whether (X(t)) t≥0 is a semi-martingale or not and a data-driven procedure is proposed for the most general type of estimators. In our previous paper (where Z = W a Wiener process, Comte and Genon-Catalot (2021)), proofs relied strongly on the Gaussian character of (X(t)). The extension to the Lévy case is not straightforward and relies on the general deviation inequality given in the Appendix. The case where the driving process (Z t ) is a more general Lévy process having a Brownian component and a jump component is also interesting. But then Z t = W t + L t with (W t ) a Brownian motion and (L t ) a pure-jump Lévy process and (W t ), (L t ) independent. Therefore, the observed process becomes X(t) = X W (t) + X L (t) where X W and X L are independent. Therefore, the study of the estimators based on X(t) can be deduced without much diculty of Left: example of one simulated path. Right: 25 estimated functions. MISE= 0.768 (oracle 0.722), mean of selected dimensions: 16.7 (of oracles 24.6). N = 4000, T = 10 the separate cases X = X W , X = X L that we have treated. From the theoretical and practical points of view, the questions of optimality of our estimators would be worth of investigation.

6. Proofs 6.1. Proof of the existence of (2).

Ee iuZ(t) = exp t[iuγ + R e iux -1 -iux1 |x|≤1 n(x)dx],
where γ = -R x1 |x|>1 n(x)dx and EZ(1

) = 0 = γ + R x1 |x|>1 n(x)dx.
According to Rajput and Rosi«ski (1989) (Theorem 2.7), see also [START_REF] Basse | Lévy driven moving averages and semipartingales[END_REF], the existence of ( 2) is ensured if and only if, for all t, the following conditions hold:

t 0 R x 2 a 2 (s) ∧ 1 dsn(x)dx < ∞, t 0 a(s) γ + R x(1 |xa(s)|≤1 -1 |x|≤1 )n(x)dx ds < ∞.
Note that:

+∞ 0 R x 2 a 2 (s) ∧ 1 dsn(x)dx ≤ +∞ 0 a 2 (s)ds x 2 n(x)dx.
For the second one, we have: 

t 0 a(s) γ + R x(1 |xa(s)|≤1 -1 |x|≤1 )n(x)
(18) t 0 [-1,1] (xa (s)) 2 ∧ |xa (s)| n(x)dxds < ∞

We have under [H1], [H3](1), [H3](2) and [H4]

t 0 [-1,1] (xa (s)) 2 ∧ |xa (s)| n(x)dxds ≤ t 0 (a (s)) 2 R x 2 n(x)dx < ∞ So (18) holds. If (Z(t)) is of bounded variation (which is equivalent to |x|n(x)dx < ∞), (X(t))
is an (F Z t ) t≥0 -semimartingale if and only if it is of bounded variation which is equivalent to a is of bounded variation. If (Z(t)) is of unbounded variation and (X(t)) is an (F Z t ) t≥0 -semimartingale, it can be decomposed as : As

X(t) = a(0)Z(t) + t 0 u 0 a (u -s)dZ(s) du, t ≥ 0,
E +∞ 0 ϕ j (s)X(s -)dZ(s) 2 = +∞ 0 ϕ 2 j (s)EX 2 (s)ds × R x 2 n(x)dx = +∞ 0 ϕ 2 j (s)G(s)ds ≤ a 2 < +∞,

E

+∞ 0 ϕ j (s)X(s -)dZ(s) = 0 and the rst equality follows by: The second equality is proved. 2 6.4. Proof of Proposition 2. Note that for functions on S m,T , the norms . T and . are identical.

E +∞ 0 ϕ j (s)X(s -)dX(s) = +∞ 0 ϕ j (s) s 0 a(s -u)a (s -u)du ds = 1 2 +∞ 0 ϕ j (s)(a 2 (s) -a 2 (0))ds.
When (ϕ j ) = (ϕ j,T ) is the trigonometric basis on [0, T ], θ j is an unbiased estimator of θ j . This implies E g m -g 2

T = E g m -E g m 2 + g m -g 2 T .
We have, setting X = X 1 , and using that

m-1 j=0 T 0 ϕ j (s)ds 2 ≤ T , E g m -E g m 2 ≤ 2 N m-1 j=0 Var 2 T 0 ϕ j (s)X(s -)dX(s) + 2T N Var   1 T s≤T (∆X(s)) 2   ≤ 2 N m-1 j=0 E 2 T 0 ϕ j (s)X(s -)dX(s) 2 + 2T N Var   1 T s≤T (∆X(s)) 2   .
We have:

T 0 ϕ j (s)X(s -)dX(s) 2 ≤ 2g(0) T 0 ϕ j (s)X(s -)dZ(s) 2 + 2 T 0 ϕ j (s)X(s)Y (s)ds 2 where Y (s) = s 0 a (s -u)dZ(u). Next, E T 0 ϕ j (s)X(s -)dZ(s) 2 = T 0 ϕ 2 j (s)E(X 2 (s))ds ≤ G(T ). Since (ϕ j ) = (ϕ j,T ) is an orthonormal basis of L 2 ([0, T ]), m-1 j=0 E T 0 ϕ j (s)X(s)Y (s)ds 2 = E   m-1 j=0 T 0 ϕ j (s)X(s)Y (s)ds 2   ≤ E T 0 X 2 (s)Y 2 (s)ds.
We use that x 2 y 2 ≤ (x 4 + y 4 )/2 and (see section 7.3)

