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Computational modeling can provide insight into understanding the damage mechanisms of soft biological tissues. Our gradient-enhanced damage model presented in a previous publication has shown advantages in considering the internal length scales and in satisfying mesh independence for simulating damage, growth and remodeling processes. Performing sensitivity analyses for this model is an essential step towards applications in which it is necessary to handle the uncertainty caused by patient-specific data. In this paper, a numerical analysis approach is developed by integrating two existing methods, i.e. the gradient-enhanced damage model and the surrogate model-based probability analysis, to address this need. To increase the computational efficiency of the Monte Carlo method in uncertainty propagation for the nonlinear hyperelastic damage analysis, the surrogate model based on Legendre polynomial series is employed to replace the direct FEM solutions, and the sparse grid collocation method (SGCM) is adopted for setting the collocation points to further reduce the computational cost in training the surrogate model. The effectiveness of the proposed approach is illustrated by two numerical examples, including an application to the clinical problem of dilatation of the artery.

Introduction

Understanding the damage mechanism of soft biological tissues is critical to the characterization of tissue injuries [START_REF] Mousavi | Computational predictions of damage propagation preceding dissection of ascending thoracic aortic aneurysms[END_REF][START_REF] Fleischmann | Vacuum sealing as treatment of soft tissue damage in open fractures[END_REF][START_REF] Kloner | Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage[END_REF][START_REF] Holzapfel | Modeling of damage in soft biological tissues[END_REF]. For instance, in the treatment of cardiovascular diseases, the focus is often on the potential risk of tissue rupture, which is mainly caused by soft tissue damage, such as atherosclerotic plaques or aneurysms [START_REF] Trabelsi | Patient specific stress and rupture analysis of ascending thoracic aneurysms[END_REF]. The damage analyses of the tendons, which are important load-bearing structures and are frequently injured in both sports and work, are also important in understanding the underlying mechanisms and are helpful for treatment [START_REF] Svensson | Fracture Mechanics of Collagen Fibrils: Influence of Natural Cross-Links[END_REF].

The damage modeling of soft biological tissues and its numerical computation has been a topic of intense research. Holzapfel et al. [START_REF] Holzapfel | Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs[END_REF], Gasser [START_REF] Gasser | Damage in vascular tissues and its modeling[END_REF] and Li [START_REF] Li | Damage Models for Soft Tissues: A Survey[END_REF] comprehensively reviewed the computational models for the damage of soft biological tissues. The developed damage models can be divided into three approaches [START_REF] Li | Damage Models for Soft Tissues: A Survey[END_REF]: (1) models based on continuum damage mechanics, (2) models based on the theory of pseudo-elasticity, and (3) the softening hyperelasticity approach. Among the continuum damage models, a gradient-enhanced non-local damage model was proposed by Dimitrijevic and Hackl [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF][START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF], and a nonlocal continuum healing model that combines the gradient-enhanced damage model and a temporally homogenized growth and remodeling model was originally presented in our previous works [START_REF] He | Gradient-enhanced continuum models of healing in damaged soft tissues[END_REF][START_REF] Zuo | Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics[END_REF].

This model has the following advantages: (1) good mesh independence is achieved in the simulation of damage evolution with growth and remodeling; and (2) the nonlocal damage process is realized by introducing the gradient-enhanced variable, thus allowing the effect of internal length scales of soft tissues to be considered.

Uncertainty widely exists due to the variability in human tissues, such as the patientdependent structural uncertainty and parametric uncertainty [START_REF] Paul | Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters[END_REF]. Parameter sensitivity analysis involving uncertainty is an essential step for developing and applying damage models to soft biological tissues. For instance, parameter sensitivity is the key information for medical device approval [START_REF] Gasser | Biomechanical modeling the adaptation of soft biological tissue[END_REF]. Some probabilistic method-based models have been presented to analyze the uncertainty of biomechanical problems. For instance, Laz and Browne [START_REF] Laz | A review of probabilistic analysis in orthopaedic biomechanics[END_REF] presented an overview of probability analysis in structural reliability, kinematics, joint mechanics, musculoskeletal modeling, and patient-specific representations. Regarding the uncertain damage analysis of soft tissues, Rodríguez et al. [START_REF] Rodríguez | A stochastic-structurally based three dimensional finitestrain damage model for fibrous soft tissue[END_REF] presented a model taking into account a stochastically-distributed waviness and a subsequent rupture of the individual fibers as the main driving force for damage evolution, and Schmidt et al. [START_REF] Schmidt | Statistical approach for a continuum description of damage evolution in soft collagenous tissues[END_REF] proposed a statistical approach to describe the evolution of microscopic damage in soft collagenous tissues.

More recently, Balzani et al. [START_REF] Balzani | Method for the quantification of rupture probability in soft collagenous tissues[END_REF] introduced a computational method for the assessment of rupture probabilities in soft collagenous tissues based on the numerical minimization and maximization of the probability of failure (PoF), which arise from random input quantities. Although the above models have been proposed to deal with the uncertainty analysis in biomechanics, there is still no work on the analysis of the uncertainty in the nonlocal damage model for soft biological tissues.

