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Abstract

Computational modeling can provide insight into understanding the damage mechanisms of
soft biological tissues. Our gradient-enhanced damage model presented in a previous publi-
cation has shown advantages in considering the internal length scales and in satisfying mesh
independence for simulating damage, growth and remodeling processes. Performing sensi-
tivity analyses for this model is an essential step towards applications in which it is necessary
to handle the uncertainty caused by patient-specific data. In this paper, a numerical anal-
ysis approach is developed by integrating two existing methods, i.e. the gradient-enhanced
damage model and the surrogate model-based probability analysis, to address this need. To
increase the computational efficiency of the Monte Carlo method in uncertainty propaga-
tion for the nonlinear hyperelastic damage analysis, the surrogate model based on Legendre
polynomial series is employed to replace the direct FEM solutions, and the sparse grid col-
location method (SGCM) is adopted for setting the collocation points to further reduce
the computational cost in training the surrogate model. The effectiveness of the proposed
approach is illustrated by two numerical examples, including an application to the clinical
problem of dilatation of the artery.

Keywords: Nonlocal damage, Uncertainty analysis, Soft tissues, Surrogate model,
Computational efficiency

1. Introduction1

Understanding the damage mechanism of soft biological tissues is critical to the char-2

acterization of tissue injuries [1, 2, 3, 4]. For instance, in the treatment of cardiovascular3

diseases, the focus is often on the potential risk of tissue rupture, which is mainly caused by4

soft tissue damage, such as atherosclerotic plaques or aneurysms [5]. The damage analyses5
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of the tendons, which are important load-bearing structures and are frequently injured in6

both sports and work, are also important in understanding the underlying mechanisms and7

are helpful for treatment [6].8

The damage modeling of soft biological tissues and its numerical computation has been a9

topic of intense research. Holzapfel et al. [7], Gasser [8] and Li [9] comprehensively reviewed10

the computational models for the damage of soft biological tissues. The developed damage11

models can be divided into three approaches [9]: (1) models based on continuum damage12

mechanics, (2) models based on the theory of pseudo-elasticity, and (3) the softening hyper-13

elasticity approach. Among the continuum damage models, a gradient-enhanced non-local14

damage model was proposed by Dimitrijevic and Hackl [10, 11], and a nonlocal continuum15

healing model that combines the gradient-enhanced damage model and a temporally homog-16

enized growth and remodeling model was originally presented in our previous works [12, 13].17

This model has the following advantages: (1) good mesh independence is achieved in the18

simulation of damage evolution with growth and remodeling; and (2) the nonlocal damage19

process is realized by introducing the gradient-enhanced variable, thus allowing the effect of20

internal length scales of soft tissues to be considered.21

Uncertainty widely exists due to the variability in human tissues, such as the patient-22

dependent structural uncertainty and parametric uncertainty [14]. Parameter sensitivity23

analysis involving uncertainty is an essential step for developing and applying damage mod-24

els to soft biological tissues. For instance, parameter sensitivity is the key information25

for medical device approval [15]. Some probabilistic method-based models have been pre-26

sented to analyze the uncertainty of biomechanical problems. For instance, Laz and Browne27

[16] presented an overview of probability analysis in structural reliability, kinematics, joint28

mechanics, musculoskeletal modeling, and patient-specific representations. Regarding the29

uncertain damage analysis of soft tissues, Rodŕıguez et al. [17] presented a model taking30

into account a stochastically-distributed waviness and a subsequent rupture of the individual31

fibers as the main driving force for damage evolution, and Schmidt et al. [18] proposed a sta-32

tistical approach to describe the evolution of microscopic damage in soft collagenous tissues.33

More recently, Balzani et al. [19] introduced a computational method for the assessment of34

rupture probabilities in soft collagenous tissues based on the numerical minimization and35

maximization of the probability of failure (PoF), which arise from random input quanti-36

ties. Although the above models have been proposed to deal with the uncertainty analysis37

in biomechanics, there is still no work on the analysis of the uncertainty in the nonlocal38

damage model for soft biological tissues.39

The large computational cost is a main challenge in uncertainty analysis when a prob-40

abilistic method is used [19, 20]. Although the Monte Carlo method is the most straight-41

forward way to conduct probability analysis [21], deterministic problems must usually be42

solved many times to guarantee the accuracy of the Monte Carlo method. Especially for the43

damage analysis for soft biological tissues, the computation of one deterministic problem44

usually requires considerable computational cost due to the solutions of nonlinear problems.45

Therefore, it is desirable to reduce the computational cost of uncertain damage analysis for46

soft biological tissues.47

The surrogate model is an effective approach to reduce the computational cost of uncer-48
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tainty analysis [22]. The key idea of the surrogate model is to use an approximate model49

with rather a simple form to replace the original model by fitting the relationship between50

the input and output variables [23]. An overview of surrogate models can be found in the51

literatures provided by Dı́az-Manŕıquez et al. [24], Razavi et al. [25], Asher et al. [26],52

Zhang [27] or Raul et al. [28]. The widely-used surrogate models include the following:53

polynomial approximation models [29], the radial basis function [30], Kriging models [31],54

etc. In this paper, the Legendre polynomial series surrogate model proposed by Wang et al.55

[32] is employed in the damage analysis of soft tissues due to its excellent error properties56

in the approximation of a globally smooth function [33].57

To investigate the sensitivity of the uncertain material properties for the damage anal-58

ysis of soft tissues, a numerical analysis approach is developed by integrating the gradient-59

enhanced damage model [10, 11] and the Legendre polynomial series surrogate model [32]60

introduced above. The gradient-enhanced damage model is adopted to describe the behavior61

of the stress-softening of soft tissues and avoid mesh-dependence. The Legendre polynomial62

is used to replace the finite element method (FEM) solutions of deterministic problems, and63

the sparse grid collocation method (SGCM) is employed because of its advantage of using64

fewer collocation points when training surrogate models.65

The remainder of this paper is organized as follows: Section 2 introduces the materials66

and methods, including the basic kinematics in Section 2.1, the gradient-enhanced damaged67

model in Section 2.2, the total potential energy and variational form in Section 2.3, the68

constitutive model in Section 2.4, the surrogate model in Section 2.5 and probability analysis69

in Section 2.6. Section 3 shows two numerical examples. Finally, discussions and conclusions70

are given in Section 4.71

2. Methods and materials72

2.1. Basic kinematics73

Let x = ϕ(X, t) describe the motion of a body from the initial reference configuration74

