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Abstract: We study McKean-Vlasov equations where the coe�cients are locally Lipschitz
continuous. We prove the strong well-posedness and a propagation of chaos property in this
framework. These questions can be treated with classical arguments under the assumptions
that the coe�cients are globally Lipschitz continuous. In the locally Lipschitz case, we use
truncation arguments and Osgood's lemma instead of Grönwall's lemma. This approach entails
technical di�culties in the proofs, in particular for the existence of solution of the McKean-
Vlasov equations that are considered. This proof relies on a Picard iteration scheme that is not
guaranteed to converge in an L1

�sense because the coe�cients are not Lipschitz continuous.
However, we still manage to prove its convergence in distribution, and the (strong) well-
posedness of the equation using a generalization of Yamada and Watanabe results.

MSC2020 subject classi�cations: 60J60, 60K35.
Keywords and phrases:McKean-Vlasov equations, Mean �eld interaction, Interacting par-
ticle systems, Propagation of chaos.

1. Introduction

The aim of this paper is to prove the strong well-posedness and a propagation of chaos property
for Mckean-Vlasov equations. These are SDEs where the coe�cients depend on the solution of the
equation and on the law of this solution. This type of equation arises naturally in the framework
of N�particle systems where the particles interact in a mean �eld way: this phenomenon can be
seen as a law of large numbers. Indeed, in examples where the dynamic of the N�particle system is
directed by an SDE, the mean �eld interactions can be expressed as a dependency of the coe�cients
on the empirical measure of the system. And as N goes to in�nity, this empirical measure converges
to the law of any particle of the limit system. This entails natural dependencies of the coe�cients
on the law of the solution of the limit SDE. For instance, see De Masi et al. (2015) and Fournier
and Löcherbach (2016) for examples in neural network modeling, Fischer and Livieri (2016) for an
example in portfolio modeling, and Carmona, Delarue and Lacker (2016) for an application in mean
�eld games.

The weak well-posedness and the propagation of chaos are classical for the McKean-Vlasov
equations without jump term, even without assuming that the coe�cients are Lipschitz continuous.
Gärtner (1988) treats both questions in this frame. We can also mention more recent work on the
well-posedness of McKean-Vlasov equations without jump term as Mishura and Veretennikov (2020)
and Chaudru de Raynal (2020), with di�erent assumptions on the smoothness of the coe�cients,
and Lacker (2018) that investigates the well-posedness and the propagation of chaos.

In this paper, we consider McKean-Vlasov equations with jumps. The questions about the strong
well-posedness and the propagation of chaos have also been studied in this framework under globally
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Lipschitz assumptions on the coe�cients: see Graham (1992) for the well-posedness and Andreis,
Dai Pra and Fischer (2018) for the propagation of chaos. Note that in Section 4 of Andreis, Dai Pra
and Fischer (2018), these questions are treated in a multi-dimensional case, where the drift coef-
�cient is of the form �∇b1pxq � b2px,mq, where b1 is C1 and convex, and b2, as well as the jump
coe�cient and the volatility coe�cient, are globally Lipschitz.

The novelty of our results is to work on McKean-Vlasov equations with jumps and with generic
locally Lipschitz assumptions (see Assumption 1 for a precise and complete statement of the hy-
pothesis).

The �rst main result is the strong well-posedness, under this locally Lipschitz assumption, of the
following McKean-Vlasov equation

dXt � bpXt, µtqdt� σpXt, µtqdWt �
»
R��E

ΦpXt�, µt�, uq1tz¤fpXt�,µt�qudπpt, z, uq,

where µt is the distribution of Xt, W a Brownian motion, π a Poisson measure and E some
measurable space (see the beginning of Section 2 for details on the notation). To prove the well-
posedness when the coe�cients are locally Lipschitz continuous, we adapt the computations of
the proofs in the globally Lipschitz continuous case. We use a truncation argument to handle
the dependency of the local Lipschitz constant w.r.t. to the variables. On the contrary of the
globally Lipschitz case, Grönwall's lemma does not allow to conclude immediately. In the locally
Lipschitz case, we have to use a generalization of this lemma: Osgood's lemma (see Lemma 4.1).
The uniqueness of solution of the McKean-Vlasov equation follows rather quickly from Osgood's
lemma and the truncation argument, but other di�culties emerge in the proof of the existence of
solution. We construct a weak solution of the equation using a Picard iteration scheme, but the fact
that the coe�cients are only locally Lipschitz continuous does not allow to prove that this scheme
converges in an L1�sense. Instead, we prove that a subsequence converges in distribution to some
limit that is shown to be a solution of the equation. Some technical di�culties emerge in this part of
the proof for two reasons. The �rst one is that the Picard scheme is not shown to converge but only
to have a converging subsequence. This implies that we need to control the variation between two
consecutive steps of the scheme. The second one is that we only prove a convergence in distribution,
thus it is not straightforward that the limit of the Picard scheme is solution to the equation. It is
shown studying its semimartingale characteristics.

The second main result is a propagation of chaos property of McKean-Vlasov particle systems
under the same locally Lipschitz assumptions. More precisely, it is the convergence of the following
N�particle system

dXN,i
t �bpXN,i

t , µNt qdt� σpXN,i
t , µNt qdW i

t �
»
R��FN�

ΨpXN,i
t� , µNt�, v

iq1tz¤fpXN,it� ,µNt�qudπ
ipt, z, vq

� 1

N

Ņ

j�1

»
R��FN�

ΘpXN,j
t� , XN,i

t� , µNt�, v
j , viq1tz¤fpXN,jt� ,µNt�qudπ

jpt, z, vq,

where µNt :� N�1
°N
j�1 δXN,jt

, to the in�nite system

dX̄i
t �bpX̄i

t , µ̄tqdt� σpX̄i
t , µ̄tqdW i

t �
»
R��FN�

ΨpX̄i
t�, µ̄t�, v

iq1tz¤fpX̄it�,µ̄t�qudπ
ipt, z, vq

�
»
R

»
FN�

Θpx, X̄i
t , µ̄t, v

1, v2qfpx, µ̄tqdνpvqdµ̄tpxq,
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where µ̄t :� LpX̄tq, as N goes to in�nity. The W i (i ¥ 1) are independent standard Brownian
motions, the πi (i ¥ 1) are independent Poisson measures, F is some measurable space and N�

denotes the set of the positive integers (see Section 3 for details on the notation). The proof of
this second main result relies on a similar reasoning as the one used to prove the uniqueness of the
McKean-Vlasov equation: a truncation argument and Osgood's lemma.

Let us note that this propagation of chaos property has already been proven under di�erent
hypothesis. Indeed, the N�particle system and the limit system above are the same as in Andreis,
Dai Pra and Fischer (2018). Note also that, in this model, for each N P N�, the particles XN,i

t (1 ¤
i ¤ N) do not only interact through the empirical measure µNt , but also through the simultaneous
jumps term.

Let us mention the other conditions in Assumption 1. We assume that some boundedness condi-
tions on the coe�cients hold true. To the best of our knowledge, in order to prove a priori estimates
for solutions of Mckean-Vlasov equations, one needs to assume that the coe�cients are bounded
w.r.t. the measure variable. In this paper, we need the coe�cients to be bounded w.r.t. to both
variables, because for the truncation arguments mentioned above, we need a priori estimates on the
exponential moments of the solutions of the McKean-Vlasov equation. This is also the reason why
we need conditions on exponential moments.

Let us �nally mention that, in this paper, we chose to work in dimension one to simplify the
notation, but the results still hold in �nite dimensions.
Organization. In Section 2, we state and prove our �rst main result: the well-posedness of the

McKean-Vlasov equation (1) with locally Lipschitz coe�cients. Section 3 is devoted to our second
main result, the propagation of chaos in the same framework.

