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KERNEL ESTIMATION FOR LÉVY DRIVEN STOCHASTIC
CONVOLUTIONS

F. COMTE(1), V. GENON-CATALOT(1)

Abstract. We consider a Lévy driven stochastic convolution, also called continuous time Lévy-
driven moving average model, X(t) =

∫ t
0
a(t − s)dZ(s) where Z is a Lévy martingale and the

kernel a(.) a deterministic function square integrable on R+. Given N i.i.d. continuous time
observations (Xi(t))t∈[0,T ] on [0, T ], for i = 1, . . . , N distributed like (X(t))t∈[0,T ], we propose

two types of nonparametric projection estimators of a2 under di�erent sets of assumptions. We
bound the L2-risk of the estimators and propose a data-driven procedure to select the dimension
of the projection space. February 12, 2021
Mathematical Subject Classi�cation (2010): 62G05-62M09-60G51.

Keywords and phrases: Continuous time moving average. Lévy processes. Model selection. Non-
parametric estimation. Projection estimators. Stochastic convolution.

1. Introduction

In this paper, we consider the continuous time moving average (CMA) process, also called
stochastic convolution,

(1) X(t) =

∫ t

0
a(t− s)dZ(s)

where (Z(t))t≥0 is a Lévy process such that EZ(1) = 0, EZ2(1) = 1, and the kernel a(.) : R+ → R
is a deterministic square integrable function. Our aim is the nonparametric estimation of a2(.)
from i.i.d. observations (Xi(t), t ∈ [0, T ], i = 1, . . . , N) distributed as (X(t), t ∈ [0, T ]).
CMA processes have been largely studied in the past decades. Indeed, they provide a large class
of stochastic processes including the classical continuous time ARMA (CARMA) processes and
also more involved models such as fractional Lévy processes. Generally, stationary versions of
(X(t))t≥0 are investigated, i.e. Y (t) =

∫ +∞
−∞ a(t− s)dZ(s) (see e.g. Rajput and Rosinski (1989),

Brockwell (2001), Marquart (2006), Brockwell and Lindner (2009), Bender et al. (2012), Brock-
well et al. (2013)). These processes are well �tted to modelling various phenomena in �elds such
as econometrics and �nance (see Comte and Renault (1996)), electricity prices (see Klüppelberg
et al. (2010)). Schnurr and Woerner (2011) study the so-called well-balanced Ornstein-Uhlenbeck
process and its correlation structure and show that this model can be used as volatility process
in stochastic volatility models.
Estimation properties are generally studied from the observation of one sample path in stationary
regime (like (Y (t))t≥0 (see e.g. Brockwell et al. (2013)). In the same framework, Belomestny et
al. (2019) are interested in estimation of the Lévy characteristics of (Z(t))t≥0.
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In our contribution, stationarity of the process is not required: T is �xed and N is large. To our
knowledge, few papers are concerned with statistical properties in this context. In a previous
paper (Comte and Genon-Catalot (2021)), we restrict our attention to Gaussian CMA processes,
i.e. Z(t) = W (t) is a Wiener process and provide nonparametric projection estimators of the
function a2(.). Proofs, especially for the data-driven procedure, strongly rely on the Gaussian
character of (X(t))t≥0 and cannot be straightforwardly extended to the case where (Z(t))t≥0 is
a Lévy process. The question of this extension is studied here.
In Section 2, we precise the model and the assumptions. In Section 3, we de�ne two collections
of projection estimators depending on whether X(t) is a semi-martingale or not. Relying on
results of Basse and Pedersen (2009), we establish that the distinction between these two cases
is the same as when Z = W is a Brownian motion, i.e. when a(.) is continuously di�eren-
tiable on [0,+∞) or not. The projection spaces are either, for �xed T , spaces generated by
the trigonometric basis of L2([0, T ]), or for large T spaces generated by the Laguerre basis of
L2(R+). Bounds for the L2-risk of the estimators are provided. In Section 4, we propose a data-
driven procedure to select the dimension of the projection space and obtain risk bounds for the
resulting estimator proving that it is adaptive in the sense that its risk automatically achieves
the compromise between the squared bias and the variance. Proofs, especially of the adaptive
result, are completely di�erent from the ones in Comte and Genon-Catalot (2021). Section 5
states some concluding remarks. Section 6 contains proofs. Finally Section 7 gives the necessary
recap on Laguerre functions, the Talagrand inequality on which relies our proof of Section 4 and
the way to compute or bound moments of (X(t)t≥0).

2. Lévy driven moving averages

Consider a Lévy process (Z(t)) with no Gaussian part and Lévy measure ν(dx) = n(x)dx
satisfying

[H1]
∫
R x

2n(x)dx < +∞ and we assume that
∫
R x

2n(x)dx = 1.

The second part of [H1] is an identi�ability condition. Without it, we would estimate
(∫

R x
2n(x)dx

)
×

a2(.). Below, we need stronger conditions near in�nity for the Lévy density summarized by :

[H2](p) k2p :=
∫
R x

2pn(x)dx < +∞.

We assume that the characteristic function of Z(t) is equal to:

EeiuZ(t) = exp [t

∫
R

(
eiux − 1− iux

)
n(x)dx],

so that EZ(1) = 0, EZ2(1) = 1. Then, (Z(t)) is a Lévy martingale which can be written as:

Z(t) =

∫
(0,t]

∫
R
x(p̂(ds, dx)− dsn(x)dx),

where p̂(ds, dx) is the random Poisson measure associated with its jumps. We consider a càdlàg
version of the Lévy moving average process:

(2) X(t) =

∫ t

0
a(t− s)dZ(s).

where we aim at estimating g = a2 under assumptions of type:
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[H3](q) The function g(t) = a2(t) belongs to Lq(R+), i.e.
∫ +∞
0 gq(s)ds =

∫ +∞
0 a2q(s)ds < +∞.

Assumptions [H1] and [H3](1) ensure the existence of (2) (see Section 6.1). Setting

(3) G(t) =

∫ t

0
a2(s)ds =

∫ t

0
g(s)ds,

we have:

EX2(t) =

∫ t

0

∫
R
a2(t− s)dsx2n(x)dx =

∫ t

0
a2(u)du = G(t).

Two cases are to be distinguished:

(1) X(t) is a semi-martingale (more precisely, a (FZt )t≥0-semimartingale where (FZt )t≥0 is
the natural �ltration of (Zt)t≥0),

(2) X(t) is not a semi-martingale.

In Case (2), we cannot give sense to a stochastic integral
∫ t
0 H(s)dX(s) for a predictable process

H(s). A su�cient condition for case (1) to hold is stated in the following proposition.

Proposition 1. Assume that a(t) belongs to C1([0,+∞)). Then,

(4) X(t) = a(0)Z(t) +

∫ t

0

(∫ u

0
a′(u− s)dZ(s)

)
du, t ≥ 0.

3. Projection estimators on a fixed space.

We denote respectively by ‖.‖T (resp. 〈., .〉T ) the norm (resp. the scalar product) of L2([0, T ])
and ‖.‖ (resp. 〈., .〉) the norm (resp. the scalar product) of L2(R+). To build estimators of g,
we use two collections of projection spaces.