X ∈ κ(0) to its current configuration x ∈ κ(t). The deformation gradient F and the75

Jacobian J that maps the referential volume dV onto the current volume dv are defined as76

F = ∇Xϕ, (1)

J =
dv

dV
= det(F ). (2)

2.2. Gradient-enhanced damage model77

The local strain energy function Ψ loc per unit of reference volume at each time is written78

as79

Ψ loc = f(d)Ψ0, (3)
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where Ψ0 is the original (undamaged) strain energy density and f(d) represents a function80

of the damage variable d that measures the degree of material stiffness loss. In Eq. (3),81

f(d) = 1 means there is no damage and the total damage for f(d)→ 0. It is at least twice82

differentiable and satisfies the following conditions:83

f(d) : <+ → (0, 1]{f(0) = 1, lim f(d) = 0
d→∞

}. (4)

Following the approaches of Dimitrijevic and Hackl [10, 11], a gradient-enhanced nonlocal84

free energy term is added to the strain energy given in Eq. (3)85

Ψ = f(d)Ψ0 +
cd

2
‖∇Xφ‖2 +

βd

2
[φ− γdd]2. (5)

In Eq. (5), cd represents the gradient parameter that defines the degree of gradient86

regularization and the internal length scales. Three other variables are introduced:87

- the field variable φ, which transfers the values of the damage parameter across the88

element boundaries to make it non-local by nature;89

- the energy-related penalty parameter βd, which approximately forces the local damage90

field and the nonlocal field to coincide; and91

- parameter γd, which is set as a switch between the local and enhanced models. When92

γd = 0 and cd = 0, it leads to a local model, while setting γd = 1 and cd 6= 0 leads to the93

enhanced non-local model. A typical value of this parameter is set to 1 following Dimitrijevic94

and Hackl [10, 11] and Waffenschmidt et al. [34].95

2.3. Total potential energy and variational form96

The general total potential energy for nonlocal damage model is97

Π =

∫
Ω

Ψ dV −
∫
Ω

B̄ ·ϕ dV −
∫
∂Ω

T̄ ·ϕ dV, (6)

where B̄ is the body force vector per unit of reference volume of Ω and T̄ is the traction on98

the boundary ∂Ω.99

Minimization of the potential energy with respect to the primal variables ϕ and φ results100

in a coupled non-linear system of equations, which may be written as101 ∫
Ω

P : ∇Xδϕ dV −
∫
Ω

B̄ · δϕ dV −
∫
∂Ω

T̄ · δϕ dV = 0, (7)

∫
Ω

Y : ∇Xδφ dV −
∫
Ω

Y δφ dV = 0, (8)

where P is the first Piola-Kirchhoff stress, Y is vectorial damage quantity related to flux102

terms and Y is the scalar damage quantity associated to source terms. They are defined as103

P = ∂FΨ, Y = ∂∇XφΨ, Y = −∂φΨ. (9)
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The corresponding spatial quantities in Eq. (9) and the body force vector B̄ are given104

by105

σ = P · cof(F−1), b̄ = J−1B̄, (10)

y = Y · cof(F−1), y = J−1Y, (11)

where cof(F ) = JF−T.106

Substituting Eqs. (2), (10) and (11) into Eqs. (7) and (8), the variational forms of the107

spatial description are108 ∫
Ω

σ : ∇xδϕ dv −
∫
Ω

b̄ · δϕ dv −
∫
∂Ω

t̄ · δϕ dv = 0, (12)

∫
Ω

y : ∇xδφ dv −
∫
Ω

yδφ dv = 0. (13)

2.4. Constitutive model109

2.4.1. Hyperelastic part of the free energy110

For the undamaged part Ψ0 in Eq. (3), we used the Holzapfel-Gasser-Ogden (HGO)111

hyperelastic constitutive model [35, 36], which can be written as112

Ψ0 = Ψ iso + Ψ aniso, (14)

where the isotropic part Ψ iso and anisotropic part Ψ aniso are113

Ψ iso =
1

2
µ0J−2/3(I1 − 3) +

1

2
κ0(J− 1)2, (15)

Ψ aniso =
k1

2k2

∑
i=4,6

[exp(k2 < Ei >
2)− 1], (16)

where µ0 and κ0 are the shear and bulk moduli of the soft isotropic matrix, respectively.114

I1 = tr(C) is the first invariant of C, where C is the right Cauchy-Green tensor, which is115

defined as C = F TF . In Eq. (16), Ei = κI1 + (1− 3κ)I4i − 1 is a strain-like quantity and116

the I4i = C : Ai = C : (a0i ⊗ a0i) is the fourth invariant (which equals the square of the117

stretch of collagen fibers), the κ ∈ [0, 1/3] is a dispersion parameter and a0i = (cosθ, sinθ, 0)118

is the unit direction vector of the fiber in the reference configuration. k1 and k2 are material119

parameters. The term < Ei >, where < Ei >= (|Ei| + Ei)/2 is the Macaulay bracket,120

reflects the basic assumption that fibers can only support tension.121
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2.4.2. Damage evolution122

The detailed evolution of the damage variable d can be found in the works of Dimitrijevic123

and Hackl [10, 11] and Waffenschmidt et al. [34]. In the following, we give a brief description124

of some basic and essential formulations.125

Following standard thermodynamic considerations [10, 11], the damage conjugate driving126

force q is defined as127

q = −∂Ψ
∂d

. (17)

