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Lipschitz coefficients

Introduction

The aim of this paper is to prove the strong well-posedness and a propagation of chaos property for Mckean-Vlasov equations. These are SDEs where the coefficients depend on the solution of the equation and on the law of this solution. This type of equation arises naturally in the framework of N ´particle systems where the particles interact in a mean field way: this phenomenon can be seen as a law of large numbers. Indeed, in examples where the dynamic of the N ´particle system is directed by an SDE, the mean field interactions can be expressed as a dependency of the coefficients on the empirical measure of the system. And as N goes to infinity, this empirical measure converges to the law of any particle of the limit system. This entails natural dependencies of the coefficients on the law of the solution of the limit SDE. For instance, see De [START_REF] De Masi | Hydrodynamic Limit for Interacting Neurons[END_REF] and [START_REF] Fournier | On a toy model of interacting neurons[END_REF] for examples in neural network modeling, [START_REF] Fischer | Continuous time mean-variance portfolio optimization through the mean field approach[END_REF] for an example in portfolio modeling, [START_REF] Carmona | Mean field games with common noise[END_REF] for an application in mean field games.

The weak well-posedness and the propagation of chaos are classical for the McKean-Vlasov equations without jump term, even without assuming that the coefficients are Lipschitz continuous. [START_REF] Gärtner | On the McKean-Vlasov Limit for Interacting Diffusions[END_REF] treats both questions in this frame. We can also mention more recent work on the well-posedness of McKean-Vlasov equations without jump term as [START_REF] Mishura | Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations[END_REF] and Chaudru de Raynal (2020), with different assumptions on the smoothness of the coefficients, and [START_REF] Lacker | On a strong form of propagation of chaos for McKean-Vlasov equations[END_REF] that investigates the well-posedness and the propagation of chaos.

In this paper, we consider McKean-Vlasov equations with jumps. The questions about the strong well-posedness and the propagation of chaos have also been studied in this framework under globally Lipschitz assumptions on the coefficients: see [START_REF] Graham | McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets[END_REF] for the well-posedness and Andreis, Dai Pra and Fischer (2018) for the propagation of chaos. Note that in Section 4 of Andreis, Dai Pra and Fischer (2018), these questions are treated in a multi-dimensional case, where the drift coefficient is of the form ´∇b 1 pxq `b2 px, mq, where b 1 is C 1 and convex, and b 2 , as well as the jump coefficient and the volatility coefficient, are globally Lipschitz.

The novelty of our results is to work on McKean-Vlasov equations with jumps and with locally Lipschitz coefficients. The local Lipschitz constants of the drift and jump terms are assumed to growth at most linearly, and the Brownian coefficient is assumed to be Lipschitz continuous. In addition, we suppose that the drift and jump coefficients growth at most linearly, and that the Brownian coefficient is bounded (see Assumptions 1 and 2 for a precise and complete statement of the hypothesis).

The first main result is the strong well-posedness, under this locally Lipschitz assumption, of the following McKean-Vlasov equation dX t " bpX t , µ t qdt `σpX t , µ t qdW t `żR`ˆE ΦpX t´, µ t´, uq1 tzďf pXt´,µt´qu dπpt, z, uq, where µ t is the distribution of X t , W a Brownian motion, π a Poisson measure and E some measurable space (see the beginning of Section 2 for details on the notation). To prove the wellposedness when the coefficients are locally Lipschitz continuous, we adapt the computations of the proofs in the globally Lipschitz continuous case. We use a truncation argument to handle the dependency of the local Lipschitz constant w.r.t. to the variables. On the contrary of the globally Lipschitz case, Grönwall's lemma does not allow to conclude immediately. In the locally Lipschitz case, we have to use a generalization of this lemma: Osgood's lemma (see Lemma 4.1).

The uniqueness of solution of the McKean-Vlasov equation follows rather quickly from Osgood's lemma and the truncation argument, but other difficulties emerge in the proof of the existence of solution. We construct a weak solution of the equation using a Picard iteration scheme, but the fact that the coefficients are only locally Lipschitz continuous does not allow to prove that this scheme converges in an L 1 ´sense. Instead, we prove that a subsequence converges in distribution to some limit that is shown to be a solution of the equation. Some technical difficulties emerge in this part of the proof for two reasons. The first one is that the Picard scheme is not shown to converge but only to have a converging subsequence. This implies that we need to control the variation between two consecutive steps of the scheme. The second one is that we only prove a convergence in distribution, thus it is not straightforward that the limit of the Picard scheme is solution to the equation. It is shown studying its semimartingale characteristics.

The second main result is a propagation of chaos property of McKean-Vlasov particle systems under the same locally Lipschitz assumptions. More precisely, it is the convergence of the following

N ´particle system dX N,i t "bpX N,i t , µ N t qdt `σpX N,i t , µ N t qdW i t `żR`ˆF N ˚ΨpX N,i t´, µ N t´, v i q1 tzďfpX N,i t´, µ N t´q u dπ i pt, z, vq `1 N N ÿ j"1 j‰i ż R`ˆF N ˚ΘpX N,j t´, X N,i t´, µ N t´, v j , v i q1 tzďfpX N,j t´, µ N t´q u dπ j pt, z, vq, where µ N t :" N ´1 ř N j"1 δ X N,j t
, to the infinite system

d Xi t "bp Xi t , μt qdt `σp Xi t , μt qdW i t `żR`ˆF N ˚Ψp Xi t´, μt´, v i q1 tzďfp Xi t´, μt´qu dπ i pt, z, vq `żR ż F N ˚Θpx, Xi t , μt , v 1 , v 2 qf px, μt qdνpvqdμ t pxq,
where μt :" Lp Xt q, as N goes to infinity. The W i (i ě 1) are independent standard Brownian motions, the π i (i ě 1) are independent Poisson measures, F is some measurable space and N denotes the set of the positive integers (see Section 3 for details on the notation). The proof of this second main result relies on a similar reasoning as the one used to prove the uniqueness of the McKean-Vlasov equation: a truncation argument and Osgood's lemma.

Let us note that this propagation of chaos property has already been proven under different hypothesis. Indeed, the N ´particle system and the limit system above are the same as in Andreis, Dai Pra and Fischer (2018). Note also that, in this model, for each N P N ˚, the particles X N,i t (1 ď i ď N ) do not only interact through the empirical measure µ N t , but also through the simultaneous jumps term.

Let us remark that in Assumption 1, we also assume the initial condition to admit finite exponential moments. This property is used to obtain a priori estimates on the exponential moments of the solutions of the McKean-Vlasov equation (see Lemma 2.5). This is important in the proof of Theorem 2.4 to do the truncation arguments mention above.

Let us finally mention that, in this paper, we chose to work in dimension one to simplify the notation, but the results still hold in finite dimensions.

Organization. In Section 2, we state and prove our first main result: the well-posedness of the McKean-Vlasov equation ( 1) with locally Lipschitz coefficients. Section 3 is devoted to our second main result, the propagation of chaos in the same framework.

Notation

Let us introduce some notation we use throughout the paper:

• If X is random variable, we denote by LpXq its distribution.

• If X and X n (n P N ˚) are random variables, we denote by X n L ÝÑ nÑ`8 X for "pX n q n converges in distribution to X".