EX 4 (s) = 3 s 0 a 2 (u)du 2 + s 0 a 4 (u)du x 4 n(x)dx = 3G 2 (s) + k 4 s 0 a 4 (u)du. (19) 
Analogously, setting G 1 (s) = s 0 (a ) 2 (u)du, we obtain:

EY 4 (s) = 3[G 1 (s)] 2 + k 4 s 0 (a (u)) 4 du.
It remains to study

E 1 T s≤T (∆X(s)) 2 2 = T -2 a 4 (0)E s≤T (∆Z(s)) 2 2
. By the exponential formula (see e.g. Revuz and Yor, 1999, Chap. XII, Prop. 1.12), ( 20)

E exp [iu s≤T (∆Z(s)) 2 ] = exp [T R (e iux 2 -1)n(x)dx].
We deduce: Var 1 T s≤T (∆X(s)) 2 = k 4 a 4 (0)/T = k 4 g 2 (0)/T . 2 6.5. Proof of Proposition 3. Consider a basis (ϕ j ) of L 2 (R + ) with arbitrary support. We have E θ j = θ j -+∞ T g(s)ϕ j (s)ds so that g m -g = g m -E g m + E g m -g m + g m -g and this implies

E g m -g 2 = g m -g 2 + E g m -E g m 2 + E g m -g m 2 .
The rst term is the usual bias term due to the projection method. The middle term is a variance term which can be treated as in the previous proposition. The last term is an additional bias term, due to the truncation of the integrals. We have:

(21) E g m -g m 2 = m-1 j=0 (E θ j -θ j ) 2 = m-1 j=0 +∞ T g(s)ϕ j (s)ds 2 ≤ +∞ T g 2 (s)ds,
Therefore, we get the rst inequality of Proposition 3. If (ϕ j ) is the Laguerre basis, we bound the variance term E g m -E g m 2 and the additional bias term E g m -g m 2 dierently. For the variance term, we write:

E T 0 ϕ j (s)X(s)Y (s)ds 2 = [0,T ] 2 ϕ j (s)ϕ j (u)E[X(s)Y (s)X(u)Y (u)]dsdu ≤ [0,T ] 2 |ϕ j (s)ϕ j (u)| E[(X(s)Y (s)) 2 ]E[(X(u)Y (u)) 2 ] 1/2 dsdu = T 0 |ϕ j (s)| E[(X(s)Y (s)) 2 )] 1/2 ds 2 . ( 22 
)
We use the following bound proved in section 6.4:

2EX 2 (s)Y 2 (s)ds ≤ EX 4 (s) + EY 4 (s) ≤ 3(G 2 (T ) + G 2 1 (T )) + k 4 ( g 2 T + g 1 2 T )
There remains to bound T 0 |ϕ j (s)|ds. This is done in [START_REF] Comte | Non parametric estimation for i.i.d. Gaussian continuous time moving average models[END_REF], see Formulae (31)-(32). For j = 0, . . . , m -1 and T ≥ 6(m -1) + 3 = 6m -3, we have Also by (33) in [START_REF] Comte | Non parametric estimation for i.i.d. Gaussian continuous time moving average models[END_REF], we have, for the additional bias term, (24)

m-1 j=0 +∞ T ϕ j (s)g(s)ds 2 a 2 m exp (-12γ 2 m),
where γ 2 is a constant depending on the Laguerre basis only, see Section 7. Therefore, the proof of Proposition 3 is complete. 2 6.6. Proof of Lemma 2. We have

E T 0 ϕ j (s)X 2 (s)ds = T 0 ϕ j (s) s 0 g(s -u)du ds = T 0 ϕ j (s)G(s)ds = [ϕ j (s)G(s)] T 0 -g, ϕ j T = ϕ j (T )G(T ) -g, ϕ j T
which is the result. 2 6.7. Proof of Proposition 4. Assume that (ϕ j = ϕ j,T ) is the trigonometric basis. Then, θ j is an unbiased estimator of θ j . We only need to study the variance term of the risk.

E g m -E g m 2 T ≤ 2 N   m-1 j=0 E T 0 ϕ j,T (s)X 2 (s)ds 2 + m-1 j=0 ϕ 2 j,T (T )EX 4 (T )  
where EX 4 (T ) = 3(G 2 (T ) + k 4 g 2 T ) and m-1 j=0 ϕ 2 j (T ) = m/T . We have (25

) ϕ 0,T (s) = 0, ϕ 2j,T (s) = (2πj/T )ϕ 2j-1,T (s), ϕ 2j-1,T (s) = -(2πj/T )ϕ 2j,T (s), j ≥ 1.
Using that (ϕ j,T ) is an orthonormal basis, we obtain, as EX 4 (s) ≤ EX 4 (T ) (see [START_REF] Ramsay | Applied functional data analysis: Methods and case studies[END_REF]),

m-1 j=0 E T 0 ϕ j,T (s)X 2 (s)ds 2 ≤ 4π 2 m 2 T 2 E T 0 X 4 (s)ds ≤ (3G 2 (T ) + k 4 g 2 T ) 4π 2 m 2 T .
This gives [START_REF] Hsiao | Analysis of panel data[END_REF]. Now, assume that (ϕ j = j ) is the Laguerre basis on L 2 (R + ) (see Section 7). We still have:

E( g m -g 2 ) = E g m -E g m 2 + E g m -g m 2 + g m -g 2 .
First,

E g m -Eg m 2 = 1 N m-1 j=0 Var T 0 j (s)X 2 1 (s)ds -X 2 1 (T ) j (T ) ≤ 2 N m-1 j=0 E T 0 j (s)X 2 1 (s)ds 2 + 2 N m-1 j=0 2 j (T )E[X 4 1 (T )] := T 1 + T 2 .
Using that

| j | ≤ √ 2, we get T 2 ≤ 4(3G 2 (T ) + k 4 g 2 T ) m N .
Next, we use that the Laguerre basis satises 0 (x) = -0 (x) and j (x) =j (x)-2j/x (1) j-1 (x)

for j ≥ 1 where ( (1) k (x), k ≥ 0) is the Laguerre basis with index 1 (see section 7) to nd

T 1 ≤ 4 N m-1 j=0 E T 0 j (s)X 2 1 (s)ds 2 + 4 N m-1 j=1 E   T 0 (1) j-1 (s) 2j s X 2 1 (s)ds 2   ≤ 4 N E T 0 X 4 1 (s)ds + 8m N E T 0 X 4 1 (s) s ds ≤ 4 N T (3G 2 (T ) + k 4 g 2 T ) + 8m N 3 T 0 s -1 [G 2 (s) + k 4 g 2 s ]ds
where we have used [START_REF] Ramsay | Applied functional data analysis: Methods and case studies[END_REF]. Finally, the variance term is bounded by

E g m -Eg m 2 ≤ 4 N T (3G 2 (T ) + k 4 g 2 T ) + 8m N 3 T 0 s -1 [G 2 (s) + k 4 g 2 s ]ds + 4m N (3G 2 (T ) + k 4 g 2 T )).

Using [H5] and writing

T 0 • • • = 1 0 • • • + T 1 .
. . , we get

3 T 0 s -1 [G 2 (s) + k 4 g 2 s ]ds ≤ (3 + k 4 )(c 0 + log(T ) g 2 T ).
If [H5] does not hold and T ≥ 6m -3, we can bound dierently the variance and bias terms. Proceeding as in [START_REF] Comte | Non parametric estimation for i.i.d. Gaussian continuous time moving average models[END_REF], proof of Proposition 3, we have

m-1 j=0 E T 0 j (s)X 2 (s)ds 2 ≤ (3G 2 (T ) + k 4 g 2 T )    T 0   m-1 j=0 ( j (s)) 2   1/2 ds    2
Still using [START_REF] Comte | Non parametric estimation for i.i.d. Gaussian continuous time moving average models[END_REF], we have

   T 0   m-1 j=0 ( j (s)) 2   1/2 ds    2 ≤ 12m 3 + 4m 3 γ 2 2 exp (-(12m -6)γ 2 ).
Finally, we get

(26) E gm -Eg m 2 ≤ 1 N (3G 2 (T ) + k 4 g 2 T ) 12m 3 + 4m 3 γ 2 2 exp (-(12m -6)γ 2 )
So, we have the two variance bounds. Next, we have

E θ j = θ j -j (T )G(T ) -+∞ T j (s)g(s)ds. Therefore E g m -g m 2 = m-1 j=0 [E( θ j ) -θ j ] 2 = m-1 j=0 j (T )G(T ) + +∞ T j (s)g(s)ds 2 ≤ 2G 2 (T ) m-1 j=0 2 j (T ) + 2 m-1 j=0 +∞ T j (s)g(s)ds 2 a 2 m exp(-12γ 2 m) + a 2 m exp(12γ 2 m),
Indeed j (T ) exp(-12γ 2 m) for T ≥ 6m -3 (rst term) and we use (24) (second term). For both, we use G(T ) ≤ G(+∞) = a 2 . 2 6.8. Proof of Theorem 1. Note that, as G(0) = 0, h, g T = h(T )G(T ) -h , G T . Let us set:

γ N,T (h) = h 2 + 2 N N i=1 [ T 0 h (u)X 2 i (u)du -h(T )X 2 i (T )].
We have

g m = arg min h∈Sm γ N,T (h), γ N,T ( g m ) = -g m 2 and γ N,T (h) = h 2 -2 h, g T -2ν N,T (h) -2µ N,T (h) 
where

(27) ν N,T (h) = - 1 N N i=1 T 0 h (u)[X 2 i (u) -G(u)]du, µ N,T (h) = 1 N N i=1 h(T )(X 2 i (T ) -G(T )).
Therefore,

γ N,T (h 1 ) -γ N,T (h 2 ) = h 1 -g 2 -h 2 -g 2 -2ν N,T (h 1 -h 2 ) -2µ N,T (h 1 -h 2 )
Using the denition of m, we have for all g m ∈ S m , γ N,T (g m ) + pen( m) ≤ γ N,T ( g m ) + pen(m).