(1) For �xed T , we estimate g on [0, T ]. We de�ne the collection (STrigm ,m ≥ 0) of sub-
spaces of L2([0, T ]) where m is odd, generated by the orthonormal trigonometric basis

(ϕj,T ), ϕ0,T (t) =
√

1/T1[0,T ](t), ϕ2j−1,T (t) =
√

2/T cos(2πjt/T )1[0,T ](t) and ϕ2j,T (t) =√
2/T sin(2πjt/T )1[0,T ](t) for j = 1, . . . , (m− 1)/2. The following properties are useful

m−1∑
j=0

ϕ2
j,T (t) =

m

T
and

∫ T

0
ϕ0,T (t)dt =

√
T ,

∫ T

0
ϕj,T (t)dt = 0 for j 6= 0.

(2) For either T �xed but large enough, or T tending to in�nity, we estimate g on R+. We
de�ne the collection of subspaces of L2(R+), generated by the orthonormal Laguerre basis
(see Section 7.1):

(5) `j(t) =
√

2Lj(2t)e
−t1t≥0, j ≥ 0, Lj(t) =

j∑
k=0

(−1)k
(
j

k

)
tk

k!
.

We set SLagm = span{`j , j = 0, . . . ,m− 1}, and the following holds

∀t ≥ 0,

m−1∑
j=0

`2j (t) ≤ 2m, and

∫ +∞

0
`j(t)dt =

√
2(−1)j .
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3.1. Estimation of g = a2 when (X(t))t≥0 is a semimartingale. Here, we assume:

[H4] a(t) belongs to C1([0,+∞)).

Lemma 1. Assume [H1], [H3](1) and [H4]. Denoting by θj = 〈g, ϕj〉, we have

E
(∫ +∞

0
ϕj(s)X(s−)dX(s)

)
=

1

2

(
θj − g(0)

∫ +∞

0
ϕj(s)ds

)
, E

∑
s≤T

[∆X(s)]2

 = Tg(0).

Relying on this lemma, we can set:

(6) θ̂j = θ̂j(N,T ) = 2

[
1

N

N∑
i=1

(∫ T

0
ϕj(s)Xi(s−)dXi(s)

)]
+ (g(0))†

∫ T

0
ϕj(s)ds.

where (g(0))† is an estimator of g(0) equal to

(7) (g(0))† =
1

T

1

N

N∑
i=1

∑
s≤T

(∆Xi(s))
2.

The projection estimator of g on a �xed space Sm is given by:

ĝm =

m−1∑
j=0

θ̂jϕj .

Remark 1. By the Ito formula with jumps, we have:

(8) −
∫
(0,T ]

X2(s)ϕ′j(s)ds = 2

∫
(0,T ]

ϕj(s)X(s−)dX(s) +
∑

0<s≤T
ϕj(s)(∆X(s))2 − ϕj(T )X2

T ,

where:

E
∑

0<s≤t
ϕj(s)(∆X(s))2 = a2(0)E

∑
0<s≤T

ϕj(s)(∆Z(s))2 = a2(0)

∫ T

0
ϕj(s)ds.

This formula is useful to understand the link between θ̂j de�ned above and θ̃j de�ned in the second
strategy below, but it only holds under [H4] (which is not assumed in the second case).

The following proposition gives bounds for the L2-risk of ĝm in the case of �xed T and the
trigonometric basis.

Proposition 2. Assume [H1], [H3](1), [H3](2) and [H4]. When (ϕj = ϕj,T ) is the trigonometric
basis,

E(‖ĝm − g‖2T ) ≤ ‖gm − g‖2T + 16g(0)G(T )
m

N
+ 8C1,T

T

N
+ 2g2(0)

k4
N
,(9)

where C1,T := 3(G2(T ) +G2
1(T )) + k4(‖g‖2T + ‖g1‖2T )

where k4 =
∫
x4n(x)dx, g1 = (a′)2, G1(.) =

∫ .
0 g1(s)ds. Recall that G is de�ned in (3), that gm

denotes the orthogonal projection of g on STrigm and that ‖u‖2T =
∫ T
0 u2(s)ds.

Now, we give risk-bounds in case of an orthonormal basis of L2(R+) and a special inequality
for the Laguerre basis.
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Proposition 3. Assume [H1], [H3](1), [H3](2) and [H4] and that ‖g1‖ < +∞.
If (ϕj) is an orthonormal basis of L2(R+), for all T ≥ 1, N ≥ 1,m ≥ 0, we have

E(‖ĝm − g‖2) ≤ ‖gm − g‖2 + 16g(0)G(T )
m

N
+ 8C2,T

T

N
+ 2g2(0)

k4
N

+

∫ +∞

T
g2(s)ds,(10)

where C2,T := 3(G2(T ) +G2
1(T )) + k4(‖g‖2 + ‖g1‖2)]

If (ϕj) is the Laguerre basis of L2(R+) and T ≥ 6m− 3, then

E(‖ĝm − g‖2) ≤ ‖gm − g‖2 + 8CC2,T
m2

N
+ 16g(0)G(T )

m

N
+

2

N
k4g

2(0)(11)

+C ′‖a‖2m exp (−12γ2m)

where C,C ′ and γ2 are positive constants depending on the basis only.

The bounds obtained in Propositions 2 and 3 contain three types of terms: the �rst one is the
usual squared bias term ‖gm − g‖2 due to the projection method, decreasing when m increases,
the second one is the variance term, increasing with m, and the last ones are residuals.

Let us comment (9) and (10). If g(0) 6= 0, the variance order in both cases is m/N . For
choosing m, a compromise must be done between the �rst two terms. If g(0) = 0, the variance
term vanishes, and m must be chosen as large as possible. Note that this case corresponds to
(X(t)) derivable.

The di�erence between (9) and (10) lies in the additional term
∫ +∞
T g2(s)ds. In (9), T is

�xed and the residual term has negligible order 1/N . In (10), T must be large enough for the
additional term to be small, but not too much because the other residuals terms are of order
T/N (see numerical results in Table 1 of Comte and Genon-Catalot (2021)).

The result in (11) is speci�c to the Laguerre basis with T ≥ 6m−3. The variance order m2/N
is larger but the residual terms do not depend on T (G(T ) is bounded). The choice of m relies
on a compromise between ‖g− gm‖2 and m2/N . We can consider here the case where T → +∞:
if, in addition to the condition ‖g1‖ < +∞, it holds that (a′)2 ∈ L1(R+)), then C2,T is bounded
independently of T .

3.2. Estimation of g = a2 when (X(t)) is not a semi-martingale. In this section, we
assume that the basis functions are di�erentiable on their support. The following Lemma allows
to de�ne another estimator.

Lemma 2. Assume that [H1], [H3](1) hold and that (ϕj)j is di�erentiable on [0, T ], then

E
(∫ T

0
ϕ′j(s)X

2(s)ds

)
= ϕj(T )G(T )−

∫ T

0
g(u)ϕj(u)du.

