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Abstract: In this work, a new generalized loss function is proposed called power Jaccard to perform semantic seg-
mentation tasks. It is compared with classical loss functions in different scenarios, including gray level and
color image segmentation, as well as 3D point cloud segmentation. The results show improved performance,
stability and convergence. We made available the code with our proposal with a demonstrative example.

1 INTRODUCTION

Image segmentation using learning-based approaches
is an active research topic. One of the most com-
mon issues in this task is related to highly unbal-
anced datasets. Several strategies have been pro-
posed in order to compensate less populated classes.
They can be mainly clustered in two categories: 1)
Data-level methods, increasing artificially the number
of training samples via data augmentation through
over-sampling and under-sampling training samples;
2) Algorithm-level methods, without modifying the
training data distribution, the decision process in-
creases the importance of smaller classes (Johnson
and Khoshgoftaar, 2019). In this paper, we focus on
the second approach, by modifying the loss function
to penalize model mistakes similar to focal loss (Lin
et al., 2017).

According to (Jun, 2020), loss functions can be
mainly divided in two groups: 1) Statistical-based
such as Cross-Entropy (CE) and some of its variants
such as Weighted CE (Ronneberger et al., 2015), dis-
tance map penalized (Calivá et al., 2019) that com-
putes a mask based on pixels that are close to a given
class, Focal loss and top K-loss (Wu et al., 2016) that
drop pixels when they are too easy to classify, given a
threshold parameter.
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Figure 1: Comparison of some classical loss functions (dot-
ted lines) and our proposed Power Jaccard loss (solid line).
Binary Cross-Entropy. For Focal BCE with γ = 2. Verti-
cal red line indicates the ground truth y = 1. Our proposal
reduces the relative loss for well-classified examples.

2) Geometrical-based loss functions inspired by
discrete sets and mostly motivated by Sørensen-Dice
score. As an extension of Dice, Tversky loss (Salehi
et al., 2017) allows to penalize differently False Pos-
itives (FP) and False Negatives (FN); well known
Jaccard loss or Intersection over Union (IoU) (Po-
lak et al., 2009) and its multiclass version mean IoU;
boundary loss (Kervadec et al., 2018) takes the form
of a distance metric in the space of contours. Penalty
Generalized Dice (pGD) (Yang et al., 2019) seeks to
penalize with an additional parameter both FP and
FN. Geometrical-based loss functions are an active
research field with successful results in semantic seg-
mentation (Sudre et al., 2017).

During 3D point cloud challenge SHREC’20
(Zolanvari et al., 2019), we compared several losses
to improve semantic segmentation (Ku et al., 2020).
We found that some deep learning architectures such
as Unet or SegNet (Badrinarayanan et al., 2017) did



not achieve high performance as expected, using the
most common loss functions such as Focal loss, clas-
sical cross-entropy and Jaccard loss. Obtained results
motivated us to propose a loss function able to penal-
ize wrong predicted labels and to focus more on them
to improve the general performance.

Our main contribution in this paper is a general-
ization of Jaccard loss function for image segmenta-
tion. In proposed loss, the higher the power term, the
stronger the penalization of the worst predicted sam-
ples. We have evaluated our proposal with several
segmentation datasets such as MNIST, Cityscapes
(Cordts et al., 2016), SHREC’20 point clouds and
aerial images (Mnih, 2013). The use of power losses
improves the performance in binary and multiclass
segmentation (section 4). Fig. 1 illustrates a compar-
ison between the proposed loss functions and other
classical losses as cross-entropy, Jaccard and Dice
score. The abscissas represent the predicted value ŷ
and the ordinates the corresponding loss value. We
will see that a higher value of p in our generalized
Jaccard loss function improves model convergence by
shifting the focus to improve harder predictions.

The structure of the paper is as follows: Section
2 describes the proposed loss function; Section 3 in-
troduces the experimental design to evaluate our pro-
posal; in Section 4 the results of semantic segmenta-
tion comparing several loss functions with different
types of images are reported. Finally, in Section 5 the
conclusions are stated.