1.1. Notation

Let us introduce some notation we use throughout the paper:

• If X is random variable, we note LpXq its distribution.
• If X and Xn (n P N�) are random variables, we note Xn

LÝÑ
nÑ�8

X for "pXnqn converges in

distribution to X".
• P1pRq is the space of probability measures on R with �nite �rst moment. This space will
always be endowed with the �rst-order Wassertein metric W1 de�ned by: for m1,m2 P P1pRq,

W1pm1,m2q � inf
X1�m1,X2�m2

E rdpX1, X2qs � sup
fPLip1

»
R
fpxqdm1pxq �

»
R
fpxqdm2pxq,

with Lip1 the space of Lipschitz continuous functions w.r.t. the metric d with Lipschitz con-
stant non-greater than one. Let us note that characterizations of this convergence are given
in Theorem 6.9 and De�nition 6.8 of Villani (2008).

• For T ¡ 0 and pG, dq a Polish space, Dpr0, T s, Gq (resp. DpR�, Gq) denotes the space of càdlàg
G�valued functions de�ned on r0, T s (resp. R�) endowed with Skorohod topology, whence
this space is Polish. Let us recall that the convergence of a sequence pxnqn of Dpr0, T s, Gq to
some x in Skorohod topology is equivalent to the existence of continuous increasing functions
λn satisfying λnp0q � 0, λnpT q � T and both

sup
0¤t¤T

|λnptq � t| and sup
0¤t¤T

dpxpλnptqq, xnptqq
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vanish as n goes to in�nity. In the following, we call such a sequence pλnqn a sequence of
time-changes.
• L denotes the Lipschitz constant of the coe�cients (see Assumption 1).
• C denotes any arbitrary positive constant, whose value can change from line to line in an
equation. If the constant depends on some parameter θ, we write Cθ instead.

2. Well-posedness of McKean-Vlasov equations

This section is dedicated to prove the well-posedness of the following McKean-Vlasov equation.

dXt � bpXt, µtqdt� σpXt, µtqdWt �
»
R��E

ΦpXt�, µt�, uq1tz¤fpXt�,µt�qudπpt, z, uq, (1)

with µt � LpXtq, W a standard one-dimensional Brownian motion, π a Poisson measure on R� �
R��E having intensity dt �dz �dρpuq, where pE, E , ρq is a σ��nite measure space. The assumptions
on the coe�cients are speci�ed in Assumption 1 below. Let us note here that f is assumed to be
non-negative.

Assumption 1.

1. Locally Lipschitz conditions: there exists a ¡ 0, such that for all x1, x2 P R,m1,m2 P P1pRq,

|bpx1,m1q�bpx2,m2q|�
»
E

»
R�

|Φpx1,m1, uq1tz¤fpx1,m1qu�Φpx2,m2, uq1tz¤fpx2,m2qu|dzdρpuq

¤ L

�
1 � |x1| � |x2| �

»
R
ea|x|dm1pxq �

»
R
ea|x|dm2pxq



p|x1 � x2| �W1pm1,m2qq .

2. Globally Lipschitz condition for σ : for all x1, x2 P R,m1,m2 P P1pRq,
|σpx1,m1q � σpx2,m2q| ¤ L p|x1 � x2| �W1pm1,m2qq .

3. Boundedness conditions: the functions b, σ and f are bounded (uniformly w.r.t. all the vari-
ables), and for the same constant a ¡ 0 as in Item 1.,

sup
xPR,mPP1pRq

»
E

ea|Φpx,m,uq|dρpuq   8.

4. Initial condition: for the same a ¡ 0 as in Items 1. and 3.,

E
�
ea|X0|

�
  8.

Remark 2.1. If we consider equation (1) without the jump term (that is Φ � 0), then, we can adapt
the proof of Theorem 2.3 to the case where σ is also locally Lipschitz continuous. More precisely,
we can replace the two �rst Items of Assumption 1 by: for all x1, x2 P R,m1,m2 P P1pRq,

|bpx1,m1q � bpx2,m2q| � |σpx1,m1q � σpx2,m2q|

¤ L

�
1 �

a
|x1| �

a
|x2| �

d»
R
ea|x|dm1pxq �

d»
R
ea|x|dm2pxq

�
p|x1 � x2| �W1pm1,m2qq .

See Remark 2.6 for more details on the adaptation of the proof.
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Note that Item 3 of Assumption 1 implies that, for all n P N,

sup
xPR,mPP1pRq

»
E

|Φpx,m, uq|n dνpuq   8.

Remark 2.2. Under the boundedness conditions of Assumption 1, a su�cient condition to obtain
the locally Lipschitz condition of the jump term in Assumption 1 is given by the following direct
conditions on the functions f and Φ : for all x1, x2 P R,m1,m2 P P1pRq,

|fpx1,m1q � fpx2,m2q| �
»
E

|Φpx1,m1, uq � Φpx2,m2, uq|dρpuq

¤ L

�
1 � |x1| � |x2| �

»
R
ea|x|dm1pxq �

»
R
ea|x|dm2pxq



p|x1 � x2| �W1pm1,m2qq .

Example 1. A natural form of the coe�cient of a McKean-Vlasov equation is given by the so-called
"true McKean-Vlasov" case. For simplicity, we only give the form for b, but a similar form can be
considered for the other coe�cient.

bpx,mq �
»
R
b̃px, yqdmpyq,

with b̃ : R2 Ñ R.
For b to satisfy the conditions of Assumption 1 in this example, it is su�cient to assume that b̃

is bounded and that: for all x, x1, y, y1 P R,

|b̃px, yq � b̃px1, y1q| ¤ Cp1 � |x| � |x1|qp|x� x1| � |y � y1|q.

Indeed, for any x, x1 P R,m,m1 P P1pRq,

|bpx,mq � bpx1,m1q| ¤|bpx,mq � bpx1,mq| � |bpx1,mq � bpx1,m1q|

¤
»
R
|b̃px, yq � b̃px1, yq|dmpyq �

����
»
R
b̃px1, yqdmpyq �

»
R
b̃px1, yqdm1pyq

����
¤Cp1 � |x| � |x1|q|x� x1| � Cp1 � 2|x1|qW1pm,m1q,

where the second quantity of the last line has been obtained using Kantorovich-Rubinstein duality
(see Remark 6.5 of Villani (2008)) and the fact that, for a �xed x1, the function y ÞÑ b̃px1, yq is
Lipschitz continuous with Lipschitz constant Cp1 � 2|x1|q.
Theorem 2.3. Under Assumption 1, there exists a unique strong solution of (1).

The rest of this section is dedicated to prove Theorem 2.3.

2.1. A priori estimates for equation (1)

In this section, we prove the following a priori estimates for the solutions of the SDE (1).

Lemma 2.4. Grant the boundedness conditions and the initial condition of Assumption 1. Any
solution pXtqt¥0 of (1) satis�es for all t ¡ 0,
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(i) sup
0¤s¤t

E
�
ea|Xs|

�   8, with a ¡ 0 the same as constant as in Assumption 1,

(ii) E
�

sup
0¤s¤t

|Xs|
�
  8.

Proof. Let us prove piq. It is su�cient to prove
sup

0¤s¤t
E
�
eaXs

�   8, (2)

and
sup

0¤s¤t
E
�
e�aXs

�   8. (3)

To prove (2), let us apply Ito's formula

eaXt �eaX0 � a

» t
0

eaXsbpXs, µsqds� a

» t
0

eaXsσpXs, µsqdWs � a2

2

» t
0

eaXsσpXs, µsq2ds

�
»
r0,ts�R��E

�
eapXs��ΦpXs�,µs�,uqq � eaXs�

�
1tz¤fpXs�,µs�qudπps, z, uq.