The damage condition at any time of the loading process is based on an energy release128

rate threshold condition [37]129

Φd=q − r1 ≤ 0, (18)

where r1 represents the threshold value that triggers the evolution of the damage.130

The differential equation of the evolution of damage is subjected to the Kuhn-Tucker131

optimality conditions [10, 11]132

ḋ = κ̇
∂Φd

∂q
, κ̇ ≥ 0, Φd ≤ 0, κ̇Φd = 0, (19)

where κ̇ is the Lagrange multiplier.133

2.4.3. Verification of the damage model134

An exemplary qualitative simulation is applied here to show how this non-local damage135

model can capture the stiffness loss of soft tissues when subjected to an overloading beyond136

physiological loads, and the results are shown in Fig. 1. In this simulation, an exponential137

damage function f(d) = e−d was adopted and was also used in following simulations. Other138

damage functions satisfying Eq. (4) could also be used [34]. The chosen model was compared139

with experimental stress-strain responses of Raghavan et al. [38]. In these experimental data,140

thin strips of abdominal aortic aneurysm excised from the anterior surface during surgical141

repair were tested. Both the elastic and damage phases were well described by the non-local142

damage model as shown in Fig. 1.143

2.5. Surrogate model144

2.5.1. Legendre polynomial surrogate model145

In this paper, the Legendre polynomial surrogate model is used to approximate the146

results of the FEM [32], and the Rodrigues formula of the N -order Legendre polynomial147

Φ(α) can be written as148

Φ(α) =
1

2NN !

dN

d(α)

[
((α)2 − 1)N

]
, (20)

where α is the uncertain variable and N is the order of the polynomial series.149
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Based on the polynomial chaos framework [39], the output variable L(x,α) can be150

expressed as151

L(x,α) =
∑
i

wi(x)Φi(α), (21)

where x is the spatial coordinate, α is the uncertain variables vector, wi(x) is the corre-152

sponding expansion coefficient and i = (i1, i2, ..., in) stands for the multigauge. Note that153

L is the output variable, and it can be any variables concerned (stress and damage in this154

paper). In practice, a maximum order of polynomials N is selected to truncate Eq. (21) up155

to finite terms, by which Eq. (21) can be concisely rewritten as156

L(x,α) ≈ LN(x,α) =
∑
i≤N

wi(x)Φi(α). (22)

2.5.2. Sparse grid collocation method (SGCM)157

The basic idea of a collocation method is using the response values at preselected points158

in uncertainty space to calculate the expansion coefficients of the surrogate model [32]. In159

this paper, the SGCM based on the Clenshaw-Curtis point-based collocation method and160

the Smolyak algorithm is adopted with the advantage that it can minimize the collocation161

error with the same number of nodes under the maximum norm [32].162

For the univariate case, the Clenshaw-Curtis nodes distributed in the interval range163

[αi, αi] are defined as164

βij =

{
αci
αci − cos π(j−1)

mi−1
·∆αi

if mi = 1
if mi > 1

, (23)

where αci = (αi + αi)/2, ∆αi = (αi − αi)/2, in which α and α represents the upper bound165

and lower bound of the uncertain interval, respectively, mi is the predefined number of166

collocation points.167

For the multivariate case, the n input parameters are assumed to be independent with168

each other for simplification. The general approach is to extend the collocation points defined169

in one dimension in Eq. (23) to the entire interval uncertain space using a tensor product.170

For each dimension, a nodal set Θmi
i = {βi1, βi2, ..., βimi

} is selected. On this basis, the entire171

nodal set named the full tensor product grids can be denoted as172

Θ = Θm1
1 ×Θm2

2 × . . .×Θmn
n , (24)

where the total number of collocation points M is173

M =
n∏
i=1

mi = m1 ×m2 × . . .×mi. (25)

To reduce the huge computational cost for high-dimensional problems, Smolyak-type174

sparse grids [40] are introduced, which are still based on the tensor product construction,175
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but only a small subset of the full tensor grids Eq. (24) are selected. By using the Smolyak176

algorithm, the total nodal set of collocation points in Eq. (24) can be reconstructed in the177

following form:178

Θ =
⋃

l−n+1≤|i|≤l

(Θi1
1 ×Θi2

2 × . . .×Θin
n ), (26)

where l ≥ n is an integer representing the overall level of the construction and ij represents179

the separate level along the j th direction.180

By iterating through all the nodes on full grids, only the ones whose sum order |i| =181

i1 + i2 + ... + in across all dimensions is from l − n + 1 to l are retained. To define the182

collocation points, an index k is introduced to denote the level of collocation points in one-183

dimensional uncertainty space. The number mk
i and positions βij of the Clenshaw-Curtis184

nodes in the interval range [αi, αi] are defined as185

mk
i =

{
1
2k−1 + 1

if k = 1
if k > 1

βij =

{
αci
αci − cos π(j−1)

mk
i−1
·∆αi

if k = 1
j = 1, 2...,mk

i if k > 1
.

(27)

After selecting the SGCM nodal set, a set Θ = {β1,β2, ...,βM} is given to specifically186

denote all the collocation points in the interval uncertain space, and L(x,βj) is the solution187

of the objective variable in the deterministic problem at the preselected points βj that could188

be obtained by the FEM. Based on the surrogate function in Eq. (22), a group of linear189

equations with respect to the unknown expansion coefficients wi(x) can be derived as190 
Φ1(β1) Φ2(β1) · · · ΦCn

n+N
(β1)

Φ1(β2) Φ2(β2) · · · Φ
Cn
n+N

(β2)
...

...
. . .