The large computational cost is a main challenge in uncertainty analysis when a probabilistic method is used [START_REF] Balzani | Method for the quantification of rupture probability in soft collagenous tissues[END_REF][START_REF] Lee | Propagation of uncertainty in the mechanical and biological response of growing tissues using multi-fidelity Gaussian process regression[END_REF]. Although the Monte Carlo method is the most straightforward way to conduct probability analysis [START_REF] Fishman | Monte Carlo: concepts, algorithms, and applications[END_REF], deterministic problems must usually be solved many times to guarantee the accuracy of the Monte Carlo method. Especially for the damage analysis for soft biological tissues, the computation of one deterministic problem usually requires considerable computational cost due to the solutions of nonlinear problems. Therefore, it is desirable to reduce the computational cost of uncertain damage analysis for soft biological tissues.

The surrogate model is an effective approach to reduce the computational cost of uncer-tainty analysis [START_REF] Ong | Evolutionary optimization of computationally expensive problems via surrogate modeling[END_REF]. The key idea of the surrogate model is to use an approximate model with rather a simple form to replace the original model by fitting the relationship between the input and output variables [START_REF] Gorissen | A surrogate modeling and adaptive sampling toolbox for computer based design[END_REF]. An overview of surrogate models can be found in the literatures provided by Díaz-Manríquez et al. [START_REF] Díaz-Manríquez | A review of surrogate assisted multiobjective evolutionary algorithms[END_REF], Razavi et al. [START_REF] Razavi | Review of surrogate modeling in water resources[END_REF], Asher et al. [START_REF] Asher | A review of surrogate models and their application to groundwater modeling[END_REF],

Zhang [START_REF] Zhang | A Review of Surrogate Models: 7-17[END_REF] or Raul et al. [START_REF] Yondo | A Review of Surrogate Modeling Techniques for Aerodynamic Analysis and Optimization: Current Limitations and Future Challenges in Industry[END_REF]. The widely-used surrogate models include the following: polynomial approximation models [START_REF] Myers | Response surface methodology: process and product optimization using designed experiments[END_REF], the radial basis function [START_REF] Hardy | Multiquadric equations of topography and other irregular surfaces[END_REF], Kriging models [START_REF] Sacks | Design and analysis of computer experiments[END_REF], etc. In this paper, the Legendre polynomial series surrogate model proposed by Wang et al. [START_REF] Wang | Collocation methods for uncertain heat convection-diffusion problem with interval input parameters[END_REF] is employed in the damage analysis of soft tissues due to its excellent error properties in the approximation of a globally smooth function [START_REF] Wang | On the convergence rates of Legendre approximation[END_REF].

To investigate the sensitivity of the uncertain material properties for the damage analysis of soft tissues, a numerical analysis approach is developed by integrating the gradientenhanced damage model [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF][START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF] and the Legendre polynomial series surrogate model [START_REF] Wang | Collocation methods for uncertain heat convection-diffusion problem with interval input parameters[END_REF] introduced above. The gradient-enhanced damage model is adopted to describe the behavior of the stress-softening of soft tissues and avoid mesh-dependence. The Legendre polynomial is used to replace the finite element method (FEM) solutions of deterministic problems, and the sparse grid collocation method (SGCM) is employed because of its advantage of using fewer collocation points when training surrogate models.

The remainder of this paper is organized as follows: Section 2 introduces the materials and methods, including the basic kinematics in Section 2.1, the gradient-enhanced damaged model in Section 2.2, the total potential energy and variational form in Section 2.3, the constitutive model in Section 2.4, the surrogate model in Section 2.5 and probability analysis in Section 2.6. Section 3 shows two numerical examples. Finally, discussions and conclusions are given in Section 4.

Methods and materials

Basic kinematics

Let x = ϕ(X, t) describe the motion of a body from the initial reference configuration X ∈ κ(0) to its current configuration x ∈ κ(t). The deformation gradient F and the Jacobian J that maps the referential volume dV onto the current volume dv are defined as

F = ∇ X ϕ, (1) 
J = dv dV = det(F ). (2) 

Gradient-enhanced damage model

The local strain energy function Ψ loc per unit of reference volume at each time is written as

Ψ loc = f (d)Ψ 0 , (3) 
where Ψ 0 is the original (undamaged) strain energy density and f (d) represents a function of the damage variable d that measures the degree of material stiffness loss. In Eq. (3), f (d) = 1 means there is no damage and the total damage for f (d) → 0. It is at least twice differentiable and satisfies the following conditions:

f (d) : + → (0, 1]{f (0) = 1, lim f (d) = 0 d→∞ }. (4) 
Following the approaches of Dimitrijevic and Hackl [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF][START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF], a gradient-enhanced nonlocal free energy term is added to the strain energy given in Eq. ( 3)

Ψ = f (d)Ψ 0 + c d 2 ∇ X φ 2 + β d 2 [φ -γ d d] 2 . (5) 
In Eq. ( 5), c d represents the gradient parameter that defines the degree of gradient regularization and the internal length scales. Three other variables are introduced:

- and Hackl [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF][START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF] and Waffenschmidt et al. [START_REF] Waffenschmidt | A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials[END_REF].

Total potential energy and variational form

The general total potential energy for nonlocal damage model is

Π = Ω Ψ dV - Ω B • ϕ dV - ∂Ω T • ϕ dV, ( 6 
)
where B is the body force vector per unit of reference volume of Ω and T is the traction on the boundary ∂Ω.