Introducing, for M ¡ 0, the stopping time τM :� inftt ¡ 0 : |Xt| ¡Mu, we have

E
�
eaXt^τM

� ¤E
�
eaX0

�� a||b||8
» t

0

E
�
eaXs^τM

�
ds� 1

2
a2||σ||28

» t
0

E
�
eaXs^τM

�
ds

�
» t

0

»
E

eaXs^τM
�
eΦpXs^τM ,µs^τM ,uq � 1

�
fpXs^τM , µs^τM qdρpuqds.

Then, introducing uMt :� E
�
eaXt^τM

�
, and using the boundedness condition of Φ from Assump-

tion 1, we obtain, for all t ¡ 0,

uMt ¤ E
�
eaX0

��K

» t
0

uMs ds,

with

K :� a||b||8 � 1

2
a2||σ||28 � ||f ||8 sup

xPR,mPP1pRq

»
E

ea|Φpx,m,uq|dρpuq   8.

Consequently, Grönwall's lemma implies

sup
0¤s¤t

uMs ¤ E
�
eaX0

�
eKt.

As the bound above does not depend on M , it implies that τM goes to in�nity almost surely as
M goes to in�nity. Fatou's lemma then implies

sup
0¤s¤t

E
�
eaXt

� ¤ E
�
eaX0

�
eKt.

This proves (2), and with the same reasoning we can prove

sup
0¤s¤t

E
�
e�aXt

� ¤ E
�
e�aX0

�
eKt.
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which proves (3), whence the point piq of the lemma.
To prove the point piiq, let us use the following bound, which is a direct consequence of the form

of the SDE (1),

E
�

sup
0¤s¤t

|Xs|
�
¤ E r|X0|s � ||b||8t� E

�
sup

0¤s¤t

����
» s

0

σpXt, µrqdWr

����
�

� ||f ||8
» t

0

E
�»
E

|ΦpXs, µs, uq|dρpuq
�
ds.

Then the result follows from Burkholder-Davis-Gundy's inequality and the boundedness condi-
tions of σ and Φ from Assumption 1.

2.2. Pathwise uniqueness for equation (1)

Proposition 2.5. Grant Assumption 1. The pathwise uniqueness property holds true for (1).

Proof. Let pX̂tqt¥0 and pX̌tqt¥0 be two solutions of (1) de�ned w.r.t. the same initial condition X0,
the same Brownian motion W and the same Poisson measure π. The proof consists in showing that
the function

uptq :� E
�

sup
0¤s¤t

|X̂s � X̌s|
�

is zero. This choice of function u is inspired of the proof of Theorem 2.1 of Graham (1992). It allows
to treat equations with both a jump term and a Brownian term.

We know that, for all t ¥ 0, ut   8 by Lemma 2.4.piiq.
Writing µ̂t :� LpX̂tq and µ̌t :� LpX̌tq, we have
���X̂s � X̌s

��� ¤ » s
0

|bpX̂r, µ̂rq � bpX̌r, µ̌rq|dr �
����
» s

0

pσpX̂r, µ̂rq � σpX̌r, µ̌rqqdWr

����
�
»
r0,ss�R��R

���ΦpX̂r�, µ̂r�, uq1tz¤fpX̂r�,µ̂r�qu � ΦpX̌r�, µ̌r�, uq1tz¤fpX̌r�,µ̌r�qu
��� dπpr, z, uq.

This implies that

uptq ¤ LE

��» t
0

�
|X̂s � X̌s| �W1pµ̂s, µ̌sq

	2

ds


1{2
�

� 2L

» t
0

E
��

1 � |X̂s| � |X̌s| �
»
R
ea|x|dµ̂spxq �

»
R
ea|x|dµ̌spxq


�
|X̂s � X̌s| �W1pµ̂s, µ̌sq

	�
ds

(4)

where we have used Burkholder-Davis-Gundy's inequality to deal with the Brownian term that
corresponds to the term at the �rst line above. The term at the �rst line corresponds to the
controls of the drift term and the jump term.

By Lemma 2.4.piq, we have for all t ¥ 0,

sup
0¤s¤t

»
R
ea|x|dµ̂spxq � sup

0¤s¤t

»
R
ea|x|dµ̌spxq ¤ Ct   8.
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And, from the de�nition of W1, we have the following bound

W1pµ̂s, µ̌sq ¤ E
����X̂s � X̌s

���� ¤ upsq.

Then, (4) and Lemma 2.4 imply that, for all 0 ¤ t ¤ T,

uptq ¤
» t

0

E
��

1 � |X̂s| � |X̌s| � CT

	�
|X̂s � X̌s| � upsq

	�
ds

� LE

��» t
0

�
|X̂s � X̌s| � upsq

	2

ds


1{2
�

¤CT
» t

0

E
��

1 � |X̂s| � |X̌s|
	�

|X̂s � X̌s| � upsq
	�
ds� 2L

?
tuptq

¤CT
» t

0

E
��

1 � |X̂s| � |X̌s|
	�

|X̂s � X̌s|
	�
ds� CT

» t
0

upsqds� 2L
?
tuptq,

where we have bounded the second integral of the RHS of the �rst inequality above by t times the
supremum of the integrand. Note that the value of CT changes from line to line.

Now, to end the proof, we have to control a term of the type p1� |x| � |y|q|x� y|. To do so, we
use a truncation argument based on the following inequality: for all x, y P R, R ¡ 0,

p1 � |x| � |y|q|x� y| ¤ p1 � 2Rq|x� y| � p1 � |x| � |y|q|x� y| �1t|x|¡Ru � 1t|y|¡Ru
�
.

Let R : s ÞÑ Rs ¡ 0 be the truncation function whose values will be chosen later. By Lemma 2.4,
for any 0 ¤ s ¤ T,

E
��

1 � |X̂s| � |X̌s|
	 ���X̂s � X̌s

���� ¤ p1 � 2Rsqupsq � CT

c
P
�
|X̂s| ¡ Rs

	
� CT

b
P
�|X̌s| ¡ Rs

�
.

The exponential moments proven in Lemma 2.4.piq are used to control the two last term above.
Indeed, by Markov's inequality

P
�
|X̂s| ¡ Rs

	
� P

�|X̌s| ¡ Rs
� ¤ CT e

�aRs .

Consequently, de�ning rs :� aRs{2, for any 0 ¤ t ¤ T,

uptq ¤ CT

» t
0

�p1 � rsqupsq � e�rs
�
ds� 2L

?
tuptq.

Now, let T � 1{p16L2q such that 2L
?
T ¤ 1{2. Then, we can rewrite the above inequality as, for

all t P r0, T s,
uptq ¤ CT

» t
0

�p1 � rsqupsq � e�rs
�
ds.

Let us prove by contradiction that, for all t ¤ T, uptq � 0. To do so, let t0 :� inftt ¡ 0 : uptq ¡ 0u
and assume that t0   T. Notice that, as u is non-decreasing, this implies that, for all t P r0, t0r,
uptq � 0. In particular, for all t P rt0, T s,

uptq ¤ CT

» t
t0

�p1 � rsqupsq � e�rs
�
ds.
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Besides uptq is �nite and bounded (see Lemma 2.4.piiq) on r0, T s, say by a constant D ¡ 1. Let
vptq :� uptq{pDe2q   e�2. Obviously v satis�es the same inequality as u above. Now we de�ne
rs :� � ln vpsq, so that, for all t0   t ¤ T,

vptq ¤ CT

» t
t0

p2 � ln vpsqqvpsqds ¤ �2CT

» t
t0

vpsq ln vpsqds,

where we have used that 2 � ln vpsq ¤ �2 ln vpsq since � ln vpsq ¥ 2.
In particular, for any c Ps0, e�2r, for all t0 ¤ t ¤ T,

vptq ¤ c� 2CT

» t
t0

vpsq ln vpsqds.

Then, introducingM : x Ps0, e�2rÞÑ ³e�2

x
1

�s ln sds, we may apply Osgood's lemma (see Lemma 4.1)
with γ � 2CT and µpvq � p� ln vqv to obtain that

�MpvpT qq �Mpcq ¤
» T
t0

2CT ds � 2CT pT � t0q

or equivalently,
Mpcq ¤MpvpT qq � 2CTT.

