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In this work, a new generalized loss function is proposed called power Jaccard to perform semantic segmentation tasks. It is compared with classical loss functions in different scenarios, including gray level and color image segmentation, as well as 3D point cloud segmentation. The results show improved performance, stability and convergence. We made available the code with our proposal with a demonstrative example.

INTRODUCTION

Image segmentation using learning-based approaches is an active research topic. One of the most common issues in this task is related to highly unbalanced datasets. Several strategies have been proposed in order to compensate less populated classes. They can be mainly clustered in two categories: 1) Data-level methods, increasing artificially the number of training samples via data augmentation through over-sampling and under-sampling training samples;

2) Algorithm-level methods, without modifying the training data distribution, the decision process increases the importance of smaller classes [START_REF] Johnson | Survey on deep learning with class imbalance[END_REF]. In this paper, we focus on the second approach, by modifying the loss function to penalize model mistakes similar to focal loss [START_REF] Lin | Focal loss for dense object detection[END_REF].

According to [START_REF] Jun | Segmentation loss odyssey[END_REF], loss functions can be mainly divided in two groups: 1) Statistical-based such as Cross-Entropy (CE) and some of its variants such as Weighted CE [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], distance map penalized [START_REF] Calivá | Distance map loss penalty term for semantic segmentation[END_REF] that computes a mask based on pixels that are close to a given class, Focal loss and top K-loss [START_REF] Wu | Bridging category-level and instance-level semantic image segmentation[END_REF] that drop pixels when they are too easy to classify, given a threshold parameter. 2) Geometrical-based loss functions inspired by discrete sets and mostly motivated by Sørensen-Dice score. As an extension of Dice, Tversky loss [START_REF] Salehi | Tversky loss function for image segmentation using 3d fully convolutional deep networks[END_REF] allows to penalize differently False Positives (FP) and False Negatives (FN); well known Jaccard loss or Intersection over Union (IoU) [START_REF] Polak | An evaluation metric for image segmentation of multiple objects[END_REF] and its multiclass version mean IoU; boundary loss [START_REF] Kervadec | Boundary loss for highly unbalanced segmentation[END_REF] takes the form of a distance metric in the space of contours. Penalty Generalized Dice (pGD) [START_REF] Yang | Major vessel segmentation on x-ray coronary angiography using deep networks with a novel penalty loss function[END_REF] seeks to penalize with an additional parameter both FP and FN. Geometrical-based loss functions are an active research field with successful results in semantic segmentation [START_REF] Sudre | Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[END_REF].

During 3D point cloud challenge SHREC'20 [START_REF] Zolanvari | Dublincity: Annotated lidar point cloud and its applications[END_REF], we compared several losses to improve semantic segmentation [START_REF] Ku | Shrec 2020 track: 3d point cloud semantic segmentation for street scenes[END_REF]. We found that some deep learning architectures such as Unet or SegNet [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] did not achieve high performance as expected, using the most common loss functions such as Focal loss, classical cross-entropy and Jaccard loss. Obtained results motivated us to propose a loss function able to penalize wrong predicted labels and to focus more on them to improve the general performance.

Our main contribution in this paper is a generalization of Jaccard loss function for image segmentation. In proposed loss, the higher the power term, the stronger the penalization of the worst predicted samples. We have evaluated our proposal with several segmentation datasets such as MNIST, Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF], SHREC'20 point clouds and aerial images [START_REF] Mnih | Machine Learning for Aerial Image Labeling[END_REF]. The use of power losses improves the performance in binary and multiclass segmentation (section 4). Fig. 1 illustrates a comparison between the proposed loss functions and other classical losses as cross-entropy, Jaccard and Dice score. The abscissas represent the predicted value ŷ and the ordinates the corresponding loss value. We will see that a higher value of p in our generalized Jaccard loss function improves model convergence by shifting the focus to improve harder predictions.

The structure of the paper is as follows: Section 2 describes the proposed loss function; Section 3 introduces the experimental design to evaluate our proposal; in Section 4 the results of semantic segmentation comparing several loss functions with different types of images are reported. Finally, in Section 5 the conclusions are stated.

LOSS FUNCTIONS

In this Section, we present power Jaccard loss generalizing the well known Jaccard index.

