
Complete Bidirectional Typing for the Calculus of1

Inductive Constructions2

Meven Lennon-Bertrand �Â3

LS2N, Université de Nantes — Gallinette Project Team, Inria, France4

Abstract5

This article presents a bidirectional type system for the Calculus of Inductive Constructions (CIC).6

It introduces a novel judgement intermediate between the usual inference and checking, dubbed7

constrained inference, to handle the presence of computation in types. The key property is the8

completeness of the system with respect to the usual undirected one, which has been formally proven9

in Coq as a part of the MetaCoq project. Although it plays a central role in an ongoing completeness10

proof for a realistic typing algorithm, the interest of bidirectionality is much wider, as it clarifies11

previous works in the area and gives strong insights and structure when trying to prove properties12

on CIC or design variations and extensions.13

2012 ACM Subject Classification Theory of computation → Type theory14

Keywords and phrases Bidirectional Typing, Calculus of Inductive Constructions, Coq, Proof15

Assistants16

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2317

Supplementary Material Software (Formalization): https://github.com/MevenBertrand/metacoq/18

tree/itp-artefact19

1 Introduction20

In logical programming, a very important information about judgements is the mode of21

the objects involved, i.e., which ones are considered inputs or outputs. When examining22

this distinction for a typing judgement Γ ⊢ t : T , both the term t under inspection and23

the context Γ of this inspection are known, they are thus inputs. The mode of the type T ,24

however, is much less clear: should it be inferred based upon Γ and t, or do we merely want25

to check whether t conforms to a given T? Both are sensible approaches, and in fact typing26

algorithms for complex type systems usually alternate between them during the inspection27

of a single term/program. The bidirectional approach makes this difference between modes28

explicit, by decomposing undirected1 typing Γ ⊢ t : T into two separate judgments Γ ⊢ t ▷ T29

(inference) and Γ ⊢ t ◁ T (checking)2, that differ only by modding. This decomposition allows30

theoretical work on practical typing algorithms, but also gives a finer grained structure to31

typing derivations, which can be of purely theoretical interest even without any algorithm in32

sight.33

Although those seem appealing, and despite advocacy by McBride [9, 10] to adopt this34

approach when designing type systems, most of the dependent typing world to this day35

remains undirected. Some others than McBride’s appeal to bidirectionality, starting with36

Coquand [7] and continuing with Norell [12] or Abel [1]. However, all of these consider37

unannotated λ-abstractions. This lack of annotations, although sensible for lightness, poses38

an inherent completeness problem, as a term like (λ x.x) 0 does not type-check against type39

N in those systems. Very few have considered the case of annotated abstractions, apart40

1 We call anything related to the Γ ⊢ t : T judgement undirected by contrast with the bidirectional typing.
2 We chose ▷ and ◁ rather than the more usual ⇒ and ⇐ to avoid confusion with implication on paper,

and with the Coq notation for functions in the development.

© Meven Lennon-Bertrand;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:meven.bertrand@univ-nantes.fr
http://www.meven.ac
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://github.com/MevenBertrand/metacoq/tree/itp-artefact
https://github.com/MevenBertrand/metacoq/tree/itp-artefact
https://github.com/MevenBertrand/metacoq/tree/itp-artefact
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Complete Bidirectional Typing for the Calculus of Inductive Constructions

from Asperti and the Matita team [3], who however concentrate mostly on specific problems41

pertaining to unification and implementation of the Matita elaborator, without giving a42

general bidirectional framework. They also do not consider the problem of completeness with43

respect to a given undirected system, as it would fail in their setting due to the undecidability44

of higher order unification.45

Thus, we wish to fill a gap in the literature, by describing a bidirectional type system that46

is complete with respect to the (undirected) Calculus of Inductive Constructions (CIC). By47

completeness, we mean that any term that is typable in the undirected system should also infer48

a type in the bidirectional one. This feature is very desirable when implementing kernels for49

proof assistants, whose algorithms should correspond to their undirected specification, never50

missing any typable term. The bidirectional systems we describe thus forms intermediates51

between actual algorithms and undirected type systems. This step has proven useful in an52

ongoing completeness proof of MetaCoq’s [17] type-checking algorithm3: rather than proving53

the algorithm complete directly, the idea is to prove it equivalent to the bidirectional type54

system, separating the implementation problems from the ones regarding the bidirectional55

structure.56

But having a bidirectional type system equivalent to the undirected one has other purely57

theoretical interests. First, the structure of a bidirectional derivation is more constrained58

than that of an undirected one, especially regarding the uses of computation. This finer59

structure can make proofs easier, while the equivalence ensures they can be transported to60

the undirected world. For instance, in a setting with cumulativity/subtyping, the inferred61

type for a term t should by construction be smaller than any other types against which t62

checks. This provides an easy proof of the existence of principal types in the undirected63

system. The bidirectional structure also provides a better base for extensions. This was64

actually the starting point for this investigation: in [8], we quickly describe a bidirectional65

variant of CIC, as the usual undirected CIC is unfit for the gradual extension we envision66

due to the too high flexibility of a free-standing conversion rule. This is the system we wish67

to thoroughly describe and investigate here.68

Our main technical contributions are twofold. First the identification of a new constrained69

inference judgement introduced in Section 2 together with general ideas around bidirectional70

typing in the rather simple setting of pure type systems. Secondly, a formalized proof of71

equivalence4 between PCUIC – the extension of CIC nowadays at the heart of Coq – and a72

bidirectional type system described on a high level in Section 3, built on top of MetaCoq.73

We next turn to less technical considerations, as we believe that the bidirectional structure74

is of general interest. Section 4 thus describes the interest of basing an extension of CIC75

on the bidirectional system directly rather than on the equivalent undirected one. Finally76

Section 5 investigates in length the related work, and in particular identifies the implicit77

presence of the bidirectional structure in various earlier articles, showing how making this78

structure explicit clarifies those.79

3 A completeness bug in that algorithm – also present in the Coq kernel – has already been found, see
Section 3 for details.