2 LOSS FUNCTIONS

In this Section, we present power Jaccard loss gener-
alizing the well known Jaccard index.

2.1 Jaccard index

The Jaccard index was introduced in (Jaccard, 1901).
It measures the similarity measures the similarity be-
tween finite sample sets A,B as the Intersection over
Union (IoU): |A∩B|

|A∪B| =
|A∩B|

|A|+|B|−|A∩B| . The Jaccard in-
dex is zero if the two sets are disjoint and is one if
they are identical. Other similarity index exist such as
Dice’s index defined as 2|A∩B|

|A|+|B| and it can be rewritten

in terms of Jaccard as 2J
1+J . For minimization pur-

poses, it is recommended to use the Jaccard distance
Jd = 1− |A∩B|

|A∪B| a.k.a. Steinhaus distance or biotope
distance, which were proposed to compare unordered
sets (Deza and Deza, 2009). During the segmenta-
tion process, the loss function should evaluate each
pixel i measuring the distance between its ground

truth yi ∈ {0,1} and the current result of the model ŷi,
the estimated probability value representing its like-
lihood of being part of the object. Subscript i is re-
moved for simplification reasons in yi and ŷi. The
straightforward implementation of Jd as a loss func-
tion in continuous domain replaces intersection and
union by product and sum as follows ((Rahman and
Wang, 2016) and (Martire et al., 2017)):

J1(y, ŷ) = 1− (y · ŷ)+ ε

(y+ ŷ− y · ŷ)+ ε
(1)

where ε prevents zero division.
(Cha, 2007) uses Jd as a variation of the normal-

ized inner product to measure the distance between
density probability functions with a power term equal
to two in the denominator:

J2(y, ŷ) = 1− (y · ŷ)+ ε

(y2 + ŷ2− y · ŷ)+ ε

=
(y− ŷ)2

(y2 + ŷ2− y · ŷ)+ ε
(2)

This modification from (1) to (2) can be inter-
preted in the context of focal loss, where the main
idea is to reduce both loss and gradient for correct
prediction while emphasizing the gradient of errors
(See Fig. 1).

2.2 Power Jaccard

We propose a generalized loss function called Power
Jaccard Loss including a power term p to the Jaccard
loss of (1) in order to increase the weight of wrong
predictions during training, as follows:

Jp(y, ŷ, p) = 1− (y · ŷ)+ ε

(yp + ŷp− y · ŷ)+ ε
(3)

If p = 1, our proposed loss is identical to Jaccard
distance. Previous works have directly used p = 2 in
geometrical losses such as Dice score (Diakogiannis
et al., 2020) and Jaccard distance (Decencière et al.,
2018).

Fig. 1 illustrates the shape of loss functions ac-
cording to p. We propose to increase the weight of
wrong predicted samples depending on p. Also, as
shows Fig. 2 for p > 2, the minimum of loss function
is not at ŷ = 1. This implies that the model will con-
verge to a non desired optimal value and negative val-
ues of loss would be obtained. We also demonstrate
that p must be between one and two.

3 EXPERIMENTAL DESIGN

Power Jaccard loss is validated in semantic seg-
mentation frameworks with several datasets: MNIST,



Figure 2: Incidence of parameter p in power Jaccard loss.
Vertical red line indicates the ground truth value of y = 1.

Cityscapes, aerial images from Toronto University
and SHREC’20 challenge. We selected Unet based
architectures and performed some variations to the
model (number of filters), the training stage (dataset
size and batch size) and compared the incidence of
our proposal. Each configuration is repeated several
times to evaluate stability and repetitiveness, which is
a common issue in neural networks (Scardapane and
Wang, 2017). As evaluation metrics, we used mean
IoU, accuracy and recall scores.

3.1 Grayscale images

MNIST dataset contains grayscale images of 28x28
pixels with digits of ten classes from zero to nine and
one digit instance by image. We randomly selected
140 images per class and built a pixel-wise ground
truth (Zhou, 2018). Then, the dataset was divided in
the three common subsets as follows: 1000 for train-
ing, 200 for validation and 200 for test.