Minimization of the potential energy with respect to the primal variables ϕ and φ results in a coupled non-linear system of equations, which may be written as

Ω P : ∇ X δϕ dV - Ω B • δϕ dV - ∂Ω T • δϕ dV = 0, (7) 
Ω Y : ∇ X δφ dV - Ω Y δφ dV = 0, ( 8 
)
where P is the first Piola-Kirchhoff stress, Y is vectorial damage quantity related to flux terms and Y is the scalar damage quantity associated to source terms. They are defined as

P = ∂ F Ψ, Y = ∂ ∇ X φ Ψ, Y = -∂ φ Ψ. (9) 
The corresponding spatial quantities in Eq. ( 9) and the body force vector B are given by

σ = P • cof(F -1 ), b = J -1 B, (10) 
y = Y • cof(F -1 ), y = J -1 Y, (11) 
where cof(F ) = JF -T .

Substituting Eqs. ( 2), [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF] and [START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF] into Eqs. ( 7) and ( 8), the variational forms of the spatial description are For the undamaged part Ψ 0 in Eq. (3), we used the Holzapfel-Gasser-Ogden (HGO) hyperelastic constitutive model [START_REF] Holzapfel | A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models[END_REF][START_REF] Gasser | Hyperelastic modelling of arterial layers with distributed collagen fibre orientations[END_REF], which can be written as

Ω σ : ∇ x δϕ dv - Ω b • δϕ dv - ∂Ω t • δϕ dv = 0, (12) 
Ψ 0 = Ψ iso + Ψ aniso , (14) 
where the isotropic part Ψ iso and anisotropic part Ψ aniso are

Ψ iso = 1 2 µ 0 J -2/3 (I 1 -3) + 1 2 κ 0 (J -1) 2 , (15) 
Ψ aniso = k 1 2k 2 i=4,6 [exp(k 2 < E i > 2 ) -1], (16) 
where µ 0 and κ 0 are the shear and bulk moduli of the soft isotropic matrix, respectively.

I 1 = tr(C)
is the first invariant of C, where C is the right Cauchy-Green tensor, which is defined as C = F T F . In Eq. ( 16), E i = κI 1 + (1 -3κ)I 4i -1 is a strain-like quantity and the

I 4i = C : A i = C : (a 0i ⊗ a 0i
) is the fourth invariant (which equals the square of the stretch of collagen fibers), the κ ∈ [0, 1/3] is a dispersion parameter and a 0i = (cosθ, sinθ, 0) is the unit direction vector of the fiber in the reference configuration. k 1 and k 2 are material parameters. The term < E i >, where

< E i >= (|E i | + E i )/2 is the Macaulay bracket,
reflects the basic assumption that fibers can only support tension.

Damage evolution

The detailed evolution of the damage variable d can be found in the works of Dimitrijevic and Hackl [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF][START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF] and Waffenschmidt et al. [START_REF] Waffenschmidt | A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials[END_REF]. In the following, we give a brief description of some basic and essential formulations.

Following standard thermodynamic considerations [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF][START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF], the damage conjugate driving force q is defined as

q = - ∂Ψ ∂d . ( 17 
)
The damage condition at any time of the loading process is based on an energy release rate threshold condition [START_REF] Simo | Strain-and stress-based continuum damage models-I. Formulation[END_REF] 

Φ d =q -r 1 ≤ 0, (18) 
where r 1 represents the threshold value that triggers the evolution of the damage.

The differential equation of the evolution of damage is subjected to the Kuhn-Tucker optimality conditions [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF][START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF] 

ḋ = κ∂Φ d ∂q , κ ≥ 0, Φ d ≤ 0, κΦ d = 0, ( 19 
)
where κ is the Lagrange multiplier.

Verification of the damage model

An exemplary qualitative simulation is applied here to show how this non-local damage model can capture the stiffness loss of soft tissues when subjected to an overloading beyond physiological loads, and the results are shown in Fig. 1. In this simulation, an exponential damage function f (d) = e -d was adopted and was also used in following simulations. Other damage functions satisfying Eq. ( 4) could also be used [START_REF] Waffenschmidt | A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials[END_REF]. The chosen model was compared with experimental stress-strain responses of Raghavan et al. [START_REF] Raghavan | Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model[END_REF]. In these experimental data, thin strips of abdominal aortic aneurysm excised from the anterior surface during surgical repair were tested. Both the elastic and damage phases were well described by the non-local damage model as shown in Fig. 1.

Surrogate model 2.5.1. Legendre polynomial surrogate model

In this paper, the Legendre polynomial surrogate model is used to approximate the results of the FEM [START_REF] Wang | Collocation methods for uncertain heat convection-diffusion problem with interval input parameters[END_REF], and the Rodrigues formula of the N -order Legendre polynomial Φ(α) can be written as

Φ(α) = 1 2 N N ! d N d(α) ((α) 2 -1) N , ( 20 
)
where α is the uncertain variable and N is the order of the polynomial series.