Recalling that we assumed vpT q ¡ 0 such that the right hand side of the above equality is �nite, if
we let c tend to 0, we obtain

Mp0q �
» e�2

0

1

�s ln s
ds ¤

» e�2

vpT q

1

�s ln s
ds� 2CTT   8,

which is absurd since Mp0q � 8.
A consequence of the above considerations is that for all t P r0, T s, uptq � 0. Recalling the

de�nition of u, we have proven that the processes X̂ and X̌ are equal on r0, T s.
We can repeat this argument on the interval rT, 2T s and iterate up to any �nite time interval

r0, T0s since T � 1{p16L2q does only depend on the coe�cients of the system but not on the initial
condition. This proves the pathwise-uniqueness property for the McKean-Vlasov equation (1).

Let us complete our previous Remark 2.1.

Remark 2.6. The adaptation suggested in Remark 2.1 is the following: in the proof of Proposi-

tion 2.5 above, one has to replace the distance E
�
sups¤t |X̂s � X̌s|

�
by E

�
pX̂t � X̌tq2

�
, and one

has to do similar changes in the proof of Proposition 2.11 below.

2.3. Existence of a weak solution of equation (1)

Before proving the existence of solution of (1), let us state some elementary lemmas about series
and Skorohod topology, whose proofs are postponed to the Appendix.

Lemma 2.7. Let punqn¥0 be a sequence of non-negative real numbers, and Sn �
°n
k�0 uk (n P N).

If there exists 0   ε   1, such that for all n P N, Sn ¤ Cn1�ε, then there exists a subsequence of
punqn¥0 that converges to 0.
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Lemma 2.8. Let T ¡ 0, and pxnqn be a sequence of càdlàg functions converging to some càdlàg
function x in Dpr0, T s,Rq. In addition, if pynqn is a sequence of càdlàg functions that satis�es

sup
0¤t¤T

|xnptq � ynptq| ÝÑ
nÑ8

0,

then, the sequence pxn, ynqn converges to px, xq in Dpr0, T s,R2q.
Lemma 2.9. Let T ¡ 0, and x and xn pn P Nq be càdlàg functions. Let λn (n P N) be continuous,
increasing functions satisfying λnp0q � 0, λnpT q � T , and that both

sup
0¤t¤T

|xnptq � xpλnptqq| and sup
0¤t¤T

|t� λnptq|

vanish as n goes to in�nity. Then,

sup
0¤t¤T

�����
» t

0

xnpsqds�
» λnptq

0

xpsqds
����� ÝÑnÑ8

0.

Remark 2.10. An interesting consequence of the previous lemma is that, if pxn, ynqn converges
to px, yq in Dpr0, T s,R2q, then pxn,

³�
0
ynpsqdsqn converges to px, ³�

0
ypsqdsq in Dpr0, T s,R2q. Note

that it is important to have convergence in Dpr0, T s,R2q instead that in Dpr0, T s,Rq2. The di�erence
between these two topologies is that, the convergence in Dpr0, T s,R2q means that the two coordinates
have to share the same sequence of time-changes, whereas for the convergence in Dpr0, T s,Rq2 each
of the coordinates has its own sequence.

The aim of this section is to construct a weak solution of the McKean-Vlasov equation (1), using
a Picard iteration. The idea of the proof is to show that this scheme converges to a solution of (1).
However, because of our locally Lipschitz conditions, we cannot prove it directly. Instead, we prove
that a subsequence converges in distribution by tightness. That is why, in a �rst time, we only
construct a weak solution.

Proposition 2.11. Grant Assumption 1. There exists a weak solution of (1) on r0, T s, with T �
1{p16L2q.
Proof. As in the proof of the pathwise uniqueness of Section 2.2, we work on a time interval r0, T s
where T ¡ 0 is a number whose value can be �xed at 1{p16L2q.

Step 1. In this �rst step, we introduce the iteration scheme, and state its basic properties at (5).

Let X
r0s
t :� X0, and de�ne the process Xrn�1s from Xrns and µ

rns
t :� LpXrns

t q by

X
rn�1s
t :�X0 �

» t
0

bpXrns
s , µrnss qds�

» t
0

σpXrns
s , µrnss qdWs

�
»
r0,ts�R��R

ΦpXrns
s� , µ

rns
s� , uq1!z¤fpXrns

s� ,µ
rns
s� q

)dπps, z, uq

Note that, thanks to the boundedness conditions of Assumption 1, using the same computations
as in the proof of Lemma 2.4, we can prove that, for all t ¥ 0,

sup
nPN

sup
0¤s¤t

E
�
ea|X

rns
s |
�
  8 and sup

nPN
E
�

sup
0¤s¤t

|Xrns
s |

�
  8. (5)

Step 2. Now let us show that pXrns, Xrn�1sqn has a converging subsequence in distribution
in Dpr0, T s,R2q, by showing that it satis�es Aldous' tightness criterion:
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paq for all ε ¡ 0, limδÓ0 lim supNÑ8 suppS,S1qPAδ,T P p|X
rns
S1 � X

rns
S | � |Xrn�1s

S1 � X
rns
S | ¡ εq � 0,

where Aδ,T is the set of all pairs of stopping times pS, S1q such that 0 ¤ S ¤ S1 ¤ S � δ ¤ T
a.s.,

pbq limKÒ8 supn PpsuptPr0,T s |Xrns
t | � |Xrn�1s

t | ¥ Kq � 0.

Assertion pbq is a straightforward consequence of (5) and Markov's inequality. To check asser-
tion paq, notice that, for any pS, S1q P Aδ,T , by BDG inequality,

E
����Xrn�1s

S1 �X
rn�1s
S

���� ¤ ||b||8δ � ||σ||8
?
δ � δ||f ||8 sup

0¤s¤T
E
�»
E

|ΦpXrns
s , µrnss , uq|dρpuq

�
. (6)

Then, by tightness, there exists a subsequence of pXrns, Xrn�1sqn that converges in distribution
to some pX,Y q in Dpr0, T s,R2q. In the rest of the proof, we work on this subsequence without
writing it explicitly for the sake of notation.

Step 3. In this step, we show that X � Y almost surely. Note that, since we work on a subse-
quence, this is not obvious. It is for this part of the proof that we need to restrict our processes to
a time interval of the form r0, T s. By Lemma 2.8, it is su�cient to prove that, for a subsequence,

E
�

sup
0¤s¤T

���Xrn�1s
s �Xrns

s

���� (7)

vanishes as n goes to in�nity. Indeed, (7) implies that, for another subsequence, sups¤T |Xrn�1s
s �

X
rns
s | converges to zero almost surely. Then, we can apply Skorohod representation theorem (see

Theorem 6.7 of Billingsley (1999)) to the following sequence�
Xrns, Xrn�1s

	
n

that converges in distribution in Dpr0, T s,R2q to pX,Y q. Thus we can consider, for n P N, random
variables pX̃rns, X̃rn�1sq (resp. pX̃, Ỹ q) having the same distribution as pXrns, Xrn�1sq (resp. pX,Y q)
for which the previous convergence is almost sure. In particular, we also know that sups¤T |X̃rn�1s

s �
X̃
rns
s | vanishes almost surely. Hence, by Lemma 2.8, the representing r.v. pX̃rns, X̃rn�1sq converges

a.s. to the representing r.v. pX̃, X̃q in Dpr0, T s,R2q. As a consequence X̃ � Ỹ almost surely, and so
X � Y almost surely.

Now let us prove (7). Let

urnsptq :� E
�

sup
0¤s¤t

���Xrn�1s
s �Xrns

s

���� .
By (5),

sup
nPN

urnsptq   8.

Let us �x some n P N� and consider a truncation function r
rns
t ¡ 0 whose values will be �xed later.