• P 1 pRq is the space of probability measures on R with finite first moment. This space will always be endowed with the first-order Wassertein metric W 1 defined by: for m 1 , m 2 P P 1 pRq,

W 1 pm 1 , m 2 q " inf X1"m1,X2"m2 E r|X 1 ´X2 |s " sup f PLip1 ż R f pxqdm 1 pxq ´żR f pxqdm 2 pxq,
with Lip 1 the space of Lipschitz continuous functions with Lipschitz constant non-greater than one. Let us note that characterizations of this convergence are given in Theorem 6.9 and Definition 6.8 of [START_REF] Villani | Optimal transport, old and new[END_REF]. • For T ą 0 and pG, dq a Polish space, Dpr0, T s, Gq (resp. DpR `, Gq) denotes the space of càdlàg G´valued functions defined on r0, T s (resp. R `) endowed with Skorohod topology, whence this space is Polish. Let us recall that the convergence of a sequence px n q n of Dpr0, T s, Gq to some x in Skorohod topology is equivalent to the existence of continuous increasing functions λ n satisfying λ n p0q " 0, λ n pT q " T and both sup 0ďtďT

|λ n ptq ´t| and sup 0ďtďT dpxpλ n ptqq, x n ptqq vanish as n goes to infinity. In the following, we call such a sequence pλ n q n a sequence of time-changes. 

with µ t " LpX t q, W a standard one-dimensional Brownian motion, π a Poisson measure on R `R `ˆE having intensity dt ¨dz ¨dρpuq, where pE, E, ρq is a σ´finite measure space. The assumptions on the coefficients are specified in Assumptions 1 and 2 below. Let us note here that f is assumed to be non-negative. The conditions specified in Assumption 1 allows to prove that any solution of (1) admits a priori some exponential moments (cf Lemma 2.5).

Assumption 1.

1. Growth condition: there exists some C ą 0 such that for any x P R, m P P 1 pRq,

n P N ˚, |bpx, mq| ď C p1 `|x|q , |σpx, mq| ď C, ż E | px `Φpx, m, uqq n ´xn | f px, mqdρpuq ď C ¨n p1 `|x| n q .
2. Initial condition: there exists some constant a ą 0 such that E " e a|X0| ı ă 8.

Example 1. The above conditions on the functions b and σ are quite usual, but not the one on the jump term. Let us give an example in which it is satisfied. Let Φ be defined as: for all x P R, m P P 1 pRq, u P R, Φpx, m, uq :" ´x `ϕpm, uq, where ϕ : P 1 pRq ˆE Ñ R. If the function f is bounded and the function ϕ is r´1, 1s´valued, then the condition of Assumption 1 on the jump term is satisfied. This kind of function Φ appears naturally in the models where the jump term is a kind of reset term. For example, in neurosciences, if pX t q t models the membrane potential of a neurone, and if the jump times are the times at which the neuron emits a spike, then at its jump times the potential X has to be reset at its resting value 0. This kind of model has been studied in [START_REF] Fournier | On a toy model of interacting neurons[END_REF] and in Erny, Löcherbach and Loukianova (2021) (with ϕ " 0). In addition the term ϕpm, uq can be seen as a noise term, where u is a random variable with law ρ.

Remark 2.1. Technically, Assumption 1 is only used to obtain some control on the processes that we manipulate: Lemma 2.5, (8) and Lemma 3.6. So the result of Theorem 2.4 (resp. Theorem 3.3) still hold true if Assumption 1 is replaced by any another under which Lemma 1 and (8) hold true (resp. Lemma 3.6 holds true).

Assumption 2.

1. Locally Lipschitz conditions: there exists k 0 P N, such that for all x 1 , x 2 P R, m 1 , m 2 P P 1 pRq,

|bpx 1 , m 1 q´bpx 2 , m 2 q|`ż E ż R`| Φpx 1 , m 1 , uq1 tzďf px1,m1qu ´Φpx 2 , m 2 , uq1 tzďf px2,m2qu |dzdρpuq ď L ˆ1 `|x 1 | `|x 2 | `żR |x| k0 dm 1 pxq `żR |x| k0 dm 2 pxq ˙p|x 1 ´x2 | `W1 pm 1 , m 2 qq .
2. Globally Lipschitz condition for σ : for all x 1 , x 2 P R, m 1 , m 2 P P 1 pRq,

|σpx 1 , m 1 q ´σpx 2 , m 2 q| ď L p|x 1 ´x2 | `W1 pm 1 , m 2 qq .
Let us remark that in Assumption 2, if for example k 0 " 2, then the locally Lipschitz conditions are trivially satisifed for measures m 1 , m 2 P P 1 pRq with infinite second moment. Indeed, the RHS of the inequality is infinite while the LHS is finite.

Remark 2.2. If we consider equation (1) without the jump term (that is Φ " 0), then, we can adapt the proof of Theorem 2.4 to the case where σ is also locally Lipschitz continuous. More precisely, we can replace the two first Items of Assumption 2 by: for all x 1 , x 2 P R, m 1 , m 2 P P 1 pRq,

|bpx 1 , m 1 q ´bpx 2 , m 2 q| `|σpx 1 , m 1 q ´σpx 2 , m 2 q| ď L ˜1 `a|x 1 | `a|x 2 | `dż R |x| k0 dm 1 pxq `dż R |x| k0 dm 2 pxq ¸p|x 1 ´x2 | `W1 pm 1 , m 2 qq .
See Remark 2.7 for more details on the adaptation of the proof.

Remark 2.3. A sufficient condition to obtain the locally Lipschitz condition of the jump term in Assumption 2 for k 0 " 1 is given by the following direct conditions on the functions f and Φ : there exists some positive constant C such that for all x 1 , x 2 P R, m 1 , m 2 P P 1 pRq, For b to satisfy the Lipschitz condition of Assumption 2 in this example, it is sufficient to assume that: for all x, x 1 , y, y 1 P R,

|f px 1 , m 1 q ´f px 2 , m 2 q| ďC p|x 1 ´x2 | `W1 pm 1 , m 2 qq , ż E |Φpx 1 , m 1 , uq ´Φpx 2 , m 2 , uq| dρpuq ďC p|x 1 ´x2 | `W1 pm 1 , m 2 qq .
| bpx, yq ´bpx 1 , y 1 q| ď Cp1 `|x| `|x 1 |qp|x ´x1 | `|y ´y1 |q. Indeed, for any x, x 1 P R, m, m 1 P P 1 pRq, |bpx, mq ´bpx 1 , m 1 q| ď|bpx, mq ´bpx 1 , mq| `|bpx 1 , mq ´bpx 1 , m 1 q| ď ż R | bpx, yq ´bpx 1 , yq|dmpyq `ˇˇˇż R bpx 1 , yqdmpyq ´żR bpx 1 , yqdm 1 pyq ˇˇď Cp1 `|x| `|x 1 |q|x ´x1 | `Cp1 `2|x 1 |qW 1 pm, m 1 q,
where the second quantity of the last line has been obtained using Kantorovich-Rubinstein duality (see Remark 6.5 of [START_REF] Villani | Optimal transport, old and new[END_REF]) and the fact that, for a fixed x 1 , the function y Þ Ñ bpx 1 , yq is Lipschitz continuous with Lipschitz constant Cp1 `2|x 1 |q.

