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Abstract

Inferring the parameters of a stochastic model based on experimental observations
is central to the scientific method. A particularly challenging setting is when the
model is strongly indeterminate, i.e. when distinct sets of parameters yield identical
observations. This arises in many practical situations, such as when inferring the
distance and power of a radio source (is the source close and weak or far and
strong?) or when estimating the amplifier gain and underlying brain activity of
an electrophysiological experiment. In this work, we present hierarchical neural
posterior estimation (HNPE), a novel method for cracking such indeterminacy
by exploiting additional information conveyed by an auxiliary set of observations
sharing global parameters. Our method extends recent developments in simulation-
based inference (SBI) based on normalizing flows to Bayesian hierarchical models.
We validate quantitatively our proposal on a motivating example amenable to
analytical solutions and then apply it to invert a well known non-linear model from
computational neuroscience.

1 Introduction

Simulation-based inference (SBI) has the potential to revolutionize experimental science as it opens
the door to the inversion of arbitrary complex non-linear computer models, such as those found in
physics, biology, or neuroscience (Cranmer et al., 2020). The only requirement is to have access
to a mathematical model implemented as a simulator. When applied to biophysical models and
simulators in neuroscience (e.g. Leon et al. 2013), it could estimate properties of the brain closer to
the cellular level, thus closing the gap between the neuroimaging and computational neuroscience
communities. Grounded in Bayesian statistics, recent SBI techniques profit from recent advances in
deep generative modeling to approximate the posterior distributions over the full simulator parameters.
Their intrinsic quantification of uncertainties reveals whether certain parameters are worth (or not)
scientific interpretation given some experimental observation.

SBI is concerned with the estimation of a conditional distribution over parameters of interest θ. Given
some observation x0, the goal is to compute the posterior p(θ|x0). It generally happens that some of
these parameters are strongly coupled, leading to very structured posteriors with low dimensional
sets of equally likely parameters values. For example, this happens when the data generative process
depends only on the products of some parameters: multiplying one of such parameters by a constant
and another by its inverse will not affect the output. Performing Bayesian inference on such models
naturally leads to a “ridge” or “banana shape” in the posterior landscape, as seen e.g. in Figure 4 of
Gonçalves et al. (2020). More formally the present challenge is posed as soon as the model likelihood

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



function is non-injective w.r.t. θ, and is not strictly due to the presence of noise on the output
observations. In statistics and econometrics literature, such models are called partially identified
models (Gustafson, 2014).

To alleviate the ill-posedness of the estimation problem, one may consider a hierarchical Bayesian
model (Gelman and Hill, 2007) where certain parameters are shared among different observations. In
other words, the model’s parameters θi for an observation xi are partitioned into θi = {αi,β}, where
αi is a set of sample specific (or local) parameters, and β corresponds to shared (or global) parameters.
For this broad class of hierarchical models, the posterior distribution for a set X = {x1, . . . , xN} of
N observations can be written as (Tran et al., 2017):

p(α1, . . . ,αN ,β|X ) ∝ p(β)
N∏
i=1

p(xi|αi,β)p(αi|β). (1)

Hierarchical models share statistical strength across observations, hence resulting in sharper posteriors
and more reliable estimates of the (global and local) parameters and their uncertainty. Examples
of applications of hierarchical models are topic models (Blei et al., 2003), matrix factorization
algorithms (Salakhutdinov et al., 2013), including Bayesian non-parametrics strategies (Teh and
Jordan, 2010), and population genetics (Bazin et al., 2010).

In this work, we further assume that the likelihood function p(xi|αi,β) is implicit and intractable,
which implies that traditional MCMC methods can not be used to estimate the posterior distribution.
This setup leads to so-called likelihood-free inference (LFI) problems and many algorithms (Papa-
makarios and Murray, 2016; Greenberg et al., 2019; Hermans et al., 2020; Durkan et al., 2020b) have
recently been developed to carry out inference under this scenario. These methods all operate by
learning parts of the Bayes’ rule, such as the likelihood function, the likelihood-to-evidence ratio,
or the posterior itself. Approaches for LFI in hierarchical models exist, but are limited. Bazin et al.
(2010) extend approximate Bayesian computation (ABC) into a two-step procedure in which local
and global variables are estimated. Tran et al. (2017) adapt variational inference to hierarchical
implicit models using a GAN-like training approach, while Brehmer et al. (2019) and Hermans et al.
(2020) extend amortized likelihood ratios to deal with global parameters, but cannot do inference on
local parameters. Motivated by the posterior estimates of individual samples, we consider a sequential
neural posterior estimation approach derived from SNPE-C (Greenberg et al., 2019).

The paper is organized as follows. First, we formalize our estimation problem by introducing
the notion of global and local parameters, and instantiate it on a motivating example amenable to
analytic posterior estimates allowing for quantitative evaluation. Then, we propose a neural posterior
estimation technique based on a pair of normalizing flows and a deepset architecture (Zaheer et al.,
2017) for conditioning on the set X of observations sharing the global parameters; we call our method
‘hierarchical neural posterior estimation’, or simply HNPE. Results on an application with time
series produced by a non-linear model from computational neuroscience (Ableidinger et al., 2017)
demonstrate the gain in statistical power of our approach thanks to the use of auxiliary observations.
We also use this model to analyse real brain signals, giving a full demonstration of the power of LFI
to relate parameters from theoretical models to real experimental recordings.