We deduce, for ξ N,T = ν N,T + µ N,T ,

g m -g 2 ≤ g m -g 2 + 2ξ N,T ( g m -g m ) + pen(m) -pen( m) Let B m = {h ∈ S m , h ≤ 1}. We use that 2ξ N,T (g m -g m ) ≤ 1 4 g m -g m 2 + 4 sup h∈B m∨m ξ 2 N,T (h) ≤ 1 2 ( g m -g 2 + g -g m 2 ) + 4 sup h∈B m∨m ξ 2 N,T (h) ≤ 1 2 ( g m -g 2 + g -g m 2 ) + 8 sup h∈B m∨m (ν 2 N,T (h) + µ 2 N,T (h))
Recall that E[X 2 i (u)] = G(u). For θ a constant to be chosen below, we can split ν N,T (h) into:

(28)

ν N,T,θ (h) = - 1 N N i=1 T 0 h (u)[X 2 i (u)1 X 2 i (u)≤θ -E(X 2 i (u)1 X 2 i (u)≤θ )]du (29) 
ν c N,T,θ (h) = - 1 N N i=1 T 0 h (u)[X 2 i (u)1 X 2 i (u)>θ -E(X 2 i (u)1 X 2 i (u)>θ )]du
Analogously, we dene µ N,T,θ (h) and µ c N,T,θ (h) by splitting µ N,T (h).

Introducing quantities p 1 (m, m ) and p 2 (m, m ) to be determined below, we write:

1 2 g m -g 2 ≤ 3 2 g m -g 2 + 16 sup h∈B m∨m [ν c N,T,θ (h)] 2 + 16 sup h∈B m∨m [µ c N,T,θ (h)] 2 +pen(m) -pen( m) +16p 1 (m, m) + 16( sup h∈B m∨m ν 2 N,T,θ (h) -p 1 (m, m)) +16p 2 (m, m) + 16( sup h∈B m∨m µ 2 N,T,θ (h) -p 2 (m, m))
Below, p 1 (m, m ) and p 2 (m, m ) are chosen such that, for κ greater than a well chosen constant κ 0 , for all m, m , 16(p 1 (m, m ) + p 2 (m, m )) ≤ pen(m) + pen(m ) implying that

16(p 1 (m, m) + p 2 (m, m)) + pen(m) -pen( m) ≤ 2pen(m).
And we bound the expectation of the other terms.

Lemma 3. Under Assumptions [H1], [H2](2+p) and [H3](2+p), we have: 

E sup h∈Sm, h ≤1 [ν c N,T,θ (h)] 2 ≤ 4π 2 m 2 N T 1 θ p G 2+p (T ) + k 4+2p T 0 a 4+2p (u)du . E sup h∈Sm, h ≤1 [µ c N,T,θ (h)] 2 ≤ m N T 1 θ p G 2+p (T ) + k 4+2p
E sup h∈S M N , h ≤1 [ν c N,T,θ (h)] 2 + E sup h∈S M N , h ≤1 [µ c N,T,θ (h)] 2 log(N ) N . Lemma 4. Under [H1], [H2](4) and [H3](4), choosing θ = c √ N / log(N ), c = cE 1/2 [X 4 (T )], c = √ 2/21, we have for p 1 (m, m ) = 2(1 + 18 log(N ))E(X 4 (T )) 4π 2 (m ∨ m ) 2 N T , p 2 (m, m ) = 2(1 + 18 log(N ))E(X 4 (T )) m ∨ m N T , E sup h∈B m∨m ν 2 N,T,θ (h) -p 1 (m, m) + 1 N , E sup h∈B m∨m µ 2 N,T,θ (h) -p 2 (m, m) + 1 N .
Therefore, using (30) and Lemma 4, we can conclude that for

κ ≥ κ 0 = 16 × 2 × 19 × 8π 2 , pen(m) -pen( m) + 16(p 1 (m, m) + p 2 (m, m)) ≤ 2pen(m), we obtain E g m -g 2 ≤ 3 g m -g 2 + 4pen(m) + C( 1 N + log(N ) N ).
The proof of Theorem 1 is now complete.2

Proof of Lemma 3.

E sup h∈Sm, h ≤1 [ν c N,T,θ (h)] 2 ≤ m-1 j=0 E[ν c N,T,θ (ϕ j,T )] 2 = 1 N m-1 j=0 Var T 0 ϕ j,T (u)X 2 1 (u)1 X 2 1 (u)>θ ≤ 1 N m-1 j=0 E T 0 ϕ j,T (u)X 2 1 (u)1 X 2 1 (u)>θ du 2 ≤ 4π 2 m 2 N T 2 E T 0 X 4 (u)1 X 2 1 (u)>θ du , see (25) 
. Then, for all p ≥ 1 , we get

E sup h∈Sm, h ≤1 [ν c N,T,θ (h)] 2 ≤ 4π 2 m 2 N T 2 1 θ p E T 0 X 4+2p (u)du ≤ 4π 2 m 2 N T 1 θ p G 2+p (T ) + k 4+2p T 0 a 4+2p (u)du ,
where the last bound is obtained by Kunita's Inequality, see Section 7. In the same way, we get