Example 3. Let us mention that the conditions of Assumption 2 appears naturally when one studies some mean field limits of particle systems. For example, in [START_REF] Fournier | On a toy model of interacting neurons[END_REF] and [START_REF] Erny | Conditional propagation of chaos for mean field systems of interacting neurons[END_REF], the authors study models where the form of the jump term is the one described in Example 1, and in particular, the jump term leads to a framework where the coefficients are not globally Lipschitz. In these two papers, the results are proved under an Assumption that guarantees the function x Þ Ñ xf pxq (without dependency w.r.t. the measure variable m) to be globally Lipschitz w.r.t. some appropriate metrics. Note that the locally Lipschitz condition for the drift term is also natural in the mean field limit frame. Indeed, in this framework, a jump term in the SDEs of some N ´particles system can become a drift term in the limit system (as N goes to infinity) where the corresponding drift coefficient is the product of the jump height function with the jump rate function: see for instance the last term of the equations ( 15) and (17) in Section 3.

Theorem 2.4. Under Assumptions 1 and 2, there exists a unique strong solution of (1).

The rest of this section is dedicated to prove Theorem 2.4.

A priori estimates for equation (1)

In this section, we prove the following a priori estimates for the solutions of the SDE (1).

Lemma 2.5. Grant Assumption 1. Any solution pX t q tě0 of (1) satisfies for all t ą 0 :

(i) there exists some 0 ă α t ă a (with a the same constant as in Assumption 1) such that

sup 0ďsďt E " e αt|Xs| ı ă 8, (ii) E " sup 0ďsďt |X s |  ă 8.
Proof. Let us prove piq. In a first time, we show that for any n P N, t ě 1,

E r|X t | n s ď ´E r|X 0 | n s `Ctn n{2`1 ¯eCnt , ( 2 
)
where C is positive constant independent of n.

For n " 0, there is nothing to prove, and for n " 1, the following estimate is classical with standard techniques: for all t ą 0, E r|X t |s ď ´E r|X 0 |s `Cpt `?tq ¯eCpt`?tq , where ? t comes from Burkholder-Davis-Gundy's inequality. Then, assuming that t ě 1, we have ? t ď t, whence (2) holds true for n " 1.

Let n ě 2. Let ψ n pxq :" |x| n .

Note that ψ n is C 2 , and that, for any x P R,

|ψ 1 n pxq| " n|x| n´1 and |ψ 2 n pxq| " npn ´1q|x| n´2 .
By Ito's formula, for any t ą 0,

ψ n pX t q "ψ n pX 0 q `ż t 0 ψ 1 n pX s qbpX s , µ s qds `ż t 0 ψ 1 n pX s qσpX s , µ s qdW s `1 2 ż t 0 ψ 2 n pX s qσpX s , µ s q 2 ds
`żr0,tsˆR`r ψ n pX s´`Φ pX s´, µ s´, uqq ´ψn pX s´q s 1 tzďf pXs´,µs´qu dπps, z, uq.

Then, for any fixed M ą 0, introducing τ M :" inftt ą 0 :

|X t | ą M u, we have E r|X t^τ M | n s ďE r|X 0 | n s `n ż t 0 E " |X n´1 s^τ M bpX s^τ M , µ s^τ M q| ‰ ds `npn ´1q 2 ż t 0 E " |X n´2 s^τ M σpX s^τ M , µ s^τ M q 2 | ‰ ds `ż t 0 E "ż R |r|X s^τ M `ΦpX s^τ M , µ s^τ M , uq| n ´|X s^τ M | n s| f pX s^τ M , µ s^τ M qdρpuq  ds ďE r|X 0 | n s `Cnt `Cn ż t 0 E r|X s^τ M | n s ds `Cnpn ´1q ż t 0 E " |X s^τ M | n´2 ‰ ds, (3) 
where we have used Assumption 1 and the fact that, for any x P R, |x| n´1 `|x| n ď 1 `2|x| n to control the drift term. One problem in (3) is the npn ´1q in the last term. Applying Grönwall's lemma at this step (by bounding |X s^τ M | n´2 by 1 `|X s^τ M | n ) would lead to obtain a term npn ´1q in the exponential of (2). To avoid this problem, we use that for any x ě 0, n P N ˚,

x n´2 " x n´2 ¨1tx 2 ďnu `xn´2 ¨1tx 2 ąnu ď n pn´2q{2 `xn ¨x´2 ¨1tx 2 ąnu ď n pn´2q{2 `xn n ,
we deduce from the previous computation that

E r|X t^τ M | n s ď E r|X 0 | n s `Ctn n{2`1 `Cn ż t 0 E r|X s^τ M | n s ds. (4) 
By Grönwall's lemma, for any t ą 0,

E r|X t^τ M | n s ď ´E r|X 0 | n s `Ctn n{2`1 ¯eCnt .
As the bound above does not depend on M , this implies that τ M goes to infinity almost surely as M goes to infinity. Whence Fatou's lemma allows to prove (2). Now, let us show the point piq. Let t ě 1 be fixed, and let us consider some α t ą 0 whose value will be chosen later. By (2), for any s ď t,

E " e αt|Xs| ı " 8 ÿ n"0 α n t n! E r|X s | n s ď 8 ÿ n"0 1 n! α n t e Cns E r|X 0 | n s `Cs 8 ÿ n"0 α n t n! n n{2`1 e Cns ďE « 8 ÿ n"0 1 n! `αt e Cs |X 0 | ˘nff `Cs 8 ÿ n"0 α n t n! n n{2`1 e Cns ďE " exp `αt e Cs |X 0 | ˘‰ `Ct 8 ÿ n"0 α n t n! n n{2`1 e Cnt (5) 
The first sum in the last line above is finite provided that α t ă ae ´Ct . To see that the second sum is finite, it is sufficient to use D'Alembert's criterion: let

u n " α n t n! n n{2`1 e Cnt ,
and remark that

u n`1 u n " α t 1 n `1 e Ct pn `1q n{2`1`1{2 n n{2`1 " α t e Ct pn `1q ´1{2 ˆ1 `1 n ˙dˆ1 `1 n ˙n ÝÑ nÑ8 0.
Then, the point piq of the lemma is a consequence of (5).

To prove the point piiq, let us use the following bound, which is a direct consequence of the form of the SDE (1),

E " sup 0ďsďt |X s |  ď E r|X 0 |s `ż t 0 E r|bpX s , µ s q|s ds `E " sup 0ďsďt ˇˇˇż s 0 σpX t , µ r qdW r ˇˇˇ `ż t 0 E "ż E |ΦpX s , µ s , uq|f pX s , µ s qdρpuq  ds.
Then using Burkholder-Davis-Gundy's inequality and Assumption 1, we have

E " sup 0ďsďt |X s |  ď E r|X 0 |s `Cpt `?tq `C ż t 0 E r|X s |s ds.
Finally, the point piiq follows from the point piq of the lemma.

Pathwise uniqueness for equation (1)

Proposition 2.6. Grant Assumptions 1 and 2. The pathwise uniqueness property holds true for (1).