4 A version frozen as described in this article is available in the following git branch: https://github.
com/MevenBertrand/metacoq/tree/itp-artefact.

https://github.com/MevenBertrand/metacoq/tree/itp-artefact
https://github.com/MevenBertrand/metacoq/tree/itp-artefact

M. Lennon-Bertrand 23:3

⊢ Γ

⊢ ·
Empty

⊢ Γ Γ ⊢ A : □i

⊢ Γ, x : A
Ext

Γ ⊢ t : T

⊢ Γ
Γ ⊢ □i : □i+1

Sort
⊢ Γ Γ ⊢ A : □i

Γ, x : A ⊢ x : A
Var

Γ ⊢ x : A Γ ⊢ B : □i

Γ, y : B ⊢ x : A
Weak

Γ ⊢ A : □i Γ, x : A ⊢ B : □j

Γ ⊢ Π x : A.B : □i∨j

Prod
Γ ⊢ Π x : A.B : □i Γ, x : A ⊢ t : B

Γ ⊢ λ x : A.t : Π x : A.B
Abs

Γ ⊢ t : Π x : A.B Γ ⊢ u : A

Γ ⊢ t u : B[x := u]
App

Γ ⊢ t : A Γ ⊢ B : □i A ≡ B

Γ ⊢ t : B
Conv

Figure 1 Undirected typing for CCω – PTS-style

2 Warming up with CCω80

2.1 Undirected CCω81

As a starting point, let us consider CCω. It is the backbone of CIC, and we can already82

illustrate most of our methodology on it. CCω belongs to the wider class of pure type systems83

(PTS), that has been thoroughly studied and described, see for instance [4]. Since there are84

many presentational variations, let us first give a precise account of our conventions. Terms85

in CCω are given by the grammar86

t ::= x | □i | Π x : t.t | λ x : t.t | t t87

where the letter x denotes a variable (so will letters y and z), and the letter i is an integer88

(we will also use letters j, k and l for those). All other Latin letters will be used for terms,89

with the upper-case ones used to suggest the corresponding terms should be though of as90

types — although this is not a syntactical separation. We abbreviate Π x : A.B by A → B91

when B does not depend on x, as is customary. On those terms, reduction → is defined as92

the least congruence such that (λ x : T.t) u → t[x := u], where t[x := u] denotes substitution.93

Conversion ≡ is the symmetric, reflexive, transitive closure of reduction. Finally, contexts are94

lists of variable declarations x : t and are denoted using capital Greek letters. We write · for95

the empty list, Γ, x : T for concatenation, and (x : T) ∈ Γ if (x : T) appears in Γ. Combining96

those, we can define typing Γ ⊢ t : T as in Figure 1, where i∨ j denotes the maximum of i and97

j. We use well-formed to denote ⊢ Γ for a context, the existence of i such that Γ ⊢ T : □i98

for a type T (in an implicit context), or the existence of T such that Γ ⊢ t : T for a term t99

(again in an implicit context). We also say t is well-typed for the latter.100

As any PTS, CCω has many desirable properties. We summarize the ones we need here,101

see [4] for proofs.102

CVIT 2016

23:4 Complete Bidirectional Typing for the Calculus of Inductive Constructions

▶ Proposition 1 (Properties of CCω). The type system CCω as just described enjoys the103

following properties:104

Confluence Reduction → is confluent. As a direct consequence, two terms are convertible105

just when they have a common reduct: t ≡ u if only if there exists t′ such that t →∗ t′
106

and u →∗ t′.107

Transitivity Conversion is transitive.108

Subject reduction If Γ ⊢ t : T and t → t′ then Γ ⊢ t′ : T .109

Validity If Γ ⊢ t : T then T is well-formed, e.g. there exists some i such that Γ ⊢ T : □i.110

2.2 Turning CCω Bidirectional111

McBride’s discipline. To design our bidirectional type system, we follow a discipline exposed112

by McBride [9, 10]. The central point is to distinguish in a judgment between the subject,113

whose well-formedness is under scrutiny, from inputs, whose well-formedness is a condition114

for the judgment to behave well, and outputs, whose well-formedness is a consequence of115

the judgment. For instance, in inference Γ ⊢ t ▷ T , the subject is t, Γ is an input and T is116

an output. This means that one should consider whether Γ ⊢ t ▷ T only in cases where ⊢ Γ117

is already known, and if the judgment is derivable it should be possible to conclude that118

both t and T are well-formed. All inference rules are to preserve this invariant. This means119

that inputs to a premise should be well-formed whenever the inputs to the conclusion and120

outputs and subjects of previous premises are. Similarly the outputs of the conclusion should121

be well-formed if the inputs of the conclusion and the subjects and outputs of the premises122

are assumed to be so.123

This distinction also applies to the computation-related judgments, although those have124

no subject. For conversion testing T ≡ T ′ both T and T ′ are inputs, and thus should be125

known to be well-formed beforehand. For reduction T →∗ T ′, T is an input and T ′ is an126

output, so only T needs to be well-formed, with the subject reduction property of the system127

ensuring that the output T ′ is also well-formed.128

Constrained inference. Beyond the already described inference and checking judgements129

another one appears in the bidirectional typing rules of Figure 2: constrained inference,130

written Γ ⊢ t ▷h T , where h is either Π or □ – and will be extended once we introduce131

inductive types. Constrained inference is a judgement (or, rather, a family of judgements132

indexed by h) with the exact same modding as inference, but where the type output is not133

completely free. Rather, as the name suggests, a constraint is imposed on it, namely that134

its head constructor can only be the corresponding element of h. This is useful to handle135

the behaviour absent in simple types that some terms might not have a desired type “on136

the nose”. This is exemplified by the first premise Γ ⊢ t ▷Π Π x : A.B of the App rule for t u.137

Indeed, it would be too much to ask t to directly infer a Π-type, as some reduction might138

be needed on T to uncover this Π. Checking also cannot be used, because the domain and139

codomain of the tentative Π-type are not known at that point: they are to be inferred from t.140

Structural rules. To transform the rules of Figure 1 to those of Figure 2, we start by141

recalling that we wish to present a obtain bidirectional typing. Therefore any term should142

infer a type, and thus all structural rules (i.e. all rules where the subject of the conclusion143

starts with a term constructor) should give rise to an inference rule. It thus remains to chose144

the judgements for the premises, which amounts to choosing how to mod them. If a term145

in a premise appears as input in the conclusion or output of a previous premise, then it146

M. Lennon-Bertrand 23:5

Inference: Γ ⊢ t ▷ T

Γ ⊢ □i ▷□i+1
Sort

(x : T) ∈ Γ
Γ ⊢ x ▷ T

Var
Γ ⊢ A ▷□ □i Γ, x : A ⊢ B ▷□ □j

Γ ⊢ Π x : A.B ▷□i∨j

Prod

Γ ⊢ A ▷□ □i Γ, x : A ⊢ t ▷ B

Γ ⊢ λ x : A.t ▷ Π x : A.B
Abs

Γ ⊢ t ▷Π Π x : A.B Γ ⊢ u ◁ A

Γ ⊢ t u ▷ B[x := u]
App

Checking: Γ ⊢ t ◁ T

Γ ⊢ t ▷ T ′ T ′ ≡ T

Γ ⊢ t ◁ T
Check

Constrained inference: Γ ⊢ t ▷h T

Γ ⊢ t ▷ T T →∗ □i

Γ ⊢ t ▷□ □i

Sort-Inf
Γ ⊢ t ▷ T T →∗ Π x : A.B

Γ ⊢ t ▷Π Π x : A.B
Prod-Inf

Figure 2 Bidirectional typing for CCω

can be considered an input, otherwise it must be an output. Moreover, if a type output is147

unconstrained, then inference can be used, otherwise we must resort to constrained inference.148