E sup h∈Sm, h ≤1 [µ c N,T,θ (h)] 2 ≤ m-1 j=0 E[µ c N,T,θ (ϕ j,T )] 2 ≤ 1 N m-1 j=0 E ϕ j,T (T )X 2 (T )1 X 2 1 (T )>θ 2 = m N T E X 4 (T )1 X 2 1 (T )>θ ≤ m N T 1 θ p G 2+p (T ) + k 4+2p T 0 a 4+2p (u)du .
This is the second bound of Lemma 3 and the proof of Lemma 3 is complete.2

Proof of Lemma 4. First note that

E sup h∈B m∨m ν 2 N,T,θ (h) -p 1 (m, m) + ≤ m ∈M N E sup h∈B m∨m ν 2 N,T,θ (h) -p 1 (m, m ) +
To bound each term of the sum above, we apply the Talagrand Inequality recalled in Theorem 2 (Appendix). Note that ν N,T,θ (h

) = 1 N N i=1 [f h (X i ) -E(f h (X i ))]
where, for x ∈ D([0, T ]), the space of real valued right-continuous with left-hand limits functions (càdlag) dened on [0, T ],

f h (x) = - T 0 h (u)[x 2 (u)1 x 2 (u)≤θ ]du.
Recall that B m = {h ∈ S m , h ≤ 1}. We need bound sup h∈Bm,x∈D([0,T ]) |f h (x)|. We have:

sup h∈Bm,x∈D([0,T ]) |f h (x)| ≤ θ sup h∈Bm T 0 |h (u)|du ≤ θ sup h∈Bm √ T T 0 (h (u)) 2 du 1/2 . For h ∈ B m , T 0 (h (u)) 2 du ≤ T 0   m-1 j=0 a j 2πj T ϕ j±1,T (u)   2 du ≤ 4π 2 m 2 T 2 .
So we set

M (m) = M = θ 2πm √ T .
Then, we bound sup h∈Bm [ν N,T,θ (h)] 2 . We have

sup h∈Bm [ν N,T,θ (h)] 2 ≤ m-1 j=0 [ν N,T,θ (ϕ j,T )] 2 = 1 N m-1 j=0 Var T 0 ϕ j,T (u)X 2 1 (u)1 X 2 1 (u)<θ du ≤ 1 N m-1 j=0 E T 0 ϕ j,T (u)X 2 1 (u)1 X 2 1 (u)<θ du 2 ≤ 4π 2 m 2 N T E(X 4 (T ))
where E(X 4 (T )) = 3G 2 (T ) + k 4 T 0 a 4 (u)du. We set

H 2 (m) = H 2 = 4π 2 m 2 N T E(X 4 (T )).
Now, we bound

V := sup h∈Bm Var T 0 h (u)X 2 1 (u)1 X 2 1 (u)<θ du ≤ sup h∈Bm E T 0 h (u)X 2 1 (u)1 X 2 1 (u)<θ du 2 .
Proceeding as previously, we get that the above term is less than

V ≤ sup h∈Bm T 0 [h (u)] 2 duT E[X 4 (T )] ≤ 4π 2 m 2 T 2 E[X 4 (T )] := v 2 (m) = v 2 .
Therefore, N H 2 = v 2 , N H/M = √ N E 1/2 (X 4 (T ))θ -1 . First, using the Talagrand inequality with our values of

M (m ∨ m ), H(m ∨ m ), v 2 (m ∨ m ), we bound E sup h∈B m ∨m ν 2 N,T,θ (h) -p 1 (m, m ) + .
We take

θ = cE 1/2 (X 4 (T )) √ N log(N ) , 2 = 3 2 log(N ) K 1 = 9 log(N ), p 1 (m, m ) = 2(1 + 2 2 )H 2 (m ∨ m ).
Thus,

v 2 (m ∨ m ) N exp -K 1 N H 2 (m ∨ m ) v 2 (m ∨ m ) (m ∨ m ) 2 N e -(3/2) log(N ) 1 N 3/2
and,

M 2 (m ∨ m ) C 2 ( 2 )N 2 e - 2K 1 C( 2 ) 7 √ 2 N H(m∨m ) M (m∨m ) 1 log(N ) exp(-(3/2) log(N )) 1 N 3/2 for C( 2 ) = 1 and c = √ 2/21. Theorem 2 (Appendix) implies m ∈M N E sup h∈S m , h =1 ν 2 N,T,θ (h) -p 1 (m, m ) + 1 N .
We proceed analogously to bound E sup h∈B m∨m µ 2 N,T,θ (h) -p 2 (m, m )

+ . We set µ N,T,θ (h) = 1 N N i=1 [g h (X i ) -E(g h (X i ))]
where, for x ∈ D([0, T ]), g h (x) = h(T )x 2 (T )1 x 2 (T )≤θ ]. We have Next,

E sup h∈Bm [µ N,T,θ (h)] 2 ≤ 1 N m-1 j=0 (ϕ j,T (T )) 2 E(X 4 (T )) = m N T E(X 4 (T )) := H 2 (m).
Last

sup h∈Bm Var h(T )X 2 1 (T )1 X 2 1 (T )<θ ≤ (m/T )E(X 4 (T )) := v 2 (m).
When choosing p 2 (m, m ) = 2(1 + 18 log N )(m ∨ m )/N T )E(X 4 (T )), and proceeding as above with Theorem 2 (see Appendix), we obtain the second part of Lemma 4. 2 6.9. Proof of Proposition 5. To prove Proposition 5, we need the following Lemma.