2 Hierarchical models with global parameters

Motivating example. Consider a stochastic model with two parameters, α and β, that generates
as output x = αβ + ε, where ε ∼ N (0, σ2). We assume that both parameters have uniform prior
distribution α, β ∼ U [0, 1] and that σ is known and small. Our goal is to obtain the posterior
distribution of (α, β) for a given observation x0 = α0β0+ε. This simple example describes common
situations where indeterminacy emerges. For instance, x0 could be the radiation power measured by
a sensor, α the intensity of the emitting source, and β the inverse squared distance of the sensor to
the source. In this case, a given measurement may have been due to either close weak sources (α ↓
and β ↑) or far strong ones (α ↑ and β ↓). Using Bayes’ rule and considering σ small we can write
(see Appendix A for more details)

p(α, β|x0) ≈
e−(x0−αβ)2/2σ2

√
2πσ2

1[0,1](α)1[0,1](β)

log(1/x0)
, (2)

where 1[a,b](x) is an indicator function that equals one for x ∈ [a, b] and zero elsewhere. Note that the
first term in the product converges to δ(x0−αβ) as σ → 0 and that the joint posterior distribution has
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an infinite number of pairs (α, β) with the same probability, revealing the parameter indeterminacy
of this example. Indeed, for x ∈ [0, 1] and β ∈ [x, 1], all pairs of parameters ( xβ , β) yield the same
observations and the likelihood function p(·| xβ , β) is constant. Thus, the posterior distribution has
level sets with a ridge or “banana shape” along these solutions. The top row of Figure 1 on Figure 1
portrays the joint and the marginal posterior distributions when (α0, β0) = (0.5, 0.5) and σ = 0.

Exploiting the additional information in X . Our motivating example illustrates a situation where
two parameters are related in such a way that one may not be known without the other. In practice,
however, it is possible that one of these parameters is shared with other observations. For instance,
this is the case when a single source of radiation is measured with multiple sensors located at different
unknown distances. The power of the source is fixed across multiple measurements and its posterior
can be better inferred by aggregating the information from all sensors. Our goal in this section is to
formalize such setting so as to leverage this additional information and obtain a posterior distribution
that ‘breaks’ parameter indeterminacy. Note that the root cause of the statistical challenge here is not
the presence of noise, but rather the intrinsic structure of the observation model.

To tackle the inverse problem of determining the posterior distribution of parameters (α0,β) given
an observation x0 of a stochastic model, we consider the following scenario. We assume that the
model’s structure is such that α0 is a parameter specific to each observation (local), while β is shared
among different observations (global). Yet, both are unknown. We consider having access to a set
X = {x1, . . . , xN} of additional observations generated with the same β as x0.

Taking the model’s hierarchical structure into account we use Bayes’ rule to write

p(α0,β|x0,X ) = p(α0|β, x0,X )p(β|x0,X )
∝ p(α0|β, x0)p(x0,X|β)p(β)
∝ p(α0|β, x0)p(β)

∏N
i=0 p(xi|β)

∝ p(α0,β|x0)p(β)−N
∏N
i=1 p(β|xi)

(3)

which shows how the initial posterior distribution p(α0,β|x0) is modified by additional observations
from X sharing the same β as x0. In Section 3, we present a strategy for approximating such
posterior distribution when the likelihood function of the stochastic model of interest is intractable
and, therefore, the posterior distributions p(α0|β, x0) and p(β|x0,X ) have to be approximated with
conditional density estimators.

Motivating example with multiple observations. We now detail the effect of X on the posterior
distribution of our motivating example. The N + 1 observations in {x0} ∪ X are such that xi =
αiβ0 + ε for i = 0, . . . , N with αi ∼ U [0, 1] drawn from the same prior. The posterior distribution
may be written as (see Appendix A)

p(α0, β|x0,X ) ≈ p(α0, β|x0)
1[µ,1](β)

βN
N log(1/x0)

(1/µN − 1)
, (4)

where µ = max({x0} ∪ X ). This expression shows how the initial full posterior distribution (2)
changes with the extra information conveyed by X . It can be also shown that asN → 0 (no additional
observations) the posterior distribution converges back to p(α0, β|x0). Figure 1 portrays the joint
and marginal posterior distributions with N = 10 and N = 100.