Therefore, we can set

(12) θ̃j = − 1

N

N∑
i=1

(∫ T

0
ϕ′j(s)X

2
i (s)ds

)
+ ϕj(T )Ĝ(T ) and Ĝ(T ) =

1

N

N∑
i=1

X2
i (T ).

If ϕj = ϕj,T is the trigonometric basis, then ϕ0,T (T ) = 1/
√
T , ϕ2j−1,T (T ) =

√
2/T , ϕ2j,T (T ) = 0,

j ≥ 1. Then we de�ne the estimator by

g̃m =

m−1∑
j=0

θ̃jϕj .
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We introduce the assumption:

[H5]

∫ 1

0

‖g‖2s
s

ds = c0 < +∞, where we recall that ‖g‖2s =
∫ s
0 g

2(s)ds.

Proposition 4. Assume [H1] and [H3](2).

• If (ϕj = ϕj,T ) the trigonometric basis, then

(13) E(‖g̃m − g‖2T ) ≤ ‖gm − g‖2T +
2

N
(3G2(T ) + k4‖g‖2T )

(
4π2m2

T
+
m

T

)
.

• Let (ϕj = `j) be the Laguerre basis.
� Then, for all T ≥ 1, N ≥ 1,m ≥ 0,

E(‖g̃m − g‖2) ≤ ‖gm − g‖2 + 4C3,T
m

N
+ 4

T

N
(3G2(T ) + k4‖g‖2T ) +

∫ ∞
T

g2(s)ds,

with C3,T :=

[
3G2(T ) + k4‖g‖2T + 2

(∫ T

0
s−1[3G2(s) + k4‖g‖2s]ds

)]
where, if, in addition, [H5] holds,(∫ T

0
s−1[3G2(s) + k4‖g‖2s]ds

)
≤ (3 + k4)

(
c0 + log(T )‖g‖2T

)
.

� If T ≥ 6(m− 1) + 3 = 6m− 3 and (ϕj) is the Laguerre basis, then

(14) E(‖g̃m − g‖2) ≤ ‖gm − g‖2 + c1(3G
2(T ) + k4‖g‖2T )

m3

N
+ c2‖a‖2

m

N
exp (−12γ2m)

where c1, c2, γ2 are constants depending on the basis only.

Comments on the bounds obtained in Proposition 4 are similar to the comments given after
Proposition 2 and 3. Inequality (13) can be compared to (9), and we mainly notice that the
variance term increases from m/N to m2/N ; Inequality (14) corresponds to (11) with variance
increase from m2/N to m3/N . These losses are due to the more general assumptions. In
Inequality (14), we can consider T → +∞.

Moreover, we refer to Section 3 of Comte and Genon-Catalot (2021) for a discussion on rates
of convergence that can be deduced from Propositions 2, 3 and 4, on dedicated function spaces:
periodic Fourier-Sobolev spaces for the trigonometric basis and on Sobolev-Laguerre spaces for
the Laguerre basis.

4. Adaptation

Considering the main terms of all risk bounds, we can see that a compromise must be done
between the squared bias terms which decrease when m increases while the variance terms
increase. In this section, we describe a procedure allowing for a data driven selection of m, and
we prove that the �nal estimator reaches an e�ective tradeo�, in term of its integrated L2-risk
bound.

Let MN = {m ∈ N,m2 ≤ NT} be a collection of models such that the variance of g̃m is
bounded and set

m̃ = arg min
m∈MN

{
−‖g̃m‖2 + pen(m)

}
,

where, for a constant κ precised below,

pen(m) = κ logN
m2

NT
EX4(T )



NONPARAMETRIC ESTIMATION FOR LÉVY MA MODELS 7

Theorem 1. Assume N ≥ 3, [H1], [H2](4) and [H3](4). Then, there exists a numerical constant
κ0 such that, for all κ ≥ κ0, the following holds:

E‖g̃m̃ − g‖2 ≤ inf
m∈MN

(3‖gm − g‖2 + 4pen(m)) + C
logN

N
.

The in�mum in the risk bound implies that the L2-risk of g̃m̃ achieves automatically the best
compromise between the square bias term and the variance term.

In practice, we replace the unknown term EX4(T ) in the penalty by its empirical estimator

N−1
∑N

i=1X
4
i (T ). Theorem 1 can be extended to this substitution. For the implementation,

the constant κ must be �xed. It is standard that the numerical value for κ0 given in the proof
is too large. This is why it must rather be calibrated by preliminary simulation experiments;
this is done in Section 5 of Comte and Genon-Catalot (2021), for Z a Brownian motion. More
generally, results on simulated data are given in the latter paper especially for examples where
a(t) = td exp (−αt) with various values of d. It is worth noting that our assumptions [H3](2) and
[H5] hold if d > −1/4.

5. Concluding remarks

In this paper, we study the nonparametric estimation of a2 from i.i.d. observations (Xi(t), t ∈
[0, T ]), i = 1, . . . , N) distributed as (1). We proceed by projection method on �nite dimensional
subspaces of L2(R+). Two di�erent types of estimators are proposed depending on whether
(X(t))t≥0 is a semi-martingale or not and a data-driven procedure is proposed for the most
general type of estimators. In our previous paper (where Z = W a Wiener process, Comte
and Genon-Catalot (2021)), proofs relied strongly on the Gaussian character of (X(t)). The
extension to the Lévy case is not straightforward and relies on the general deviation inequality
given in the Appendix.
From the theoretical and practical points of view, the estimation using discretized data would
be worth of investigation together with the questions of optimality of our estimators.

6. Proofs

6.1. Proof of the existence of (2).

EeiuZ(t) = exp t[iuγ +

∫
R

(
eiux − 1− iux1|x|≤1

)
n(x)dx],

where γ = −
∫
R x1|x|>1n(x)dx and EZ(1) = 0 = γ +

∫
R x1|x|>1n(x)dx. According to Rajput

and Rosi«ski (1989) (Theorem 2.7), see also Basse and Pedersen (2009), the existence of (2) is
ensured if and only if, for all t, the following conditions hold:∫ t

0

∫
R

(
x2a2(s) ∧ 1

)
dsn(x)dx <∞,

∫ t

0

∣∣∣∣a(s)

(
γ +

∫
R
x(1|xa(s)|≤1 − 1|x|≤1)n(x)dx

)∣∣∣∣ ds <∞.
Note that: ∫ +∞

0

∫
R

(
x2a2(s) ∧ 1

)
dsn(x)dx ≤

∫ +∞

0
a2(s)ds

∫
x2n(x)dx.
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For the second one, we have:∫ t

0

∣∣∣∣a(s)