Jaccard index

The Jaccard index was introduced in [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF] |A|+|B| and it can be rewritten in terms of Jaccard as 2J 1+J . For minimization purposes, it is recommended to use the Jaccard distance J d = 1 -|A∩B| |A∪B| a.k.a. Steinhaus distance or biotope distance, which were proposed to compare unordered sets [START_REF] Deza | Encyclopedia of distances[END_REF]. During the segmentation process, the loss function should evaluate each pixel i measuring the distance between its ground truth y i ∈ {0, 1} and the current result of the model ŷi , the estimated probability value representing its likelihood of being part of the object. Subscript i is removed for simplification reasons in y i and ŷi . The straightforward implementation of J d as a loss function in continuous domain replaces intersection and union by product and sum as follows ( [START_REF] Rahman | Optimizing intersection-over-union in deep neural networks for image segmentation[END_REF] and [START_REF] Martire | A novel probabilistic jaccard distance measure for classification of sparse and uncertain data[END_REF]):

J 1 (y, ŷ) = 1 - (y • ŷ) + ε (y + ŷ -y • ŷ) + ε (1)
where ε prevents zero division. [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF] uses J d as a variation of the normalized inner product to measure the distance between density probability functions with a power term equal to two in the denominator:

J 2 (y, ŷ) = 1 - (y • ŷ) + ε (y 2 + ŷ2 -y • ŷ) + ε = (y -ŷ) 2 (y 2 + ŷ2 -y • ŷ) + ε (2)
This modification from ( 1) to ( 2) can be interpreted in the context of focal loss, where the main idea is to reduce both loss and gradient for correct prediction while emphasizing the gradient of errors (See Fig. 1).

Power Jaccard

We propose a generalized loss function called Power Jaccard Loss including a power term p to the Jaccard loss of (1) in order to increase the weight of wrong predictions during training, as follows:

J p (y, ŷ, p) = 1 - (y • ŷ) + ε (y p + ŷp -y • ŷ) + ε (3) 
If p = 1, our proposed loss is identical to Jaccard distance. Previous works have directly used p = 2 in geometrical losses such as Dice score [START_REF] Diakogiannis | Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data[END_REF] and Jaccard distance [START_REF] Decencière | Dealing with topological information within a fully convolutional neural network[END_REF].

Fig. 1 illustrates the shape of loss functions according to p. We propose to increase the weight of wrong predicted samples depending on p. Also, as shows Fig. 2 for p > 2, the minimum of loss function is not at ŷ = 1. This implies that the model will converge to a non desired optimal value and negative values of loss would be obtained. We also demonstrate that p must be between one and two.

EXPERIMENTAL DESIGN

Power Jaccard loss is validated in semantic segmentation frameworks with several datasets: MNIST, Cityscapes, aerial images from Toronto University and SHREC'20 challenge. We selected Unet based architectures and performed some variations to the model (number of filters), the training stage (dataset size and batch size) and compared the incidence of our proposal. Each configuration is repeated several times to evaluate stability and repetitiveness, which is a common issue in neural networks [START_REF] Scardapane | Randomness in neural networks: an overview[END_REF]. As evaluation metrics, we used mean IoU, accuracy and recall scores.

Grayscale images

MNIST dataset contains grayscale images of 28x28 pixels with digits of ten classes from zero to nine and one digit instance by image. We randomly selected 140 images per class and built a pixel-wise ground truth [START_REF] Zhou | M2NIST Segmentation / U-net[END_REF]. Then, the dataset was divided in the three common subsets as follows: 1000 for training, 200 for validation and 200 for test.

Two segmentation problems have been tackled: 1) Binary segmentation to distinguish between background and digit pixels; 2) Multiclass segmentation in ten classes. In both cases, we selected an Unet model with three levels of depth where the number of filters was changed between two, four and eight. Diverse batch sizes were used: 1, 10 and 50. Each configuration was evaluated with different losses: binary or categorical CE, classical Jaccard and power Jaccard with several values of p. In all trained models, the input shape is a single channel image. Each experiment is repeated five times. The code is available at1 .

RGB images

Two color datasets are used: 1) Aerial images from [START_REF] Mnih | Machine Learning for Aerial Image Labeling[END_REF] for binary segmentation; 2) Urban scenes images from Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] for multiclass segmentation.

Aerial images

We performed two binary segmentation tasks: 1) Road and no-road (1108 images for training, 14 for validation and 49 for testing); 2) Building and nobuilding (137 images for training, four for validation and ten for testing). Fig. 3 presents two images from the dataset and the corresponding ground truth.