3 HNPE : neural posterior estimation on Bayesian hierarchical models

When the likelihood function of the stochastic model is intractable, MCMC methods commonly
used for posterior estimation are not applicable, since they depend on the evaluation of likelihood
ratios, which are not available analytically nor numerically. To bypass such difficulty, we employ
tools from likelihood-free inference (LFI) to directly estimate an approximation to the posterior
distribution using a conditional neural density estimator trained over simulations of the model. In what
follows, we present a novel neural network architecture for approximating the posterior distribution
of a hierarchical model with global parameters based on normalizing flows. We also describe the
training procedure for learning the parameters of the network using a multi-round procedure known
as sequential neural posterior estimation or SNPE-C (Greenberg et al., 2019).
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Figure 1: Results on the motivating example from Section 2 with σ = 0. (Left) Plots of the analytic
(black) and approximated (red) posterior distributions; the ground truth values α0 and β0 which
generate x0 are indicated with dashed lines. Approximations are obtained using the strategy described
in Section 3 with R = 5 rounds of n = 104 simulations from the model. We observe that adding
N = 10 and N = 100 observations to X significantly reduces uncertainty over the estimates of α0

and β0. (Right) Evolution of the Sinkhorn divergenceWε between the analytic posterior distribution
p(θ|x0,X ) and our approximation qφ trained with an increasing number of simulations per round.
The larger the simulation budget, the closer the learned posterior is to the analytic one for any number
of extra observations. Sequential refinement of the posterior (dash) improves the approximation.

3.1 Approximating the posterior distribution with two normalizing flows

We approximate p(α0,β|x0,X ) based on its factorization (3) as follows:
p(β|x0,X ) ≈ qφ1

(β|x0, fφ3
(X ))

p(α0|β, x0) ≈ qφ2
(α0|β, x0)

(5)

where qφ1 and qφ2 are normalizing flows, i.e., invertible neural networks capable of transforming
data points sampled from a simple distribution, e.g. Gaussian, to approximate any probability density
function (Papamakarios et al., 2019). The function fφ3 is a deepset neural network (Zaheer et al.,

2017) structured as fφ3
(X ) = g

φ
(1)
3

(
1
N

∑N
i=1 hφ(2)

3
(xi)

)
, where h is a neural network parametrized

by φ(1)
3 that generates a new representation for the data points in X and g is a network parametrized

by φ(2)
3 that processes the average value of the embeddings. Note that this aggregation step is crucial

for imposing the invariance to permutation of the neural network. It would also be possible to
choose other permutation invariant operations, such as the maximum value of the set or the sum of
its elements, but we have observed more stable performance on our experiments when aggregating
the observations by their average. It is possible to show that fφ3 is an universal approximator
invariant to the ordering of its inputs (Zaheer et al., 2017). Such property is important for our setting
because the ordering of the extra observations in X should not influence the approximation of the
posterior distribution. We refer to our approximation either by its factors qφ1

and qφ2
or by qφ with

φ = {φ1,φ2,φ3}.
Estimating φ. We estimate φ by minimizing the average Kullback-Leibler divergence between the
posterior distribution p(α0,β|x0,X ) and qφ(α0,β|x0,X ) for different x0 and X :

min.
φ

Ep(x0,X )

[
KL(p(α0,β|x0,X )‖qφ(α0,β|x0,X ))

]
,

where KL(p‖qφ) = 0 if, and only if, p(α0,β|x0,X ) = qφ(α0,β|x0,X ). We may rewrite the
optimization problem in terms of each of its parameters to get

min.
φ1,φ2,φ3

Lα(φ2) + Lβ(φ1,φ3) (6)
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with
Lα(φ2) = −Ep(x0,X ,α0,β) [log(qφ2(α0|β, x0)] ,

Lβ(φ1,φ3) = −Ep(x0,X ,α0,β) [log(qφ1
(β|x0, fφ3

(X )))] .

Training from simulated data. In practice, we minimize the objective function in (6) using a
Monte-Carlo approximation with data points generated using the factorization p(x0,X ,α0,β) =

p(β)
∏N
i=0 p(xi|αi,β)p(αi|β) where p(αi,β) = p(αi|β)p(β) is a prior distribution describing

our initial knowledge about the parameters, and p(xi|αi,β) is related to the stochastic output
of the simulator for a given pair of parameters (αi,β). More concretely, the training dataset
is generated as follows: First, sample a set of parameters from the prior distribution such that
(αji ,β

j) ∼ p(αi,β) with j = 1, . . . , n and i = 0, . . . , N . Then, for each (i, j)-pair, generate
an observation from the stochastic simulator xji ∼ p(x|αji ,βj) so that each observation xj0 is
accompanied by its corresponding N extra observations X j = {xj1, . . . , xjN}. The losses Lα and Lβ

are then approximated by

Lnα = − 1
n

∑n
j=1 log(qφ2

(αj0|βj , xj0)) and Lnβ = − 1
n

∑n
j=1 log(qφ1

(βj |xj0, fφ3
(X j))) .

3.2 Refining the approximation with multiple rounds

The optimization strategy above minimizes the KL divergence between the true posterior distribution
p and the approximation qφ, on average, for all possible values of x0 and X . This is sometimes called
amortization, since the posterior distribution is expected to be well approximated for every possible
observation. However, when the observed data is scarce and/or difficult to obtain or simulations of
the model are costly, it might be useful to focus the capacity of qφ to better estimate the posterior
distribution for a specific choice of x̃0 and X̃ .