This applies straightforwardly to most rules but the PST-style Abs rule. Indeed, if one149

looks at the undirected premises, the premise Γ ⊢ Π x : A.B : □i needs A and B to be known,150

and only A is known from the conclusion, thus it cannot be the first premise. However, one151

also cannot put Γ, x : A ⊢ t : B as the first premise, because A is not known to be well-formed152

at that point, thus Γ, x : A cannot be used as an input. The solution is to split the premise153

Γ ⊢ Π x : A.B : □i into the equivalent Γ ⊢ A : □j and Γ, x : A ⊢ B : □j′ . The former can154

become the first premise, ensuring that type inference for t is done in a well-formed context,155

and the latter can be simply dropped based upon our invariant that outputs – here the type156

B inferred for t — can be assumed to be well-formed.157

Similarly, as the context is always supposed to be well-formed as an input to the conclusion,158

it is not useful to re-check it, and thus the premise to Var can be dropped, and undirected159

rules Var and Weak can be fused into one single Var. This is in line with implementations,160

where the context is not re-checked at leaves of a derivation tree, with performance issues in161

mind. The well-formedness invariants ensure that any derivation starting with the empty162

context will only use well-formed contexts.163

Computation rules. We are now left with the non-structural conversion rule. As we164

observed, there are two ways to mode computation: if both sides are inputs, conversion can165

be used, but if only one is known one must resort to conversion, and the other side becomes166

an output instead. Rule Check corresponds to the first case, while rules Prod-Inf and167

Sort-Inf both are in the second case. This difference in turn introduces the need to separate168

between checking, that calls for the first rule, and constrained inference, that requires the169

others.170

CVIT 2016

23:6 Complete Bidirectional Typing for the Calculus of Inductive Constructions

To the best of our knowledge, this difference in modding of conversion and the resulting171

introduction of constrained inference have never been described on paper, although they172

appear in the typing and elaboration algorithms of proof assistants based upon dependent173

type theory, such as Coq, Lean or Agda. Instead, in presentations in print, constrained174

inference has been inlined in some way, as is also often the case for checking, so that Γ ⊢ t : T175

is used where we use Γ ⊢ t ▷ T , the bidirectional structure being left implicit. This is sensible176

since in Figure 2 there is only one rule to derive checking and constrained inference. However,177

as soon as typing features appear that complicate conversion, such as unification [3], coercions178

[3, 16] or graduality [8], having singled out those judgements makes the structure clearer and179

explains the choices made for the modification of typing that could appear ad-hoc otherwise.180

We come back to this more in length in Section 5.1.181

2.3 Properties182

Let us now state the two main properties relating the bidirectional system to the undirected183

one: it is both correct (terms typable in the bidirectional system are typable in the undirected184

system) and complete (all terms typable in the undirected system are also typable in the185

bidirectional system).186

2.3.1 Correctness187

A bidirectional derivation can be seen as a refinement of an undirected derivation. Indeed, the188

bidirectional structure can be erased – replacing each bidirectional rule with the corresponding189

undirected rule – to obtain an undirected derivation, but for missing sub-derivations, which190

can be retrieved using the invariants on well-formedness of inputs and outputs. Thus,191

we get the following correctness theorem – note how McBride’s discipline manifests as192

well-formedness hypothesis on inputs.193

▶ Theorem 2 (Correctness of bidirectional typing for CCω). If Γ is well-formed and Γ ⊢ t ▷ T194

or Γ ⊢ t ▷h T then Γ ⊢ t : T . If Γ and T are well-formed and Γ ⊢ t ◁ T then Γ ⊢ t : T .195

Proof. The proof is by mutual induction on the bidirectional typing derivation.196

Each rule of the bidirectional system can be replaced by the corresponding rule of the197

undirected system, with all three Check, Prod-Inf and Sort-Inf replaced by Conv, Abs198

using an extra Prod rule, and Var using a succession of Weak and a final Var. In all199

cases, the induction hypothesis can be used on sub-derivations of the bidirectional judgment200

because the context is extended using types that are known to be well-formed, and similarly201

checking is done against a type that is known to be well-formed by previous premises.202

Some sub-derivations of the undirected rules that have no counterpart in the bidirectional203

ones are however missing. In rules Sort and Var the hypothesis that ⊢ Γ is enough to204

get the required premise. For rule Check, the well-formedness hypothesis on the type is205

needed to get the second premise of rule Conv. As for Prod-Inf and Sort-Inf, that second206

premise is obtained by subject reduction. Finally, the missing premise on the codomain of207

the product type in rule Abs is obtained by validity of the undirected system, but could be208

instead handled by strengthening the theorem to incorporate the well-formedness of types209

when they are outputs.210

◀211

M. Lennon-Bertrand 23:7

2.3.2 Completeness212

Let us now state the most important property of our bidirectional system: it does not miss213

any undirected derivation.214

▶ Theorem 3 (Completeness of bidirectional typing for CCω). If Γ ⊢ t : T then there exists T ′
215

such that Γ ⊢ t ▷ T ′ and T ′ ≡ T .216

Proof. The proof is by induction on the undirected typing derivation.217

Rules Sort and Var are base cases, and can be replaced by the corresponding rules218

in the bidirectional world. Rules Weak and Conv are both direct consequences of the219

induction hypothesis on their first premise, together with transitivity of conversion for the220

latter.221

For rule Prod, we need the intermediate lemma that if T is a term such that T ≡ □i,222

then also T →∗ □i. This is a consequence of confluence of reduction. In turn, it implies that223

if Γ ⊢ t ▷ T and T ≡ □i then Γ ⊢ t ▷□ □i, and is enough to conclude for that rule.224

In rule Abs, the induction hypothesis gives Γ ⊢ Π x : A.B ▷T for some T , and an inversion225

on this gives Γ ⊢ A▷□□i for some i. Combined with the second induction hypothesis, it gives226

Γ ⊢ λ x : A.t ▷ Π x : A.B′ for some B′ such that B ≡ B′, and thus Π x : A.B ≡ Π x : A.B′ as227

desired.228

We are finally left with the App rule. We know that Γ ⊢ t ▷ T with T ≡ Π x : A.B.229

Confluence then implies that T →∗ Π x : A′.B′ for some A′ and B′ such that A ≡ A′ and230