Based on the polynomial chaos framework [START_REF] Xiu | Modeling uncertainty in flow simulations via generalized polynomial chaos[END_REF], the output variable L(x, α) can be expressed as

L(x, α) = i w i (x)Φ i (α), ( 21 
)
where x is the spatial coordinate, α is the uncertain variables vector, w i (x) is the corresponding expansion coefficient and i = (i 1 , i 2 , ..., i n ) stands for the multigauge. Note that L is the output variable, and it can be any variables concerned (stress and damage in this paper). In practice, a maximum order of polynomials N is selected to truncate Eq. ( 21) up to finite terms, by which Eq. ( 21) can be concisely rewritten as

L(x, α) ≈ L N (x, α) = i≤N w i (x)Φ i (α). ( 22 
)

Sparse grid collocation method (SGCM)

The basic idea of a collocation method is using the response values at preselected points in uncertainty space to calculate the expansion coefficients of the surrogate model [START_REF] Wang | Collocation methods for uncertain heat convection-diffusion problem with interval input parameters[END_REF]. In this paper, the SGCM based on the Clenshaw-Curtis point-based collocation method and the Smolyak algorithm is adopted with the advantage that it can minimize the collocation error with the same number of nodes under the maximum norm [START_REF] Wang | Collocation methods for uncertain heat convection-diffusion problem with interval input parameters[END_REF].

For the univariate case, the Clenshaw-Curtis nodes distributed in the interval range [α i , α i ] are defined as

β i j = α c i α c i -cos π(j-1) m i -1 • ∆α i if m i = 1 if m i > 1 , (23) 
where

α c i = (α i + α i )/2, ∆α i = (α i -α i )/2
, in which α and α represents the upper bound and lower bound of the uncertain interval, respectively, m i is the predefined number of collocation points.

For the multivariate case, the n input parameters are assumed to be independent with each other for simplification. The general approach is to extend the collocation points defined in one dimension in Eq. ( 23) to the entire interval uncertain space using a tensor product.

For each dimension, a nodal set

Θ m i i = {β i 1 , β i 2 , ..., β i m i } is selected.
On this basis, the entire nodal set named the full tensor product grids can be denoted as

Θ = Θ m 1 1 × Θ m 2 2 × . . . × Θ mn n , (24) 
where the total number of collocation points M is

M = n i=1 m i = m 1 × m 2 × . . . × m i . (25) 
To reduce the huge computational cost for high-dimensional problems, Smolyak-type sparse grids [START_REF] Smolyak | Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions[END_REF] are introduced, which are still based on the tensor product construction, but only a small subset of the full tensor grids Eq. ( 24) are selected. By using the Smolyak algorithm, the total nodal set of collocation points in Eq. ( 24) can be reconstructed in the following form:

Θ = l-n+1≤|i|≤l (Θ i 1 1 × Θ i 2 2 × . . . × Θ in n ), (26) 
where l ≥ n is an integer representing the overall level of the construction and i j represents the separate level along the j th direction.

By iterating through all the nodes on full grids, only the ones whose sum order |i| = i 1 + i 2 + ... + i n across all dimensions is from ln + 1 to l are retained. To define the collocation points, an index k is introduced to denote the level of collocation points in onedimensional uncertainty space. The number m k i and positions β i j of the Clenshaw-Curtis nodes in the interval range [α i , α i ] are defined as

m k i = 1 2 k-1 + 1 if k = 1 if k > 1 β i j = α c i α c i -cos π(j-1) m k i -1 • ∆α i if k = 1 j = 1, 2..., m k i if k > 1 . (27) 
After selecting the SGCM nodal set, a set Θ = {β 1 , β 2 , ..., β M } is given to specifically denote all the collocation points in the interval uncertain space, and L(x, β j ) is the solution of the objective variable in the deterministic problem at the preselected points β j that could be obtained by the FEM. Based on the surrogate function in Eq. ( 22), a group of linear equations with respect to the unknown expansion coefficients w i (x) can be derived as

      Φ 1 (β 1 ) Φ 2 (β 1 ) • • • Φ C n n+N (β 1 ) Φ 1 (β 2 ) Φ 2 (β 2 ) • • • Φ C n n+N (β 2 ) . . . . . . . . . . . . Φ 1 (β M ) Φ 2 (β M ) • • • Φ C n n+N (β M )            w 1 (x) w 2 (x) . . . w C n n+N (x)      =      L(x, β 1 ) L(x, β 2 ) . . . L(x, β M )      . ( 28 
)
Once the polynomial bases Φ i and the SGCM nodal set Θ are given, the expansion coefficients w i (x) in Eq. ( 22) can be solved by Eq. ( 28). Note that the number of collocation points is required not to be smaller than the number of polynomial expansion terms, such as M ≥ C n n+N , to prevent the problem from being undetermined.

Probability analysis

The prediction of the rupture of soft tissues with uncertain parameters can be captured by the rupture probability, and PoF is defined as the probability that a mechanical rupture criterion holds. Such a criterion can be formulated as the inequality f > f max , where f represents a mechanical quantity of interest, for example, the stress, strain, or damage, which is considered relevant for initializing a rupture [START_REF] Balzani | Method for the quantification of rupture probability in soft collagenous tissues[END_REF].

Let R be a set of input parameters and z(R) is the mechanical quantity of interest. A suitable failure criterion can be defined as

z(R) ≥ z max , (29) 
where z max is a maximally admissible value. Generally, the PoF can be defined as

PoF := P[z(R) ≥ z max ], (30) 
where P(•) is the probability of (•).