Proof. Let p Xt q tě0 and p Xt q tě0 be two solutions of (1) defined w.r.t. the same initial condition X 0 , the same Brownian motion W and the same Poisson measure π. The proof consists in showing that the function

uptq :" E " sup 0ďsďt | Xs ´X s | 
is zero. This choice of function u is inspired of the proof of Theorem 2.1 of [START_REF] Graham | McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets[END_REF]. It allows to treat equations with both a jump term and a Brownian term since the classical L 1 norm would cause problems with the Brownian term, and the classical L 2 norm with the jump term. We know that, for all t ě 0, u t ă 8 by Lemma 2.5.piiq. Writing μt :" Lp Xt q and μt :" Lp Xt q, we have This implies that

uptq ď LE « ˆż t 0 ´| Xs ´X s | `W1 pμ s , μs q ¯2 ds ˙1{2 ff `2L ż t 0 E "ˆ1 `| Xs | `| Xs | `żR |x| k0 dμ s pxq `żR |x| k0 dμ s pxq ˙´| Xs ´X s | `W1 pμ s , μs q ¯ ds (6)
where we have used Burkholder-Davis-Gundy's inequality to deal with the Brownian term that corresponds to the term at the first line above. The term at the second line corresponds to the controls of the drift term and the jump term. Now let us fix some T ą 0 (later T will be fixed at T " 1{p16L 2 q). By Lemma 2.5.piq, we have, And, from the definition of W 1 , we have the following bound

W 1 pμ s , μs q ď E "ˇˇˇX s ´X s ˇˇı ď upsq.
Then, (6) and Lemma 2.5 imply that, for all 0 ď t ď T, uptq ď

ż t 0 E "´1 `| Xs | `| Xs | `CT ¯´| Xs ´X s | `upsq ¯ı ds `LE « ˆż t 0 ´| Xs ´X s | `upsq ¯2 ds ˙1{2 ff ďC T ż t 0 E "´1 `| Xs | `| Xs | ¯´| Xs ´X s | `upsq ¯ı ds `2L ? tuptq ďC T ż t 0 E "´1 `| Xs | `| Xs | ¯´| Xs ´X s | ¯ı ds `CT ż t 0 upsqds `2L ? tuptq,
where we have bounded the second integral of the RHS of the first inequality above by t times the supremum of the integrand. Note that the value of C T changes from line to line. Now, to end the proof, we have to control a term of the type p1 `|x| `|y|q|x ´y|. To do so, we use a truncation argument based on the following inequality: for all x, y P R, R ą 0, p1 `|x| `|y|q|x ´y| ď p1 `2Rq|x ´y| `p1 `|x| `|y|q|x ´y| `1t|x|ąRu `1t|y|ąRu ˘.

Let R : s Þ Ñ R s ą 0 be the truncation function whose values will be chosen later. By Lemma 2.5, for any 0 ď s ď T,

E "´1 `| Xs | `| Xs | ¯ˇˇX s ´X s ˇˇı ď p1 `2R s qupsq `CT c P ´| Xs | ą R s ¯`C T b P `| Xs | ą R s ˘.
The exponential moments proven in Lemma 2.5.piq are used to control the two last term above. Indeed, by Markov's inequality

P ´| Xs | ą R s ¯`P `| Xs | ą R s ˘ď C T e ´αT Rs .
Consequently, defining r s :" α T R s {2, for any 0 ď t ď T,

uptq ď C T ż t 0 " p1 `rs qupsq `e´rs ‰ ds `2L ? tuptq.
Now, let T " 1{p16L 2 q such that 2L ? T ď 1{2. Then, we can rewrite the above inequality as, for all t P r0, T s,

uptq ď C T ż t 0 " p1 `rs qupsq `e´rs ‰ ds.
Let us prove by contradiction that, for all t ď T, uptq " 0. To do so, let t 0 :" inftt ą 0 : uptq ą 0u and assume that t 0 ă T. Notice that, as u is non-decreasing, this implies that, for all t P r0, t 0 r, uptq " 0. In particular, for all t P rt 0 , T s,

uptq ď C T ż t t0 " p1 `rs qupsq `e´rs ‰ ds.
Besides uptq is finite and bounded (see Lemma 2.5.piiq) on r0, T s, say by a constant D ą 1. Let vptq :" uptq{pDe 2 q ă e ´2. Obviously v satisfies the same inequality as u above. Now we define r s :" ´ln vpsq, so that, for all t 0 ă t ď T,

vptq ď C T ż t t0 p2 ´ln vpsqqvpsqds ď ´2C T ż t t0 vpsq ln vpsqds,
where we have used that 2 ´ln vpsq ď ´2 ln vpsq since ´ln vpsq ě 2.

In particular, for any c Ps0, e ´2r, for all t 0 ď t ď T,

vptq ď c ´2C T ż t t0
vpsq ln vpsqds.

Then, introducing M : x Ps0, e ´2rÞ Ñ ş e

´2

x 1 ´s ln s ds, we may apply Osgood's lemma (see Lemma 4.1) with γ " 2C T and µpvq " p´ln vqv to obtain that ´M pvpT qq `M pcq ď ż T t0 2C T ds " 2C T pT ´t0 q or equivalently, M pcq ď M pvpT qq `2C T T.

Recalling that we assumed vpT q ą 0 such that the right hand side of the above equality is finite, if we let c tend to 0, we obtain

M p0q " ż e ´2 0 1 ´s ln s ds ď ż e ´2 vpT q 1 ´s ln s ds `2C T T ă 8,
which is absurd since M p0q " 8.

A consequence of the above considerations is that for all t P r0, T s, uptq " 0. Recalling the definition of u, we have proven that the processes X and X are equal on r0, T s.

We can repeat this argument on the interval rT, 2T s and iterate up to any finite time interval r0, T 0 s since T " 1{p16L 2 q does only depend on the coefficients of the system but not on the initial condition. This proves the pathwise-uniqueness property for the McKean-Vlasov equation (1).

Let us complete our previous Remark 2.2.

Remark 2.7. The adaptation suggested in Remark 2.2 is the following: in the proof of Proposition 2.6 above, one has to replace the distance E

" sup sďt | Xs ´X s | ı by E " p Xt ´X t q 2 ı
, and one has to do similar changes in the proof of Proposition 2.9 below.

Existence of a weak solution of equation (1)

Before proving the existence of solution of (1), let us state an elementary lemma about series whose proof is postponed to the Appendix.

Lemma 2.8. Let pu n q ně0 be a sequence of non-negative real numbers, and S n " ř n k"0 u k (n P N). If the sequence S n {n vanishes, then there exists a subsequence of pu n q ně0 that converges to 0.

The aim of this section is to construct a weak solution of the McKean-Vlasov equation (1), using a Picard iteration. The idea of the proof is to show that this scheme converges to a solution of (1). However, because of our locally Lipschitz conditions, we cannot prove it directly. Instead, we prove that a subsequence converges in distribution by tightness. That is why, in a first time, we only construct a weak solution.

Proposition 2.9. Grant Assumptions 1 and 2. There exists a weak solution of (1) on r0, T s, with T " 1{p16L 2 q.

Proof. As in the proof of the pathwise uniqueness of Section 2.2, we work on a time interval r0, T s where T ą 0 is a number whose value can be fixed at 1{p16L 2 q.

Step 1. In this first step, we introduce the iteration scheme, and state its basic properties at (8). Let X r0s t :" X 0 , and define the process X rn`1s from µ ) dπps, z, uq

We know that X rn`1s is well-defined since the above equation is a classical Ito-SDE (see for example Theorem III.2.32 of (Jacod and Shiryaev 2003, p. 158)). Indeed, since we assume that X rns is well-defined, the function t Þ Ñ µ rns t is a well-defined deterministic function that does not depend on X rn`1s . More precisely, we can write bpx, µ rns s q ": bn ps, xq and write similarly the other coefficients.

Then, using the same computations as in the proof of Lemma 2.5, we can prove that, for all t ě 0,

sup nPN sup 0ďsďt E " e α T |X rns s | ı ă 8 and sup nPN E " sup 0ďsďt |X rns s |  ă 8. (8) 
Note that, to obtain (8) with the same reasoning as in the proof of Lemma 2.5, it is important in (7) to use X rn`1s in the coefficients of the SDE and not X rns .