We target the approximation qφ to x̃0 and X̃ using an adaptation to SNPE-C (Greenberg et al.,
2019). This algorithm uses a multiround strategy in which the data points used for minimizing
the loss function L and obtaining parameters φ(r) at round r are obtained from simulations with
α0,β ∼ qφ(r−1)(α0,β|x̃0, X̃ ). At round r = 0, parameters α0 and β are generated from their prior
distributions, which boils down to the procedure described in Section 3.1. Note that an important
point is that for the different rounds, the extra observations X should be simulated with the parameters
αji drawn from the original prior distribution p(αi|β), since the posterior distribution returned by
the multi-round procedure is only targeted for observation x̃0. We refer the reader to Greenberg et al.
(2019) for further details on the usual SNPE-C procedure, notably a proof of convergence (which
extends to our case) of the targeted version of qφ to the correct posterior density p(α0,β|x̃0, X̃ )
as the number of simulations per round tends to infinity. Algorithm 1 describes the procedure for
obtaining q(α0,β|x̃0, X̃ ) after R rounds of n simulations.

Algorithm 1: Sequential posterior estimation for hierarchical models with global parameters

Input :observation x̃0, X̃ , prior p(0), simulator S
1 for round r = 1 to R do
2 for sample j = 1 to n do
3 Draw xj0 = S(αj0,β) for (αj0,β

j) ∼ p(r−1);
4 Draw a set of extra observations X j =

{
S(αji ,βj) for αji ∼ p(0)(·|βj)

}N
i=1

;
5 Train qφ(r) to minimize Lnα + Lnβ;
6 Set next proposal p(r) = qφ(r)(·|x̃0, X̃ );
7 return posterior qφ(R)(·|x̃0, X̃ )

4 Experiments

All experiments described next are implemented with Python (Python Software Fundation, 2017)
and the sbi package (Tejero-Cantero et al., 2020) combined with PyTorch (Paszke et al., 2019),
Pyro (Bingham et al., 2018) and nflows (Durkan et al., 2020a) for posterior estimation1. In all

1Code is available in the supplementary materials.
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Figure 2: Results on the mo-
tivating example described
in Section 2 (σ = 0.05). We
see that the marginal pos-
teriors get sharper around
the ground truth parameter
when more observations are
available.

experiments, we use the Adam optimizer (Kingma and Ba, 2014) with default parameters, a learning
rate of 5.10−4 and a batch size of 100. The code required for reproducing most of the results presented
in the paper is available at https://github.com/plcrodrigues/HNPE

4.1 Results on the motivating example

To evaluate the impact of leveraging multiple observations when estimating the parameters of a
hierarchical model, we use the model presented in Section 2, where the observation x0 is obtained as
the product of two parameters α0 and β0 with independent uniform prior distributions in [0, 1] (we
consider the case where σ = 0). The set of extra observations X = {xi}Ni=1 is obtained by fixing the
same global parameter β0 for all xi and sampling local parameters αi from the prior distribution.

Our approximation to the posterior distribution consists of two conditional neural spline flows of
linear order (Durkan et al., 2019), qφ1

and qφ2
, both conditioned by dense neural networks with one

layer and 20 hidden units. We use neural spline flows because of the highly non-Gaussian aspect of
the analytic marginal posterior distributions, which can be well captured by this class of normalizing
flows. In general, however, the true posterior distribution is not available, so using other classes
of normalizing flows might be justifiable, especially if one’s main goal is simply to identify a set
of parameters generating a given observation. We set the function fφ3 to be simply an averaging
operation over the elements of X as the observations in this case are scalar, so the only parameters to
be learned in Algorithm 1 are φ1 and φ2.

We first illustrate in Figure 1 the analytic posterior distribution p(α, β|x0,X ) and the approximation
qφ(α, β|x0,X ) with an increasing number of extra observations (N = 0, 10, 100). For N = 0, i.e.
only x0 is available, we observe a ridge shape in the joint posterior distribution, which is typical of
situations with indeterminacies where all solutions ( xβ , β) have the same probability. The addition
of a few extra observations resolves this indeterminacy and concentrates the analytic posterior
distribution on a reduced support [x0,min(1, x0

µ )]× [µ; 1], where µ = max({x0} ∪ X ). Moreover,
on this support, the solutions are no longer equally probable due to the β−N factor that increases the
probability of solutions close to µ. Also note that our estimated posterior is close to the analytic one
in all cases.

To have a quantitative evaluation of the quality of our approximations qφ, in Figure 1 we plot
the Sinkhorn divergence (Feydy et al., 2019) Wε for ε = 0.05 between the analytical posterior
p(α, β|x0,X ) and our approximation for different numbers of simulations per round (cf. Algorithm 1).
The curves display the median value for nine different choices of (α0, β0) and the transparent area
represent the first and the third quartiles. As expected, we note that as the number of simulations per
round increases, the approximation gets closer to the analytic solution. The figure also confirms the
intuition that, in general, the sequential refinement of multiple rounds leads to better approximations
of the true posterior distribution for a fixed observation.