...
Φ1(βM) Φ2(βM) · · · Φ

Cn
n+N

(βM)




w1(x)
w2(x)

...
w

Cn
n+N

(x)

 =


L(x, β1)
L(x, β2)

...
L(x, βM)

 . (28)

Once the polynomial bases Φi and the SGCM nodal set Θ are given, the expansion191

coefficients wi(x) in Eq. (22) can be solved by Eq. (28). Note that the number of collocation192

points is required not to be smaller than the number of polynomial expansion terms, such193

as M ≥ Cn
n+N , to prevent the problem from being undetermined.194

2.6. Probability analysis195

The prediction of the rupture of soft tissues with uncertain parameters can be captured196

by the rupture probability, and PoF is defined as the probability that a mechanical rupture197

criterion holds. Such a criterion can be formulated as the inequality f > fmax, where f198

represents a mechanical quantity of interest, for example, the stress, strain, or damage,199

which is considered relevant for initializing a rupture [19].200
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Let R be a set of input parameters and z(R) is the mechanical quantity of interest. A201

suitable failure criterion can be defined as202

z(R) ≥ zmax, (29)

where zmax is a maximally admissible value. Generally, the PoF can be defined as203

PoF := P[z(R) ≥ zmax], (30)

where P(·) is the probability of (·).204

In this paper, the beta distribution is used for uncertain parameters to avoid some205

possible unreasonable values of the distribution, that could be produced in a Gaussian206

distribution [18]. The probability density function (PDF) of the beta distribution is defined207

as [41]:208

PDF(α; a, b) =
1

B(a, b)
αa−1(1− α)b−1, (31)

where α is the uncertain parameter, a and b denote two shape parameters and B(·) is the209

beta function. Note that some alternative distributions, e.g. the lognormal distribution [42],210

could also be used for uncertain parameters.211

In this paper, the damage function f(d) is used to describe the risk of the rupture, and212

a lower value of f(d) means a higher risk of rupture. Here, the PoF is redefined as213

PoF := P[f(d) ≤ f(d)max]. (32)

The PoF can be calculated as the integral of the PDF of the damage function f(d) from214

f(d) = 0 up to f(d) = f(d)max as215

PoF := P[f(d) ≤ f(d)max] =

∫ f(d)max

0

PDF(f(d)) df(d). (33)

An example is shown for the computation of the PoF in Fig. 2. The damage function216

is assumed to obey a beta distribution as f(d) ∼ B(4, 4) within the interval (0, 1] and the217

maximum damage is set to f(d)max = 0.5. With these assumptions, the value of the PoF218

can be calculated as 0.5 according Eq. (33), which is equaling to the area of gray part in219

Fig. 2.220

3. Numerical examples221

The gradient-enhanced damage model is implemented within the commercial finite ele-222

ment software Abaqus/Standard by means of a user subroutine UEL and the simulation of223

the probability analyses based on the surrogate model are carried out by Matlab R2018a.224

Both computations are conducted on a PC with an Intel Xeon E5-2650 CPU @ 2.40 GHz225

and 32 GB of RAM.226
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The first example is used to illustrate the nonlocal damage model and the advantages of227

the surrogate model with the SGCM through an open-hole plate case. The second example228

is a radial dilatation of an idealized artery, which is used to treat atherosclerotic plaque.229

Note that only homogeneous uncertain material parameters without spatial correlation are230

assumed for simplification, and plane strain elements (Bilinear 8 node element CPE8 in231

Abaqus) are used in all simulations.232

3.1. Open-hole plate233

The first numerical example is an open-hole plate under displacement loading. The ge-234

ometry and the FEM model are shown in Fig. 3. Due to the symmetry, only one-fourth of235

the plate is analyzed. In this example, only the isotropic contribution of the soft tissues is236

considered. The result of the deterministic analysis are shown in Section 3.1.1, the verifi-237

cation of the surrogate model is shown in Section 3.1.2 and the results of the probability238

analysis are shown in Section 3.1.3.239

3.1.1. Deterministic analysis240

In this part, a series tests on 286 elements are performed, which the mesh-dependence241

had been already examined in our previous works [12, 13], to investigate the influence of242

the shear modulus and the internal length scales on the damage analysis in deterministic243

problem. The geometry, hyperelastic and damage parameters are reported in Table 1, in244

which the bulk modulus k0 is set to 100 times of the shear modulus to make the material245

nearly incompressible.246

The contours of the damage function f(d) for different shear modulus are shown in Fig. 4,247

while the internal length scales is cd = 1.0 MPa−1 · mm2. It can be obviously seen that a248

larger value of the shear modulus resulting a larger damage, and the same results can be249

also observed in Fig. 5. The value of the parameter cd represents the degree of regularization250

and it depends on the microstructure of the tissues. The influence of the internal length251

scales cd is investigated by three different values and the results are shown in Figs. 6 and 7,252

while the shear modulus is a constant that µe = 0.1 MPa. As shown in Figs. 6 and 7, the253

levels of damage are strongly depending on the value of cd. It can be explained by the width254

of the activated zone [10, 11, 34]. With a smaller cd, a smaller region is influenced by the255

damage variable, resulting in more concentrated distribution of the damage.256

3.1.2. Verification of the surrogate model257

In the training of the surrogate model, the 5-order Legendre polynomial series and the258

SGCM with k = 4 are used. The comparison of the values of f(d) and σx computed by the259

surrogate model and the FEM at six feature nodes (the locations are shown in Fig. 3(b))260

for Case 1 when the stretch is λx = 0.1 are listed in Table 3. A good agreement can be261

seen in Table 3 such that the surrogate model with the SGCM can approximate the results262

of the FEM with the maximum difference being less than 1%. The good performance of263

the surrogate model with the SGCM is addressed again by comparing the results of the264

surrogate model with the SGCM and FEM at Node 1 when λx = 0.1 for Case 2 and Case265

3, and the results are shown in Fig. 8.266
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3.1.3. Probability analysis267

In this example, shear modulus µe and internal length scales cd are assumed to be268

uncertain parameters that obey the beta distributions in the given intervals (µe ∈ [0.07, 0.13]269

MPa and cd ∈ [0.5, 1.5] MPa−1 ·mm2), and seven cases for different levels of uncertainty for270

µe and cd listed in Table 2 are analyzed. The bulk modulus k0 is set to 100 times of the271

mean value of the shear modulus to make the material nearly incompressible. Apart from272