Step 2. Now let us show that pX rns , X rn`1s q n has a converging subsequence in distribution in Dpr0, T s, R 2 q, by showing that it satisfies Aldous' tightness criterion: paq for all ε ą 0, lim δÓ0 lim sup N Ñ8 sup pS,S 1 qPA δ,T P p|X

rns S 1 ´Xrns S | `|X rn`1s S 1
´Xrns S | ą εq " 0, where A δ,T is the set of all pairs of stopping times pS, S 1 q such that 0 ď S ď S 1 ď S `δ ď T a.s.,

pbq lim KÒ8 sup n Ppsup tPr0,T s |X rns t | `|X rn`1s t | ě Kq " 0.
Assertion pbq is a straightforward consequence of (8) and Markov's inequality. To check assertion paq, notice that, for any pS, S 1 q P A δ,T , by BDG inequality, Assumption 1 and ( 8 

Then, by tightness, there exists a subsequence of pX rns , X rn`1s q n that converges in distribution to some pX, Y q in Dpr0, T s, R 2 q. In the rest of the proof, we work on this subsequence without writing it explicitly for the sake of notation.

Step 3. In this step, we show that X " Y almost surely. Note that, since we work on a subsequence, this is not obvious. It is for this part of the proof that we need to restrict our processes to a time interval of the form r0, T s. [START_REF] Billingsley | Convergence of Probability Measures[END_REF]) to the following sequence ´Xrns , X rn`1s ¯n that converges in distribution in Dpr0, T s, R 2 q to pX, Y q. Thus we can consider, for n P N, random variables p Xrns , Xrn`1s q (resp. p X, Ỹ q) having the same distribution as pX rns , X rn`1s q (resp. pX, Y q) for which the previous convergence is almost sure. In particular, we also know that sup sďT | Xrn`1s Consequently, for all t ď T,

R n ptq ď 1 n `1 `CT ż t 0 " p1 `rrns s qR n psq `e´r rns s ı ds.
Finally we choose r rns t

:" ´ln R n ptq ě 2 and obtain for all t ď T,

R n ptq ď 1 n `1 `CT ż t 0 p2 ´ln R n psqq R n psqds ď 1 n `1 ´CT ż t 0 R n psq ln R n psqds.
As before we apply Osgood's lemma. Let M pxq :" ş e

´2

x 1 ´s ln s ds " lnp´ln xq ´ln 2. Then ´M pR n pT qq `M p1{pn `1qq ď C T T or equivalently R n pT q ď pn `1q

´e´C T T such that S n pT q ď C T n 1´e ´CT T .

Lemma 2.8 above then implies that there exists a subsequence of pu rns T q n that converges to 0 as n goes to infinity. This proves (10).

Step 4. Let us prove that a subsequence of pµ rns q n converges to some limit µ : t Þ Ñ µ t in the following sense

sup 0ďtďT W 1 pµ rns t , µ t q ÝÑ nÑ8 0,
where µ t :" LpX t q for a.e. t ď T.

We prove this point by proving that the sequence of functions µ rns : t Þ Ñ µ rns t " LpX rns t q P P 1 pRq is relatively compact, using Arzelà-Ascoli's theorem.

To begin with, the definition of W 1 and the same computation as the one used to obtain (9) allows to prove that, for all s, t ď T, for all n P N,

W 1 pµ rns t , µ rns s q ď E "ˇˇˇX rns t ´Xrns s ˇˇı ď C ´|t ´s| `a|t ´s| ¯, (11) 
for a constant C ą 0 independent of n. This implies that the sequence µ rns : t Þ Ñ µ rns t is equicontinuous. In addition, by ( 8) we know that, for every t ď T, the set pµ rns t q n is tight, and whence relatively compact (in the topology of the weak convergence, but not in P 1 pRq a priori). Indeed, for any ε ą 0, considering

M ε :" sup n E " |X rns t | ı {ε, we have, for all n, µ rns t pRzr´M ε , M ε sq " P ´|X rns t | ą M ε ¯ď 1 M ε E " |X rns t | ı ď ε.
In particular, for every t ď T, we can consider a subsequence of pµ rns t q n that converges weakly. To prove that this convergence holds for the metric W 1 , we rely on the characterization piiiq of W 1 given in Definition 6.8, and Theorem 6.9 of [START_REF] Villani | Optimal transport, old and new[END_REF]. According to this result, the convergence of the same subsequence of pµ rns t q n for W 1 follows from (8), Markov's inequality, Cauchy-Schwarz's inequality and the fact that,

E " |X rns t |1 ! |X rns t |ąR| )  ď 1 R sup kPN E " |X rks t | ı E " pX rks t q 2 ı 1{2 ÝÑ RÑ8 0.
We can then conclude that, for all t ď T, the sequence pµ rns t q n is also relatively compact on P 1 pRq. Then, thanks to (11), Arzelà-Ascoli's theorem implies that the sequence pµ rns q n is relatively compact. As a consequence, there exists a subsequence of pµ rns q n (as previously, we do not write this subsequence explicitly in the notation) that converges to some µ : t Þ Ñ µ t P P 1 pRq in the following sense

sup 0ďtďT W 1 pµ rns t , µ t q ÝÑ nÑ8 0.
The last thing to show in this step is that µ t " LpX t q for a.e. t ď T. By construction, µ t is the limit of µ rns t :" LpX rns t q. Recalling that X rns converges to X in distribution in Skorohod topology, we know that for all continuity point t of s Þ Ñ LpX s q, µ t " LpX t q.

Step 5. Recall that, for a subsequence, pX rns , X rn`1s q n converges to pX, Xq in distribution in Dpr0, T s, R 2 q, and pµ rns q n (which is a sequence of deterministic and continuous functions from R `to P 1 pRq) converges uniformly to µ on r0, T s. The aim of this step is to prove that pX rns , X rn`1s , µ rns q n converges to pX, X, µq in distribution in Dpr0, T s, R 2 ˆP1 pRqq. We consider µ rns in the previous distribution even though it is deterministic, because the important point in the convergence we want to prove is that µ rns must converge w.r.t. the same sequence of time-changes as the one of pX rns , X rn`1s q. In particular, it is important to have convergence in the topology of Dpr0, T s, R 2 P1 pRqq rather than in the weaker topology Dpr0, T s, R 2 q ˆDpr0, T s, P 1 pRqq.

As µ is continuous, we have that, for any sequence of time-changes pλ n q n the convergence

sup 0ďtďT W 1 pµ rns t , µ λnptq q ÝÑ nÑ8 0. (12) 
By Skorohod's representation theorem, we can assume that some representative r.v. p Xrns , Xrn`1s q of pX rns , X rn`1s q converges a.s. to representative r.v. p X, Xq of pX, Xq in Dpr0, T s, R 2 q. This implies that, almost surely, there exists a sequence of time-changes pλ n q n such that

sup 0ďtďT ˇˇX rns t ´X λnptq ˇˇand sup 0ďtďT ˇˇX rn`1s t
´X λnptq ˇv anish as n goes to infinity. So, by ( 12), almost surely, there exists a sequence of time-changes pλ n q n such that sup

0ďtďT d "´X rns t , Xrn`1s t , µ rns s t ¯, ´X λnptq , Xλn ptq, µ λnptq ¯ı ÝÑ nÑ8 0,
with drpx, y, mq, px 1 , y 1 , m 1 qs " |x ´x1 | `|y ´y1 | `W1 pm, m 1 q. In particular, we know that the sequence p Xrns , Xrn`1s , µ rns q n converges to p X, X, µq almost surely in Dpr0, T s, R 2 ˆP1 pRqq. This implies that pX rns , X rn`1s , µ rns q n converges to pX, X, µq in distribution in Dpr0, T s, R 2 ˆP1 pRqq.