Our next analysis assesses how the posterior approximation concentrates around a given point in
the (α0, β) space as the number of extra observations N increases. In Figure 2, we display the
Wasserstein distances between the marginals of the learned posterior distribution and a Dirac at the
ground truth values generating the observation x0; we consider the results on nine different choices
of (α0, β0) but display only the median results. We see that the distance to the Dirac for the global
parameter β decreases as more observations are added toX , but for the local parameter α0 it stabilizes
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Figure 3: Posterior esti-
mates for the parameters of
the neural mass model ob-
tained on 8 s of data sampled
at 128 Hz and simulated us-
ing C = 135, µ = 220,
σ = 2000, and g = 0 (rep-
resented with black dots in
the figure). We observe that
the concentration of the pos-
terior distribution around a
Dirac converges to a lower
bound when N grows, re-
flecting an intrinsic uncer-
tainty in the parameter es-
timation that cannot be re-
duced with more observa-
tions.

on a lower bound. This happens because β is observed several times and, therefore, expected to be
well estimated, whereas the local parameter is obtained “through the lens” of the estimated β with
information from a single observation x0 corrupted by additive noise (α0 ≈ x0/β). We compare our
method (HNPE) with three other approaches: a naive posterior estimation using a single normalizing
flow with the same capacity as the approximation with qφ1

and qφ2
, i.e. two layers with 20 hidden

units each, in which we stack the observations from x0 and the average from those in X as context
variables, the hierarchical ABC (h-ABC) proposed in Bazin et al. (2010) and the likelihood-free
variational inference (LFVI) presented in Tran et al. (2017). The flow-based approaches are trained
with R = 5 rounds of 104 simulations and h-ABC has the same simulation budget with acceptance
rate of 1%. We see that the naive approach has very similar performance to HNPE, mainly due to the
low dimensionality of the example being considered (in Section 4.2 we show an example where the
naive architecture has similar performance to HNPE as well but taking much longer to train). LFVI
captures well the global parameter as N increases, but it performs poorly for the local parameter.
Indeed, we have not found any evidence in the literature showing that LFVI could well estimate
local parameters. For instance, all examples in Tran et al. (2017) involve only global variables. The
posterior estimated with h-ABC does not concentrate for any of the parameters, which indicates that
it would probably need a larger simulation budget to attain results comparable to the other methods.

4.2 Inverting a non-linear model from neuroscience

We consider a class of non-linear models from computational neuroscience known as neural mass
models (Jansen and Rit, 1995) (NMM). These models of cortical columns consist of a set of physi-
ologically motivated stochastic differential equations able to replicate oscillatory electrical signals
observed with electroencephalography (EEG) or using intracranial electrodes (Deco et al., 2008).
Such models are used in large-scale simulators (Sanz Leon et al., 2013) to generate realistic neural
signals oscillating at different frequencies and serve as building blocks for several simulation studies
in cognitive and clinical neuroscience (Aerts et al., 2018). In what follows, we focus in the stochastic
version of such models presented in Ableidinger et al. (2017) and use the C++ implementation in the
supporting code of Buckwar et al. (2019). In simple terms, the NMM that we consider may be seen
as a generative model taking as input a set of four parameters and generating as output a time series
x. The parameters of the neural mass model are:

• C, which represents the degree of connectivity between excitatory and inhibitory neurons in
the cortical column modelled by the NMM. This connectivity is at the root of the temporal
behavior of x and only certain ranges of values generate oscillations.

• µ and σ model the statistical properties of the incoming oscillations from other neighbouring
cortical columns. They drive the oscillations of the NMM and their amplitudes have a direct
effect on the amplitude of x.
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• g represents a gain factor relating the amplitude of the physiological signal s generated
by the system of differential equations for a given set (C, µ, σ), and the electrophysiology
measurements x, expressed in Volts.

The reader is referred to Appendix B for the full description of the stochastic differential equations
defining the neural mass model.

Note that the NMM described above suffers from indeterminacy: the same observed signal x0 could
be generated with larger (smaller) values of g and smaller (larger) values of µ and σ. Fortunately,
it is common to record several chunks of signals within an experiment, so other auxiliary signals
x1, . . . , xN obtained with the same instrument setup (and, therefore, the same gain g) can be exploited.
Using the formalism presented in Section 3, we have that α = (C, µ, σ) and β = g.

In what follows, we describe the results obtained when approximating the posterior distribution
p(C, µ, σ, g|x0,X ) with Algorithm 1 using R = 2 rounds and n = 50000 simulations per round.
Each simulation corresponds to 8 seconds of a signal sampled at 128 Hz, so each simulation out-
puts a vector of 1024 samples. The prior distributions of the parameters are independent uniform
distributions defined as:

C ∼ U(10, 250) µ ∼ U(50, 500) σ ∼ U(0, 5000) g ∼ U(−30,+30)

where the intervals were chosen based on a review of the literature on neural mass models (Jansen
and Rit, 1995; David and Friston, 2003; Deco et al., 2008). Note that the gain parameter g is given in
decibels (dB), which is a standard scale when describing amplifiers in experimental setups. We have,
therefore, that x(t) = 10g/10s(t).

It is standard practice in likelihood-free inference to extract summary features from both simulated
and observed data in order to reduce its dimensionality while describing sufficiently well the statistical
behavior of the observations. In the present experiment, the summary features consist of the logarithm
of the power spectral density (PSD) of each observed time series (Percival and Walden, 1993). The
PSD is evaluated in 33 frequency bins between zero and 64 Hz (half of the sampling rate). This leads
to a setting with 4 parameters to estimate given observations defined in a 33-dimensional space.