B ≡ B′. Thus Γ ⊢ t▷Π Π x : A′.B′. But by induction hypothesis we also know that Γ ⊢ u▷A′′
231

with A′′ ≡ A and so by transitivity of conversion Γ ⊢ u ◁ A′. We can thus apply App to232

conclude.233

◀234

Contrarily to correctness, which kept a similar derivation structure, completeness is of235

a different nature. Because in bidirectional derivations the conversion rules are much less236

liberal than in undirected derivations, the bulk of the proof is to ensure that conversions can237

be permuted with structural rules, in order to concentrate them in the places where they are238

authorized in the bidirectional derivation. In a way, composing completeness with conversion239

gives a kind of normalization procedure that produces a canonical undirected derivation by240

pushing all conversions down as much as possible.241

2.3.3 Reduction strategies242

The judgements of Figure 2 are syntax-directed, in the sense that there is always at most243

one rule that can be used to derive a certain typing judgements. But with the rules as244

given there is still some indeterminacy. Indeed when appealing to reduction no strategy is245

fixed, thus two different reducts give different uses of the rule, resulting in different inferred246

types – although those are still convertible. However, a reduction strategy can be imposed247

to completely eliminate indeterminacy in typing, leading to the following.248

▶ Proposition 4 (Reduction strategy). If →∗ is replaced by weak-head reduction in rules249

Sort-Inf and Prod-Inf, then given a well-formed context Γ and a term t there is at most250

one derivation of Γ ⊢ t ▷ T and Γ ⊢ t ▷h T , and so in particular such a T is unique. Similarly,251

given well-formed Γ and T and a term t there is at most one derivation of Γ ⊢ t◁T . Moreover,252

the existence of those derivations is decidable.253

The algorithm for deciding the existence of the derivations is straightforward from the254

modded rules, it amounts to structural recursion on the subject.255

CVIT 2016

23:8 Complete Bidirectional Typing for the Calculus of Inductive Constructions

3 From CCω to PCUIC256

CCω is already a powerful system, but today’s proof assistants rely on much more complex257

features. The Predicative Calculus of Cumulative Inductive Constructions (PCUIC), the type258

theory nowadays behind the Coq proof assistant, for instance features the impredicative sort259

Prop, the sort SProp of irrelevant propositions, algebraic universes, cumulativity, polymorphic260

and mutual inductive and co-inductive types, (co-)fixpoints, primitive projections. . . This is261

a good stress test for the bidirectional approach: being able to adapt seamlessly to those262

features is a good sign that the methodology we presented should be able to handle other263

extensions. In this section, we present some modifications and additions to the system of264

Section 2 needed to treat the most usual features of PCUIC.265

Bidirectional judgments incorporating the elements described is this section have been266

formally proven correct 5 and complete 6 with respect to the description of PCUIC in the267

MetaCoq project [17]. While working on this, we were able to uncover an incompleteness bug268

in the current kernel of Coq regarding pattern-matching of cumulative inductive types. This269

bug had gone unnoticed until our formalization, but was causing subject reduction failures270

in corner cases with inductive types7.271

As a demonstration of the use of bidirectionality for reasoning, the formalization also272

contains a proof of the uniqueness of inferred types and of the existence of principal types as273

a direct corollary.8274

3.1 Cumulativity275

PCUIC incorporates a limited form of subtyping. Conversion ≡ is replaced by cumulativity
⪯, a very similar relation, but with the difference that it relaxes the constraint on universes:
for conversions □i ≡ □j only when i = j, but for cumulativity □i ⪯ □j whenever i ≤ j. The
conversion rule is accordingly replaced by the following cumulativity rule

Γ ⊢ t : A Γ ⊢ B : □i A ⪯ B

Γ ⊢ t : B
Cumul

This reflects the view that universes □i should be included one in the next when going up in276

the hierarchy. In CCω, all types for a given term t in a fixed context Γ are equally good, as277

they are all convertible. This is not the case any more in presence of cumulativity, as we can278

have T ⪯ T ′ but not T ≡ T ′. Of particular interest are principal types, defined as follows.279

▶ Definition 5 (Principal type). The term T is called a principal type for term t in context280

Γ if it is a least type for t in Γ, that is if Γ ⊢ t : T and for any T ′ such that Γ ⊢ t : T ′ we281

have T ⪯ T ′.282

The existence of such principal types is no so easy to prove directly but quite useful, as283

they are in a sense the best types for any terms. Indeed, if T is a principal type for t in284

Γ and T ′ is any other type for t, the Cumul rule can be used to deduce Γ ⊢ t : T ′ from285

Γ ⊢ t : T , which in general is not the case if T is not principal. Similarly, if T and T ′ are two286

types for a term t, then they are not directly related, but the existence of principal types287

5 The formalized theorem is at line 419 and following of BDToPCUIC.v.
6 The formalized theorem is at line 387 and following of BDFromPCUIC.v.
7 The precise technical problem is described in the following git issue: https://github.com/coq/coq/

issues/13495.
8 The corresponding theorems are respectively at line 347 and 355 of BDUnique.v.

https://github.com/MevenBertrand/metacoq/blob/057a39ee263dd0ae4a09badd7bb0322e0e495546/bidirectional/theories/BDToPCUIC.v#L419
https://github.com/MevenBertrand/metacoq/blob/057a39ee263dd0ae4a09badd7bb0322e0e495546/bidirectional/theories/BDFromPCUIC.v#L387
https://github.com/coq/coq/issues/13495
https://github.com/coq/coq/issues/13495
https://github.com/MevenBertrand/metacoq/blob/2d631dcd91d2315e5a52fea0fdc27e59c30abd57/bidirectional/theories/BDUnique.v#L347

M. Lennon-Bertrand 23:9

ensures that there exists some T ′′ that is a type for t and such that T ⪯ T ′ and T ⪯ T ′′,288

indirectly relating T ′ and T ′′.289

Reflecting this modification in the bidirectional system of course calls for an update to
the computation rules. The change to the Check rule is direct: simply replace conversion
with cumulativity:

Γ ⊢ t ▷ A A ⪯ B

Γ ⊢ t ◁ B
Cumul

As to the constrained inference rules, there is no need to modify them. Intuitively, this is290

because there is no reason to degrade a type to a larger one when it is not needed. We291

only resort to cumulativity when it is forced by a given input. In that setting, completeness292

becomes the following:293

▶ Theorem 6 (Completeness with cumulativity). If Γ ⊢ t : T using rules of Figure 1 replacing294

Conv with Cumul, then Γ ⊢ t ▷ T ′ is derivable with rules of Figure 2 replacing Check with295

Cumul for some T ′ such that T ′ ⪯ T .296

In that setting, even without fixing a reduction strategy as in Proposition 4, there297

is a weaker uniqueness property for inference types, that is vacuous in a setting without298

cumulativity, where all types are convertible.299

▶ Proposition 7 (Uniqueness of inferred type). If Γ is well-formed, Γ ⊢ t ▷ T and Γ ⊢ t ▷ T ′
300

then T ≡ T ′. Similarly if Γ is well-formed, Γ ⊢ t ▷h T and Γ ⊢ t ▷h T ′ then T ≡ T ′.301