The same truncation argument used in Section 2.2 allows to prove that, for all 0 ¤ k ¤ n�1, t ¤ T,

urk�1sptq ¤CT
» t

0

�
p1 � rrnss qurkspsq � e�r

rns
s

�
ds� 2L

?
Turksptq
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¤CT
» t

0

�
p1 � rrnss qurkspsq � e�r

rns
s

�
ds� 1

2
urksptq.

where CT ¡ 0 does not depend on n thanks to (5). The second inequality above comes from the
fact that we �x the value of T ¡ 0 such that L

?
T   1{4.

Now, introducing Snptq :� °n
k�0 u

rks
t and summing the above inequality from k � 0 to k � n�1,

we have, for all t ¤ T,

Snptq ¤ CT � CT

» t
0

�
p1 � rrnss qSnpsqds� ne�r

rns
s s

	
ds� 1

2
Snptq,

where we have used that u
r0s
t ¤ CT and Sn�1ptq ¤ Snptq. This implies

Snptq ¤ CT � CT

» t
0

�
p1 � rrnss qSnpsqds� ne�r

rns
s

�
ds.

Let DT :� maxpsup
k¥0

sup
s¤T

|urkss |, CT , 1q   8, and introduce

Rnptq :� Snptq
pn� 1qDT e2

¤ e�2.

Consequently, for all t ¤ T,

Rnptq ¤ 1

n� 1
� CT

» t
0

�
p1 � rrnss qRnpsq � e�r

rns
s

�
ds.

Finally we choose r
rns
t :� � lnRnptq ¥ 2 and obtain for all t ¤ T,

Rnptq ¤ 1

n� 1
� CT

» t
0

p2 � lnRnpsqqRnpsqds ¤ 1

n� 1
� CT

» t
0

Rnpsq lnRnpsqds.

As before we apply Osgood's lemma. Let Mpxq :� ³e�2

x
1

�s ln sds � lnp� lnxq � ln 2. Then

�MpRnpT qq �Mp1{pn� 1qq ¤ CTT

or equivalently

RnpT q ¤ pn� 1q�e�CT T such that SnpT q ¤ CTn
1�e�CT T .

Lemma 2.7 above then implies that there exists a subsequence of purnsT qn that converges to 0 as
n goes to in�nity. This proves (7).

Step 4. Let us prove that a subsequence of pµrnsqn converges to some limit µ : t ÞÑ µt in the
following sense

sup
0¤t¤T

W1pµrnst , µtq ÝÑ
nÑ8

0,

where µt :� LpXtq for a.e. t ¤ T.

We prove this point by proving that the sequence of functions µrns : t ÞÑ µ
rns
t � LpXrns

t q P P1pRq
is relatively compact, using Arzelà-Ascoli's theorem.



X. Erny/McKean-Vlasov equations with locally Lipschitz coe�cients 13

To begin with, the de�nition of W1 and the same computation as the one used to obtain (6)
allows to prove that, for all s, t ¤ T, for all n P N,

W1pµrnst , µrnss q ¤ E
����Xrns

t �Xrns
s

���� ¤ C
�
|t� s| �

a
|t� s|

	
, (8)

for a constant C ¡ 0 independent of n.

This implies that the sequence µrns : t ÞÑ µ
rns
t is equicontinuous. In addition, by (5) we know that,

for every t ¤ T, the set pµrnst qn is tight, and whence relatively compact (in the topology of the weak

convergence, but not in P1pRq a priori). Indeed, for any ε ¡ 0, consideringMε :� supn E
�
|Xrns

t |
�
{ε,

we have, for all n,

µ
rns
t pRzr�Mε,Mεsq � P

�
|Xrns

t | ¡Mε

	
¤ 1

Mε
E
�
|Xrns

t |
�
¤ ε.

In particular, for every t ¤ T, we can consider a subsequence of pµrnst qn that converges weakly.
To prove that this convergence holds for the metric W1, we rely on the characterization piiiq of W1

given in De�nition 6.8, and Theorem 6.9 of Villani (2008). According to this result, the convergence

of the same subsequence of pµrnst qn for W1 follows from (5), Markov's inequality, Cauchy-Schwarz's
inequality and the fact that,

E
�
|Xrns

t |1!
|X

rns
t |¡R|

)
�
¤ 1

R
sup
kPN

E
�
|Xrks

t |
�
E
�
pXrks

t q2
�1{2

ÝÑ
RÑ8

0.

We can then conclude that, for all t ¤ T, the sequence pµrnst qn is also relatively compact on P1pRq.
Then, thanks to (8), Arzelà-Ascoli's theorem implies that the sequence pµrnsqn is relatively com-

pact. As a consequence, there exists a subsequence of pµrnsqn (as previously, we do not write this
subsequence explicitly in the notation) that converges to some µ : t ÞÑ µt P P1pRq in the following
sense

sup
0¤t¤T

W1pµrnst , µtq ÝÑ
nÑ8

0.

The last thing to show in this step is that µt � LpXtq for a.e. t ¤ T. By construction, µt is the

limit of µ
rns
t :� LpXrns

t q. Recalling that Xrns converges to X in distribution in Skorohod topology,
we know that for all continuity point t of s ÞÑ LpXsq, µt � LpXtq.

Step 5. Recall that, for a subsequence, pXrns, Xrn�1sqn converges to pX,Xq in distribution in
Dpr0, T s,R2q, and pµrnsqn (which is a sequence of deterministic and continuous functions from R� to
P1pRq) converges uniformly to µ on r0, T s. The aim of this step is to prove that pXrns, Xrn�1s, µrnsqn
converges to pX,X, µq in distribution in Dpr0, T s,R2 � P1pRqq. We consider µrns in the previous
distribution even though it is deterministic, because the important point in the convergence we
want to prove is that µrns must converge w.r.t. the same sequence of time-changes as the one
of pXrns, Xrn�1sq to be able to apply Lemma 2.9 almost surely. In particular, it is important to
have convergence in the topology of Dpr0, T s,R2 � P1pRqq rather than in the weaker topology
Dpr0, T s,R2q � P1pRq.

As µ is continuous, we have that, for any sequence of time-changes pλnqn the convergence

sup
0¤t¤T

W1pµrnst , µλnptqq ÝÑnÑ8
0. (9)
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By Skorohod's representation theorem, we can assume that some representative r.v. pX̃rns, X̃rn�1sq
of pXrns, Xrn�1sq converges a.s. to representative r.v. pX̃, X̃q of pX,Xq in Dpr0, T s,R2q. This implies
that, almost surely, there exists a sequence of time-changes pλnqn such that

sup
0¤t¤T

���X̃rns
t � X̃λnptq

��� and sup
0¤t¤T

���X̃rn�1s
t � X̃λnptq

���
vanish as n goes to in�nity. So, by (9), almost surely, there exists a sequence of time-changes pλnqn
such that

sup
0¤t¤T

d
��
X̃
rns
t , X̃

rn�1s
t , µrnsst

	
,
�
X̃λnptq, X̃λnptq, µλnptq

	�
ÝÑ
nÑ8

0,

with drpx, y,mq, px1, y1,m1qs � |x � x1| � |y � y1| � W1pm,m1q. In particular, we know that the
sequence pX̃rns, X̃rn�1s, µrnsqn converges to pX̃, X̃, µq almost surely in Dpr0, T s,R2 � P1pRqq. This
implies that pXrns, Xrn�1s, µrnsqn converges to pX,X, µq in distribution in Dpr0, T s,R2 � P1pRqq.

Step 6. This step concludes the proof, showing that X is solution to (1). In order to prove that X
is solution to (1), we use the fact that, using the notation of De�nitions II.2.6 and II.2.16 of Jacod
and Shiryaev (2003), Xrn�1s is a semimartingale with characteristics pBrn�1s, Crn�1s, νrn�1sq given
by

B
rn�1s
t �

» t
0

bpXrns
s , µrnss qds,

C
rn�1s
t �

» t
0

σpXrns
s , µrnss q2ds,

νrn�1spdt, dxq �fpXrns
t , µ

rns
t qdt

»
E

δ
ΦpX

rns
t ,µ

rns
t ,uq

pdxqdρpuq.