Step 6. This step concludes the proof, showing that X is solution to (1). In order to prove that X is solution to (1), we use the fact that, using the notation of Definitions II.2.6 and II.2.16 of [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], X rn`1s is a semimartingale with characteristics pB rn`1s , C rn`1s , ν rn`1s q given by B rn`1s t "

ż t 0 bpX rns s , µ rns s qds, C rn`1s t " ż t 0 σpX rns s , µ rns s q 2 ds, ν rn`1s pdt, dxq "f pX rns t , µ rns t qdt ż E δ ΦpX rns t ,µ rns t ,uq pdxqdρpuq.
Let us note that, above, we have chosen as truncation function h " 0, hence the modified second characteristics Crn`1s is the same as C rn`1s .

Recall that, in

Step 5, we have shown that, for a subsequence, pX rns , X rn`1s , µ rns q n converges in distribution in Dpr0, T s, R 2 ˆP1 pRqq to pX, X, µq. Using once again Skorohod's representation theorem, we can consider representative r.v. for which the previous convergence is almost sure.

Whence (recalling that for x P DpR `, Rq, the function t Þ Ñ ş t 0 x s ds is continuous for Skorokhod topology), for all g P C b pRq, the following convergences hold almost surely for the representative r.v. and hence in distribution:

´Xrn`1s , B rn`1s , C rn`1s ¯L ÝÑ nÑ`8 ˆX, ż 0 bpX s , µ s qds, ż 0 σpX s , µ s q 2 ds ˙, ˜Xrn`1s , ż r0,¨sˆR gpxqν rn`1s pds, dxq ¸L ÝÑ nÑ`8 ˆX, ż 0 ż E gpΦpX s , µ s , uqqf pX s , µ s qdρpuqds ˙,
where the convergences hold respectively in the spaces DpR `, R 3 q and DpR `, R 2 q.

Then, Theorem IX.2.4 of [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] implies that X is a semimartingale with characteristics pB, C, νq given by

B t " ż t 0 bpX s , µ s qds, C t " ż t 0 σpX s , µ s q 2 ds, νpdt, dxq "f pX t , µ t qdt ż E δ ΦpXt,µt,uq pdxqdρpuq.
Then, we can use the canonical representation of X (see Theorem II.2.34 of [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]): X " X 0 `B `M c `Id ˚µX , where M c is a continuous locale martingale, µ X " ř s 1 t∆Ys‰0u δ ps,Xsq is the jump measure of X (let us recall that we chose the truncation function h " 0) and pId ˚µX q t :"

ş t 0 ş R xdµ X ps, xq.
By definition of the characteristics, xM c y t " C t . Whence, by Theorem II.7.1 of [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF], there exists a Brownian motion W such that

M c t " ż t 0 σpX s , µ s qdW s . (13) 
In addition, we know that ν is the compensator of µ X . We rely on Theorem II.7.4 of [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF]. Using the notation therein, we introduce Z " R `ˆE, mpdz, duq " dzρpduq and θpt, z, uq :" ΦpX t´, µ t´, uq1 tzďf pXt´,µt´qu .

According to Theorem II.7.4 of [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF], there exists a Poisson measure π on R `ˆR `ˆE having intensity dt ¨dz ¨dρpuq such that, for all A P BpRq, µ X pr0, ts ˆAq "

ż t 0 ż 8 0 ż E 1 tθps,z,uqPAu dπps, z, uq.
This implies that pId ˚µX q t " ż r0,tsˆR`ˆE ΦpX s´, µ s´, uq1 tzďf pXs´,µs´qu dπps, z, uq.

(14)

Finally, recalling that X " X 0 `B `M c `Id ˚µX , (13) and ( 14), we have just shown that X is a weak solution to (1) on r0, T s.

Proof of Theorem 2.4

In Section 2.2, we have proven the (global) pathwise uniqueness of solutions of (1), and, in Section 2.3, the existence of a weak solution of (1) on r0, T s, with T " 1{p16L 2 q.

Then, generalizations of Yamada-Watanabe results allows to construct a strong solution on r0, T s: it is a consequence of Theorem 1.5 and Lemma 2.10 of [START_REF] Kurtz | Weak and strong solutions of general stochastic models[END_REF] (see the discussion before Lemma 2.10 or Example 2.14 for more details).

More precisely, given a Brownian motion W, a Poisson random measure π and an initial condition X 0 , there exists a strong solution pX t q 0ďtďT defined w.r.t. these W, π, X 0 . Then, one can construct a strong solution pX t q T ďtď2T on rT, 2T s defined w.r.t. the Brownian motion pW T `t ´WT q tě0 , the Poisson measure π T defined by π T pA ˆBq " πptT `x : x P Au ˆBq, and the initial condition X T . Iterating this reasoning, we can construct a strong solution of (1) on r0, kT s for any k P N ˚, with T " 1{p16L 2 q ą 0. Hence, there exists a (global) strong solution of (1). This proves Theorem 2.4.

Propagation of chaos

In this section, we prove a propagation of chaos for McKean-Vlasov systems: Theorem 3.3. This property in the globally Lipschitz case has been proven in Proposition 3.1 of Andreis, Dai Pra and Fischer (2018). Let us introduce the N ´particle system pX N,i q 1ďiďN dX N,i t "bpX N,i t , µ N t qdt `σpX 

`1 N N ÿ j"1 j‰i ż R`ˆF N ˚ΘpX N,j t´, X N,i t´, µ N t´, v j , v i q1 tzďfpX N,j t´, µ N t´q u dπ j pt, z, vq, (15) 
with µ N :" N ´1 ř N j"1 δ X N,j , W i (i ě 1) independent standard one-dimensional Brownian motions, and π i (i ě 1) independent Poisson measures on R 2 `ˆF N ˚with intensity dt ¨dz ¨dνpvq, where F is a measurable space, and ν is a σ´finite symmetric measure on F N ˚(i.e. ν is invariant under finite permutations).

In the following, we assume that b, σ and f satisfy the same conditions as in Assumptions 1 and 2, and that Ψ satisfies the same as Φ with E " F N ˚and ρ " ν. We also assume that Θ satisfies similar conditions: for all x 1 , x 1 1 , x 2 , x 1 2 P R, m 1 , m 2 P P 1 pRq, ż

F N ˚żR`| Θpx 1 , x 1 1 , m 1 , v 1 , v 2 q1 tzďf px1,m1qu ´Θpx 2 , x 1 2 , m 2 , v 1 , v 2 q1 tzďf px2,m2qu |dzdνpvq ď L ˆ1 `|x 1 | `|x 1 1 | `|x 2 | `|x 1 2 | `żR |x| k0 dm 1 pxq `żR |x| k0 dm 2 pxq |x 1 ´x2 | `|x 1 1 ´x1 2 | `W1 pm 1 , m 2 q ˘,
and, for any

0 ă λ ď 1, n P N ˚, ż F N ˚ˇ`x 1 `λΘpy 1 , x 1 , m, v 1 , v 2 q ˘n ´xn 1 ˇˇdνpvqf py 1 , mq ď C ¨λ ¨np1 `|x 1 | n `|y 1 | n q. ( 16 
)
In addition, we assume that sup