Proof. Mutual induction on the first derivation. It is key that constrained inference rules302

only reduce a type, so that the type in the conclusion is convertible to the type in the premise,303

rather than merely in cumulativity relation. ◀304

In particular, those two properties with a correctness property akin to Theorem 2, we can305

prove that any inferred type is principal, and so that they both exist and are computable since306

the bidirectional judgement can still be turned into an algorithm in the spirit of Proposition 4.307

▶ Proposition 8 (Principal types). If Γ is well-formed and Γ ⊢ t ▷ T then T is a principal308

type for t in Γ.309

Proof. If Γ ⊢ t : T ′, then by completeness there exists some T ′′ such that Γ ⊢ t ▷ T ′′ and310

moreover T ′′ ⪯ T ′. But by uniqueness T ≡ T ′′ ⪯ T ′ and thus T ⪯ T ′, and T is indeed a311

principal type for t in Γ. ◀312

Reasoning on the bidirectional derivation thus makes proofs easier, with the correctness313

and completeness properties ensure they can be carried to the undirected system. Another314

way to understand this is that seeing completeness followed by correction as a normalization315

procedure on derivations, the produced canonical derivation is more structured and thus316

more amenable to proofs. Here for instance the uniqueness of the inferred type translates to317

the existence of principal types via completeness, and the normalization of the derivations318

optimizes it to derive a principal type.319

3.2 Inductive Types320

Sum type. Before we turn to the general case of inductive types of the formalization, let us321

present a simple inductive type: dependent sums. The undirected rules are given in Figure 3,322

and are inspired from the theoretical presentation of such dependent sums, such at the one323

CVIT 2016

23:10 Complete Bidirectional Typing for the Calculus of Inductive Constructions

Γ ⊢ A : □i Γ, x : A ⊢ B : □j

Γ ⊢ Σ x : A.B : □i∨j

Σ-type

Γ ⊢ A : □i Γ, x : A ⊢ B : □j Γ ⊢ a : A Γ ⊢ b : B[x := a]
Γ ⊢ (a, b)A,x.B : Σ x : A.B

Σ-cons

Γ, z : Σ x : A.B ⊢ P : □i Γ, x : A, y : B ⊢ b : P [z := (x, y)] Γ ⊢ s : Σ x : A.B

Γ ⊢ recΣ(z.P, x.y.p, s) : P [z := s]
Σ-rec

Figure 3 Undirected sum type

of the Homotopy Type Theory book [19]. In particular, we use the same convention to324

write y.P when variable y is bound in P . Note however that contrarily to [19], some typing325

information is kept on the pair constructor. Exactly as for the abstraction, this is to be326

able to infer a unique, most general type in the bidirectional system. Indeed, without that327

information a pair (a, b) could inhabit multiple types Σ x : A.B because there are potentially328

many incomparable types B such that B[x := a] is a type for b, as even if B[x := a] and329

B′[x := a] are convertible B and B′ may be quite different, depending of which instances of330

a in B[x := a] are abstracted to x.331

To obtain the bidirectional rules of Figure 4, first notice that all undirected rules are332

structural and must thus become inference rules if we want the resulting system to be333

complete, just as in Section 2. Thus the question is which modes to choose for the premises.334

For Σ-type and Σ-cons this is straightforward: when the type appears in the conclusion,335

use checking, otherwise (constrained) inference. The case of the destructors is somewhat336

more complex. Handling the subterms of the the destructor in the order in which they usually337

appear (predicate, branches and finally scrutinee) is not possible, as the context parameters338

of the inductive type are needed to construct the context for the predicate. However those339

can be inferred from the scrutinee. Thus, a type for the scrutinee is obtained first using a340

new constrained inference judgment, forcing the inferred type to be a Σ-type, but leaving341

its parameters free. Next, the obtained arguments can be used to construct the context to342

type the predicate. Finally, once the predicate is known to be well-formed, it can be used to343

type-check the branch.344

This same approach can be readily extended to other usual inductive types, with recursion345

or indices posing no specific problems, see Figure 5.346

Polymorphic, Cumulative Inductive Types. The account of inductive types in PCUIC is347

quite different from the one we just gave. On the theoretical side, the main addition is348

universe polymorphism [18], which means that inductive types and constructors come with349

explicit universe levels. The Σ-type of the previous paragraph, for instance, would contain an350

explicit universe level i, and both A and B would be checked against □i rather than having351

their level inferred. This makes the treatment of general inductive types easier, at the cost352

of possibly needless annotations, as here with Σ-types. To make that polymorphism more353

seamless, those polymorphic inductive types are also cumulative [20]: in much the same way354

as □i ⪯ □j if i ≤ j, also N@i ⪯ N@j , where @i and @j are two different universe levels of the355

polymorphic inductive N. This enables lifting from a lower inductive type to a higher one, so356

M. Lennon-Bertrand 23:11

Γ ⊢ t ▷ T

Γ ⊢ A ▷□ □i Γ, x : A ⊢ B ▷□ □j

Γ ⊢ Σ x : A.B ▷□i∨j

Σ-type

Γ ⊢ A ▷□ □i Γ, x : A ⊢ B ▷□ □j Γ ⊢ a ◁ A Γ ⊢ b ◁ B[x := a]
Γ ⊢ (a, b)A,x.B ▷ Σ x : A.B

Σ-cons

Γ ⊢ s ▷Σ Σ x : A.B Γ, z : Σ x : A.B ⊢ P ▷□ □i Γ, x : A, y : B ⊢ b ◁ P [z := (x, y)]
Γ ⊢ recΣ(z.P, x.y.b, s) ▷ P [z := s]

Σ-rec

Γ ⊢ t ▷h T

Γ ⊢ t ▷ T T →∗ Σ x : A.B

Γ ⊢ t ▷Σ Σ x : A.B
Σ-Inf

Figure 4 Bidirectional sum type

that for instance ⊢ 0i : Nj if i ≤ j.357

Apart from that difference, PCUIC as presented in MetaCoq has constructors and358

inductive types as functions, rather than requiring them to be fully applied. It also separates359

recursors into a pattern-matching and a fixpoint construct, the latter coming with a specific360

guard condition to keep the normalization property enjoyed by a system with recursors.361