Two segmentation problems have been tackled:
1) Binary segmentation to distinguish between back-
ground and digit pixels; 2) Multiclass segmentation in
ten classes. In both cases, we selected an Unet model
with three levels of depth where the number of filters
was changed between two, four and eight. Diverse
batch sizes were used: 1, 10 and 50. Each configu-
ration was evaluated with different losses: binary or
categorical CE, classical Jaccard and power Jaccard
with several values of p. In all trained models, the in-
put shape is a single channel image. Each experiment
is repeated five times. The code is available at 1.

3.2 RGB images

Two color datasets are used: 1) Aerial images from
(Mnih, 2013) for binary segmentation; 2) Urban

1The code to train a segmentation model on MNIST
images varying the loss functions is available at:
https://github.com/daduquea/powerLosses/.

(a) Road segmentation

(b) Building segmentation

Figure 3: Example of Mnih dataset (RGB and GT).

scenes images from Cityscapes (Cordts et al., 2016)
for multiclass segmentation.

3.2.1 Aerial images

We performed two binary segmentation tasks: 1)
Road and no-road (1108 images for training, 14 for
validation and 49 for testing); 2) Building and no-
building (137 images for training, four for validation
and ten for testing). Fig. 3 presents two images from
the dataset and the corresponding ground truth.

Unet initialized from ImageNet with Mo-
bileNetV2 (Sandler et al., 2018) as feature extractor
is used. Adam optimizer with a default learning rate
of 10−3 and a patience equal to five.

3.2.2 Urban scene images

Cityscapes dataset is composed of 5K color images
with divided in three subsets: training (2975), vali-
dation (500) and test (1525) and annotated with 30
classes in the context of autonomous driving. Fig. 4
shows an image from this dataset.

We have selected a subset of four classes relevant
for autonomous driving to perform semantic segmen-
tation in unbalanced data: person, car, road and back-
ground.

3.3 Point cloud projections

SHREC’20 dataset contains 80 point clouds, each one
has about three millions points (x,y,z). Each point
cloud of the training set is manually labeled with fol-
lowing classes: building, car, ground, pole and veg-

https://github.com/daduquea/powerLosses/


(a) RGB Image

(b) Ground truth of selected classes.
Color scale for each class: Road is blue,
person is red, car is green and background
is black.

Figure 4: Image from Cityscapes (Cordts et al., 2016).

(a) 3D points

(b) Bird Eye View (BEV) projections

Figure 5: Point cloud with ground truth from SHREC’20
challenge (Zolanvari et al., 2019) and the corresponding
BEV projections.

etation. Segmentation is obtained from 2D Bird eye
view (BEV). Fig. 5 shows a point cloud with ground
truth labels.

We divided segmentation of 3D point clouds in
two simpler problems: 1) Segment lower points (low
slice) in building and car classes; 2) Segment higher

points (high slice) in building and vegetation classes.
Fig. 5b shows BEV projections of low and high slice
Fig. 5a.

Ground and poles have been discarded because: 1)
Ground can be extracted using an analytical approach
such as the Lambda Flat Zone method proposed by
(Hernández and Marcotegui, 2009) and then extended
for (Serna and Marcotegui, 2014) to compute Digital
Elevation Model (DEM); 2) Pole class is problematic
because a single traffic sign, very different from other
pole instances, contains 70 % of the pole class points
in the whole dataset.

We computed hand crafted features based on the
BEV projections (Serna and Marcotegui, 2014) from
3D point clouds. For the low slice: hmax and
max(hmax,∆hmin) and for the high slice: hmin, hmax
and ∆h. We note that hmax and hmin represent the max-
imum height and the minimum height of all points
that fell in the same pixel, ∆h = hmax − hmin and
∆hmin = hmin−DEM.