N PN ˚E " e a|X N,1 0 | ı ă 8,
and that, for every N P N ˚, the system pX N,i 0 q 1ďiďN is i.i.d. We prove that these N ´particles systems converge as N goes to infinity to the following limit system. 

d
`żR ż F N ˚Θpx, Xi t , μt , v 1 , v 2 qf px, μt qdνpvqdμ t pxq, (17) 
where μt " Lp Xt q. We assume that the variables Xi 0 (i ě 1) are i.i.d. and satisfy

E " e a| Xi 0 | ı ă 8.
Let us remark that the (strong) well-posedness of equation ( 17) is a consequence of Theorem 2.4 for the same σ, Ψ " Φ and for the drift bpx, mq `żR ż F N ˚Θpy, x, m, v 1 , v 2 qf py, mqdνpvqdmpyq. One can also prove the (strong) well-posedness of equation ( 15) using a similar reasoning as the one used in the proof of Theorem 2.4. The only difference is for the Step 4 of the proof of Proposition 2.9, since, for (15) the measure µ N is not deterministic. Instead of proving that the sequence of measures pµ rns q n constructed in the Picard scheme is relatively compact by Arzelà-Ascoli's theorem, we rely exclusively on the following lemma whose proof is postponed to Appendix.

Lemma 3.1. Let N P N ˚, T ą 0, and px k q 1ďkďN and px k n q 1ďkďN pn P Nq be càdlàg functions. Define

µ n ptq :" N ´1 N ÿ k"1 δ x k n ptq and µptq :" N ÿ k"1 δ x k ptq .
Let λ n (n P N) be continuous, increasing functions satisfying λ n p0q " 0, λ n pT q " T , and that, for any 1 ď k ď N , sup Remark 3.2. This lemma allows to prove that, if px n , y n q n converges to px, yq in Dpr0, T s, pR N q 2 q, then, the sequence px n , y n , µ n q n converges to px, y, µq in Dpr0, T s, pR N q 2 ˆP1 pRqq.

In the following, we assume that pX N,i q 1ďiďN and p Xi q iě1 are strong solutions of respectively ( 15) and (17) defined w.r.t. the same Brownian motions W i (i ě 1) and the same Poisson measures π i (i ě 1) such that all the systems are defined on the same space. In addition, we assume that the following condition holds true

ε N 0 :" E "ˇˇˇX N,1 0 ´X 1 0 ˇˇı ÝÑ N Ñ8 0. (18) 
Now let us state the main result of this section: the propagation of chaos of the N ´particle systems, that is, the convergence of the systems pX N,i q 1ďiďN to the i.i.d. system p Xi q iě1 as N goes to infinity. We comment the convergence speed in Remark 3.5.

Theorem 3.3. We have, for all T 0 ą 0,

E " sup 0ďtďT0 ˇˇX N,1 t ´X 1 t ˇˇ ÝÑ N Ñ8 0.
Consequently, for all k ě 1, the following weak convergence holds true:

LpX N,1 , X N,2 , ..., X N,k q ÝÑ N Ñ8 Lp X1 q b Lp X2 q b ... b Lp Xk q,
in the product topology of the topology of the uniform convergence on every compact set.

Remark 3.4. We just state the result of Theorem 3.3 for the first coordinate because both systems pX N,i q 1ďiďN and p Xi q iě1 are exchangeable.

Remark 3.5. In the proof of Theorem 3.3, we obtain a convergence speed for

E " sup 0ďtďT0 ˇˇX N,1 t ´X 1 t ˇˇ ÝÑ N Ñ8
0 that depends on T 0 . Indeed, if T :" 1{p16L 2 q, the formula (20) below gives a convergence speed for

E " sup 0ďtďT ˇˇX N,1 t ´X 1 t ˇˇ of the form S N 0 :" C 1 ´εN 0 `N ´1{2 ¯C2 ,
for some positive constants C 1 , C 2 , where ε N 0 is given at (18). And, for all k P N ˚, the convergence speed S

N k of E « sup kT ďtďpk`1qT ˇˇX N,1 t ´X 1 t ˇˇff
can be obtained inductively by

S N k " C 1 ´SN k´1 `N ´1{2 ¯C2 
for the same constants C 1 , C 2 for all k.

Before proving Theorem 3.3, let us state a lemma about some a priori estimates of the process pX N,1 t q tě0 . Lemma 3.6. For every N P N ˚, let pX N,i q 1ďiďN be the solution of (15). For any t ě 0,

(i) sup N PN ˚sup 0ďsďt E " e a|X N,1 s | ı ă 8 and sup 0ďsďt E " e a| X1 s | ı ă 8, (ii) sup N PN ˚E " sup 0ďsďt |X N,1 s |  ă 8 and E " sup 0ďsďt | X1 s |  ă 8.
Sketch of proof of Lemma 3.6. We only give the main steps of the proof of the first part of the point piq since the main part of the proof relies on the same computations as in the proof of Lemma 2.5. The only new property of the lemma is the fact that the bounds has to be uniform in N . This property is easy to prove for the point piiq of the lemma in this model because of the normalization in N ´1 of the jump term Θ of (15). For the point piq, as in the proof of Lemma 2.5, we apply Ito's formula to the function x Þ Ñ |x| n (for n ě 2) and then, we can note that, by exchangeability,

E " |X N,1 t | n ı ď E " |X N,1 0 | n ı `Ctn n2`1 `Cn ż t 0 E " |X N,1 s | n ‰ ds `pN ´1q ż t 0 E "ż F N ˚ˇˇX N,i s `N ´1ΘpX N,2 s , X N,1 s , µ N s , v 2 , v 1 q ˇˇn ´|X N,1 s | n ˇˇdνpvqf pX N,2 q  ,
where the first line above is the control of the drift term, the Brownian term, and the jump term w.r.t. the heigth jump function Ψ. In particular, thanks to ( 16), and since X N,1 and X N,2 have the same distribution, we have

E " |X N,1 t | n ı ď E " |X N,1 0 | n ı `Ctn n{2`1 `Cn ż t 0 E " |X N,1 s | n ‰ ds.
This last inequality is independent of N and is the equivalent of (4), so the rest of the proof is the same as in Lemma 2.5.

Proof of Theorem 3.3. We follow the ideas of Proposition 3.1 of Andreis, Dai Pra and Fischer (2018). Instead of introducing an auxiliary system, we rewrite artificially the SDE (15) as dX N,i t "bpX N,i t , µ N t qdt `σpX Let us note μN t :" N ´1 ř N j"1 δ Xj . By triangle inequality and since for all m, m 1 P P 1 pRq, W 1 pm, m 1 q ď W 2 pm, m 1 q, we have for all t ě 0, W 1 pµ N t , μt q ď W 1 pµ N t , μN t q `W1 pμ N t , μt q ď 1 N N ÿ j"1 ˇˇX N,j t ´X j t ˇˇ`W2pμ N t , μt q.