µe, cd and k0, other geometric and material parameters are shown in Table 1.273

First, we investigate the computational cost for using the Monte Carlo method based274

on the direct FEM and the Monte Carlo method based on the surrogate model. When275

employing the Monte Carlo method, 105 samples are computed to ensure the accuracy of276

the probability analysis, as suggested by Wu et al. [43]. The comparison of the CPU times277

is shown in Table 4. Note that the computational time for the Monte Carlo method with278

the direct FEM is estimated by multiplying the time of one FEM by 105. A significant279

reduction of the computational cost can be observed in Table 4 such that the computing280

time of the Monte Carlo method with the surrogate model is about 0.06% of that using the281

Monte Carlo method with the direct FEM but the relative error is less than 1%.282

Second, the individual and combined impacts of the uncertain parameters on the evo-283

lution of the damage are investigated through three different cases and the PDFs of the284

damage function f(d) at Node 3 (the location is shown in Fig. 3(b)) are shown in Fig. 9(a).285

Comparing Case 1 and 2, the mean value µ̂ of the damage function f(d) is close but the286

standard deviation σ̂ for Case 1 is larger than that for Case 2, which means that the shear287

modulus µe has a relatively larger influence on f(d) than the internal length scales cd in this288

example. For Case 3, a larger standard deviation σ̂ = 0.087 can be found as expected and289

there is little difference in the mean value µ̂ between Case 1 and 2.290

Third, the comparisons of the probabilistic damage analysis under uncertain parameters291

on different points are provided by selecting three feature nodes (the locations are shown292

in Fig. 3(b)), and only Case 3 is investigated with the results shown in Fig. 9(b). From293

Fig. 9(b), Node 1 is the location where the damage is largest and the distribution of f(d)294

varies in a smaller range (the standard deviation is σ̂ = 0.030). Comparing Nodes 1, 2295

and 3, it can be found that the location with less damage is more sensitive to the uncertain296

parameters, and the sensitivity increases as the damage level increases such that the standard297

deviation σ̂ of the damage function f(d) increases from 0.03 to 0.087 when the mean value298

µ̂ of f(d) increases from 0.066 to 0.41.299

Finally, the levels of uncertainty for parameters are also investigated and the results are300

shown in Figs. 9(c) and 9(d). Cases 4-6 are tested to illustrate the influence of the standard301

deviation σ̂ when the mean value µ̂ is the same. It can be seen in Fig. 9(c) that when the302

mean value of the uncertain parameters is constant, the mean value of the damage function303

f(d) changes slightly, and the standard deviation of f(d) increases as the standard deviation304

of the uncertain input parameters increases. The influence of the mean value of the input305

parameters is also investigated in Fig. 9(d). It can be seen that the change of the mean306

value of the input parameters may affect the distribution of the damage function f(d) such307

that a larger mean value of the input parameters leads to more serious damage and the308

distribution of the damage function will be more concentrated.309
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3.2. Radial dilatation of an idealized artery310

The second example is damage analysis for radial dilatation of an idealized artery. The311

two-dimensional geometry and FEM mesh shown in Fig. 10 were previously established by312

Badel et al. [44] according to histological pictures of epicardial coronary arteries from Viles-313

Gonzalez et al. [45]. The artery is assumed to consist of a single medial layer containing314

an atherosclerotic plaque, and the balloon used for the angioplasty is modeled as a thin315

circular structure whose diameter increases during the angioplasty process. In this example,316

the damage is assumed to only occur in the artery. Based on the experiment data for human317

thoracic and abdominal aortas in Weisbecker et al. [46], the shear modulus of the artery is318

assumed obeys a beta distribution µe ∼ B(2.98, 8.72) within the interval [15,55] kPa. The319

internal length scales cd is assumed to obey a beta distribution cd ∼ B(4, 4) within the320

interval [0.005, 0.015] kPa−1 ·mm2.321

In this simulation, some simplifications are assumed, i.e., the influence of the residual322

stresses, smooth muscle, lipid pool, and the image-based layer-specific structure of the ar-323

teries are not considered, and an idealized geometric shape is used. The only boundary324

conditions to be assigned are the nodal displacements of the balloon. A radial displacement325

is imposed on each node from its initial position, Di = 1 mm, to give a final deformed326

diameter, Df = 2 mm, where the center of the balloon is fixed. In the following, we use an327

inflation progress parameter λ = (D−Di)/(Df −Di)× 100%, where D is the current diam-328

eter of the balloon, to denote the inflation progress. Note that all the degrees of freedom of329

the balloon are prescribed as displacement boundary conditions, and the artery is inflated330

by the contact between the balloon and artery. The contact problems (balloon and plaque,331

balloon and artery, plaque and artery) are assumed to be frictionless following Badel et al.332

[44] and are modeled as ‘Hard contact ’ in Abaqus. The material parameters used in this333

example shown in Table 5 are according to Badel et al. [44] and Weisbecker et al. [46].334

3.2.1. Verification of the surrogate model335

Similar with the previous example, three different cases, including (1) µe is uncertain with336

a constant cd, (2) cd is uncertain with a constant µe and (3) both µe and cd are uncertain,337

are tested and the distributions of the uncertain input parameters are shown in Table 6. The338

5-order Legendre polynomial surrogate model is used and the SGCM is set by setting k = 5.339

To check the accuracy of surrogate model, the damage function f(d) is calculated by the340

surrogate model and the direct FEM for 3 cases, and the results shown in Fig. 11 illustrate341

the good performance of the surrogate model. The contours of the damage function f(d)342

calculated by the surrogate model with SGCM and FEM for different shear modulus and343

the internal length scales when λ = 100% in Fig. 12 demonstrate the good performance of344

the surrogate model once again.345

3.2.2. Probability analysis346

First, the computational cost of probability analysis for using the Monte Carlo method347

with the direct FEM and the Monte Carlo method with the surrogate model are investigated348

in Table 7. The results again demonstrate that the surrogate model can effectively reduce349

the computational cost with good accuracy, as shown in Fig. 11.350
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Second, the individual and combined impacts of the uncertain parameters on the damage351

are tested, and the PDFs of the damage function f(d) for three cases in Table 6 at different352

nodes (the locations are shown in Fig. 10) are shown in Fig. 13. Note that Node 1 is the353

location where the damage is the largest in the whole domain and it is selected through a354

previous simulation. For these three cases, the distribution of the damage function at Node355