The semantic segmentation task was performed
independently on each slice: one model was trained
in the low slice and another one in the high slice.
Both slices share some common characteristics such
as the same Unet-based architecture with three levels
of depth, the kernel size of convolutions, patience and
Adadelta optimizer with a learning rate of 0.001.

4 RESULTS

In this section we present obtained results in bi-
nary and multiclass segmentation tasks. Power losses
outperforms classical losses in tested scenarios with
different kinds of data.

4.1 Gray scale images

4.1.1 Binary segmentation

Experiments with different number of filters, batch
size and loss functions are performed. Table 1 shows
the results using a batch size equal to one. Mean IoU,
standard deviation and the best IoU of five runs are
reported.

It was experimentally found that increasing the
batch size negatively affects the performance of the
model. It can be justified because with a smaller
batch, the model gradually learns to distinguish be-
tween background and a single class. Even though,
over a batch size of 10, the variance of the digit class
increases because it groups a set on non homogeneous
instances of the ten classes. Furthermore, Table 1 re-
ports a high standard deviation for almost all config-



Filters Metric CE Jac. p = 1

2
IoU 0.8542 ± 0.1651 0.4402 ± 0.0298

Best IOU 0.9884 0.5000

4
IoU 0.8773 ± 0.1889 0.4551 ± 0.0366

Best IOU 0.9878 0.5000

8
IoU 0.8216 ± 0.1654 0.4403 ± 0.0304

Best IOU 0.9504 0.5011

Filters Metric Jac. p = 1.25 Jac. p = 1.5

2
IoU 0.5303 ± 0.2101 0.5538 ± 0.2217

Best IOU 0.9507 0.9735

4
IoU 0.5545 ± 0.2234 0.5396 ± 0.2290

Best IOU 0.9977 0.9566

8
IoU 0.4348 ± 0.0191 0.5395 ± 0.2290

Best IOU 0.4737 0.9977

Filters Metric Jac. p = 1.75 Jac. p = 2

2
IoU 0.9813 ± 0.0172 0.7679 ± 0.2797

Best IOU 0.9977 0.9975

4
IoU 0.6507 ± 0.2760 0.7687 ± 0.2804

Best IOU 0.9938 0.9977

8
IoU 0.5397 ± 0.2289 0.5397 ± 0.2289

Best IOU 0.9977 0.9977

Table 1: Binary segmentation in MNIST dataset with batch
size of one

urations. It implies that during training, models con-
verged to different local minima with different values
at each run.

Power losses allow to train simpler models out-
performing other loss functions. Table 1 shows that
the model with two filters and power Jaccard with
p = 1.75 obtained a performance equal to the best
model with eight filters. The improvement obtained
using power losses is higher when training smaller
models. These loss functions could be useful with
low memory requirements.

4.1.2 Multiclass segmentation

We varied batch size between 1, 10 and 50 and re-
peated five times each configuration, as presented in
Table 2.

From Table 2, it can be seen that power Jaccard
allows to obtain higher score compared against cross-
entropy and classical Jaccard. Fig. 6 presents some
predictions obtained with the best model achieved us-
ing power Jaccard with p = 2 and batch size of one.
We observed that in the best models, the errors were
in general at pixel-wise level. This type of errors can
be solved by means of regularization techniques such
as voting systems (Alpaydin, 1997).

4.2 RGB images

4.2.1 Aerial images

Table 3 presents accuracy values by experiment with
several loss functions. We observe that in both ex-