Unet initialized from ImageNet with Mo-bileNetV2 [START_REF] Sandler | Mobilenetv2: Inverted residuals and linear bottlenecks[END_REF] as feature extractor is used. Adam optimizer with a default learning rate of 10 -3 and a patience equal to five.

Urban scene images

Cityscapes dataset is composed of 5K color images with divided in three subsets: training (2975), validation (500) and test (1525) and annotated with 30 classes in the context of autonomous driving. Fig. 4 shows an image from this dataset.

We have selected a subset of four classes relevant for autonomous driving to perform semantic segmentation in unbalanced data: person, car, road and background. etation. Segmentation is obtained from 2D Bird eye view (BEV). Fig. 5 shows a point cloud with ground truth labels.

Point cloud projections

We divided segmentation of 3D point clouds in two simpler problems: 1) Segment lower points (low slice) in building and car classes; 2) Segment higher points (high slice) in building and vegetation classes. Fig. 5b shows BEV projections of low and high slice Fig. 5a.

Ground and poles have been discarded because: 1) Ground can be extracted using an analytical approach such as the Lambda Flat Zone method proposed by [START_REF] Hernández | Point cloud segmentation towards urban ground modeling[END_REF] and then extended for [START_REF] Serna | Detection, segmentation and classification of 3d urban objects using mathematical morphology and supervised learning[END_REF] to compute Digital Elevation Model (DEM); 2) Pole class is problematic because a single traffic sign, very different from other pole instances, contains 70 % of the pole class points in the whole dataset.

We computed hand crafted features based on the BEV projections [START_REF] Serna | Detection, segmentation and classification of 3d urban objects using mathematical morphology and supervised learning[END_REF] from 3D point clouds. For the low slice: h max and max(h max , ∆h min ) and for the high slice: h min , h max and ∆h. We note that h max and h min represent the maximum height and the minimum height of all points that fell in the same pixel, ∆h = h maxh min and ∆h min = h min -DEM.

The semantic segmentation task was performed independently on each slice: one model was trained in the low slice and another one in the high slice. Both slices share some common characteristics such as the same Unet-based architecture with three levels of depth, the kernel size of convolutions, patience and Adadelta optimizer with a learning rate of 0.001.

RESULTS

In this section we present obtained results in binary and multiclass segmentation tasks. Power losses outperforms classical losses in tested scenarios with different kinds of data.

Gray scale images 4.1.1 Binary segmentation

Experiments with different number of filters, batch size and loss functions are performed. Table 1 shows the results using a batch size equal to one. Mean IoU, standard deviation and the best IoU of five runs are reported.

It was experimentally found that increasing the batch size negatively affects the performance of the model. It can be justified because with a smaller batch, the model gradually learns to distinguish between background and a single class. Even though, over a batch size of 10, the variance of the digit class increases because it groups a set on non homogeneous instances of the ten classes. Furthermore, Power losses allow to train simpler models outperforming other loss functions. Table 1 shows that the model with two filters and power Jaccard with p = 1.75 obtained a performance equal to the best model with eight filters. The improvement obtained using power losses is higher when training smaller models. These loss functions could be useful with low memory requirements.

Multiclass segmentation

We varied batch size between 1, 10 and 50 and repeated five times each configuration, as presented in Table 2.

From Table 2, it can be seen that power Jaccard allows to obtain higher score compared against crossentropy and classical Jaccard. Fig. 6 presents some predictions obtained with the best model achieved using power Jaccard with p = 2 and batch size of one. We observed that in the best models, the errors were in general at pixel-wise level. This type of errors can be solved by means of regularization techniques such as voting systems [START_REF] Alpaydin | Voting over multiple condensed nearest neighbors[END_REF]. periments, the use of power losses leads to better results by a small margin and highest accuracy was obtained with p = 1.5. One may also note that BCE has the lowest validation accuracy in both datasets. The small differences between different loss functions occur because of to the use of an already trained model as feature extractor, as described in Section 3. 

RGB images

Aerial images

Urban scene images

Table 4 reports the results on Cityscapes dataset.

Power losses improve the performance on less populated classes such as person and car thanks to the higher penalty for worst predictions (see Fig. 2).