The normalizing flows qφ1 and qφ2 used in our approximations are masked autoregressive flows
(MAF) (Papamakarios et al., 2017) consisting of three stacked masked autoencoders (MADE) (Ger-
main et al., 2015), each with two hidden layers of 50 units, and a standard normal base distribution
as input to the normalizing flow. This choice of architecture provides sufficiently flexible functions
capable of approximating complex posterior distributions. We refer the reader to Papamakarios et al.
(2019) for more information on the different types of normalizing flows. We fix function fφ3

to be a
simple averaging operation over the elements of X , so only parameters φ1 and φ2 are learned from
data.

Results on simulated data. We first consider a case in which the observed time series x0 is simulated
by the neural mass model with a particular choice of input parameters. In the lower left part of
Figure 3, we display the smoothed histograms of the posterior approximation qφ obtained when
conditioning on just x0 (N = 0) or x0 and X with N = 9. We see that when N = 0, parameters µ
and σ have large variances and that some of the pairwise joint posterior distributions have a ridge
shape that reveals the previously described indeterminacy relation linking g with µ and σ. When
N = 9, the variances of the parameters decrease and we obtain a posterior distribution that is more
concentrated around the true parameters generating x0. This concentration is explained by the sharper
estimation of the g parameter, which is obtained using x0 and ten auxiliary observations.

In the upper right part of Figure 3, we evaluate how HNPE concentrates around the true parameters
when N increases and plot the results using two other architectures: a “naive” architecture taking as
context variables a stacking of x0 and the elements in X , and an “aggregation" architecture which
stacks x0 and the average of X as context variables; both architectures use a normalizing flow with
10 layers of two hidden layers and 50 units each. We evaluate the concentration of the posterior
distributions via its Wasserstein distance to a Dirac located at the ground truth parameter. For each
parameter in the model, i.e. j ∈ {C, µ, σ, g}, we have three curves, djnaive, djaggreg, and djHNPE, which
describe how the posterior marginal of j converges to a Dirac when N increases for each architecture.
Since the parameters have very different scaling, we normalize the curves by dividing them by their
standard value across different ground truth parameters and values of N . We then take the mean
along j so to obtain three final curves dnaive, daggreg, and dHNPE. We consider ten choices of ground
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Figure 4: Posterior estimates for the parameters of the neural mass model computed on human EEG
signals. Data were collected in two different experimental conditions: eyes closed (in blue) or eyes
open (in orange). All signals are 8 s long and recorded at 128 Hz. We see that when N = 9 the
posterior distributions concentrates, and that the global gain parameter gets similar in both eyes
conditions. We observe that the posterior on the 3 parameters of the neural mass model clearly
separate between the 2 conditions when N = 9.

truth parameters and show the curves with the normalized median distances. For N = 0, the posterior
distribution is supposed to be indeterminate (“banana-shape"), so the fact that the curves do not start
at the same point has no proper interpretation. For N > 0, the curve HNPE is uniformly below the
other methods, and they converge to a plateau. This demonstrates the existence of a lower bound for
the concentration of the posterior approximation, which can be interpreted as an irreducible variance
on the estimation of the parameters. The rather good performance for the “aggregation” architecture
as compared to HNPE is likely due to the fact that, for the example considered here, taking the
average of the elements in X leads to a sufficient statistic of the observations.

We have also considered a setting in which the summary statistics of the observed time series are
learned from the data instead of being fixed to the log power spectral densities, i.e. when fφ3

is
learned. We have used the YuleNet architecture proposed by Rodrigues and Gramfort (2020) on
the example with neural mass models and report the results in Appendix B. In all our experiments,
we did not see significant changes in the performance of our model so we did not include it in our
evaluation as it increased the complexity of the model and its computational burden.

Results on EEG data. One of the most commonly observed oscillations in EEG are known as
α waves (Lopes da Silva, 1991). These waves are characterized by their frequency around 10 Hz
and are typically strengthened when closing our eyes. To relate this phenomenon to the underlying
biophysical parameters of the NMM model, we estimated the posterior distribution over the 4 model
parameters on EEG signals recorded during short periods of eyes open or eyes closed. Data consists
of recordings taken from a public dataset (Cattan et al., 2018) in which subjects were asked to keep
their eyes open or closed during periods of 8 s (sampling frequency of 128 Hz). Results for one
subject of the dataset are presented in Figure 4 with x0 being either a recording with eyes closed (in
blue) or eyes open (in orange). We consider situations in which no extra-observations are used for the
posterior approximation (N = 0) or when N = 9 additional observations from both eyes-closed and
eyes-open conditions are available. When N = 9, we see that the gain parameter, which is global,
concentrates for both eyes conditions. More interestingly, we observe that the posterior on the 3
parameters of the neural mass model clearly separate between the 2 conditions when N = 9. Looking
at parameter C, we see that it concentrates around 130 for the eyes closed data while it peaks around
70 for eyes open. This finding is perfectly inline with previous analysis of the model (Jansen and Rit,
1995). Signals used in this experiment are presented in Appendix C.
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Discussion