Lemma 5. Under[H0]-[H1],

E (X(t + h) -X(t)) 2 ≤ h 2 a 2 + a 2 ∞ h ≤ Ch.
Proof of Lemma 5. We write:

X(t + h) -X(t) = t 0 (a(t + h -u) -a(t -u))dZ(u) + t+h t a(t + h -u)dZ(u).
Thus, as x 2 n(x)dx = 1,

E (X(t + h) -X(t)) 2 = t 0 (a(t + h -u) -a(t -u)) 2 du + t+h t a 2 (t + h -u)du.
We have t+h t

a 2 (t + h -u)du ≤ h a 2 ∞ and t 0 (a(t + h -u) -a(t -u)) 2 du = t 0 (a(h + v) -a(v)) 2 dv = h 2 t 0 [ 1 0 a (v + τ h)dτ ] 2 dv ≤ h 2 1 0 dτ t 0 [a (v + τ h)] 2 dv ≤ h 2 a 2 . 2 Proof of Proposition 5. We have g ∆ m -g = g ∆ m -g m + g m -g. Thus, E g ∆ m -g 2 = E g m -g 2 + E g ∆ m -g m 2 where E g ∆ m -g m 2 = m-1 j=0 E( θ ∆ j -θ j ) 2 + m-1 j=0 Var ( θ ∆ j -θ j ) = m-1 j=0 b 2 j + 1 N S j , b j = n k=1 k∆ (k-1)∆ (ϕ j (s)G(s) -ϕ j (k∆)G(k∆))ds and S j = E n k=1 k∆ (k-1)∆ (ϕ j (k∆)X 2 (k∆) -ϕ j (s)X 2 (s))ds 2 .
We split b j = b (1) j + b

(2) j by splitting

ϕ j (s)G(s) -ϕ j (k∆)G(k∆) = (ϕ j (s) -ϕ j (k∆))G(s) + ϕ j (k∆)(G(s) -G(k∆)).
We have:

b

j = - n k=1 k∆ (k-1)∆ G(s) k∆ s ϕ j (u)duds = - n k=1 k∆ (k-1)∆ ϕ j (u) u (k-1)∆ G(s)dsdu. (1) 
This yields |b (1) 

j | ≤ G(T )∆ T 0 |ϕ j (u)|du.
For the Laguerre basis, we apply relation (34) and get, after reordering terms,

ϕ j = ϕ j + 4 j-1 k=0 ϕ k + 4 j-2 =0 (j -1 --1)ϕ . Using that, for T ≥ 6m -3, ϕ j ≤ exp (-γ 2 s) yields T 6m-3 |ϕ j (u)|du ≤ γ -1 2 4j 2 exp (-γ 2 (6m -3)).
And,

( 6m-3 0 |ϕ j (u)|du) 2 ≤ (6m -3) +∞ 0 [ϕ j (u)] 2 du ≤ Cj 3 (6m -3).
Thus, m-1 j=0 (b 

Thus, |b

j | ≤ C∆j T 0 g(u)du. Therefore, m-1 j=0 (b (2) 
j ) 2 ≤ CG 2 (T )∆ 2 m 3 . The same bounds hold for the trigonometic basis. Now, we split S j into S (1) 

j + S (2) j by splitting ϕ j (k∆)X 2 (k∆) -ϕ j (s)X 2 (s) = (ϕ j (k∆) -ϕ j (s))X 2 (k∆) + ϕ j (s)(X 2 (k∆) -X 2 (s)).
We have:

S (1) j = E k, X 2 (k∆)X 2 ( ∆) k∆ (k-1)∆ ∆ ( -1)∆ ϕ j (u)ϕ j (v)(u -((k -1)∆)(v -((k -1)∆)dudv ≤ ∆ 2 n k=1 [E(X 4 (k∆)] 1/2 k∆ (k-1)∆ |ϕ j (u)|du 2 ≤ ∆ 2 EX 4 (T )) T 0 |ϕ j (u)|du 2 . If T ≥ 6m -3, j S (1) j ≤ C∆ 2 EX 4 (T ))m 5 .
For S (2) j , we can write:

j S (2) 
j = j E n k=1 k∆ (k-1)∆ ϕ j (s)ds(X 2 (k∆) -X 2 (s))ds 2 = n k, =1 k∆ (k-1)∆ ∆ ( -1)∆ j E ϕ j (s)(X 2 (k∆) -X 2 (s))ϕ j (u)(X 2 ( ∆) -X 2 (u)) dsdu ≤ n k, =1 k∆ (k-1)∆ ∆ ( -1)∆   E j (ϕ j (s)) 2 (X 2 (k∆) -X 2 (s)) 2 E j (ϕ j (u)) 2 (X 2 ( ∆) -X 2 (u)) 2   1/2 dsdu =    k k∆ (k-1)∆   E j (ϕ j (s)) 2 (X 2 (k∆) -X 2 (s)) 2   1/2 ds    2 2∆EX 4 (T )   T 0 [ j (ϕ j (s)) 2 ] 1/2 ds   2 24m 3 ∆EX 4 (T ) + o(m 3 )
a bound obtained previously when (ϕ j ) is the Laguerre basis (Proposition 3 of Comte and Genon-Catalot (2021)). When (ϕ j ) is the trigonometric basis, 