Let us note that, above, we have chosen as truncation function h � 0, hence the modi�ed second
characteristics C̃rn�1s is the same as Crn�1s.

Recall that, in Step 5, we have shown that, for a subsequence, pXrns, Xrn�1s, µrnsqn converges
in distribution in Dpr0, T s,R2 � P1pRqq to pX,X, µq. Using once again Skorohod's representation
theorem, we can consider representative r.v. for which the previous convergence is almost sure.
Whence, by Lemma 2.9, for all g P CbpRq, the following convergences hold almost surely for the
representative r.v. and hence in distribution:�

Xrn�1s, Brn�1s, Crn�1s
	

LÝÑ
nÑ�8

�
X,

» �
0

bpXs, µsqds,
» �

0

σpXs, µsq2ds


,�

Xrn�1s,

»
r0,�s�R

gpxqνrn�1spds, dxq
�

LÝÑ
nÑ�8

�
X,

» �
0

»
E

gpΦpXs, µs, uqqfpXs, µsqdρpuqds


,

where the convergences hold respectively in the spaces DpR�,R3q and DpR�,R2q.
Then, Theorem IX.2.4 of Jacod and Shiryaev (2003) implies that X is a semimartingale with

characteristics pB,C, νq given by

Bt �
» t

0

bpXs, µsqds,

Ct �
» t

0

σpXs, µsq2ds,
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νpdt, dxq �fpXt, µtqdt
»
E

δΦpXt,µt,uqpdxqdρpuq.

Then, we can use the canonical representation of X (see Theorem II.2.34 of Jacod and Shiryaev
(2003)): X � X0 � B � M c � Id � µX , where M c is a continuous locale martingale, µX �°
s 1t∆Ys�0uδps,Xsq is the jump measure of X (let us recall that we chose the truncation func-

tion h � 0) and pId � µXqt :� ³t
0

³
R xdµ

Xps, xq. By de�nition of the characteristics, xM cyt � Ct.
Whence, by Theorem II.7.1 of Ikeda and Watanabe (1989), there exists a Brownian motion W such
that

M c
t �

» t
0

σpXs, µsqdWs. (10)

In addition, we know that ν is the compensator of µX . We rely on Theorem II.7.4 of Ikeda and
Watanabe (1989). Using the notation therein, we introduce Z � R��E, mpdz, duq � dzρpduq and

θpt, z, uq :� ΦpXt�, µt�, uq1tz¤fpXt�,µt�qu.

According to Theorem II.7.4 of Ikeda and Watanabe (1989), there exists a Poisson measure π on
R� � R� � E having intensity dt � dz � dρpuq such that, for all A P BpRq,

µXpr0, ts �Aq �
» t

0

» 8
0

»
E

1tθps,z,uqPAudπps, z, uq.

This implies that

pId � µXqt �
»
r0,ts�R��E

ΦpXs�, µs�, uq1tz¤fpXs�,µs�qudπps, z, uq. (11)

Finally, recalling that X � X0 � B �M c � Id � µX , (10) and (11), we have just shown that X
is a weak solution to (1) on r0, T s.

2.4. Proof of Theorem 2.3

In Section 2.2, we have proven the (global) pathwise uniqueness of solutions of (1), and, in Sec-
tion 2.3, the existence of a weak solution of (1) on r0, T s, with T � 1{p16L2q.

Then, generalizations of Yamada-Watanabe results allows to construct a strong solution on r0, T s:
it is a consequence of Theorem 1.5 and Lemma 2.10 of Kurtz (2014) (see the discussion before
Lemma 2.10 or Example 2.14 for more details).

More precisely, given a Brownian motion W, a Poisson random measure π and an initial condi-
tion X0, there exists a strong solution pXtq0¤t¤T de�ned w.r.t. these W,π,X0. Then, one can con-
struct a strong solution pXtqT¤t¤2T on rT, 2T s de�ned w.r.t. the Brownian motion pWT�t�WT qt¥0,
the Poisson measure πT de�ned by

πT pA�Bq � πptT � x : x P Au �Bq,

and the initial condition XT . Iterating this reasoning, we can construct a strong solution of (1) on
r0, kT s for any k P N�, with T � 1{p16L2q ¡ 0. Hence, there exists a (global) strong solution of (1).
This proves Theorem 2.3.
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3. Propagation of chaos

In this section, we prove a propagation of chaos for McKean-Vlasov systems: Theorem 3.3. This
property in the globally Lipschitz case has been proven in Proposition 3.1 of Andreis, Dai Pra and
Fischer (2018). Let us introduce the N�particle system pXN,iq1¤i¤N

dXN,i
t �bpXN,i

t , µNt qdt� σpXN,i
t , µNt qdW i

t �
»
R��FN�

ΨpXN,i
t� , µNt�, v

iq1tz¤fpXN,it� ,µNt�qudπ
ipt, z, vq

� 1

N

Ņ

j�1

»
R��FN�

ΘpXN,j
t� , XN,i

t� , µNt�, v
j , viq1tz¤fpXN,jt� ,µNt�qudπ

jpt, z, vq, (12)

with µN :� N�1
°N
j�1 δXN,j , W

i (i ¥ 1) independent standard one-dimensional Brownian motions,

and πi (i ¥ 1) independent Poisson measures on R2
��FN� with intensity dt � dz � dνpvq, where F is

a measurable space, and ν is a σ��nite symmetric measure on FN� (i.e. ν is invariant under �nite
permutations).

In the following, we assume that b, σ and f satisfy the same conditions as in Assumption 1, and
that Ψ satis�es the same as Φ for some constant a ¡ 0, with E � FN� and ρ � ν. We also assume
that Θ satis�es similar conditions: for all x1, x

1
1, x2, x

1
2 P R, m1,m2 P P1pRq,»

FN�

»
R�

|Θpx1, x
1
1,m1, v

1, v2q1tz¤fpx1,m1qu � Θpx2, x
1
2,m2, v

1, v2q1tz¤fpx2,m2qu|dzdνpvq

¤ L

�
1 � |x1| � |x11| � |x2| � |x12| �

»
R
ea|x|dm1pxq �

»
R
ea|x|dm2pxq



�|x1 � x2| � |x11 � x12| �W1pm1,m2q

�
,

and

sup
x,x1PR,mPP1pRq

»
FN�

ea|Θpx,x
1,m,v1,v2q|dνpvq   8.

In addition, we assume that each XN,i
0 (i ¥ 1, N ¥ 1) satis�es the initial condition of Assump-

tion 1, and that, for every N P N�, the system pXN,i
0 q1¤i¤N is i.i.d.

We prove that these N�particles systems converge as N goes to in�nity to the following limit
system.

dX̄i
t �bpX̄i

t , µ̄tqdt� σpX̄i
t , µ̄tqdW i

t �
»
R��FN�

ΨpX̄i
t�, µ̄t�, v

iq1tz¤fpX̄it�,µ̄t�qudπ
ipt, z, vq

�
»
R

»
FN�

Θpx, X̄i
t , µ̄t, v

1, v2qfpx, µ̄tqdνpvqdµ̄tpxq, (13)

where µ̄t � LpX̄tq.We assume that the variables X̄i
0 (i ¥ 1) are i.i.d. and satisfy the initial condition

of Assumption 1.
Let us remark that the (strong) well-posedness of equation (13) is a consequence of Theorem 2.3

for the same σ, Ψ � Φ and for the drift

bpx,mq �
»
R

»
FN�

Θpy, x,m, v1, v2qfpy,mqdνpvqdmpyq.
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One can also prove the (strong) well-posedness of equation (12) using a similar reasoning as
the one used in the proof of Theorem 2.3. The only di�erence is for the Step 4 of the proof of
Proposition 2.11, since, for (12) the measure µN is not deterministic. Instead of proving that the
sequence of measures pµrnsqn constructed in the Picard scheme is relatively compact by Arzelà-
Ascoli's theorem, we rely exclusively on the following lemma whose proof is postponed to Appendix.