(
γ +

∫
R
x(1|xa(s)|≤1 − 1|x|≤1)n(x)dx

)∣∣∣∣ ds
=

∫ t

0
|a(s)EZ(1)| ds+

∫ t

0

∣∣xa(s)
(
1|xa(s)|≤1 − 1

)∣∣n(x)dxds

=

∫ t

0

∣∣xa(s)
(
1|xa(s)|>1

)∣∣n(x)dxds ≤
∫ +∞

0
a2(s)ds

∫
R
x2n(x)dx. 2

6.2. Proof of Proposition 1. In Basse and Pedersen (2009) (Theorem 3.1), it is proved that,
if (Z(t)) is of unbounded variation, (X(t)) is an (FZt )t≥0-semimartingale if and only if a(t) is
absolutely continuous on R+ with a density a′ satisfying, for all t ≥ 0:

(15)

∫ t

0

∫
[−1,1]

(
(xa′(s))2 ∧ |xa′(s)|

)
n(x)dxds <∞

We have under [H1], [H3](1), [H3](2) and [H4]∫ t

0

∫
[−1,1]

(
(xa′(s))2 ∧ |xa′(s)|

)
n(x)dxds ≤

∫ t

0
(a′(s))2

∫
R
x2n(x)dx <∞

So (15) holds. If (Z(t)) is of bounded variation (which is equivalent to
∫
|x|n(x)dx <∞), (X(t))

is an (FZt )t≥0-semimartingale if and only if it is of bounded variation which is equivalent to a is
of bounded variation.
If (Z(t)) is of unbounded variation and (X(t)) is an (FZt )t≥0-semimartingale, it can be decom-
posed as :

X(t) = a(0)Z(t) +

∫ t

0

(∫ u

0
a′(u− s)dZ(s)

)
du, t ≥ 0,

see Proposition 3.2 in Basse and Perdersen (2009). 2

6.3. Proof of Lemma 1. By (4),∫ +∞

0
ϕj(s)X(s−)dX(s) = a(0)

∫ +∞

0
ϕj(s)X(s−)dZ(s) +

∫ +∞

0
ϕj(s)X(s−)

∫ s

0
a′(s− u)dZ(u)ds

= a(0)

∫ +∞

0
ϕj(s)X(s−)dZ(s) +

∫ +∞

0
ϕj(s)X(s)

∫ s

0
a′(s− u)dZ(u)ds.

As

E
(∫ +∞

0
ϕj(s)X(s−)dZ(s)

)2

=

∫ +∞

0
ϕ2
j (s)EX2(s)ds×

∫
R
x2n(x)dx

=

∫ +∞

0
ϕ2
j (s)G(s)ds ≤ ‖a‖2 < +∞,

E
∫ +∞
0 ϕj(s)X(s−)dZ(s) = 0 and the �rst equality follows by:

E
∫ +∞

0
ϕj(s)X(s−)dX(s) =

∫ +∞

0
ϕj(s)

∫ s

0
a(s− u)a′(s− u)du ds

=
1

2

∫ +∞

0
ϕj(s)(a

2(s)− a2(0))ds.
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Using [H3](1) and (4), as ∆X(s) = a(0)∆Z(s),∑
s≤T

(∆X(s))2 = a2(0)
∑
s≤T

(∆Z(s))2 < +∞ and E
∑
s≤T

(∆Z(s))2 = T.

The second equality is proved. 2

6.4. Proof of Proposition 2. Note that for functions on Sm,T , the norms ‖.‖T and ‖.‖ are
identical.

When (ϕj) = (ϕj,T ) is the trigonometric basis on [0, T ], θ̂j is an unbiased estimator of θj . This
implies E‖ĝm − g‖2T = E‖ĝm − Eĝm‖2 + ‖gm − g‖2T . We have, setting X = X1, and using that∑m−1

j=0

(∫ T
0 ϕj(s)ds

)2
≤ T ,

E‖ĝm − Eĝm‖2 ≤ 2

N

m−1∑
j=0

Var

(
2

∫ T

0
ϕj(s)X(s−)dX(s)

)
+

2T

N
Var

 1

T

∑
s≤T

(∆X(s))2


≤ 2

N

m−1∑
j=0

E
(

2

∫ T

0
ϕj(s)X(s−)dX(s)

)2

+
2T

N
Var

 1

T

∑
s≤T

(∆X(s))2

 .

We have:(∫ T

0
ϕj(s)X(s−)dX(s)

)2

≤ 2g(0)

(∫ T

0
ϕj(s)X(s−)dZ(s)

)2

+ 2

(∫ T

0
ϕj(s)X(s)Y (s)ds

)2

where Y (s) =
∫ s
0 a
′(s− u)dZ(u). Next,

E
(∫ T

0
ϕj(s)X(s−)dZ(s)

)2

=

∫ T

0
ϕ2
j (s)E(X2(s))ds ≤ G(T ).

Since (ϕj) = (ϕj,T ) is an orthonormal basis of L2([0, T ]),

m−1∑
j=0

E
(∫ T

0
ϕj(s)X(s)Y (s)ds

)2

= E

m−1∑
j=0

(∫ T

0
ϕj(s)X(s)Y (s)ds

)2
 ≤ E

∫ T

0
X2(s)Y 2(s)ds.

We use that x2y2 ≤ (x4 + y4)/2 and (see section 7.3)

EX4(s) = 3

(∫ s

0
a2(u)du

)2

+

∫ s

0
a4(u)du

∫
x4n(x)dx

= 3G2(s) + k4

∫ s

0
a4(u)du.(16)

Analogously, setting G1(s) =
∫ s
0 (a′)2(u)du, we obtain:

EY 4(s) = 3[G1(s)]
2 + k4

∫ s

0
(a′(u))4du.

It remains to study E
(

1
T

∑
s≤T (∆X(s))2

)2
= T−2a4(0)E

(∑
s≤T (∆Z(s))2

)2
. By the exponen-

tial formula (see e.g. Revuz and Yor, 1999, Chap. XII, Prop. 1.12),

(17) E exp [iu
∑
s≤T

(∆Z(s))2] = exp [T

∫
R

(eiux
2 − 1)n(x)dx].
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We deduce: Var
(

1
T

∑
s≤T (∆X(s))2

)
= k4a

4(0)/T = k4g
2(0)/T . 2

6.5. Proof of Proposition 3.
Consider a basis (ϕj) of L2(R+) with arbitrary support. We have Eθ̂j = θj −

∫ +∞
T g(s)ϕj(s)ds

so that ĝm − g = ĝm − Eĝm + Eĝm − gm + gm − g and this implies

E‖ĝm − g‖2 = ‖gm − g‖2 + E‖ĝm − Eĝm‖2 + ‖Eĝm − gm‖2.
The �rst term is the usual bias term due to the projection method. The middle term is a variance
term which can be treated as in the previous proposition. The last term is an additional bias
term, due to the truncation of the integrals. We have:

(18) ‖Eĝm − gm‖2 =

m−1∑
j=0

(Eθ̂j − θj)2 =

m−1∑
j=0

(∫ +∞

T
g(s)ϕj(s)ds

)2

≤
∫ +∞

T
g2(s)ds,

Therefore, we get the �rst inequality of Proposition 3.
If (ϕj) is the Laguerre basis, we bound the variance term E‖ĝm−Eĝm‖2 and the additional bias
term ‖Eĝm − gm‖2 di�erently. For the variance term, we write:(