1 is closer to 0, which means larger damage. Comparing the results of Case 1 for these three356

nodes, the same results that a larger influence of the shear modulus on the location with357

less damage can be observed, which the standard deviation σ̂ of the damage function f(d)358

increase form 0.009 to 0.054. By comparing the results of f(d) for Cases 1 and 3 for these359

three nodes, only a visible difference at Node 1 can be found and f(d) varies in a larger360

range at Node 1 for Case 2 (σ̂ = 0.019), which illustrates that value of the internal length361

scales cd has a larger impact on the location with larger damage.362

Moreover, three different ranges of the internal length scales cd, that cd ∈ [0.002, 0.018],363

cd ∈ [0.005, 0.015] and cd ∈ [0.008, 0.012], are tested to investigate the influence of the364

nonlocal damage parameter when λ = 100%. In this situation, the shear modulus of the365

artery remains a constant such that µe = 28.97 kPa, and the PDF of f(d) at Node 1 is366

shown in Fig. 14(a). The value of the damage function f(d) varies in the range of f(d) ∈367

[0.20, 0.25] when cd ∈ [0.008, 0.012], and the interval of the damage for cd ∈ [0.002, 0.018] is368

f(d) ∈ [0.10, 0.31], which is 3 times larger than the width when cd ∈ [0.008, 0.012]. Although369

the mean values of the PDFs of the damage function f(d) are close, the standard derivation370

increases from 0.011 to 0.029. When the range of cd is larger, the damage function will371

be distributed over a larger interval. To evaluate the risk of an artery rupture, the PoF is372

calculated as introduced in Section 2.6. In this example, the maximum damage threshold373

is set to f(d)max = 0.5 in Eq. (32), which means that an artery rupture could occur when374

f(d) ≤ f(d)max. Since Node 2 is the location where the damage is the largest, the PoF of375

the artery for Case 3 is calculated by integrating the PDF of the damage function f(d) at376

Node 2 from f(d) = 0 to f(d) = 0.5 through Eq. (33). When f(d)max = 0.5 and λ = 100%,377

the PoF of the artery is 1.0, which means that when λ = 100%, there is a 100% chance of a378

rupture during the treatment.379

As the size of the inflation of the balloon is the critical indicator in clinical treatment [47],380

the propagation of the uncertainty of the damage function f(d) with uncertain parameters381

under different inflation sizes is calculated. Four different inflation progress parameters λ382

are used to study the influence of λ on the PoF of the artery, and the results are shown in383

Fig. 14(b). It can be seen that the PoF of f(d) is directly influenced by the inflation progress384

parameter λ. For instance, the PoF are 0.03 and 0.91 for λ = 90% and λ = 95%, respectively.385

Obviously, the PoF of the artery increases as the balloon inflation size increases.386

4. Discussion and conclusions387

Due to the widely-existing uncertainty in damage analysis for soft biological tissues,388

the sensitivity analysis of nonlocal damage for soft biological tissues is an essential step389

in model development and application. To investigate the influence of the uncertain input390

parameters on the mechanical environment of the soft biological tissues, a numerical analysis391
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is conducted by combining the gradient-enhanced damage model [10, 11] and the surrogate392

model-based probability analysis method [33].393

The first advantage of the presented model is that it can assess nonlocal damage with394

uncertain material parameters, including internal length scales. In our previous works [12,395

13], it was proved that the internal length scales have obvious effects on the localization396

of damage, e.g., a larger internal length scales lead to a larger lower level of damage and397

activated zone. In this paper, the influence of uncertain internal length scales can be analyzed398

by the proposed model. Therefore, it is possible to provide probabilistic results of the levels399

of damage, stress and deformation for soft tissue if the internal length scales are uncertain400

variables obeying a probability distribution. Moreover, the proposed model can consider the401

combined effects of different uncertain material parameters. For instance, both the shear402

modulus and an internal length scales parameter can be set as uncertain variables at the403

same time. This will be useful for dealing with the cases in which more uncertain parameters404

exist together.405

The other advantage is that this paper’s method provides a new approach for the un-406

certain damage analysis of soft biological tissues based on the surrogate model. Although407

the Monte Carlo method is an accurate and robust method for uncertainty analysis, the408

huge computational cost is a key challenge for its application to damage analyses since the409

nonlinear problem has to be repeatedly solved by the FEM [48, 49]. Due to the huge com-410

putational cost, the Monte Carlo method is commonly introduced as a referenced approach,411

but it is rarely used in the practical engineering. In this paper, the surrogate model based on412

the Legendre polynomial series was adopted to approximate the results of the FEM. When413

training of the surrogate model, the SGCM is employed to accelerate the procedure. First, it414

is demonstrated that the surrogate model has good accuracy compared with direct FEM so-415

lutions. For example, the maximum error is less than 1% compared with the results (Cauchy416

stress and the damage function) obtained from the surrogate model and the FEM at some417

feature nodes in the open-hole plate. Second, the surrogate model significantly improved418

the computational efficiency of the Monte Carlo method. For example, in the open-hole419

plate problem, the computational cost for the Monte Carlo method with the direct FEM420

was about 40 days, but the time for the surrogate model with the SGCM including training421

the surrogate model and probability analysis was only 0.63 h with a 286 elements mesh.422