Lemma 3.1. Let N P N�, T ¡ 0, and pxkq1¤k¤N and pxknq1¤k¤N pn P Nq be càdlàg functions.
De�ne

µnptq :� N�1
Ņ

k�1

δxknptq and µptq :�
Ņ

k�1

δxkptq.

Let λn (n P N) be continuous, increasing functions satisfying λnp0q � 0, λnpT q � T , and that,
for any 1 ¤ k ¤ N ,

sup
0¤t¤T

��xknptq � xkpλnptqq
�� and sup

0¤t¤T
|t� λnptq|

vanish as n goes to in�nity. Then,

sup
0¤t¤T

W1 pµnptq, µpλnptqqq ÝÑ
nÑ8

0.

Remark 3.2. This lemma allows to prove that, if pxn, ynqn converges to px, yq in Dpr0, T s, pRN q2q,
then, the sequence pxn, yn, µnqn converges to px, y, µq in Dpr0, T s, pRN q2 � P1pRqq.

In the following, we assume that pXN,iq1¤i¤N and pX̄iqi¥1 are strong solutions of respec-
tively (12) and (13) de�ned w.r.t. the same Brownian motions W i (i ¥ 1) and the same Poisson
measures πi (i ¥ 1) such that all the systems are de�ned on the same space. In addition, we assume
that the following condition holds true

εN0 :� E
����XN,1

0 � X̄1
0

���� ÝÑ
NÑ8

0. (14)

Now let us state the main result of this section: the propagation of chaos of the N�particle
systems, that is, the convergence of the systems pXN,iq1¤i¤N to the i.i.d. system pX̄iqi¥1 as N goes
to in�nity. We comment the convergence speed in Remark 3.5.

Theorem 3.3. We have, for all T0 ¡ 0,

E
�

sup
0¤t¤T0

���XN,1
t � X̄1

t

���� ÝÑ
NÑ8

0.

Consequently, for all k ¥ 1, the following weak convergence holds true:

LpXN,1, XN,2, ..., XN,kq ÝÑ
NÑ8

LpX̄1q b LpX̄2q b ...b LpX̄kq,

in the product topology of the topology of the uniform convergence on every compact set.

Remark 3.4. We just state the result of Theorem 3.3 for the �rst coordinate because both systems
pXN,iq1¤i¤N and pX̄iqi¥1 are exchangeable.
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Remark 3.5. In the proof of Theorem 3.3, we obtain a convergence speed for

E
�

sup
0¤t¤T0

���XN,1
t � X̄1

t

���� ÝÑ
NÑ8

0

that depends on T0. Indeed, if T :� 1{p16L2q, the formula (16) below gives a convergence speed for

E
�

sup
0¤t¤T

���XN,1
t � X̄1

t

����

of the form

SN0 :� C1
�
εN0 �N�1{2

	C2

,

for some positive constants C1, C2, where εN0 is given at (14). And, for all k P N�, the convergence
speed SNk of

E

�
sup

kT¤t¤pk�1qT

���XN,1
t � X̄1

t

���
�

can be obtained inductively by

SNk � C1
�
SNk�1 �N�1{2

	C2

for the same constants C1, C2 for all k.

Before proving Theorem 3.3, let us state a lemma about some a priori estimates of the pro-
cess pXN,1

t qt¥0.

Lemma 3.6. For every N P N�, let pXN,iq1¤i¤N be the solution of (12). For any t ¥ 0,

(i) sup
NPN�

sup
0¤s¤t

E
�
ea|X

N,1
s |

�
  8 and sup

0¤s¤t
E
�
ea|X̄

1
s |
�
  8,

(ii) sup
NPN�

E
�

sup
0¤s¤t

|XN,1
s |

�
  8 and E

�
sup

0¤s¤t
|X̄1

s |
�
  8.

Sketch of proof of Lemma 3.6. We only give the main steps of the proof of the �rst part of the
point piq since the main part of the proof relies on the same computations as in the proof of
Lemma 2.4. The only new property of the lemma is the fact that the bounds has to be uniform
in N . This property is easy to prove for the point piiq of the lemma in this model because of the
normalization in N�1 of the jump term Θ of (12). For the point piq, as in the proof of Lemma 2.4,
we apply Ito's formula to both functions x ÞÑ eax and x ÞÑ e�ax, and then, one has to note that,
by exchangeability,

E
�
eaX

N,1
t

�
¤E

�
eX

N,1
0

�
� a||b||8

» t
0

E
�
eaX

N,1
s

�
ds� 1

2
a2||σ||28

» t
0

E
�
eaX

N,1
s

�
ds

� ||f ||8
» t

0

E
�
eaX

N,1
s

»
FN�

�
eaΨpXN,1s ,µNs ,v

1q � 1
	
dνpvq

�
ds

� pN � 1q||f ||8
» t

0

E
�
eaX

N,1
s

»
FN�

�
eaN

�1ΘpXN,2s ,XN,1s ,µNs ,v
1,v2q � 1

	
dνpvq

�
ds.
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So, the only term that does depend on N is the one of the last line that is bounded by

||f ||8
» t

0

E
�
eaX

N,1
s

»
FN�

N
�
eaN

�1|ΘpXN,2s ,XN,1s ,µNs ,v
1,v2q| � 1

	
dνpvq

�
ds

¤ ||f ||8
» t

0

E
�
eaX

N,1
s

�
ds sup
x,x1PR,mPP1pRq

»
FN�

ea|Θpx,x
1,m,v1,v2q|dνpvq,

where we have used the fact that, for all x ¥ 0, n P N�, npex{n � 1q ¤ ex.

Finally, Grönwall's lemma allows to obtain a bound of E
�
eaX

N,1
s

�
that is uniform in N . With

the same reasoning, we can obtain the same bound for E
�
e�aX

N,1
s

�
. This allows to have a bound

for E
�
ea|X

N,1
s |

�
uniform in N .

Remark 3.7. For the previous proof to be formal, we should have introduce stopping times as in
the proof of Lemma 2.4, do the computations above for the stopped processes, and then apply Fatou's
lemma to prove that the control obtained for the stopped processes still hold for the real process.

Proof of Theorem 3.3. We follow the ideas of Proposition 3.1 of Andreis, Dai Pra and Fischer
(2018). Instead of introducing an auxiliary system, we rewrite arti�cially the SDE (12) as

dXN,i
t �bpXN,i

t , µNt qdt� σpXN,i
t , µNt qdW i

t �
»
R��FN�

ΨpXN,i
t� , µNt�, v

iq1tz¤fpXN,it� ,µNt�qudπ
ipt, z, vq

�
»
R

»
FN�

Θpx,XN,i
t , µNt , v

1, v2qfpx, µNt qdνpvqdµNt pxq � dGNt ,

where

GNt � 1

N

Ņ

j�1

�»
r0,ts�R��FN�

ΘpXN,j
s� , XN,i

s� , µNs�, v
j , viq1tz¤fpXN,js� ,µNs�qudπ

jps, z, vq

�
» t

0

»
FN�

ΘpXN,j
s , XN,i

s , µNs , v
1, v2qfpXN,j

s , µNs qdνpvqds
�
.

Let us de�ne

uN ptq :� E
�

sup
0¤s¤t

��XN,1
s � X̄1

s

��� .
Let us note µ̄Nt :� N�1

°N
j�1 δX̄j . By triangle inequality and since for allm,m

1 P P1pRq,W1pm,m1q ¤
W2pm,m1q, we have for all t ¥ 0,

W1pµNt , µ̄tq ¤W1pµNt , µ̄Nt q �W1pµ̄Nt , µ̄tq ¤
1

N

Ņ

j�1

���XN,j
t � X̄j

t

����W2pµ̄Nt , µ̄tq.