E
∫ T

0
ϕj(s)X(s)Y (s)ds

)2

=

∫
[0,T ]2

ϕj(s)ϕj(u)E[X(s)Y (s)X(u)Y (u)]dsdu

≤
∫
[0,T ]2

|ϕj(s)ϕj(u)|
{
E[(X(s)Y (s))2]E[(X(u)Y (u))2]

}1/2
dsdu

=

(∫ T

0
|ϕj(s)|

{
E[(X(s)Y (s))2)]

}1/2
ds

)2

.(19)

We use the following bound proved in section 6.4:

2EX2(s)Y 2(s)ds ≤ EX4(s) + EY 4(s) ≤ 3(G2(T ) +G2
1(T )) + k4(‖g‖2T + ‖g1‖2T )

There remains to bound
∫ T
0 |ϕj(s)|ds. This is done in [12], see Formula (31)-(32). For j =

0, . . . ,m− 1 and T ≥ 6(m− 1) + 3 = 6m− 3, we have

(20)

∫ T

0
|ϕj(s)|ds . j1/2 and

m−1∑
j=0

(∫ T

0
|ϕj(s)|ds

)2

. m2

Also by (33) in [12], we have, for the additional bias term,

(21)
m−1∑
j=0

[

∫ +∞

T
ϕj(s)g(s)ds]2 . ‖a‖2m exp (−12γ2m),

where γ2 is a constant depending on the Laguerre basis only, see Section 7. Therefore, the proof
of Proposition 3 is complete. 2

6.6. Proof of Lemma 2. We have

E(

∫ T

0
ϕ′j(s)X

2(s)ds) =

∫ T

0
ϕ′j(s)(

∫ s

0
g(s− u)du)ds =

∫ T

0
ϕ′j(s)G(s)ds

= [ϕj(s)G(s)]T0 − 〈g, ϕj〉T = ϕj(T )G(T )− 〈g, ϕj〉T ,
which is the result. 2
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6.7. Proof of Proposition 4. Assume that (ϕj = ϕj,T ) is the trigonometric basis. Then, θ̃j is
an unbiased estimator of θj . We only need to study the variance term of the risk.

E‖g̃m − Eg̃m‖2T ≤ 2

N

m−1∑
j=0

E
(∫ T

0
ϕ′j,T (s)X2(s)ds

)2

+

m−1∑
j=0

ϕ2
j,T (T )EX4(T )


where EX4(T ) = 3(G2(T ) + k4‖g‖2T ) and

∑m−1
j=0 ϕ2

j (T ) = m/T . We have

(22) ϕ′0,T (s) = 0, ϕ′2j,T (s) = (2πj/T )ϕ2j−1,T (s), ϕ′2j−1,T (s) = −(2πj/T )ϕ2j,T (s), j ≥ 1.

Using that (ϕj,T ) is an orthonormal basis, we obtain, as EX4(s) ≤ EX4(T ) (see (16)),

m−1∑
j=0

E
(∫ T

0
ϕ′j,T (s)X2(s)ds

)2

≤ 4π2m2

T 2
E
∫ T

0
X4(s)ds ≤ (3G2(T ) + k4‖g‖2T )

4π2m2

T
.

This gives (13).
Now, assume that (ϕj = `j) is the Laguerre basis on L2(R+) (see Section 7). We still have:

E(‖g̃m − g‖2) = E‖g̃m − Eg̃m‖2 + ‖Eg̃m − gm‖2 + ‖gm − g‖2.
First,

E‖g̃m − Eg̃m‖2 =
1

N

m−1∑
j=0

Var

(∫ T

0
`′j(s)X

2
1 (s)ds−X2

1 (T )`j(T )

)

≤ 2

N

m−1∑
j=0

E

[(∫ T

0
`′j(s)X

2
1 (s)ds

)2
]

+
2

N

m−1∑
j=0

`2j (T )E[X4
1 (T )] := T1 + T2.

Using that |`j | ≤
√

2, we get

T2 ≤ 4(3G2(T ) + k4‖g‖2T )
m

N
.

Next, we use that the Laguerre basis satis�es `′0(x) = −`0(x) and `′j(x) = −`j(x)−
√

2j/x`
(1)
j−1(x)

for j ≥ 1 where (`
(1)
k (x), k ≥ 0) is the Laguerre basis with index 1 (see section 7) to �nd

T1 ≤ 4

N

m−1∑
j=0

E

[(∫ T

0
`j(s)X

2
1 (s)ds

)2
]

+
4

N

m−1∑
j=1

E

(∫ T

0
`
(1)
j−1(s)

√
2j

s
X2

1 (s)ds

)2


≤ 4

N
E
(∫ T

0
X4

1 (s)ds

)
+

8m

N
E
(∫ T

0

X4
1 (s)

s
ds

)
≤ 4

N
T (3G2(T ) + k4‖g‖2T ) +

8m

N

(
3

∫ T

0
s−1[G2(s) + k4‖g‖2s]ds

)
where we have used (16). Finally, the variance term is bounded by

E‖g̃m − Eg̃m‖2 ≤ 4

N
T (3G2(T ) + k4‖g‖2T ) +

8m

N

(
3

∫ T

0
s−1[G2(s) + k4‖g‖2s]ds

)
+

4m

N
(3G2(T ) + k4‖g‖2T )).

Using [H5] and writing
∫ T
0 · · · =

∫ 1
0 · · ·+

∫ T
1 . . . , we get

3

∫ T

0
s−1[G2(s) + k4‖g‖2s]ds ≤ (3 + k4)(c0 + log(T )‖g‖2T ).
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If [H5] does not hold and T ≥ 6m− 3, we can bound di�erently the variance and bias terms.
Proceeding as in [12], proof of Proposition 3, we have

m−1∑
j=0

E
(∫ T

0
`′j(s)X

2(s)ds

)2

≤ (3G2(T ) + k4‖g‖2T )

∫ T

0

m−1∑
j=0

(`′j(s))
2

1/2

ds


2

Still using [12], we have∫ T

0

m−1∑
j=0

(`′j(s))
2

1/2

ds


2

≤ 12m3 +
4m3

γ22
exp (−(12m− 6)γ2).

Finally, we get

(23) E‖g̃m − Eg̃m‖2 ≤
1

N
(3G2(T ) + k4‖g‖2T )

(
12m3 +

4m3

γ22
exp (−(12m− 6)γ2)

)
So, we have the two variance bounds.