The proposed approach was applied to the simulation of the radial dilatation of an ideal-423

ized artery by considering the uncertain shear modulus and internal length scales. Although424

some simplifications are assumed, some interesting results are found: (1) the spatial posi-425

tions and level of damage could have significant impact on the uncertainty propagation of426

damage, for instance, the mean value and standard deviation are obviously different at dif-427

ferent locations (Node 1, Node 2 and Node 3) in Fig. 13; (2) different parameters could also428

have obviously different impact on the uncertainty propagation of damage. For instance, if429

only the uncertain shear modulus is considered (Case 1), a smaller standard deviation of430

damage is produced at Node 1 with larger damage compared with Node 3, while the internal431

length scales has an opposite trend with a larger standard deviation at Node 1 compared432

with Node 3 in Case 2; (3) although the PoF is increased with the increase of inflation size433

as expected, the relation between uncertain parameter and resulted PoF could still provide434
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a potential helpful approach for both directly predicting the PoF in clinical operation and435

inversely choosing the inflation size under a prescribed PoF.436

The main limitation in this paper is that only 2D models and an idealized geometric437

model was considered. The development of a 3D patient-specific model is currently under438

progress in order to address more realistic applications. Meanwhile, some important aspects,439

such as the influence of the residual stresses, the smooth muscle activation, the lipid pool440

should also be considered. Besides, some uncertainty analyses about the geometry and441

the material parameters of the plaque, which is important in predicting the rupture risk442

of the artery, should be conducted, and the spatial uncertainty should also be considered443

as arteries are usually heterogeneous materials [50, 51]. Moreover, there is still a pressing444

need to develop further experiments to identify the distribution of shear moduli, the internal445

length scales and other unknown material parameters. Furthermore, the use of UEL presents446

some limitations such as, for instance, the definition of slave surfaces in contact analyses.447

In summary, we have coupled a nonlocal damage model and a surrogate model to in-448

vestigate the influence of uncertainty on damage in soft tissues. The Legendre polynomial449

surrogate model with the SGCM was adopted in this paper to speed up the computation450

efficiency. The evolution of the PDF of the damage function f(d) was illustrated through451

two examples where the input parameters were assumed to be uncertain, and the method’s452

clinical application to balloon angioplasty was also addressed. Future work will consist of453

applying the proposed model to practical problems by collecting clinical data.454
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Table 1: Geometry, hyperelastic and damage parameters used in the open-hole plate.

Type Description Symbol Values Units

Geometric
Height H 200 mm
Width W 200 mm
Radius R 50 mm

Hyperelastic
Shear modulus µ0 [0.5,1.0,1.5] MPa
Bulk modulus κ0 [5,10,15] MPa

Damage

Damage threshold r1 0.001 MPa
Internal length scales cd [0.5,1,5] MPa−1 ·mm2

Penalty parameter βd 0.005 MPa−1

(Non)local switch γd 1 -
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Table 2: The uncertain input parameters for different cases.

Case
µe (MPa) cd (MPa−1 ·mm2)

Distribution Mean Standard Deviation Distribution Mean Standard Deviation

1 B(4,4) 0.1 0.01 - 1 -
2 - 0.1 - B(4,4) 1 0.17
3 B(4,4) 0.1 0.01 B(4,4) 1 0.17
4 B(2,2) 0.1 0.013 B(2,2) 1 0.22
5 B(8,8) 0.1 0.0073 B(8,8) 1 0.12
6 B(4,2) 0.11 0.0107 B(4,2) 1.17 0.18
7 B(2,4) 0.09 0.0107 B(2,4) 0.83 0.18
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Table 3: Comparison of the results obtained by the FEM and surrogate model with the SGCM when λx = 0.1
for Case 1.

Node µe

FEM SGCM

f(d) σx f(d) error σx error

1
0.08 0.142469 0.028497 0.141972 0.35% 0.028479 0.06%
0.12 0.028766 0.026306 0.028787 0.07% 0.026207 0.38%

2
0.08 0.38338 0.031512 0.382846 0.14% 0.031431 0.26%
0.12 0.161063 0.031508 0.161157 0.06% 0.03152 0.04%

3
0.08 0.607423 0.014506 0.605692 0.28% 0.014729 0.05%
0.12 0.293042 0.015549 0.294017 0.33% 0.015552 0.02%

4
0.08 1 0.001851 1 0.00% 0.001855 0.23%
0.12 1 0.001331 1 0.00% 0.001342 0.80%

5
0.08 1 -0.00159 1 0.00% -0.00159 0.10%
0.12 1 -0.00086 1 0.00% -0.00086 0.20%

6
0.08 1 0.022613 1 0.00% 0.022606 0.03%
0.12 1 0.021469 1 0.00% 0.02149 0.10%
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Table 4: The comparison of the computational cost between using the Monte Carlo method with the direct
FEM and the Monte Carlo method with the surrogate model.

Monte Carlo method with
the direct FEM
(Estimated, t1)

Monte Carlo method with the surrogate model
t2/t1Training the

surrogate model
Probability

analysis
Total time

(t2)

79 elements 14.70 days 825 sec 11.82 sec 836.82 sec 0.06%
286 elements 40.05 days 2249 sec 36.28 sec 2285.28 sec 0.07%
793 elements 115.27 days 6474 sec 98.73 sec 6572.73 sec 0.07%
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Table 5: Hyperelastic and damage parameters used in the radial dilatation of an idealized artery [44, 46].

Type Part Description Symbol Values Units

Hyperelastic

Medial layer

Shear modulus µe uncertain kPa
Bulk modulus κe 5 MPa
Material parameter k1 5.15 MPa
Material parameter k2 8.64 -
Dispersion parameter κ0 0.24 -
Fiber orientation angle θ ±38.8 deg

Plaque
Shear modulus µp 20 kPa
Bulk modulus κp 34 kPa

Balloon
Shear modulus µb 10 kPa
Bulk modulus κb 10 kPa

Damage Medial layer

Damage threshold r1 1.0 kPa
Internal length scales cd uncertain kPa−1 ·mm2

Penalty parameter βd 10 kPa−1

(Non-)local switch γd 1.0 −

23



Table 6: The uncertain input parameters for different cases.