  T 0 [ j (ϕ j (s)) 2 ] 1/2 ds   2 ≤ 4π 2 m 2 . 2 7 
L (δ) k (x) = 1 k! e x x -δ d k dx k x δ+k e -x = k j=0 k + δ k -j (-x) j j! .
The following holds:

(31) L (δ) k (x) = -L (δ+1) k-1 (x), for k ≥ 1, and +∞ 0 L (δ) k (x) 2 x δ e -x dx = Γ(k + α + 1) k! .
We consider the Laguerre functions with index δ, given by (32)

(δ) k (x) = 2 (δ+1)/2 k! Γ(k + δ + 1) 1/2 L (δ) k (2x)e -x x δ/2 .

The family ( (δ)

k ) k≥0 is an orthonormal basis of L 2 (R + ). For δ = 0, we set L (0) k = L k , ϕ (0) k = k . Using (31), we obtain for j ≥ 1:

(33)

j (x) = -j (x) - 2j x (1) 
j-1 (x).

The following properties hold for the j 's. For all x ≥ 0,

| j (x)| ≤ √ 2, +∞ 0 j (x)dx = √ 2(-1) j , j ≥ 0, (34) 
0 (x) = -0 (x), j (x) = -j (x) -2 j-1 k=0 k (x), j ≥ 1.
Moreover, the following asymptotic formulae can be found in [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF]. For ν = 4k + 2, and k large enough

| k (x/2)| ≤ C                a) 1 if 0 ≤ x ≤ 1/ν b) (xν) -1/4 if 1/ν ≤ x ≤ ν/2 c) ν -1/4 (ν -x) -1/4 if ν/2 ≤ x ≤ ν -ν 1/3 d) ν -1/3 if ν -ν 1/3 ≤ x ≤ ν + ν 1/3 e) ν -1/4 (x -ν) -1/4 e -γ 1 ν -1/2 (x-ν) 3/2 if ν + ν 1/3 ≤ x ≤ 3ν/2 f ) e -γ 2 x if x ≥ 3ν/2
where γ 1 and γ 2 are positive and xed constants. 7.2. A useful inequality. We recall the Talagrand inequality. The result below follows from the Talagrand concentration inequality given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] and arguments in Birgé and Massart (1998) [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] (see the proof of their Corollary 2 page 354). By standard density arguments, this result can be extended to the case where F is a unit ball of a linear normed space, after checking that f → ν n (f ) is continuous and F contains a countable dense family. Proof of Proposition 6. Consider rst the case where Z(t) = N (t) i=1 ξ i is a compound Poisson process with (N (t)) a Poisson process with intensity λ and (ξ i , i ≥ 1) a sequence of i.i.d. random variables independent of the Poisson process (N (t)). Then,

X(t) = n:Tn≤t a(t -T n )ξ n
where (T n ) is the sequence of jumps times of (N (t)). We have X(t) = 0 on (N (t) = 0) and X(t) = n k=1 a(t -T k )ξ k on (N (t) = n). Let f denote the common density of the ξ i s and f * their characteristic function. We use that the conditional distribution of (T 1 , . . . , T n ) given (N (t) = n) is equal to the distribution of (U (k) , k = 1, . . . , n) the order statistic of (U 1 , . . . , U n ) n i.i.d. random variables with uniform distribution on [0, t]: where ψ(u) = R (e iux -1)λf (x)dx is the characteristic exponent of (Z(t)). Note that if f is centered, we can write ψ(u) = R (e iux -1 -iux)λf (x)dx.

Ee iuX(t)
In the general case, we have where p(ds, dx) is the random Poisson measure associated with the jumps of (Z(t)). We consider for ε > 0, Z ε (t) = For all p ≥ 1, there exists a constant D(4 + 2p) depending only on p such that Proof of Proposition 7. We dierentiate four times the characteristic function of X(t) and use that for ψ(u) = (e iux -1 -iux)n(x)dx, ψ (0) = 0, ψ (0) = -1, ψ (4) (0) = k 4 .

The second inequality is a direct application of the rst Kunita inequality (see [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF]) where D(4 + 2p) is the constant given in this inequality.2

Proposition 2 .

 2 Assume [H1], [H3](1), [H3](2) and [H4]. When (ϕ j = ϕ j,T ) is the trigonometric basis,

Proposition 3 .

 3 Assume [H1], [H3](1), [H3](2) and [H4] and that g 1 < +∞.

= c 0 < 2 s = s 0 g 2

 022 +∞ where we recall that g (s)ds.

Figure 1 .