Besides, using Theorem 1 of [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] with d " 1, p " 2 and any q ą 4 (and using Lemma 3.6), we have

E " W 2 pμ N t , μt q ‰ ď CE " | Xt | q ‰ p{q N ´1{2 ď C ´1 `E " e a Xt ı¯p {q N ´1{2 ď C t N ´1{2 .
As a consequence, and thanks to Lemma 3.6, for all t ě 0,

E " sup 0ďsďt W 1 pµ N s , µ s q  ď u N ptq `Ct N ´1{2 .
Whence the same truncation arguments as the ones used in Sections 2.2 and 2.3 allows to prove that, for all t ď T, u N ptq ď u N p0q `CT 0, for a T ą 0 sufficiently small that does not depend on the initial conditions (recalling that we have taken T " 1{p16L 2 q). Then, iterating this reasoning on rT, 2T s, we can prove

E " sup T ďtď2T ˇˇX N,1 t ´X 1 t ˇˇ ÝÑ N Ñ8 0,
noticing that the "initial conditions" on rT, 2T s satisfy the same condition as (18):

ε N T :" E "ˇˇˇX N,1 T ´X 1 T ˇˇı ÝÑ N Ñ8 0.
Finally, by induction, we can prove that for all k P N ˚,

E

"

sup 0ďtďkT ˇˇX N,1 t ´X 1 t ˇˇ ÝÑ N Ñ8 0,
which proves the result.

Appendix

Osgood's lemma

We have used many times a generalization of Grönwall's lemma, which is Osgood's lemma. Let us write it explicitly for self-containedness (see e.g. Lemma 3.4 of Bahouri, Chemin and Danchin (2011)).

Example 2 .

 2 A natural form of the coefficient of a McKean-Vlasov equation is given by the so-called "true McKean-Vlasov" case. In our framework, it is possible to consider the function b under the following form bpx, mq " ż R bpx, yqdmpyq, with b : R 2 Ñ R.

  |x| dμ s pxq `sup 0ďsďT ż R e α T |x| dμ s pxq ď C T ă 8, whence sup 0ďsďT ż R |x| k0 dμ s pxq `sup 0ďsďT ż R |x| k0 dμ s pxq ď C T ă 8.

  pλ n ptqq ˇˇand sup 0ďtďT |t ´λn ptq| vanish as n goes to infinity. Then, sup 0ďtďT W 1 pµ n ptq, µpλ n ptqqq ÝÑ nÑ8 0.

  • L denotes the Lipschitz constant of the coefficients (see Assumption 2), a a positive constant defined in Assumption 1, and k 0 P N in Assumption 2. • C denotes any arbitrary positive constant, whose value can change from line to line in an equation. If the constant depends on some parameter θ, we write C θ instead. This section is dedicated to prove the well-posedness of the following McKean-Vlasov equation. dX t " bpX t , µ t qdt `σpX t , µ t qdW t `żR`ˆE ΦpX t´, µ t´, uq1 tzďf pXt´,µt´qu dπpt, z, uq,

	2. Well-posedness of McKean-Vlasov equations

  pσp Xr , μr q ´σp Xr , μr qqdW r ˇˇż r0,ssˆR`ˆR ˇˇΦp Xr´, μr´, uq1 tzďfp Xr´,μr´qu ´Φp Xr´, μr´, uq1 tzďfp Xr´,μr´qu ˇˇdπpr, z, uq.

	ˇˇXs ´X s ˇˇď	ż s	|bp Xr , μr q ´bp Xr , μr q|dr	`ˇˇˇż s
		0		0

  It is sufficient to prove that, for a subsequence,

	E	"	sup 0ďsďT	ˇˇX rn`1s s	´Xrns s ˇˇ	(10)
	vanishes as n goes to infinity. Indeed, (10) implies that, for another subsequence, sup sďT |X s rn`1s	Xrns
	s | converges to zero almost surely. Then, we can apply Skorohod representation theorem (see
	Theorem 6.7 of					

  Xi t "bp Xi t , μt qdt `σp Xi t , μt qdW i t `żR`ˆF N ˚Ψp Xi t´, μt´, v i q1 tzďfp Xi t´, μt´qu dπ i pt, z, vq

  Now, let D T :" maxpC T , sup N sup sďT u N psq, 1q which is finite by Lemma 3.6.piiq, and definev N ptq :" u N ptq D T e 2 ď e ´2.Choosing r N t :" ´ln v N ptq, we have for all 0 ď t ď T, v N ptq ď2v N p0q `CT ´s ln s ds " lnp´ln xq ´ln 2. This implies thatlnp´lnp2v N p0q `C1 T N ´1{2 qq ´lnp´ln v N ptqq ď C 2 T ,for some constants C 1 T , C 2 T ą 0, where we distinguish C 1 T and C 2 T for clarity. This implies that, for all 0 ď t ď T, v N ptq ď ´2v N p0q `C1T N ´1{2 ¯expp´C 2

																ż t
																0	p2 ´ln v N psqqv N psqds	`CT ? N
																ż t
											ď2v N p0q ´2C T	0	v N psq ln v N psqds	`CT ? N	,
	and Osgood's lemma allows to conclude that
											´M pvpT qq `M p2v N p0q `CT N ´1{2 q ď 2C T T,
	where M pxq "	x ş e ´2		1						
																T q	.	(20)
	Hence						ż t 0	" p1 `rN s qu N psq `e´r N s E " sup 0ďtďT ˇˇX N,1 ı t ´X 1 ds `2L ? t ˇˇ ÝÑ T u N ptq	`E "	sup 0ďsďT	 s | |G N	`CT N ´1{2 ,
											ż t 0	" p1 `rN s qu N psq `e´r N s	ı	ds `2E	"	sup 0ďsďT	|G N s |		`Ct N ´1{2 .	(19)
	To control the term G N s , we use BDG inequality,
	E	"	sup 0ďtďT	ˇˇG N t	ˇˇ2		ď	C N 2	N ÿ j"1	E	"ż t 0	ż F N ˚ΘpX s , X N,i N,j s , µ N s , v j , v i q 2 f pX N,j s , µ N s qdνpvqds 	ď	C T N	,
	where we have used the growth condition on Θ (16) and Lemma 3.6.
	Hence, by Cauchy-Schwarz's inequality,
															"
														E	sup 0ďtďT	ˇˇG N t	ˇˇ	ď C T N ´1{2 .
	Then we can rewrite (19) as		
						u N ptq ď 2u N p0q `CT	ż t	" p1 `rN s qu N psq `e´r N s	ı	ds `CT N ´1{2 .
																0

where C T does not depend on N thanks to Lemma 3.6. Now, fixing T " 1{p16L 2 q (such that 2L ? T ď 1{2), we obtain

u N ptq ď 2u N p0q `CT N Ñ8
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Lemma 4.1. Let be a measurable function from rt 0 , T s to r0, bs, γ a locally integrable function from rt 0 , T s to R `, and µ a continuous and non-decreasing function from r0, bs to R `. Suppose that for all t P rt 0 , T s and for some c Ps0, br, 

Proof of Lemma 2.8

Let us prove the result by contraposition. So let us assume that there exists no subsequence of pu n q n that vanishes. Then, it is sufficient to prove that there exist n 0 P N and m ą 0 such that, for any n ě n 0 , u n ě m.

Indeed, (21) implies that S n grows at least linearly, whence S n {n cannot vanishes. Now we prove ( 21) by contradiction. So we assume that, for any n P N, ε ą 0, there exists some integer ϕpn, εq ě n such that, u ϕpn,εq ď ε.

Then, we can define n 1 :" ϕp0, 1q, and, by induction, n k`1 :" ϕpn k , 2 ´pk`1q q. So pu n k q k is a subsequence of pu n q n that vanishes.

Proof of Lemma 3.1

The proof consists in noticing that, for all t ď T, W 1 pµ n ptq, µpλ n ptqqq ď 1 N N ÿ k"1 ˇˇx k n ptq ´xk pλ n ptqq ˇˇ.