Besides, using Theorem 1 of Fournier and Guillin (2015) with d � 1, p � 2 and any q ¡ 4 (and
using Lemma 3.6), we have

E
�
W2pµ̄Nt , µ̄tq

� ¤ CE
�|X̄t|q

�p{q
N�1{2 ¤ C

�
1 � E

�
ea|X̄t|

�	p{q
N�1{2 ¤ CtN

�1{2.
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As a consequence, and thanks to Lemma 3.6, for all t ¥ 0,

E
�

sup
0¤s¤t

W1pµNs , µsq
�
¤ uN ptq � CtN

�1{2.

Whence the same truncation arguments as the ones used in Sections 2.2 and 2.3 allows to prove
that, for all t ¤ T,

uN ptq ¤ uN p0q � CT

» t
0

�
p1 � rNs quN psq � e�r

N
s

�
ds� 2L

?
TuN ptq � E

�
sup

0¤s¤T
|GNs |

�
� CTN

�1{2,

where CT does not depend on N thanks to Lemma 3.6.
Now, �xing T � 1{p16L2q (such that 2L

?
T ¤ 1{2), we obtain

uN ptq ¤ 2uN p0q � CT

» t
0

�
p1 � rNs quN psq � e�r

N
s

�
ds� 2E

�
sup

0¤s¤T
|GNs |

�
� CtN

�1{2. (15)

To control the term GNs , we use BDG inequality,

E
�

sup
0¤t¤T

��GNt ��2
�
¤ C

N2

Ņ

j�1

E
�» t

0

»
FN�

ΘpXN,j
s , XN,i

s , µNs , v
j , viq2fpXN,j

s , µNs qdνpvqds
�
¤ CT

N
,

where we have used the boundedness conditions of the functions f and Θ, and the fact that the
Poisson measures πj (1 ¤ j ¤ N) are independent.

Hence, by Cauchy-Schwarz's inequality,

E
�

sup
0¤t¤T

��GNt ��
�
¤ CTN

�1{2.

Then we can rewrite (15) as

uN ptq ¤ 2uN p0q � CT

» t
0

�
p1 � rNs quN psq � e�r

N
s

�
ds� CTN

�1{2.

Now, let DT :� maxpCT , supN sups¤T u
N psq, 1q which is �nite by Lemma 3.6.piiq, and de�ne

vN ptq :� uN ptq
DT e2

¤ e�2.

Choosing rNt :� � ln vN ptq, we have for all 0 ¤ t ¤ T,

vN ptq ¤2vN p0q � CT

» t
0

p2 � ln vN psqqvN psqds� CT?
N

¤2vN p0q � 2CT

» t
0

vN psq ln vN psqds� CT?
N
,

and Osgood's lemma allows to conclude that

�MpvpT qq �Mp2vN p0q � CTN
�1{2q ¤ 2CTT,
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where Mpxq � ³e�2

x
1

�s ln sds � lnp� lnxq � ln 2. This implies that

lnp� lnp2vN p0q � C1
TN

�1{2qq � lnp� ln vN ptqq ¤ C2
T ,

for some constants C1
T , C

2
T ¡ 0, where we distinguish C1

T and C2
T for clarity. This implies that, for

all 0 ¤ t ¤ T,

vN ptq ¤
�

2vN p0q � C1
TN

�1{2
	expp�C2

T q

. (16)

Hence

E
�

sup
0¤t¤T

���XN,1
t � X̄1

t

���� ÝÑ
NÑ8

0,

for a T ¡ 0 su�ciently small that does not depend on the initial conditions (recalling that we have
taken T � 1{p16L2q). Then, iterating this reasoning on rT, 2T s, we can prove

E
�

sup
T¤t¤2T

���XN,1
t � X̄1

t

���� ÝÑ
NÑ8

0,

noticing that the "initial conditions" on rT, 2T s satisfy the same condition as (14):

εNT :� E
����XN,1

T � X̄1
T

���� ÝÑ
NÑ8

0.

Finally, by induction, we can prove that for all k P N�,

E
�

sup
0¤t¤kT

���XN,1
t � X̄1

t

���� ÝÑ
NÑ8

0,

which proves the result.

4. Appendix

4.1. Osgood's lemma

We have used many times a generalization of Grönwall's lemma, which is Osgood's lemma. Let
us write it explicitly for self-containedness (see e.g. Lemma 3.4 of Bahouri, Chemin and Danchin
(2011)).

Lemma 4.1. Let % be a measurable function from rt0, T s to r0, bs, γ a locally integrable function
from rt0, T s to R�, and µ a continuous and non-decreasing function from r0, bs to R�. Suppose that
for all t P rt0, T s and for some c Ps0, br,

%ptq ¤ c�
» t
t0

γpsqµp%psqqds.

Then, with Mpxq :� ³b
x

ds
µpsq ,

�Mp%ptqq �Mpcq ¤
» t
t0

γpsqds.
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4.2. Proof of Lemma 2.7

We construct an increasing sequence of positive integers pnkqk¥1 such that for all k P N�,

unk ¤ Cn
�ε{2
k . (17)

Let n1 � 1. By hypothesis, u1 � S1 ¤ C. Let k P N�, assume that the k �rst terms of the sequence
n1, ..., nk are de�ned such that (17) holds. Then we put nk�1 :� mintn ¡ nk : un ¤ Cn�ε{2u. We
only have to prove that the above set is not empty. This is shown by contradiction. If the set was
empty, this would imply that for all n ¡ nk, un ¡ Cn�ε{2. Consequently, for all n ¡ nk,

Sn � Snk �
ņ

i�nk�1

ui ¡ Snk � C
ņ

i�nk�1

i�ε{2 ¥ Snk � C

» n�1

nk�1

dt

tε{2

� Snk �
C

1 � ε{2 pn� 1q1�ε{2 � C

1 � ε{2 pnk � 1q1�ε{2.

Letting n Ñ 8 in the above inequality we see that it is in contradiction with the hypothesis that
for all n P N�, Sn ¤ Cn1�ε.

4.3. Proof of Lemma 2.8

By hypothesis, there exists a sequence of increasing and continuous functions λn such that λnp0q � 0,
λnpT q � T, and that both

sup
0¤t¤T

|xnptq � xpλnptqq| and sup
0¤t¤T

|t� λnptq|

vanish as n goes to in�nity.
To prove the lemma, it is su�cient to prove that pynqn converges to x in the same sense as

above with the same sequence of time-changes pλnqn. It is a direct consequence of the fact that, for
all 0 ¤ t ¤ T,

|ynptq � xpλnptqq| ¤ |ynptq � xnptq| � |xnptq � xpλnptqq|.

4.4. Proof of Lemma 2.9

The proof relies on the following inequalities: for any 0 ¤ t ¤ T�����
» t

0

xnpsq �
» λnptq

0

xpsqds
�����

¤
» t

0

|xnpsq � xpλnpsqq|ds�
» t

0

|xpλnpsq � xpsq|ds�
�����
» t

0

xpsqds�
» λnptq

0

xpsqds
�����

¤ T sup
0¤s¤T

|xnpsq � xpλnpsqq| �
» T

0

|xpλnpsqq � xpsq|ds� sup
0¤s¤T

|xpsq| � sup
0¤s¤T

|s� λnpsq|.

To conclude the proof, one has to notice that the three terms above do not depend on t and
vanish as n goes to in�nity.
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4.5. Proof of Lemma 3.1

The proof consists in noticing that, for all t ¤ T,

W1pµnptq, µpλnptqqq ¤ 1

N

Ņ

k�1

��xknptq � xkpλnptqq
�� .
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