 1 Figure 1. Function g 0 (x) = a 2 0 (x).Left: example of one simulated path. Right: 25 estimated functions. MISE= 0.018 (oracles 0.016), mean of selected dimensions: 4.9 (of oracles 6.4). N = 4000, T = 10

Figure 2 .Figure 3 .Figure 4 .

 234 Figure 2. Function g 2 (x) = a 2 2 (x).Left: example of one simulated path. Right: 25 estimated functions. MISE= 0.004 (oracles 0.002 ), mean of selected dimensions: 2.3 (of oracles 2.6). N = 4000, T = 10

see 2 6. 3 .

 23 Proposition 3.2 in Basse and Perdersen (2009). Proof of Lemma 1. By (4), +∞ 0 ϕ j (s)X(s -)dX(s) = a(0) +∞ 0 ϕ j (s)X(s -)dZ(s) + +∞ 0 ϕ j (s)X(s -) s 0 a (s -u)dZ(u)ds = a(0) +∞ 0 ϕ j (s)X(s -)dZ(s) + +∞ 0 ϕ j (s)X(s) s 0 a (s -u)dZ(u)ds.

Using [H3]( 1 )

 1 and (4), as ∆X(s) = a(0)∆Z(s), s≤T (∆X(s)) 2 = a 2 (0) s≤T (∆Z(s)) 2 < +∞ and E s≤T (∆Z(s)) 2 = T.

T 0 a

 0 4+2p (u)du . Now, we choose p = 2 and θ = c √ N / log(N ) where c is precised below. As for all m ∈ M N , m 2 ≤ N T , we set M N = [ √ N T ] the largest dimension of the collection, and we have (30)

  sup h∈Bm,x∈D([0,T ]) |g h (x)| ≤ θ sup h∈Bm |h(T )| ≤ θ(

j ) 2 ≤

 2 CG 2 (T )∆ 2 m 5 . Now, we study the second term: )(u -((k -1)∆)du.

Theorem 2 .√ 1 + 2 - 1 )

 2121 (Talagrand Inequality) Let Y 1 , . . . , Y n be independent random variables with values in a Polish space, letν n,Y (f ) = (1/n) n i=1 [f (Y i ) -E(f (Y i ))] and let F be a countable class of uniformly bounded measurable functions. Then for 2 > 0E sup f ∈F |ν n,Y (f )| 2 -2(1 + 2 2 ∧ 1, K 1 = 1/6, and sup f ∈F f ∞ ≤ M, E sup f ∈F |ν n,Y (f )| ≤ H, sup (Y k )) ≤ v 2 .

7. 3 .

 3 Characteristic function and moments of X(t).

Proposition 6 .

 6 Ee iuX(t) = exp [ t 0 ψ(ua(v))]dv, ψ(u) = R (e iux -1 -iux)n(x)dx.

  Ee iuZ(t) = exp [t R e iux -1 -iux n(x)dx] = exp tψ(u), Z(t) = (0,t] Rx(p(ds, dx)-dsn(x)dx),

  (0,t] |x|>ε x(p(ds, dx) -dsn(x)dx) = Y ε (t) -t |x|>ε xn(x)dx.

  We have EeiuZε(t) = exp [t |x|>ε e iux -1 -iux n(x)dx] = exp tψ ε (u) and X ε (t) = t 0 a(tv)dZ ε (v) = t 0 a(t -v)dY ε (v) -t 0 a(t -v)dv |x|>ε xn(x)dx. The process (Y ε (t)) is a compound Poisson process with intensity 1 |x|>ε n(x)dx. Therefore, Ee iuXε(t) = exp [ t 0 dv |x|>ε (e iua(t-v)x -1)n(x)dx -iu t 0 a(t -v)dv |x|>ε xn(x)dx].

Thus, 2 Proposition 7 . 0 a 2 0 a 4

 270204 Ee iuXε(t) = exp [ t 0 dvψ ε (ua(t -v))]. Now, it is enough to let ε tend to 0 and the proof is achieved. We have: EX 4 (t) = 3( t (u)du) 2 + k 4 t (u)du.

  Comte and Genon-Catalot (2021), for Z a Brownian motion. More generally, results on simulated data are given in the latter paper especially for examples where a(t) = t d exp (-αt) with various values of d. It is worth noting that our assumptions [H3](2) and [H5] hold if d > -1/4.

  1 (N (t)=n) = E[1 (N (t)=n) e iu n k=1 a(t-T k )x k f (x 1 ) . . . f (x k )dx 1 . . . dx k ] (ua(t -T k )) = E[1 (N (t)=n) E Ee iuX(t) = e (-λt) e [λt t 0 dvf * (ua(t-v)dv/t] = exp

	= E[1 (N (t)=n)	n	f n	f * (ua(t -U (k) ))
		k=1		k=1	
	= E[1 (N (t)=n) E[	n k=1	f * (ua(t -U k ))] = E[1 (N (t)=n)	1 t	0	t	f * (ua(t -v))dv

* n Therefore, t 0 dvψ(ua(t -v))

  E[X 4 (t)1 X 2 (t)>θ ] ≤

		1 θ p EX 4+2p (t)
	≤	D(4 + 2p) θ p	G

2+p (t) + k 4+2p t 0 a 4+2p (u)du .