All those choices aim at making the system more flexible and practically usable, but they362

come with a price: the complexity of the structure of terms is much higher. In particular,363

contrarily to what happens in Σ-rec, the information needed to type the predicate P and364

branch b cannot be simply inferred from the scrutinee s – thinking erroneously that this365

was the case led to the incompleteness bug we mentioned. Instead the case constructor366

must contain the universe instance and parameters that are used to type the predicate and367

scrutinee.368

A sketch of the resulting rules is given in Figure 6, for a generic inductive I. We use bold369

characters to denote lists – for instance a is a list of terms – and indexes to denote a specific370

element – so that ak is the k-th element of the previous. The considered inductive I has371

parameters of type X, indices of typeY and inhabits some universe □l. Its constructors ck372

are of types Π(x : X)(y : Yk), I x u. Because we are considering a cumulative inductive373

type, all of those actually have to be instantiate with universe levels, an operation we denote374

with @i,. Apart from the extra checking that the parameters given in the match construct375

have the correct type, and the extra cumulativity check to compare the parameters obtained376

from the scrutinee and the ones in the node, the structure of the match construct is quite377

similar to that of the sum type. Concerning the fixpoint construct, the most important part378

there is the guard condition, but as the bidirectional approach has nothing to add here we379

leave it out.380

CVIT 2016

23:12 Complete Bidirectional Typing for the Calculus of Inductive Constructions

Γ ⊢ t ▷ T

Γ ⊢ N ▷□0 Γ ⊢ 0 ▷ N
Γ ⊢ n ◁ N

Γ ⊢ S(n) ▷ N

Γ ⊢ s ▷N N
Γ, z : N ⊢ P ▷□ □i Γ ⊢ b0 ◁ P [z := 0] Γ, x : N, p : P [z := x] ⊢ bS ◁ P [z := S(x)]

Γ ⊢ recN(z.P, b0, x.p.bS, s) ▷ P [z := s]

Γ ⊢ A ▷□ □i Γ ⊢ a ◁ A Γ ⊢ a′ ◁ A

Γ ⊢ IdA a a′ ▷□i

Γ ⊢ A ▷□ □i Γ ⊢ a ◁ A

Γ ⊢ reflA a ▷ IdA a a

Γ ⊢ s ▷ IdA a a′ Γ, x : A, z : IdA a x ⊢ P ▷□ □i Γ ⊢ b ◁ P [z := IdA a a][x := a]
Γ ⊢ recId(x.z.P, b, s) ▷ P [z := s][x := a′]

Γ ⊢ t ▷h T

Γ ⊢ t ▷ T T →∗ N
Γ ⊢ t ▷N N

Γ ⊢ t ▷ T T →∗ IdA a a′

Γ ⊢ t ▷Id IdA a a′

Figure 5 Other bidirectional inductive types

4 Beyond PCUIC: bidirectional extensions to CIC381

The use of our bidirectional structure is not limited to CIC or PCUIC. On the contrary, it382

forms a solid basis for extensions, as we illustrate now.383

4.1 Localized computation384

The free-standing conversion rule Conv is very powerful, but sometimes too much. Indeed,385

the ability to stack as many conversion rules as desired at any place in an undirected386

derivation is reasonable only when types are compared using a transitive relation. When387

this is not the case, for instance when conversion is replaced by a unification-flavoured388

relation, the undirected system becomes inadequate, because repeated uses of Conv can389

drastically change a type in an undesired fashion. In such a setting, the equivalence between390

the undirected and the bidirectional system is lost. In such a setting, contrarily to the391

undirected system, the bidirectional system is still viable, as it enforces a localized use of392

conversion: only once, at the interface between inference and checking.393

This is exactly what happens in [8]. In that paper, the conversion relation is relaxed to394

accommodate for an additional term ? that behaves as a wildcard and should be considered395

convertible to any term. Conversion is therefore completely non-transitive, and the extension396

needs to be based on the bidirectional type system rather than the undirected one in order397

to ensure that the conversion rule is used in a meaningful way.398

More generally, since the equivalence between the undirected and directed variants relies399

M. Lennon-Bertrand 23:13

Γ ⊢ t ▷ T

Γ ⊢ I@i ▷ Π(x : X@i)(y : Y@i),□l@i Γ ⊢ c@i
k ▷ Π(x : X@i)(y : Yk

@i), I@i x u@i
k

Γ ⊢ s ▷I I@i′
a b Γ ⊢ pk ◁ Xk[x := p] Γ, y : Y@i[p := x], z : I@i p y ⊢ P ▷□ □j

I@i′
a b ⪯ I@i p b Γ, y : Yk

@i[p := x] ⊢ tk ◁ P [z := c@i
k p y][y := uk

@i]
Γ ⊢ match s in(I, i, p) return P with[t] ▷ P [z := s][y := b]

Γ ⊢ T ▷□ □i Γ, f : T ⊢ t ◁ T guard condition
Γ ⊢ fix f : T := t ▷ T

Γ ⊢ t ▷I T

Γ ⊢ t ▷ T T → I a b
Γ ⊢ t ▷I I a b

Figure 6 Bidirectional inductive type – PCIC style

on all properties of Proposition 1, when one of those fails the equivalence between the400

undirected and bidirectional systems is endangered. This can be a sign that the bidirectional401

system should be adapted, but it can also signal that the undirected system has become402

meaningless and that the bidirectional version should be studied instead.403

4.2 Modding the conversion rule404

The fact that the unique conversion rule gives rise to multiple bidirectional ones is important:405

it signals that there are in fact two ways to consider conversion, although the difference406

between both is invisible in undirected presentations. But this difference might not be so407

easily overlooked in extensions of CIC, which then need different treatment for them.408

Taking again the example of [8], the Check can be kept as such, because the conversion409

relation is directly modified in the new system. But this is not the case for partial inference.410

In fact, rule Sort-Inf has to be supplemented by another rule to treat the case when the411

inferred type reduces to the wildcard ?, because such a term can be used as a type – with412

some care taken. The same happens for all constrained inference rules.413

Thus, the bidirectional structure clarifies a fact that might be overlooked by those who414

do not dwell in the implementation of proof assistants: reduction does not only serve as a415

subroutine of conversion checking, it is also directly needed to determine if a given type is a416

sort, a product, an inductive. . . Which is quite different from checking that it is convertible417

to a given sort or product type. Of course one could replace reduction by another machinery418

to accomplish this task, but if one wishes to modify conversion, this specific role of reduction419

must be accounted for. Otherwise, rules for ◁ and ▷h would come out of sync, bringing420

troubles down the road.421

CVIT 2016

23:14 Complete Bidirectional Typing for the Calculus of Inductive Constructions

4.3 Bidirectional elaboration422

In works such as [15, 3, 8], the procedure described is not typing but rather elaboration: the423

subject of the derivation t is in a kind of source syntax and the aim is not only to inspect424

t, but also to output a correspond t′ in some kind of target syntax. The term t′ is a more425

precise account of term t, for instance with solved meta-variables, inserted coercions, and so426

on. The structure we describe readily adapts to those settings, the extra term t′ is simply427

considered as an output of all judgements. Since it is an output, McBride’s discipline as428

described in Section 2.2 demands that when Γ ⊢ t⇝ t′ ▷ T (with input context Γ, the subject429

t elaborates to t′ and infers type T) we must ensure that Γ ⊢ t′ : T , and similarly for all other430

typing judgements. Having all rules locally preserve this invariant ensures that elaborated431

terms are always well-typed.432

5 Related work433

5.1 Constrained inference434

Although explicit and systematic description of constrained inference in a bidirectional setting435

is new, traces of it in diverse seemingly ad-hoc workarounds can be found in various works436

around typing for CIC, illustrating that this notion, although overlooked, is of interest.437