Batch Metric CE Jac. p = 1

1
IoU 0.0956 ± 0.0309 0.0000 ± 0.0000

Best IOU 0.1501 0.0000

10
IoU 0.1341 ± 0.0228 0.4537 ± 0.1014

Best IOU 0.1612 0.6562

50
IoU 0.1534 ± 0.0101 0.4819 ± 0.0779

Best IOU 0.1679 0.6188

Batch Metric Jac. p = 1.25 Jac. p = 1.5

1
IoU 0.0062 ± 0.0076 0.4831 ± 0.4031

Best IOU 0.0152 0.9137

10
IoU 0.5298 ± 0.0963 0.6852 ± 0.0464

Best IOU 0.6378 0.7747

50
IoU 0.5255 ± 0.1055 0.6364 ± 0.0699

Best IOU 0.7342 0.7432

Batch Metric Jac. p = 1.75 Jac. p = 2

1
IoU 0.6388 ± 0.3394 0.5160 ± 0.4240

Best IOU 0.8960 0.9450

10
IoU 0.8307 ± 0.0535 0.7953 ± 0.0499

Best IOU 0.8793 0.8856

50
IoU 0.7403 ± 0.1137 0.7590 ± 0.0577

Best IOU 0.8342 0.8064

Table 2: Mean IoU in multiclass segmentation on MNIST.

(a) Example 1

(b) Example 2

(c) Example 3

Figure 6: Multiclass segmentation using MNIST dataset.
From left to right: 1) Original gray scale image; 2) Ground
truth generated from gray scale image; 3) Prediction us-
ing best obtained model; 4) Errors between prediction and
ground truth.

periments, the use of power losses leads to better re-
sults by a small margin and highest accuracy was ob-
tained with p = 1.5. One may also note that BCE has
the lowest validation accuracy in both datasets. The
small differences between different loss functions oc-
cur because of to the use of an already trained model
as feature extractor, as described in Section 3.



Roads Buildings
BCE 0.9622 0.9376

F-BCE 0.9677 0.9421
Dice 0.9680 0.9489

Jac. p = 1 0.9676 0.9484
Jac. p = 1.5 0.9684 0.9503
Jac. p = 2 0.9682 0.9502

Table 3: Accuracy in validation set on Aerial images. First
column indicates the used loss function: BCE, Focal BCE,
Dice score and power Jaccard.

CE Jac. p = 1 Jac. p = 1.5 Jac. p = 2
Person 0.1135 0.0000 0.1118 0.1390

Car 0.4620 0.4004 0.4209 0.5082
Road 0.8380 0.8137 0.8047 0.8263

Background 0.8721 0.8541 0.8605 0.8738

Mean IoU 0.5714 0.5170 0.5495 0.5868

Table 4: IoU by class and mean IoU in validation set of
Cityscapes (Cordts et al., 2016).

4.2.2 Urban scene images

Table 4 reports the results on Cityscapes dataset.
Power losses improve the performance on less pop-
ulated classes such as person and car thanks to the
higher penalty for worst predictions (see Fig. 2).

The relative improvement in IoU between cross-
entropy and power Jaccard with p equal to 2 in back-
ground was 0.1949%, in person was 22.46% and in
car was 10%. On the road, it worsened by 1.39%. In
the mean IoU, the relative improvement was 2.69%.
Fig. 7 shows the predictions of the image presented in
Fig. 4 using the models trained with different losses.
It is seen how the influence of the power term qualita-
tively improve the segmentation of the person class.

4.3 Point cloud projections

This section presents the results of semantic segmen-
tation in 3D point clouds. We divide each point cloud
in two slices: low and high, in order to simplify clas-
sification problems and focused on the impact of the
loss function. Tables 5 and 6 present obtained results
with several losses. We report three values by loss
function: IoU is the average and the standard devia-
tion of the mean IoU in test set and best IoU is the
highest IoU obtained in test set

In general, using Power Jaccard, the performance

Metric CE Focal BCE Dice score
IoU 0.279 ± 0.426 0.450 ± 0.172 0.665 ± 0.196

Best IOU 0.934 0.797 0.798

Metric Jac. p = 1 Jac. p = 1.5 Jac. p = 2
IoU 0.702 ± 0.230 0.931 ± 0.009 0.925 ± 0.009

Best IOU 0.941 0.943 0.939

Table 5: Performance in low slice from SHREC’20 dataset.