Case
µe (kPa) cd (kPa−1 ·mm2)

Distribution Mean Standard Deviation Distribution Mean Standard Deviation

1 B(2.98,8.72) 25.58 5.03 0.01 (deterministic)
2 25.58 (deterministic) B(4,4) 0.01 0.0017
3 B(2.98,8.72) 25.58 5.031 B(4,4) 0.01 0.0017
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Table 7: The comparison of the computational cost between using the Monte Carlo method with the direct
FEM and the Monte Carlo method with the surrogate model.

Monte Carlo method with
the direct FEM
(Estimated t1)

Monte Carlo method with the surrogate model

t2/t1Training the
surrogate model

Probability
analysis

Total time
(t2)

230.09 days 19422 sec 35.43 sec 19457.43 sec 0.09%
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Figure 1: Qualitative simulation based on the damage model used in this paper and the experimental stress-
strain data of the abdominal aortic aneurysm in Raghavan et al. [38]. Material parameters are chosen as
µe = 0.3 MPa, κ0 = 100 MPa, k1 = 0.22 MPa, k2 = 1.20, θ = 50 deg, κ = 0.18, r1 = 0.05 MPa.
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Figure 2: An example for calculating the PoF, in which the damage function is assumed to obey a beta
distribution as f(d) ∼ B(4, 4) within the interval (0, 1] and the maximum damage is set to f(d)max = 0.5.
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Figure 3: Reference model for an open-hole plate. (a) Geometric, dimension and boundary conditions; and
(b) FEM mesh.
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(a) (c)(b)

Figure 4: The contours of the damage function f(d) for three different shear modulus µ0 when λx = 0.1.
(a) µ0 = 0.05 MPa (b) µ0 = 0.1 MPa and (c) µ0 = 0.15 MPa.
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Figure 5: The average Cauchy stress in x-direction σx of the right-hand side for three different shear modulus
µ0 when λx = 0.1.
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(a) (c)(b)

Figure 6: The contours of the damage function f(d) for three different internal length scales cd when
λx = 0.1. (a) cd = 0.5 MPa−1 ·mm2 (b) cd = 1 MPa−1 ·mm2 and (c) cd = 5 MPa−1 ·mm2.
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Figure 7: The average Cauchy stress in x-direction σx of the right-hand side for three different internal
length scales cd when λx = 0.1.

34



0 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5
·10−2

λx

σ
x

SGCM,cd = 0.6
SGCM,cd = 1.4
FEM,cd = 0.6
FEM,cd = 1.4

(a)

0 0.02 0.04 0.06 0.08 0.10
0

0.2

0.4

0.6

0.8

1

λx

f
(d
)

SGCM,cd = 0.6
SGCM,cd = 1.4
FEM,cd = 0.6
FEM,cd = 1.4

(b)

0 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5
·10−2

λx

σ
x

SGCM,µe = 0.08,cd = 0.6
SGCM,µe = 0.12,cd = 1.4
FEM,µe = 0.08,cd = 0.6
FEM,µe = 0.12,cd = 1.4

(c)

0 0.02 0.04 0.06 0.08 0.10
0

0.2

0.4

0.6

0.8

1

λx

f
(d
)

SGCM,µe = 0.08,cd = 0.6
SGCM,µe = 0.12,cd = 1.4
FEM,µe = 0.08,cd = 0.6
FEM,µe = 0.12,cd = 1.4

(d)

Figure 8: The comparison of the surrogate model with the SGCM and FEM. (a) The Cauchy stress in
direction x at Node 1 for Case 2, (b) The damage function f(d) at Node 1 for Case 2, (c) The Cauchy stress
in direction x at Node 1 for Case 3, and (d) The damage function f(d) at Node 1 for Case 3.
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Figure 9: PDFs of the damage function f(d) for different situations. (a) PDF of the damage function f(d)
at Node 3 for Cases 1-3. (b) PDF of the damage function f(d) at different locations for Case 3. (c) PDF
of the damage function f(d) at Node 3 for Cases 3-5. (d) PDF of the damage function f(d) at Node 3 for
Case 6 and Case 7.
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Figure 10: Reference model in the radial dilatation of an idealized artery. (a) Geometry, dimensions and
boundary conditions; and (b) FEM mesh.
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Figure 11: The comparison of the results obtained by surrogate model with the SGCM and FEM. (a) The
damage function f(d) at Node 1 for Case 1, (b) The damage function f(d) at Node 1 for Case 2, and (c)
The damage function f(d) at Node 1 for Case 3.
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Figure 12: The contours of the damage function f(d) obtained by the surrogate model with the SGCM
and FEM for different shear modulus and the internal length scales when λ = 100%. (a) µe = 15 kPa,
cd = 0.01 kPa−1 ·mm2, (b) µe = 55 kPa, cd = 0.01 kPa−1 ·mm2, (c) µe = 35 kPa, cd = 0.005 kPa−1 ·mm2,
and (d) µe = 35 kPa, cd = 0.015 kPa−1 ·mm2
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Figure 13: The PDF of the damage function f(d) for different cases at different locations when λ = 100%.
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Figure 14: The PDFs of the damage function f(d) for different situations at Node 1. (a) The PDFs of
the damage function f(d) for different internal length scales cd when λ = 100%, and (b) The PDFs of the
damage function f(d) for different λ.

41


	Introduction
	Methods and materials
	Basic kinematics
	Gradient-enhanced damage model
	Total potential energy and variational form
	Constitutive model
	Hyperelastic part of the free energy
	Damage evolution
	Verification of the damage model

	Surrogate model
	Legendre polynomial surrogate model
	Sparse grid collocation method (SGCM)

	Probability analysis

	Numerical examples
	Open-hole plate
	Deterministic analysis
	Verification of the surrogate model
	Probability analysis

	Radial dilatation of an idealized artery
	Verification of the surrogate model
	Probability analysis


	Discussion and conclusions