In [14], Γ ⊢ t : T is used for what we write Γ ⊢ t ▷ T , but another judgment written438

Γ ⊢ t :≥ T and denoting type inference followed by reduction is used to effectively inline the439

two hypothesis of our constrained inference rules. Checking is similarly inlined.440

Saïbi [15] describes an elaboration mechanism inserting coercions between types. Those441

are inserted primarily in checking, when both types are known. However he acknowledges the442

presence of two special classes to handle the need to cast a term to a sort or a function type443

without more informations, exactly in the places where we resort to constrained inference444

rather than checking.445

More recently, Sozeau [16] describes a system where conversion is augmented to handle446

coercion between subset types. Again, Γ ⊢ t : T is used for inference, and the other judgments447

are inlined. Of interest is the fact that reduction is not enough to perform constrained448

inference, because type head constructors can be hidden by the subset construction: a term449

of subset type such as {f : N → N | f 0 = 0} should be usable as a function of type N → N.450

An erasure procedure is therefore required on top of reduction to remove subset types in the451

places where we use constrained inference.452

These traces can also be found in the description of Matita’s elaboration algorithm [3].453

Indeed, the presence of meta-variables on top of coercions as in the two previous works makes454

it even clearer that specific treatment of what we identified as constrained inference is required.455

The authors introduce a special judgement they call type-level enforcing corresponding exactly456

to our ▷□ judgement. As for ▷Π, they have two rules to apply a function, one where its457

inferred type reduces to a product, corresponding to Prod-Inf, and another one to handle458

the case when the inferred type instead reduces to a meta-variable. As Saïbi, they also459

need a special case for coercions of terms in function and type position. However, their460

solution is different. They rely on unification, which is available in their setting, to introduce461

new meta-variables for the domain and codomain of a product type whenever needed. For462

▷□ though this solution is not viable, as one would need a kind of universe meta-variable.463

Instead, they rely on backtracking to test multiple possible universe choices.464

Finally, we have already mentioned [8] in Section 4, where the bidirectional structure465

is crucial in describing a gradual extension to CIC. In particular, and similarly to what466

M. Lennon-Bertrand 23:15

happens with meta-variables in [3], all constrained inference rules are duplicated: there is one467

rule when the head constructor is the desired one, and a second one to handle the gradual468

wildcard.469

5.2 Completeness470

Quite a few articles tackle the problem of bidirectional typing in a setting with an untyped471

– so called Curry-style – abstraction. This is the case of early work by Coquand [7], the472

type system of Agda as described in [12], the systems considered by Abel for instance [1],473

and much of the work of McBride [11, 9, 10] on the topic. In such systems, λ-abstractions474

can only be checked against a given type, but cannot infer one, so that only terms with no475

β-redexes are typable. Norell argues in [12] that such β-redexes are uncommon in real-life476

programs, so that being unable to type them is not a strong limitation in practice. To477

circumvent this problem, McBride also adds the possibility of typing annotations to retain478

the typability of a term during reduction. While this approach is adapted to programming479

languages, where the emphasis is on lightweight syntax, it is not tenable for a proof assistant480

kernel, where all valid terms should be accepted. Indeed, debugging a proof that is rejected481

because the kernel fails to accept a perfectly well-typed term the user never wrote – as most482

proofs are generated rather than written directly – is simply not an option.483

In a setting with typed – Church-style – abstraction, if one wishes to give the possibility484

for seemingly untyped abstraction, another mechanism has to be resorted to, typically485

meta-variables. This is what is done in Matita [3], where the authors combine a rule similar486

to Abs – where the type of the abstraction is inferred – with another one, similar to the487

Curry-style one – where abstraction is checked – looking like this:488

T →∗ Π x : A′.B Γ ⊢ A ▷□ □i A ≡ A′ Γ, x : A ⊢ t ◁ B

Γ ⊢ λ x : A.t ◁ T
489

While such a rule would make a simple system such as that of Section 2 “over-complete”,490

it is a useful addition to enable information from checking to be propagated upwards in491

the derivation. This is crucial in extensions where completeness is lost, such as Matita’s492

elaboration. Similar rules are described in [3] for let-bindings and constructors of inductive493

types.494

Although only few authors consider the problem of a complete bidirectional algorithm for495

type-checking dependent types, we are not the first to attack it. Already Pollack [14] does,496

and the completeness proof for CCω of Section 2 is very close to one given in his article.497

Another proof of completeness for a more complex CIC-like system can be found in [16].498

None of those however tackle as we do the whole complexity of PCUIC.499

5.3 Inputs and outputs500

We already credited the discipline we adopt on well-formedness of inputs and outputs to501

McBride [9, 10]. A similar idea has also appeared independently in [5]. Bauer and his502

co-authors introduce the notions of a (weakly) presuppositive type theory [5, Def. 5.6] and503

of well-presented premise-family and rule-boundary [5, Def. 6.16 and 6.17] to describe a504

discipline similar to ours, using what they call the boundary of a judgment as the equivalent505

of our inputs and outputs. Due to their setting being undirected, this is however more506

restrictive, because they are not able to distinguish inputs from outputs and thus cannot507

relax their condition to only demand inputs to be well-formed but not outputs.508

CVIT 2016

23:16 Complete Bidirectional Typing for the Calculus of Inductive Constructions

6 Conclusion509

We have described a judgmental presentation of the bidirectional structure of typing al-510

gorithms in the setting of dependent types. In particular, we identified a new family of511

judgements we called constrained inference. Those have no counterpart in the non-dependent512

setting, as they result from a choice of modding for the conversion rule, which is specific to513

the dependent setting. We proved our bidirectional presentation equivalent to an undirected514

one, both on paper on the simple case of CCω, and formally in the much more complex515

and realistic setting of PCUIC. Finally, we gave various arguments for the usefulness of our516

presentation as a way to ease proofs, an intermediate between undirected type-systems and517

typing algorithms, a solid basis to design extensions, and a tool to re-interpret previous work518

on type systems in a clearer way.519

Regarding future work, a type-checking algorithm is already part of MetaCoq, and we520

should be able to use our bidirectional type system to give a pleasant completeness proof by521

separating the concerns pertaining to bidirectionality from the algorithmic problems, such as522

implementation of an efficient conversion check or proof of termination. More broadly, our523

bidirectional type system should be an interesting tool in the feat of incorporating in a proof524

assistant features that have been satisfactorily investigated on the theoretical level while525

keeping a complete and correct kernel, avoiding the pitfall of cumulative inductive type’s526

incomplete implementation in Coq. A first step would be to investigate the discrepancies527

between the presentations of Section 3, and in particular if all informations currently stored528

in the case node are really needed, or if a more concise presentation can be given. But we529

could go further and study how to handle cubical type theory [21], rewrite rules [6], setoid530

type theory [2], exceptional type theory [13], η-conversion. . . Finally, we hope that our531

methodology will be adapted as a base for other theoretical investigations. As a way to ease532

this adoption, studying it in a general setting such as that of [5] might be a strong argument533

for adoption.534

References535

1 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory536

in type theory. Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158111.537

2 Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. Setoid type538

theory - a syntactic translation. In MPC 2019 - 13th International Conference on Mathematics539

of Program Construction, volume 11825 of LNCS, pages 155–196. Springer. doi:10.1007/540