In this paper, the beta distribution is used for uncertain parameters to avoid some possible unreasonable values of the distribution, that could be produced in a Gaussian distribution [START_REF] Schmidt | Statistical approach for a continuum description of damage evolution in soft collagenous tissues[END_REF]. The probability density function (PDF) of the beta distribution is defined as [START_REF] Johnson | Continuous univariate distributions[END_REF]:

PDF(α; a, b) = 1 B(a, b) α a-1 (1 -α) b-1 , ( 31 
)
where α is the uncertain parameter, a and b denote two shape parameters and B(•) is the beta function. Note that some alternative distributions, e.g. the lognormal distribution [START_REF] Biehler | The impact of personalized probabilistic wall thickness models on peak wall stress in abdominal aortic aneurysms[END_REF],

could also be used for uncertain parameters.

In this paper, the damage function f (d) is used to describe the risk of the rupture, and a lower value of f (d) means a higher risk of rupture. Here, the PoF is redefined as

PoF := P[f (d) ≤ f (d) max ]. ( 32 
)
The PoF can be calculated as the integral of the PDF of the damage function f (d) from

f (d) = 0 up to f (d) = f (d) max as PoF := P[f (d) ≤ f (d) max ] = f (d) max 0 PDF(f (d)) df (d). ( 33 
)
An example is shown for the computation of the PoF in Fig. 2. The damage function is assumed to obey a beta distribution as f (d) ∼ B(4, 4) within the interval (0, 1] and the maximum damage is set to f (d) max = 0.5. With these assumptions, the value of the PoF can be calculated as 0.5 according Eq. ( 33), which is equaling to the area of gray part in Fig. 2.

Numerical examples

The gradient-enhanced damage model is implemented within the commercial finite ele- 

Deterministic analysis

In this part, a series tests on 286 elements are performed, which the mesh-dependence had been already examined in our previous works [START_REF] He | Gradient-enhanced continuum models of healing in damaged soft tissues[END_REF][START_REF] Zuo | Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics[END_REF], to investigate the influence of the shear modulus and the internal length scales on the damage analysis in deterministic problem. The geometry, hyperelastic and damage parameters are reported in Table 1, in which the bulk modulus k 0 is set to 100 times of the shear modulus to make the material nearly incompressible. for Case 1 when the stretch is λ x = 0.1 are listed in Table 3. A good agreement can be seen in Table 3 such that the surrogate model with the SGCM can approximate the results of the FEM with the maximum difference being less than 1%. The good performance of the surrogate model with the SGCM is addressed again by comparing the results of the surrogate model with the SGCM and FEM at Node 1 when λ x = 0.1 for Case 2 and Case 3, and the results are shown in Fig. 8.

Probability analysis

In this example, shear modulus µ e and internal length scales c d are assumed to be uncertain parameters that obey the beta distributions in the given intervals (µ e ∈ [0.07, 0.13] MPa and c d ∈ [0.5, 1.5] MPa -1 • mm 2 ), and seven cases for different levels of uncertainty for µ e and c d listed in Table 2 are analyzed. The bulk modulus k 0 is set to 100 times of the mean value of the shear modulus to make the material nearly incompressible. Apart from µ e , c d and k 0 , other geometric and material parameters are shown in Table 1.

First, we investigate the computational cost for using the Monte Carlo method based on the direct FEM and the Monte Carlo method based on the surrogate model. When employing the Monte Carlo method, 10 5 samples are computed to ensure the accuracy of the probability analysis, as suggested by Wu et al. [START_REF] Wu | Robust fuzzy structural safety assessment using mathematical programming approach[END_REF]. The comparison of the CPU times is shown in Table 4. Note that the computational time for the Monte Carlo method with the direct FEM is estimated by multiplying the time of one FEM by 10 5 . A significant reduction of the computational cost can be observed in Table 4 such that the computing time of the Monte Carlo method with the surrogate model is about 0.06% of that using the Monte Carlo method with the direct FEM but the relative error is less than 1%. that a larger mean value of the input parameters leads to more serious damage and the distribution of the damage function will be more concentrated.

Radial dilatation of an idealized artery

The second example is damage analysis for radial dilatation of an idealized artery. The two-dimensional geometry and FEM mesh shown in Fig. 10 were previously established by Badel et al. [START_REF] Badel | Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries[END_REF] according to histological pictures of epicardial coronary arteries from Viles-Gonzalez et al. [START_REF] Viles-Gonzalez | Acute and chronic effects of epicardial radiofrequency applications delivered on epicardial coronary arteries[END_REF]. The artery is assumed to consist of a single medial layer containing an atherosclerotic plaque, and the balloon used for the angioplasty is modeled as a thin circular structure whose diameter increases during the angioplasty process. In this example, the damage is assumed to only occur in the artery. Based on the experiment data for human thoracic and abdominal aortas in Weisbecker et al. [START_REF] Weisbecker | Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening[END_REF], the shear modulus of the artery is assumed obeys a beta distribution µ e ∼ B(2.98, 8.72) within the interval [START_REF] Gasser | Biomechanical modeling the adaptation of soft biological tissue[END_REF]55] In this simulation, some simplifications are assumed, i.e., the influence of the residual stresses, smooth muscle, lipid pool, and the image-based layer-specific structure of the arteries are not considered, and an idealized geometric shape is used. The only boundary conditions to be assigned are the nodal displacements of the balloon. A radial displacement is imposed on each node from its initial position, D i = 1 mm, to give a final deformed diameter, D f = 2 mm, where the center of the balloon is fixed. In the following, we use an

inflation progress parameter λ = (D -D i )/(D f -D i ) × 100%
, where D is the current diameter of the balloon, to denote the inflation progress. Note that all the degrees of freedom of the balloon are prescribed as displacement boundary conditions, and the artery is inflated by the contact between the balloon and artery. The contact problems (balloon and plaque, balloon and artery, plaque and artery) are assumed to be frictionless following Badel et al.