The relative improvement in IoU between crossentropy and power Jaccard with p equal to 2 in background was 0.1949%, in person was 22.46% and in car was 10%. On the road, it worsened by 1.39%. In the mean IoU, the relative improvement was 2.69%. Fig. 7 shows the predictions of the image presented in Fig. 4 using the models trained with different losses. It is seen how the influence of the power term qualitatively improve the segmentation of the person class.

Point cloud projections

This section presents the results of semantic segmentation in 3D point clouds. We divide each point cloud in two slices: low and high, in order to simplify classification problems and focused on the impact of the loss function. Tables 5 and6 present obtained results with several losses. We report three values by loss function: IoU is the average and the standard deviation of the mean IoU in test set and best IoU is the highest IoU obtained in test set

In general, using Power Jaccard, the performance was better and the models converged more often. It can be seen by the low standard deviation values when p value increases, specially in the low slice results (Table 5). CE and Focal BCE do not converge as often as the proposed losses in tested scenarios. Even though, their best IoU in Table 5 is comparable with power functions. Models trained with p = 1.5 perform better than classical Jaccard in both slices.

CONCLUSIONS

In this work, we propose generalized loss functions to perform semantic segmentation by introducing power Jaccard. We evaluated it in different types of images such as gray-scale, RGB and point cloud projections in binary and multiclass segmentation tasks. Obtained results demonstrate that the use of power losses outperforms classical losses such as cross-entropy, Jaccard and Dice score.

In order to evaluate the stability of the models, we repeated several times the same configuration and we stated that the use of power losses helps to increase the rate of convergence. This is useful in deep learning models where the stability of the models is critical and it is strongly associated with the randomness of the initialization parameters.

We performed several experiments with different types of images, different dataset of segmentation task, demonstrating that the advantage of power losses is not an isolated case.

Additionally, to the results presented in this paper, we had conducted some experiments by including a power term in the classical Dice score in the same spirit of our proposal. Obtained results demonstrate that the use of p equal to two also improves the performance compared against the classical Dice loss in several scenarios. Accordingly, for future work, we will investigate a generalization of power terms on loss functions for semantic segmentation and a method to estimate the best value of p in different scenarios.

Figure 1 :

 1 Figure 1: Comparison of some classical loss functions (dotted lines) and our proposed Power Jaccard loss (solid line). Binary Cross-Entropy. For Focal BCE with γ = 2. Vertical red line indicates the ground truth y = 1. Our proposal reduces the relative loss for well-classified examples.

Figure 2 :

 2 Figure 2: Incidence of parameter p in power Jaccard loss. Vertical red line indicates the ground truth value of y = 1.

  Figure 3: Example of Mnih dataset (RGB and GT).

  SHREC'20 dataset contains 80 point clouds, each one has about three millions points (x, y, z). Each point cloud of the training set is manually labeled with following classes: building, car, ground, pole and veg-

  Ground truth of selected classes. Color scale for each class: Road is blue, person is red, car is green and background is black.

Figure 4 :

 4 Figure 4: Image from Cityscapes (Cordts et al., 2016).

Figure 6 :

 6 Figure 6: Multiclass segmentation using MNIST dataset. From left to right: 1) Original gray scale image; 2) Ground truth generated from gray scale image; 3) Prediction using best obtained model; 4) Errors between prediction and ground truth.

Figure 7 :

 7 Figure 7: Example of Prediction 4 in Cityscapes. Road (blue), person (red), car (green) and background (black). Note that Power Jaccard performs better on smaller classes than the classical one. Quantitative results are given in Table 4

Table 1 :

 1 Table 1 reports a high standard deviation for almost all config-Binary segmentation in MNIST dataset with batch size of one

	Filters	Metric	CE	Jac. p = 1
	2	IoU Best IOU	0.8542 ± 0.1651 0.9884	0.4402 ± 0.0298 0.5000
	4	IoU Best IOU	0.8773 ± 0.1889 0.9878	0.4551 ± 0.0366 0.5000
	8	IoU Best IOU	0.8216 ± 0.1654 0.9504	0.4403 ± 0.0304 0.5011
	Filters	Metric	Jac. p = 1.25	Jac. p = 1.5
	2	IoU Best IOU	0.5303 ± 0.2101 0.9507	0.5538 ± 0.2217 0.9735
	4	IoU Best IOU	0.5545 ± 0.2234 0.9977	0.5396 ± 0.2290 0.9566
	8	IoU Best IOU	0.4348 ± 0.0191 0.4737	0.5395 ± 0.2290 0.9977
	Filters	Metric	Jac. p = 1.75	Jac. p = 2
	2	IoU Best IOU	0.9813 ± 0.0172 0.9977	0.7679 ± 0.2797 0.9975
	4	IoU Best IOU	0.6507 ± 0.2760 0.9938	0.7687 ± 0.2804 0.9977
	8	IoU Best IOU	0.5397 ± 0.2289 0.9977	0.5397 ± 0.2289 0.9977

urations. It implies that during training, models converged to different local minima with different values at each run.