Next, we have Eθ̃j = θj − `j(T )G(T )−
∫ +∞
T `j(s)g(s)ds. Therefore

‖Eg̃m − gm‖2 =
m−1∑
j=0

[E(θ̃j)− θj ]2 =
m−1∑
j=0

(
`j(T )G(T ) +

∫ +∞

T
`j(s)g(s)ds

)2

≤ 2G2(T )
m−1∑
j=0

`2j (T ) + 2
m−1∑
j=0

(∫ +∞

T
`j(s)g(s)ds

)2

. ‖a‖2m exp(−12γ2m) + ‖a‖2m exp(12γ2m),

Indeed `j(T ) . exp(−12γ2m) for T ≥ 6m − 3 (�rst term) and we use (21) (second term). For
both, we use G(T ) ≤ G(+∞) = ‖a‖2. 2

6.8. Proof of Theorem 1. Note that, as G(0) = 0, 〈h, g〉T = h(T )G(T )− 〈h′, G〉T . Let us set:

γN,T (h) = ‖h‖2 +
2

N

N∑
i=1

[

∫ T

0
h′(u)X2

i (u)du− h(T )X2
i (T )].

We have g̃m = arg minh∈Sm γN,T (h), γN,T (g̃m) = −‖g̃m‖2 and
γN,T (h) = ‖h‖2 − 2〈h, g〉T − 2νN,T (h)− 2µN,T (h)

where

(24) νN,T (h) = − 1

N

N∑
i=1

∫ T

0
h′(u)[X2

i (u)−G(u)]du, µN,T (h) =
1

N

N∑
i=1

h(T )(X2
i (T )−G(T )).

Therefore,

γN,T (h1)− γN,T (h2) = ‖h1 − g‖2 − ‖h2 − g‖2 − 2νN,T (h1 − h2)− 2µN,T (h1 − h2)
Using the de�nition of m̃, we have for all gm ∈ Sm,

γN,T (g̃m̃) + pen(m̃) ≤ γN,T (g̃m) + pen(m).

We deduce, for ξN,T = νN,T + µN,T ,

‖g̃m̃ − g‖2 ≤ ‖gm − g‖2 + 2ξN,T (g̃m̃ − gm) + pen(m)− pen(m̃)
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Let Bm = {h ∈ Sm, ‖h‖ ≤ 1}. We use that

2ξN,T (g̃m̃ − gm) ≤ 1

4
‖g̃m̃ − gm‖2 + 4 sup

h∈Bm̃∨m
ξ2N,T (h)

≤ 1

2
(‖g̃m̃ − g‖2 + ‖g − gm‖2) + 4 sup

h∈Bm̃∨m
ξ2N,T (h)

≤ 1

2
(‖g̃m̃ − g‖2 + ‖g − gm‖2) + 8 sup

h∈Bm̃∨m
(ν2N,T (h) + µ2N,T (h))

Recall that E[X2
i (u)] = G(u). For θ a constant to be chosen below, we can split νN,T (h) into:

(25) νN,T,θ(h) = − 1

N

N∑
i=1

∫ T

0
h′(u)[X2

i (u)1X2
i (u)≤θ

− E(X2
i (u)1X2

i (u)≤θ
)]du

(26) νcN,T,θ(h) = − 1

N

N∑
i=1

∫ T

0
h′(u)[X2

i (u)1X2
i (u)>θ

− E(X2
i (u)1X2

i (u)>θ
)]du

Analogously, we de�ne µN,T,θ(h) and µcN,T,θ(h), by splitting µN,T (h).

Introducing quantities p1(m,m
′) and p2(m,m

′) to be determined below, we write:

1

2
‖g̃m̃ − g‖2 ≤ 3

2
‖gm − g‖2 + 16 sup

h∈Bm̃∨m
[νcN,T,θ(h)]2 + 16 sup

h∈Bm̃∨m
[µcN,T,θ(h)]2

+pen(m)− pen(m̃)

+16p1(m, m̃) + 16( sup
h∈Bm̃∨m

ν2N,T,θ(h)− p1(m, m̃))

+16p2(m, m̃) + 16( sup
h∈Bm̃∨m

µ2N,T,θ(h)− p2(m, m̃))

Below, p1(m,m
′) and p2(m,m

′) are chosen such that, for κ greater than a well chosen constant
κ0, for all m,m

′, 16(p1(m,m
′) + p2(m,m

′)) ≤ pen(m) + pen(m′) implying that

16(p1(m, m̃) + p2(m, m̃)) + pen(m)− pen(m̃) ≤ 2pen(m).

And we bound the expectation of the other terms.

Lemma 3. Under Assumptions [H1], [H2](2+p) and [H3](2+p), we have:

E

(
sup

h∈Sm,‖h‖≤1
[νcN,T,θ(h)]2

)
≤ 4π2m2

NT

1

θp

(
G2+p(T ) + k4+2p

∫ T

0
a4+2p(u)du

)
.

E

(
sup

h∈Sm,‖h‖≤1
[µcN,T,θ(h)]2

)
≤ m

NT

1

θp

(
G2+p(T ) + k4+2p

∫ T

0
a4+2p(u)du

)
.

Now, we choose p = 2 and θ = c
√
N/
√

log(N) where c is precised below. As for all m ∈MN ,

m2 ≤ NT , we set MN = [
√
NT ] the largest dimension of the collection, and we have

(27) E

(
sup

h∈SMN ,‖h‖≤1
[νcN,T,θ(h)]2

)
+ E

(
sup

h∈SMN ,‖h‖≤1
[µcN,T,θ(h)]2

)
.

log(N)

N
.
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Lemma 4. Under [H1], [H2](4) and [H3](4), choosing θ = c
√
N/
√

log(N), c = cE1/2[X4(T )],

c =
√

2/21, we have for

p1(m,m
′) = 2(1 + 18 log(N))E(X4(T ))

4π2(m ∨m′)2

NT
,

p2(m,m
′) = 2(1 + 18 log(N))E(X4(T ))

m ∨m′

NT
,

E

[(
sup

h∈Bm̃∨m
ν2N,T,θ(h)− p1(m, m̃)

)
+

]
.

1

N
, E

[(
sup

h∈Bm̃∨m
µ2N,T,θ(h)− p2(m, m̃)

)
+

]
.

1

N
.

Therefore, using (27) and Lemma 4, we can conclude that for κ ≥ κ0 = 16 × 2 × 19 × 8π2,
pen(m)− pen(m̃) + 16(p1(m, m̃) + p2(m, m̃)) ≤ 2pen(m), we obtain

E‖g̃m̃ − g‖2 ≤ 3‖gm − g‖2 + 4pen(m) + C(
1

N
+

log(N)

N
).

The proof of Theorem 1 is now complete.2

Proof of Lemma 3.