In this work, we propose HNPE, a likelihood-free inference approach able to leverage a set of
additional observations to boost the estimation of the posterior. This improvement is made possible
by a hierarchical model where all available observations share certain global parameters. A dedicated
neural network architecture based on normalizing flows is proposed, as opposed to the usual approach
of LFI practitioners that often choose a “one size fits all” neural density estimator. We also provide
a training procedure based on simulations from the model and based on the sequential approach
from Greenberg et al. (2019). Although the number of additional observations (N ) was fixed in our
analysis and experiments, this parameter could be randomized and amortized during learning and
enable the posterior approximation to be fed with sets of auxiliary observations of varying sizes,
making it more flexible for applications. To do so, it would be necessary to simulate datasets with
varying sizes of N so to ensure that the several simulations are IID between them; note, however,
that this would have a significant computational cost. Our approach could be extended to multi-level
models using a similar factorized architecture; we did not consider such generic hierarchical models
to keep the presentation clear and because our motivating examples did not require such complexity.
Note, also, that HNPE could implemented with other types of conditional density estimators apart
from normalizing flows, as long as the hierarchical structure of the global parameters is embedded
into the structure of the approximator.

It is well known that methods for likelihood-free inference are often difficult to validate; our method
is no exception. We have considered toy models for which the analytic form of the target posterior are
available so to have a precise way of assessing the quality of our approximation and avoiding such
difficulties. Nevertheless, further research on validation schemes for LFI methods remain of great
interest, specially for more general settings for which the analytic posterior is unknown. Note, also,
that LFI methods can require a large number of simulations in order to approximate the posterior
distribution and may, therefore, lead to a non-negligible carbon footprint. This can be mitigated with
the development of new methods for optimizing the number of simulations required for a given error
tolerance, e.g. choosing the sampled parameters θi for which the simulations xi are the most useful
for training the posterior approximation.

We demonstrated that HNPE could be reliably applied to neuroscience considering a stochastic model
with non-linear differential equations. Very encouraging results on human EEG data open the door to
more biologically informed descriptions and quantitative analysis of such non-invasive recordings.
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A Derivations of the posterior distributions for the motivating example

A.1 Single observation

From Bayes’ rule we have that

p(α, β|x0) ∝ p(x0|α, β)p(α, β) . (7)

Since ε is Gaussian we can write

p(x0|α, β) =
1√
2πσ2

exp

(−(x0 − αβ)2
2σ2

)
, (8)

so that the posterior is

p(α, β|x0) ∝
e−(x0−αβ)2/2σ2

√
2πσ2

1[0,1](α)1[0,1](β) . (9)

We obtain an approximation to the normalization constant of p(α, β|x0) by taking σ → 0 and noticing
that this makes the Gaussian converge to a Dirac distribution,

Z(x0) =

∫ 1

0

∫ 1

0

e−(x0−αβ)2/2σ2

√
2πσ2

dαdβ ,

≈
∫ 1

0

∫ 1

0

δ(x0 − αβ)dαdβ .

Doing a change of variables with γ = αβ the integral becomes

Z(x0) ≈
∫ 1

0

[∫ β

0

δ(x0 − γ)
dγ

β

]
dβ , (10)

≈
∫ 1

0

1

β
1[x0,1](β) dβ =

[
log(β)

]1
x0

, (11)

≈ log(1/x0) . (12)

The joint posterior distribution is, therefore,

p(α, β|x0) ≈
e−(x0−αβ)2/2σ2

log(1/x0)

1[0,1](α)1[0,1](β)√
2πσ2

. (13)

The marginal posterior distributions are calculated also using the fact that σ → 0,

p(α|x0) =

∫
p(α, β|x0)dβ , (14)

≈ 1[0,1](α)

log(1/x0)

∫ 1

0

δ(x0 − αβ)dβ , (15)

≈ 1

log(1/x0)

1[x0,1](α)

α
, (16)

p(β|x0) ≈ 1

log(1/x0)

1[x0,1](β)

β
. (17)

A.2 Multiple observations

Suppose now that we have a set of N observations x1, . . . , xN which all share the same β as x0 but
each have a different αi, i.e., xi = αiβ for i = 1, . . . , N (we consider σ → 0 and, therefore, ε = 0).
Our goal is to use this auxiliary information to obtain a posterior distribution which is sharper around
the parameters generating x0. We have that for X = {x1, . . . , xN} the posterior may be factorized
as

p(α, β|x0,X ) = p(α|β, x0)p(β|x0,X ) . (18)
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Using Bayes’ rule twice to rewrite the second term, we have

p(β|x0,X ) ∝ p(x0,X|β)p(β) , (19)

∝
N∏
i=0

p(xi|β) 1[0,1](β) , (20)

∝
N∏
i=0

p(β|xi)1[0,1](β) . (21)

Therefore,

p(α, β|x0,X ) ∝ p(α|β, x0)
N∏
i=0

p(β|xi) , (22)

∝ p(α, β|x0)
N∏
i=1

p(β|xi) , (23)

Using expressions (13) and (17) we obtain

p(α, β|x0,X ) ∝
δ(x0 − αβ)1[x0,1](α)1[x0,1](β)

∏N
i=1 1[xi,1](β)

log(1/x0)
∏N
i=1(log(1/xi)β)