978-3-030-33636-3_7.541

3 Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. A Bi-Directional542

Refinement Algorithm for the Calculus of (Co)Inductive Constructions. Volume 8, Issue 1.543

URL: https://lmcs.episciences.org/1044, doi:10.2168/LMCS-8(1:18)2012.544

4 Henk Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science.545

5 Andrej Bauer, Philipp G. Haselwarter, and Peter LeFanu Lumsdaine. A general definition of546

dependent type theories. 2020. arXiv:2009.05539.547

6 Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. The Taming of the Rew: A Type548

Theory with Computational Assumptions. Proceedings of the ACM on Programming Languages,549

2021. URL: https://hal.archives-ouvertes.fr/hal-02901011.550

7 Thierry Coquand. An algorithm for type-checking dependent types. Science of Computer551

Programming, 26(1), 1996. URL: http://www.sciencedirect.com/science/article/pii/552

0167642395000216, doi:https://doi.org/10.1016/0167-6423(95)00021-6.553

https://doi.org/10.1145/3158111
https://doi.org/10.1007/978-3-030-33636-3_7
https://doi.org/10.1007/978-3-030-33636-3_7
https://doi.org/10.1007/978-3-030-33636-3_7
https://lmcs.episciences.org/1044
https://doi.org/10.2168/LMCS-8(1:18)2012
http://arxiv.org/abs/2009.05539
https://hal.archives-ouvertes.fr/hal-02901011
http://www.sciencedirect.com/science/article/pii/0167642395000216
http://www.sciencedirect.com/science/article/pii/0167642395000216
http://www.sciencedirect.com/science/article/pii/0167642395000216
https://doi.org/https://doi.org/10.1016/0167-6423(95)00021-6

M. Lennon-Bertrand 23:17

8 Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. Gradualizing554

the calculus of inductive constructions, 2020. URL: https://arxiv.org/abs/2011.10618,555

arXiv:2011.10618.556

9 Conor McBride. Basics of bidirectionalism. URL: https://pigworker.wordpress.com/2018/557

08/06/basics-of-bidirectionalism/.558

10 Conor McBride. Check the box! In 25th International Conference on Types for Proofs and559

Programs.560

11 Conor McBride. I Got Plenty o’ Nuttin’, pages 207–233. Springer International Publishing,561

2016. doi:10.1007/978-3-319-30936-1_12.562

12 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD563

thesis, Department of Computer Science and Engineering, Chalmers University of Technology,564

SE-412 96 Göteborg, Sweden, September 2007.565

13 Pierre-Marie Pédrot and Nicolas Tabareau. Failure is not an option an exceptional type theory.566

In ESOP 2018 - 27th European Symposium on Programming, volume 10801 of LNCS, pages567

245–271. Springer. doi:10.1007/978-3-319-89884-1_9.568

14 R. Pollack. Typechecking in Pure Type Systems. In Informal Proceedings of the 1992569

Workshop on Types for Proofs and Programs, Båstad, Sweden, pages 271–288, June 1992. URL:570

http://homepages.inf.ed.ac.uk/rpollack/export/BaastadTypechecking.ps.gz.571

15 Amokrane Saïbi. Typing algorithm in type theory with inheritance. doi:10.1145/263699.572

263742.573

16 Matthieu Sozeau. Subset coercions in coq. In Thorsten Altenkirch and Conor McBride,574

editors, Types for Proofs and Programs, pages 237–252, Berlin, Heidelberg, 2007. Springer575

Berlin Heidelberg.576

17 Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian577

Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq Project.578

Journal of Automated Reasoning, February 2020. URL: https://hal.inria.fr/hal-02167423,579

doi:10.1007/s10817-019-09540-0.580

18 Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in coq. In Gerwin Klein and581

Ruben Gamboa, editors, Interactive Theorem Proving, pages 499–514. Springer International582

Publishing.583

19 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of584

Mathematics. https://homotopytypetheory.org/book.585

20 Amin Timany and Matthieu Sozeau. Cumulative Inductive Types In Coq. In Hélène Kirchner,586

editor, 3rd International Conference on Formal Structures for Computation and Deduction587

(FSCD 2018), volume 108 of Leibniz International Proceedings in Informatics (LIPIcs), pages588

29:1–29:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.589

URL: http://drops.dagstuhl.de/opus/volltexte/2018/9199, doi:10.4230/LIPIcs.FSCD.590

2018.29.591

21 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: A dependently typed592

programming language with univalence and higher inductive types. Proc. ACM Program.593

Lang., 3(ICFP), July 2019. doi:10.1145/3341691.594

CVIT 2016

https://arxiv.org/abs/2011.10618
http://arxiv.org/abs/2011.10618
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-89884-1_9
http://homepages.inf.ed.ac.uk/rpollack/export/BaastadTypechecking.ps.gz
https://doi.org/10.1145/263699.263742
https://doi.org/10.1145/263699.263742
https://doi.org/10.1145/263699.263742
https://hal.inria.fr/hal-02167423
https://doi.org/10.1007/s10817-019-09540-0
https://homotopytypetheory.org/book
http://drops.dagstuhl.de/opus/volltexte/2018/9199
https://doi.org/10.4230/LIPIcs.FSCD.2018.29
https://doi.org/10.4230/LIPIcs.FSCD.2018.29
https://doi.org/10.4230/LIPIcs.FSCD.2018.29
https://doi.org/10.1145/3341691

	1 Introduction
	2 Warming up with CCω
	2.1 Undirected CCω
	2.2 Turning CCω Bidirectional
	2.3 Properties
	2.3.1 Correctness
	2.3.2 Completeness
	2.3.3 Reduction strategies

	3 From CCω to PCUIC
	3.1 Cumulativity
	3.2 Inductive Types

	4 Beyond PCUIC: bidirectional extensions to CIC
	4.1 Localized computation
	4.2 Modding the conversion rule
	4.3 Bidirectional elaboration

	5 Related work
	5.1 Constrained inference
	5.2 Completeness
	5.3 Inputs and outputs

	6 Conclusion