E

(
sup

h∈Sm,‖h‖≤1
[νcN,T,θ(h)]2

)
≤

m−1∑
j=0

E[νcN,T,θ(ϕj,T )]2 =
1

N

m−1∑
j=0

Var

(∫ T

0
ϕ′j,T (u)X2

1 (u)1X2
1 (u)>θ

)

≤ 1

N

m−1∑
j=0

E
(∫ T

0
ϕ′j,T (u)X2

1 (u)1X2
1 (u)>θ

du

)2

≤ 4π2m2

NT 2
E
(∫ T

0
X4(u)1X2

1 (u)>θ
du

)
,

see (22). Then, for all p ≥ 1 , we get

E

(
sup

h∈Sm,‖h‖≤1
[νcN,T,θ(h)]2

)
≤ 4π2m2

NT 2

1

θp
E
(∫ T

0
X4+2p(u)du

)
≤ 4π2m2

NT

1

θp

(
G2+p(T ) + k4+2p

∫ T

0
a4+2p(u)du

)
,

where the last bound is obtained by Kunita's Inequality, see Section 7. In the same way, we get

E

(
sup

h∈Sm,‖h‖≤1
[µcN,T,θ(h)]2

)
≤

m−1∑
j=0

E[µcN,T,θ(ϕj,T )]2

≤ 1

N

m−1∑
j=0

E
[(
ϕj,T (T )X2(T )1X2

1 (T )>θ

)2]
=

m

NT
E
(
X4(T )1X2

1 (T )>θ

)
≤ m

NT

1

θp

(
G2+p(T ) + k4+2p

∫ T

0
a4+2p(u)du

)
.

This is the second bound of Lemma 3 and the proof of Lemma 3 is complete.2

Proof of Lemma 4. First note that

E

[(
sup

h∈Bm̃∨m
ν2N,T,θ(h)− p1(m, m̃)

)
+

]
≤

∑
m′∈MN

E

[(
sup

h∈Bm∨m′
ν2N,T,θ(h)− p1(m,m′)

)
+

]
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To bound each term of the sum above, we apply the Talagrand Inequality recalled in Theorem
2 (Appendix).

Note that νN,T,θ(h) = 1
N

∑N
i=1[fh(Xi)− E(fh(Xi))] where, for x ∈ C([0, T ]), the space of real

valued continuous functions de�ned on [0, T ],

fh(x) = −
∫ T

0
h′(u)[x2(u)1x2(u)≤θ]du.

Recall that Bm = {h ∈ Sm, ‖h‖ ≤ 1}. We need bound suph∈Bm,x∈C([0,T ]) |fh(x)|. We have:

sup
h∈Bm,x∈C([0,T ])

|fh(x)| ≤ θ sup
h∈Bm

∫ T

0
|h′(u)|du ≤ θ sup

h∈Bm

√
T

(∫ T

0
(h′(u))2du

)1/2

.

For h ∈ Bm, ∫ T

0
(h′(u))2du ≤

∫ T

0

m−1∑
j=0

aj
2πj

T
ϕj±1,T (u)

2

du ≤ 4π2m2

T 2
.

So we set

M(m) = M = θ
2πm√
T
.

Then, we bound suph∈Bm [νN,T,θ(h)]2. We have

sup
h∈Bm

[νN,T,θ(h)]2 ≤
m−1∑
j=0

[νN,T,θ(ϕj,T )]2 =
1

N

m−1∑
j=0

Var

(∫ T

0
ϕ′j,T (u)X2

1 (u)1X2
1 (u)<θ

du

)

≤ 1

N

m−1∑
j=0

E
(∫ T

0
ϕ′j,T (u)X2

1 (u)1X2
1 (u)<θ

du

)2

≤ 4π2m2

NT
E(X4(T ))

where E(X4(T )) = 3G2(T ) + k4
∫ T
0 a4(u)du. We set

H2(m) = H2 =
4π2m2

NT
E(X4(T )).

Now, we bound

V := sup
h∈Bm

Var

(∫ T

0
h′(u)X2

1 (u)1X2
1 (u)<θ

du

)
≤ sup

h∈Bm
E
(∫ T

0
h′(u)X2

1 (u)1X2
1 (u)<θ

du

)2

.

Proceeding as previously, we get that the above term is less than

V ≤ sup
h∈Bm

∫ T

0
[h′(u)]2duTE[X4(T )] ≤ 4π2m2

T 2
E[X4(T )] := v2(m) = v2.

Therefore, NH2 = v2, NH/M =
√
NE1/2(X4(T ))θ−1.

First, using the Talagrand inequality with our values of M(m ∨m′), H(m ∨m′), v2(m ∨m′),
we bound

E

[(
sup

h∈Bm′∨m
ν2N,T,θ(h)− p1(m,m′)

)
+

]
.

We take

θ = cE1/2(X4(T ))

√
N√

log(N)
, ε2 =

3

2

log(N)

K1
= 9 log(N), p1(m,m

′) = 2(1 + 2ε2)H2(m ∨m′).
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Thus,
v2(m ∨m′)

N
exp

(
−K1ε

NH2(m ∨m′)
v2(m ∨m′)

)
.

(m ∨m′)2

N
e−(3/2) log(N) .

1

N3/2

and,
M2(m ∨m′)
C2(ε2)N2

e
− 2K1C(ε2)ε

7
√
2

NH(m∨m′)
M(m∨m′) .

1

log(N)
exp(−(3/2) log(N)) .

1

N3/2

for C(ε2) = 1 and c =
√

2/21. Theorem 2 (Appendix) implies∑
m′∈MN

E

[(
sup

h∈Sm′ ,‖h‖=1
ν2N,T,θ(h)− p1(m,m′)

)
+

]
.

1

N
.

We proceed analogously to bound E
[(

suph∈Bm∨m′ µ
2
N,T,θ(h)− p2(m,m′)

)
+

]
. We set µN,T,θ(h) =

1
N

∑N
i=1[gh(Xi)− E(gh(Xi))] where, for x ∈ C([0, T ]), gh(x) = h(T )x2(T )1x2(T )≤θ]. We have

sup
h∈Bm,x∈C([0,T ])

|gh(x)| ≤ θ sup
h∈Bm

|h(T )| ≤ θ(
m−1∑
j=0

ϕ2
j,T (T ))1/2 = θ

√
m

T
:= M(m).

Next,

E
[

sup
h∈Bm

[µN,T,θ(h)]2
]
≤ 1

N

m−1∑
j=0

(ϕj,T (T ))2E(X4(T )) =
m

NT
E(X4(T )) := H2(m).

Last

sup
h∈Bm

Var
(
h(T )X2

1 (T )1X2
1 (T )<θ

)
≤ (m/T )E(X4(T )) := v2(m).

When choosing p2(m,m
′) = 2(1 + 18 logN)(m ∨m′)/NT )E(X4(T )), and proceeding as above

with Theorem 2 (see Appendix), we obtain the second part of Lemma 4. 2

7. Appendix

7.1. Formulae for Laguerre functions. For this paragraph, we refer to Abramowitz and
Stegun (1964) and Comte and Genon-Catalot (2018).

The Laguerre polynomial with index δ, δ > −1, and degree k is given by

L
(δ)
k (x) =

1

k!
exx−δ

dk

dxk

(
xδ+ke−x

)
=

k∑
j=0

(
k + δ

k − j

)
(−x)j

j!
.

The following holds:

(28)
(
L
(δ)
k (x)

)′
= −L(δ+1)

k−1 (x), for k ≥ 1, and

∫ +∞

0

(
L
(δ)
k (x)

)2
xδe−xdx =

Γ(k + α+ 1)

k!
.

We consider the Laguerre functions with index δ, given by

(29) `
(δ)
k (x) = 2(δ+1)/2

(
k!