[44] and are modeled as 'Hard contact' in Abaqus. The material parameters used in this example shown in Table 5 are according to Badel et al. [START_REF] Badel | Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries[END_REF] and Weisbecker et al. [START_REF] Weisbecker | Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening[END_REF]. 

Verification of the surrogate model

Probability analysis

First, the computational cost of probability analysis for using the Monte Carlo method with the direct FEM and the Monte Carlo method with the surrogate model are investigated in Table 7. The results again demonstrate that the surrogate model can effectively reduce the computational cost with good accuracy, as shown in Fig. 11. Obviously, the PoF of the artery increases as the balloon inflation size increases.

Discussion and conclusions

Due to the widely-existing uncertainty in damage analysis for soft biological tissues, the sensitivity analysis of nonlocal damage for soft biological tissues is an essential step in model development and application. To investigate the influence of the uncertain input parameters on the mechanical environment of the soft biological tissues, a numerical analysis is conducted by combining the gradient-enhanced damage model [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF][START_REF] Dimitrijevic | A regularization framework for damage-plasticity models via gradient enhancement of the free energy[END_REF] and the surrogate model-based probability analysis method [START_REF] Wang | On the convergence rates of Legendre approximation[END_REF].

The first advantage of the presented model is that it can assess nonlocal damage with uncertain material parameters, including internal length scales. In our previous works [START_REF] He | Gradient-enhanced continuum models of healing in damaged soft tissues[END_REF][START_REF] Zuo | Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics[END_REF], it was proved that the internal length scales have obvious effects on the localization of damage, e.g., a larger internal length scales lead to a larger lower level of damage and activated zone. In this paper, the influence of uncertain internal length scales can be analyzed by the proposed model. Therefore, it is possible to provide probabilistic results of the levels of damage, stress and deformation for soft tissue if the internal length scales are uncertain variables obeying a probability distribution. Moreover, the proposed model can consider the combined effects of different uncertain material parameters. For instance, both the shear modulus and an internal length scales parameter can be set as uncertain variables at the same time. This will be useful for dealing with the cases in which more uncertain parameters exist together.

The other advantage is that this paper's method provides a new approach for the uncertain damage analysis of soft biological tissues based on the surrogate model. Although the Monte Carlo method is an accurate and robust method for uncertainty analysis, the huge computational cost is a key challenge for its application to damage analyses since the nonlinear problem has to be repeatedly solved by the FEM [START_REF] Neumaier | Interval methods for systems of equations[END_REF][START_REF] Ran | A gradient based algorithm to solve inverse plane bimodular problems of identification[END_REF]. Due to the huge computational cost, the Monte Carlo method is commonly introduced as a referenced approach, but it is rarely used in the practical engineering. In this paper, the surrogate model based on the Legendre polynomial series was adopted to approximate the results of the FEM. When training of the surrogate model, the SGCM is employed to accelerate the procedure. First, it is demonstrated that the surrogate model has good accuracy compared with direct FEM solutions. For example, the maximum error is less than 1% compared with the results (Cauchy stress and the damage function) obtained from the surrogate model and the FEM at some feature nodes in the open-hole plate. Second, the surrogate model significantly improved the computational efficiency of the Monte Carlo method. For example, in the open-hole plate problem, the computational cost for the Monte Carlo method with the direct FEM was about 40 days, but the time for the surrogate model with the SGCM including training the surrogate model and probability analysis was only 0.63 h with a 286 elements mesh.

The proposed approach was applied to the simulation of the radial dilatation of an idealized artery by considering the uncertain shear modulus and internal length scales. Although some simplifications are assumed, some interesting results are found: (1) the spatial positions and level of damage could have significant impact on the uncertainty propagation of damage, for instance, the mean value and standard deviation are obviously different at different locations (Node 1, Node 2 and Node 3) in Fig. 13; (2) different parameters could also have obviously different impact on the uncertainty propagation of damage. For instance, if only the uncertain shear modulus is considered (Case 1), a smaller standard deviation of damage is produced at Node 1 with larger damage compared with Node 3, while the internal length scales has an opposite trend with a larger standard deviation at Node 1 compared with Node 3 in Case 2; (3) although the PoF is increased with the increase of inflation size as expected, the relation between uncertain parameter and resulted PoF could still provide a potential helpful approach for both directly predicting the PoF in clinical operation and inversely choosing the inflation size under a prescribed PoF.

The main limitation in this paper is that only 2D models and an idealized geometric model was considered. The development of a 3D patient-specific model is currently under progress in order to address more realistic applications. Meanwhile, some important aspects, such as the influence of the residual stresses, the smooth muscle activation, the lipid pool should also be considered. Besides, some uncertainty analyses about the geometry and the material parameters of the plaque, which is important in predicting the rupture risk of the artery, should be conducted, and the spatial uncertainty should also be considered as arteries are usually heterogeneous materials [START_REF] Bersi | Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas[END_REF][START_REF] Bersi | Multimodality Imaging-Based Characterization of Regional Material Properties in a Murine Model of Aortic Dissection[END_REF]. Moreover, there is still a pressing need to develop further experiments to identify the distribution of shear moduli, the internal length scales and other unknown material parameters. Furthermore, the use of UEL presents some limitations such as, for instance, the definition of slave surfaces in contact analyses.