(a) Cross-entropy

(b) Classical Jaccard

(c) Power Jaccard with p = 1.5

(d) Power Jaccard with p = 2

Figure 7: Example of Prediction 4 in Cityscapes. Road
(blue), person (red), car (green) and background (black).
Note that Power Jaccard performs better on smaller classes
than the classical one. Quantitative results are given in Ta-
ble 4

Metric CE Focal BCE Dice p = 1
IoU 0.341 ± 0.000 0.570 ± 0.016 0.427 ± 0.173

Best IOU 0.341 0.605 0.787

Metric Jac. p = 1 Jac. p = 1.5 Jac. p = 2
IoU 0.341 ± 0.000 0.761 ± 0.144 0.761 ± 0.020

Best IOU 0.341 0.809 0.788

Table 6: Performance in high slice from SHREC’20
dataset.



was better and the models converged more often. It
can be seen by the low standard deviation values when
p value increases, specially in the low slice results
(Table 5). CE and Focal BCE do not converge as of-
ten as the proposed losses in tested scenarios. Even
though, their best IoU in Table 5 is comparable with
power functions. Models trained with p = 1.5 per-
form better than classical Jaccard in both slices.

5 CONCLUSIONS

In this work, we propose generalized loss func-
tions to perform semantic segmentation by introduc-
ing power Jaccard. We evaluated it in different
types of images such as gray-scale, RGB and point
cloud projections in binary and multiclass segmenta-
tion tasks. Obtained results demonstrate that the use
of power losses outperforms classical losses such as
cross-entropy, Jaccard and Dice score.

In order to evaluate the stability of the models, we
repeated several times the same configuration and we
stated that the use of power losses helps to increase
the rate of convergence. This is useful in deep learn-
ing models where the stability of the models is critical
and it is strongly associated with the randomness of
the initialization parameters.

We performed several experiments with differ-
ent types of images, different dataset of segmenta-
tion task, demonstrating that the advantage of power
losses is not an isolated case.

Additionally, to the results presented in this pa-
per, we had conducted some experiments by includ-
ing a power term in the classical Dice score in the
same spirit of our proposal. Obtained results demon-
strate that the use of p equal to two also improves the
performance compared against the classical Dice loss
in several scenarios. Accordingly, for future work,
we will investigate a generalization of power terms
on loss functions for semantic segmentation and a
method to estimate the best value of p in different sce-
narios.
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APPENDIX

Derivatives of Power Jaccard

As y ∈ {0,1}, the power term p does not affect y
value. Eq. 3 can we rewritten as presented in Eq. 4. In
order to find the minimum value of the loss function,
we compute ∂Jp/∂ŷ and equaled to zero. We recall
that ŷ ∈ ]0,1[ because of the activation function. One
may observe from Eq. 4 that y = ŷ = 0 results on zero
division. Therefore, we suppose below that at least
one of y and ŷ are different from zero.

Jp(y, ŷ) =
y+ ŷp−2 · y · ŷ
(y+ ŷp− y · ŷ)

(4)

∂Jp

∂ŷ
=

(y · ŷ)(p · ŷp−1− y)
((y+ ŷp− y · ŷ))2 −

y
(y+ ŷp− y · ŷ)

(5)

Let us consider the case where y= 1 so we replace
it in Eq. 5 and solve to find the valid values for p
based on the the minimum of the derivative of the loss
function.

∂Jp

∂ŷ
= 0

ŷ · (p · ŷp−1−1)
(1+ ŷp− ŷ)2 −

1
(1+ ŷp− ŷ)

= 0

p · ŷp− ŷ = 1+ ŷp− ŷ (6)

If p = 1 there is not minimum as shows Fig. 1.
But, if p > 1

ŷ = p

√
1

(p−1)

Note that 0 < ŷ < 1, therefore:

0 <
1

(p−1)
< 1

1 < p < 2 (7)

If p = 2, the minimum of Eq. 6 will be exactly
at ŷ = 1. If 1 < p < 2, the minimum of Jp beyond 2
which is not a problem as by construction ŷ cannot be
larger than 1. If p > 2, then the minimum will be be-
tween 0 and 1. Finally, if p≤ 1 there is no minimum.