Γ(k + δ + 1)

)1/2

L
(δ)
k (2x)e−xxδ/2.

The family (`
(δ)
k )k≥0 is an orthonormal basis of L2(R+).

For δ = 0, we set L
(0)
k = Lk, ϕ

(0)
k = `k. Using (28), we obtain for j ≥ 1:

(30) `′j(x) = −`j(x)−
√

2j

x
`
(1)
j−1(x).
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The following properties hold for the `j 's. For all x ≥ 0,

|`j(x)| ≤
√

2,

∫ +∞

0
`j(x)dx =

√
2(−1)j , j ≥ 0,

(31) `′0(x) = −`0(x), `′j(x) = −`j(x)− 2

j−1∑
k=0

`k(x), j ≥ 1.

Moreover, the following asymptotic formulae can be found in Askey and Wainger (1965). For
ν = 4k + 2, and k large enough

|`k(x/2)| ≤ C



a) 1 if 0 ≤ x ≤ 1/ν

b) (xν)−1/4 if 1/ν ≤ x ≤ ν/2
c) ν−1/4(ν − x)−1/4 if ν/2 ≤ x ≤ ν − ν1/3
d) ν−1/3 if ν − ν1/3 ≤ x ≤ ν + ν1/3

e) ν−1/4(x− ν)−1/4e−γ1ν
−1/2(x−ν)3/2 if ν + ν1/3 ≤ x ≤ 3ν/2

f) e−γ2x if x ≥ 3ν/2

where γ1 and γ2 are positive and �xed constants.

7.2. A useful inequality. We recall the Talagrand inequality. The result below follows from
the Talagrand concentration inequality given in Klein and Rio (2005) [14] and arguments in Birgé
and Massart (1998) [7] (see the proof of their Corollary 2 page 354).

Theorem 2. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables with values
in a Polish space, let νn,Y (f) = (1/n)

∑n
i=1[f(Yi) − E(f(Yi))] and let F be a countable class of

uniformly bounded measurable functions. Then for ε2 > 0

E
[

sup
f∈F
|νn,Y (f)|2 − 2(1 + 2ε2)H2

]
+

≤ 4

K1

(
v2

n
e−K1ε2

nH2

v2 +
98M2

K1n2C2(ε2)
e
− 2K1C(ε2)ε

7
√
2

nH
M

)
,

with C(ε2) = (
√

1 + ε2 − 1) ∧ 1, K1 = 1/6, and

sup
f∈F
‖f‖∞ ≤M, E

[
sup
f∈F
|νn,Y (f)|

]
≤ H, sup

f∈F

1

n

n∑
k=1

Var(f(Yk)) ≤ v2.

By standard density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a
countable dense family.

7.3. Characteristic function and moments of X(t).

Proposition 5.

EeiuX(t) = exp [

∫ t

0
ψ(ua(v))]dv, ψ(u) =

∫
R

(eiux − 1− iux)n(x)dx.
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Proof of Proposition 5. Consider �rst the case where Z(t) =
∑N(t)

i=1 ξi is a compound Poisson
process, with (N(t)) a Poisson process with intensity λ, (ξi, i ≥ 1) a sequence of i.i.d. random
variables independent of the Poisson process (N(t)). Then,

X(t) =
∑

n:Tn≤t
a(t− Tn)ξn

where (Tn) is the sequence of jumps times of (N(t)). We have X(t) = 0 on (N(t) = 0) and
X(t) =

∑n
k=1 a(t − Tk)ξk on (N(t) = n). Let f denote the common density of the ξis and

f∗ their characteristic function. We use that the conditional distribution of (T1, . . . , Tn) given
(N(t) = n) is equal to the distribution of (U(k), k = 1, . . . , n) the order statistic of (U1, . . . , Un)
n i.i.d. random variables with uniform distribution on [0, t]:

EeiuX(t)1(N(t)=n) = E[1(N(t)=n)

∫
eiu

∑n
k=1 a(t−Tk)xkf(x1) . . . f(xk)dx1 . . . dxk]

= E[1(N(t)=n)

n∏
k=1

f∗(ua(t− Tk)) = E[1(N(t)=n)E
n∏
k=1

f∗(ua(t− U(k)))

= E[1(N(t)=n)E[

n∏
k=1

f∗(ua(t− Uk))] = E[1(N(t)=n)

(
1

t

∫ t

0
f∗(ua(t− v))dv

)n
Therefore,

EeiuX(t) = e(−λt)e[λt
∫ t
0 dvf

∗(ua(t−v)dv/t] = exp

∫ t

0
dvψ(ua(t− v))

where ψ(u) =
∫
R(eiux − 1)λf(x)dx is the characteristic exponent of (Z(t)). Note that if f is

centered, we can write ψ(u) =
∫
R(eiux − 1− iux)λf(x)dx.

In the general case, we have

EeiuZ(t) = exp [t

∫
R

(
eiux − 1− iux

)
n(x)dx] = exp tψ(u), Z(t) =

∫
(0,t]

∫
R
x(p̂(ds, dx)−dsn(x)dx),

where p̂(ds, dx) is the random Poisson measure associated with the jumps of (Z(t)). We consider
for ε > 0,

Zε(t) =

∫
(0,t]

∫
|x|>ε

x(p̂(ds, dx)− dsn(x)dx) = Yε(t)− t
∫
|x|>ε

xn(x)dx.

We have

EeiuZε(t) = exp [t

∫
|x|>ε

(
eiux − 1− iux

)
n(x)dx] = exp tψε(u)

and Xε(t) =
∫ t
0 a(t − v)dZε(v) =

∫ t
0 a(t − v)dYε(v) −

∫ t
0 a(t − v)dv

∫
|x|>ε xn(x)dx. The process

(Yε(t)) is a compound Poisson process with intensity 1|x|>εn(x)dx. Therefore,

EeiuXε(t) = exp [

∫ t

0
dv

∫
|x|>ε

(eiua(t−v)x − 1)n(x)dx− iu
∫ t

0
a(t− v)dv

∫
|x|>ε

xn(x)dx].

Thus, EeiuXε(t) = exp [
∫ t
0 dvψε(ua(t− v))]. Now, it is enough to let ε tend to 0 and the proof is

achieved. 2

Proposition 6. We have:

EX4(t) = 3(

∫ t

0
a2(u)du)2 + k4

∫ t

0
a4(u)du
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For all p ≥ 1, there exists a constant D(4 + 2p) depending only on p such that

E[X4(t)1X2(t)>θ] ≤
1

θp
EX4+2p(t)

≤ D(4 + 2p)

θp

(
G2+p(t) + k4+2p

∫ t

0
a4+2p(u)du

)
.

Proof of Proposition 6. We derivate four times the characteristic function of X(t) and use

that for ψ(u) =
∫

(eiux − 1− iux)n(x)dx, ψ′(0) = 0, ψ′′(0) = −1, ψ(4)(0) = k4.
The second inequality is a direct application of the �rst Kunita inequality (see Applebaum (2009))
where D(4 + 2p) is the constant given in this inequality.2
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