In summary, we have coupled a nonlocal damage model and a surrogate model to investigate the influence of uncertainty on damage in soft tissues. The Legendre polynomial surrogate model with the SGCM was adopted in this paper to speed up the computation efficiency. The evolution of the PDF of the damage function f (d) was illustrated through two examples where the input parameters were assumed to be uncertain, and the method's clinical application to balloon angioplasty was also addressed. Future work will consist of applying the proposed model to practical problems by collecting clinical data. 

  the field variable φ, which transfers the values of the damage parameter across the element boundaries to make it non-local by nature; -the energy-related penalty parameter β d , which approximately forces the local damage field and the nonlocal field to coincide; and -parameter γ d , which is set as a switch between the local and enhanced models. When γ d = 0 and c d = 0, it leads to a local model, while setting γ d = 1 and c d = 0 leads to the enhanced non-local model. A typical value of this parameter is set to 1 following Dimitrijevic

Ωy: 1 .

 1 ∇ x δφ dv -Hyperelastic part of the free energy

  ment software Abaqus/Standard by means of a user subroutine UEL and the simulation of the probability analyses based on the surrogate model are carried out by Matlab R2018a. Both computations are conducted on a PC with an Intel Xeon E5-2650 CPU @ 2.40 GHz and 32 GB of RAM. The first example is used to illustrate the nonlocal damage model and the advantages of the surrogate model with the SGCM through an open-hole plate case. The second example is a radial dilatation of an idealized artery, which is used to treat atherosclerotic plaque. Note that only homogeneous uncertain material parameters without spatial correlation are assumed for simplification, and plane strain elements (Bilinear 8 node element CPE8 in Abaqus) are used in all simulations. 3.1. Open-hole plate The first numerical example is an open-hole plate under displacement loading. The geometry and the FEM model are shown in Fig. 3. Due to the symmetry, only one-fourth of the plate is analyzed. In this example, only the isotropic contribution of the soft tissues is considered. The result of the deterministic analysis are shown in Section 3.1.1, the verification of the surrogate model is shown in Section 3.1.2 and the results of the probability analysis are shown in Section 3.1.3.

3 . 1 . 2 .

 312 The contours of the damage function f (d) for different shear modulus are shown in Fig.4, while the internal length scales is c d = 1.0 MPa -1 • mm 2 . It can be obviously seen that a larger value of the shear modulus resulting a larger damage, and the same results can be also observed in Fig. 5. The value of the parameter c d represents the degree of regularization and it depends on the microstructure of the tissues. The influence of the internal length scales c d is investigated by three different values and the results are shown in Figs. 6 and 7, while the shear modulus is a constant that µ e = 0.1 MPa. As shown in Figs. 6 and 7, the levels of damage are strongly depending on the value of c d . It can be explained by the width of the activated zone [10, 11, 34]. With a smaller c d , a smaller region is influenced by the damage variable, resulting in more concentrated distribution of the damage. Verification of the surrogate model In the training of the surrogate model, the 5-order Legendre polynomial series and the SGCM with k = 4 are used. The comparison of the values of f (d) and σ x computed by the surrogate model and the FEM at six feature nodes (the locations are shown in Fig. 3(b))

  Fig. 9(b), Node 1 is the location where the damage is largest and the distribution of f (d) varies in a smaller range (the standard deviation is σ = 0.030). Comparing Nodes 1, 2 and 3, it can be found that the location with less damage is more sensitive to the uncertain parameters, and the sensitivity increases as the damage level increases such that the standard deviation σ of the damage function f (d) increases from 0.03 to 0.087 when the mean value μ of f (d) increases from 0.066 to 0.41. Finally, the levels of uncertainty for parameters are also investigated and the results are shown in Figs. 9(c) and 9(d). Cases 4-6 are tested to illustrate the influence of the standard deviation σ when the mean value μ is the same. It can be seen in Fig. 9(c) that when the mean value of the uncertain parameters is constant, the mean value of the damage function f (d) changes slightly, and the standard deviation of f (d) increases as the standard deviation of the uncertain input parameters increases. The influence of the mean value of the input parameters is also investigated in Fig. 9(d). It can be seen that the change of the mean value of the input parameters may affect the distribution of the damage function f (d) such

  kPa. The internal length scales c d is assumed to obey a beta distribution c d ∼ B(4, 4) within the interval [0.005, 0.015] kPa -1 • mm 2 .

  Similar with the previous example, three different cases, including (1) µ e is uncertain with a constant c d , (2) c d is uncertain with a constant µ e and (3) both µ e and c d are uncertain, are tested and the distributions of the uncertain input parameters are shown in Table 6. The 5-order Legendre polynomial surrogate model is used and the SGCM is set by setting k = 5. To check the accuracy of surrogate model, the damage function f (d) is calculated by the surrogate model and the direct FEM for 3 cases, and the results shown in Fig. 11 illustrate the good performance of the surrogate model. The contours of the damage function f (d) calculated by the surrogate model with SGCM and FEM for different shear modulus and the internal length scales when λ = 100% in Fig. 12 demonstrate the good performance of the surrogate model once again.