. (24)

which can be simplified to

p(α, β|x0,X ) ∝
δ(x0 − αβ)1[x0,1](α)1[µ,1](β)∏N

i=0 log(1/xi)β
n

, (25)

where µ = max ({x0} ∪ X ). The normalization constant is

Z(xo,X ) =

∫∫
p(α|β, x0)

N∏
i=0

p(β|xi) dαdβ ,

=

∫ (∫
p(α|β, x0)dα

) N∏
i=0

p(β|xi)dβ ,

=

∫ N∏
i=0

p(β|xi)dβ ,

=

∫
1[µ,1](β)∏N

i=0 log(1/xi)β
N+1

dβ ,

=
1∏N

i=0 log(1/xi)

[ −1
NβN

]1
µ

=

(
1/µN − 1

)
N
∏N
i=0 log(1/xi)

Then, finally, we obtain

p(α, β|x0,X ) =
δ(x0 − αβ)1[0,1](α)1[µ,1](β)

(1/µN − 1)

N

βN
. (26)

Simple integrations show that

p(α|x0,X ) =
1[x0,min(1,

x0
µ )](α)Nα

N−1

(1/µN − 1)xN0
(27)

p(β|x0,X ) =
1[µ,1](β)N

(1/µN − 1)βN+1
(28)
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B The neural mass model

B.1 A cortical column as a system of stochastic differential equations

The neural mass model used in our work is the one presented in Ableidinger et al. (2017). This is
an extension of the classic Jansen-Rit model (Jansen and Rit, 1995) to make it compatible with a
framework based on stochastic differential equations. The model describes the interactions between
excitatory and inhibitory interneurons in a cortical column of the brain. In mathematical terms, the
model consists of three coupled nonlinear stochastic differential equations of second order, which
can be rewritten as a six-dimensional first-order stochastic differential system:

Ẋ0(t) = X3(t)

Ẋ1(t) = X4(t)

Ẋ2(t) = X5(t)

Ẋ3(t) =
(
Aa
(
µ3 + Sigm(X1(t)−X2(t)

)
− 2aX3(t)− a2X0(t)

)
+ σ3Ẇ3(t)

Ẋ4(t) =
(
Aa
(
µ4 + C2 Sigm(C1X0(t)

)
− 2aX4(t)− a2X1(t)

)
+ σ4Ẇ4(t)

Ẋ5(t) =
(
Bb
(
µ5 + C4 Sigm(C3X0(t)

)
− 2bX4(t)− b2X2(t)

)
+ σ5Ẇ5(t)

(29)

The actual signal that we observe using a EEG recording system is then X(t) = 10g/10(X1(t) −
X2(t)), where g is a gain factor expressed in decibels. According to Jansen and Rit (1995), most
physiological parameters in (29) are expected to be approximately constant between different indi-
viduals at different experimental conditions, except for the connectivity parameters (C1, C2, C3, C4)
and the statistical parameters of the input signal from neighboring cortical columns, modeled by µ4

and σ4. Following the setup proposed in Buckwar et al. (2019), we then define our inference problem
as that of estimating the parameter vector θ = (C, µ, σ, g) from an observation Xθ, where µ = µ4

and σ = σ4, and the Ci parameters are all related via C1 = C,C2 = 0.8C,C3 = 0.25, C4 = 0.25C.
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B.2 Choice of summary statistics

The inference procedure is then carried out not on the time series itself but on a vector of summary
statistics. The results described in Section 4.2 were obtained with a fixed choice on the power spectral
density of the time series as summary statistics. However, it is possible (and very often preferable)
to learn the best summary statistics from data. We have considered this option using the YuleNet
proposed in Rodrigues and Gramfort (2020), where a convolutional neural network is jointly learned
with the approximation to the posterior distribution. Figure 5 portrays the results obtained with
different numbers of auxiliary observations in X . Note that the ‘quality’ of the approximation seems
to stagnate when N > 10 as observed also in Figure 3. We did not carry out more experiments on
this data-driven setting because of difficulties due to numerical instabilities in the training procedure
when N increases and for certain choices of ground truth parameters. Also, the memory consumption
using YuleNet with large values of N makes the use of GPU a challenge. We intend to continue
investigations with learned summary statistics in future works.
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Figure 5: Posterior estimates for the parameters of the neural mass model obtained on 8 s of data
sampled at 128 Hz and simulated using C = 135, µ = 220, σ = 2000, and g = 10. One can observe
that increasing N allows to concentrate the posterior on the correct parameters.
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C EEG data

The EEG signals used for generating the results in Figure 4 are displayed in Figure 6. We have used
only the recordings from channel Oz because it is placed near the visual cortex and, therefore, is
the most relevant channel for the analysis of the open and closed eyes conditions. The signals were
filtered between 3 Hz and 40 Hz.
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Figure 6: EEG data used on our analysis described in Figure 4. (Left) All ten time series considered
in our analysis. The plot with thicker bounding boxes is the observed signal x0 in the closed eyes
state. All other time series belong to X . (Right) Power spectral density of each time series calculated
over 33 frequency bins. These are the actual summary features used as input in the approximation of
the posterior distribution.
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