Table 2 :

 2 Table3presents accuracy values by experiment with several loss functions. We observe that in both ex-Mean IoU in multiclass segmentation on MNIST.

	Batch	Metric	CE	Jac. p = 1
	1	IoU Best IOU	0.0956 ± 0.0309 0.1501	0.0000 ± 0.0000 0.0000
	10	IoU Best IOU	0.1341 ± 0.0228 0.1612	0.4537 ± 0.1014 0.6562
	50	IoU Best IOU	0.1534 ± 0.0101 0.1679	0.4819 ± 0.0779 0.6188
	Batch	Metric	Jac. p = 1.25	Jac. p = 1.5
	1	IoU Best IOU	0.0062 ± 0.0076 0.0152	0.4831 ± 0.4031 0.9137
	10	IoU Best IOU	0.5298 ± 0.0963 0.6378	0.6852 ± 0.0464 0.7747
	50	IoU Best IOU	0.5255 ± 0.1055 0.7342	0.6364 ± 0.0699 0.7432
	Batch	Metric	Jac. p = 1.75	Jac. p = 2
	1	IoU Best IOU	0.6388 ± 0.3394 0.8960	0.5160 ± 0.4240 0.9450
	10	IoU Best IOU	0.8307 ± 0.0535 0.8793	0.7953 ± 0.0499 0.8856
	50	IoU Best IOU	0.7403 ± 0.1137 0.8342	0.7590 ± 0.0577 0.8064

Table 3 :

 3 Accuracy in validation set on Aerial images. First column indicates the used loss function: BCE, Focal BCE, Dice score and power Jaccard.

		CE	Jac. p = 1	Jac. p = 1.5	Jac. p = 2
	Person	0.1135	0.0000	0.1118	0.1390
	Car	0.4620	0.4004	0.4209	0.5082
	Road	0.8380	0.8137	0.8047	0.8263
	Background	0.8721	0.8541	0.8605	0.8738
	Mean IoU	0.5714	0.5170	0.5495	0.5868

Table 4 :

 4 IoU by class and mean IoU in validation set of Cityscapes[START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF].

Table 5 :

 5 Performance in low slice from SHREC'20 dataset.

  ). Note that Power Jaccard performs better on smaller classes than the classical one. Quantitative results are given in Table4

	Metric	CE	Focal BCE	Dice p = 1
	IoU	0.341 ± 0.000	0.570 ± 0.016	0.427 ± 0.173
	Best IOU	0.341	0.605	0.787
	Metric	Jac. p = 1	Jac. p = 1.5	Jac. p = 2
	IoU	0.341 ± 0.000	0.761 ± 0.144	0.761 ± 0.020
	Best IOU	0.341	0.809	0.788
	Table 6: Performance in high slice from SHREC'20
	dataset.			

The code to train a segmentation model on MNIST images varying the loss functions is available at: https://github.com/daduquea/powerLosses/.
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APPENDIX Derivatives of Power Jaccard

As y ∈ {0, 1}, the power term p does not affect y value. Eq. 3 can we rewritten as presented in Eq. 4. In order to find the minimum value of the loss function, we compute ∂J p /∂ ŷ and equaled to zero. We recall that ŷ ∈ ]0, 1[ because of the activation function. One may observe from Eq. 4 that y = ŷ = 0 results on zero division. Therefore, we suppose below that at least one of y and ŷ are different from zero.

Let us consider the case where y = 1 so we replace it in Eq. 5 and solve to find the valid values for p based on the the minimum of the derivative of the loss function.

If p = 1 there is not minimum as shows Fig.

If p = 2, the minimum of Eq. 6 will be exactly at ŷ = 1. If 1 < p < 2, the minimum of J p beyond 2 which is not a problem as by construction ŷ cannot be larger than 1. If p > 2, then the minimum will be between 0 and 1. Finally, if p ≤ 1 there is no minimum.