  Fig. 14(b). It can be seen that the PoF of f (d) is directly influenced by the inflation progress parameter λ. For instance, the PoF are 0.03 and 0.91 for λ = 90% and λ = 95%, respectively.
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 282930313233343512 Figure 1: Qualitative simulation based on the damage model used in this paper and the experimental stressstrain data of the abdominal aortic aneurysm in Raghavan et al. [38]. Material parameters are chosen as µ e = 0.3 MPa, κ 0 = 100 MPa, k 1 = 0.22 MPa, k 2 = 1.20, θ = 50 deg, κ = 0.18, r 1 = 0.05 MPa.
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 3415565789 Figure 3: Reference model for an open-hole plate. (a) Geometric, dimension and boundary conditions; and (b) FEM mesh.

Figure 10 :Figure 11 :

 1011 Figure 10: Reference model in the radial dilatation of an idealized artery. (a) Geometry, dimensions and boundary conditions; and (b) FEM mesh.

Figure 12 :

 12 Figure 12: The contours of the damage function f (d) obtained by the surrogate model with the SGCM and FEM for different shear modulus and the internal length scales when λ = 100%. (a) µ e = 15 kPa, c d = 0.01 kPa -1 • mm 2 , (b) µ e = 55 kPa, c d = 0.01 kPa -1 • mm 2 , (c) µ e = 35 kPa, c d = 0.005 kPa -1 • mm 2 , and (d) µ e = 35 kPa, c d = 0.015 kPa -1 • mm 2

Table 1 :

 1 Geometry, hyperelastic and damage parameters used in the open-hole plate.

	Type	Description	Symbol	Values	Units
		Height	H	200	mm
	Geometric	Width	W	200	mm
		Radius	R	50	mm
	Hyperelastic	Shear modulus Bulk modulus	µ 0 κ 0	[0.5,1.0,1.5] [5,10,15]	MPa MPa
		Damage threshold	r 1	0.001	MPa
	Damage	Internal length scales Penalty parameter	c d β d	[0.5,1,5] 0.005	MPa -1 • mm 2 MPa -1
		(Non)local switch	γ d	1	-

Table 3 :

 3 Comparison of the results obtained by the FEM and surrogate model with the SGCM when λ x = 0.1 for Case 1.

			FEM		SGCM	
	Node	µ e	f (d)	σ x	f (d)	error	σ x	error
	1	0.08 0.12	0.142469 0.028766	0.028497 0.026306	0.141972 0.028787	0.35% 0.07%	0.028479 0.026207	0.06% 0.38%
	2	0.08 0.12	0.38338 0.161063	0.031512 0.031508	0.382846 0.161157	0.14% 0.06%	0.031431 0.03152	0.26% 0.04%
	3	0.08 0.12	0.607423 0.293042	0.014506 0.015549	0.605692 0.294017	0.28% 0.33%	0.014729 0.015552	0.05% 0.02%
	4	0.08 0.12	1 1	0.001851 0.001331	1 1	0.00% 0.00%	0.001855 0.001342	0.23% 0.80%
	5	0.08 0.12	1 1	-0.00159 -0.00086	1 1	0.00% 0.00%	-0.00159 -0.00086	0.10% 0.20%
	6	0.08 0.12	1 1	0.022613 0.021469	1 1	0.00% 0.00%	0.022606 0.02149	0.03% 0.10%

Table 4 :

 4 The comparison of the computational cost between using the Monte Carlo method with the direct FEM and the Monte Carlo method with the surrogate model.

		Monte Carlo method with the direct FEM (Estimated, t 1 )	Monte Carlo method with the surrogate model Training the Probability Total time surrogate model analysis (t 2 )	t 2 /t 1
	79 elements	14.70 days	825 sec	11.82 sec	836.82 sec	0.06%
	286 elements	40.05 days	2249 sec	36.28 sec	2285.28 sec	0.07%
	793 elements	115.27 days	6474 sec	98.73 sec	6572.73 sec	0.07%

Table 5 :

 5 Hyperelastic and damage parameters used in the radial dilatation of an idealized artery[START_REF] Badel | Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries[END_REF][START_REF] Weisbecker | Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening[END_REF].

	Type	Part	Description	Symbol Values	Units
			Shear modulus	µ e	uncertain kPa
			Bulk modulus	κ e	5	MPa
		Medial layer	Material parameter Material parameter	k 1 k 2	5.15 8.64	MPa -
	Hyperelastic	Plaque	Dispersion parameter Fiber orientation angle θ κ 0 Shear modulus µ p Bulk modulus κ p	0.24 ±38.8 20 34	-deg kPa kPa
		Balloon	Shear modulus Bulk modulus	µ b κ b	10 10	kPa kPa
			Damage threshold	r 1	1.0	kPa
	Damage	Medial layer	Internal length scales Penalty parameter	c d β d	uncertain kPa -1 • mm 2 10 kPa -1
			(Non-)local switch	γ d	1.0	-

Table 7 :

 7 The comparison of the computational cost between using the Monte Carlo method with the direct FEM and the Monte Carlo method with the surrogate model.

	Monte Carlo method with	Monte Carlo method with the surrogate model	
	the direct FEM (Estimated t 1 )	Training the surrogate model	Probability analysis	Total time (t 2 )	t 2 /t 1
	230.09 days	19422 sec	35.43 sec	19457.43 sec	0.09%
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