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Abstract 

Meso-scale finite element modeling is a powerful tool to analyze the deformation of textile 

composite reinforcements. At the meso-scale, the yarns of the reinforcement are considered to be 

solids made of a continuous material in contact with their neighbors. These yarns are generally under 

tension, but some loadings of the reinforcement lead to a longitudinal compression state. The yarns, 

made up of a large number of fibers, present a specific behavior when under longitudinal compression. 

Local buckling of the fibers causes the compressive stiffness of the continuous material representing 

the yarn to be much weaker than when under tension. In addition, longitudinal compression causes an 

important transverse expansion. It is shown in the present work that the transverse expansion could be 

depicted by a Poisson ratio that remained roughly constant when the yarn length and the compression 

strain varied. Buckling of the fibers significantly increases the transverse dimensions of the yarn 

which leads to a large Poisson ratio (up to 12 for a yarn analyzed in the present study). The 

longitudinal compression and transverse expansion were integrated in a mechanical model of the yarn. 

Meso-scale finite element simulations of reinforcements with binder yarns submitted to longitudinal 

compression showed that these improvements led to results in good agreement with micro-CT 

analyses.  

Keywords: A. Fabrics/textiles; A. Preform; B. Mechanical properties; 

C. Finite element analysis (FEA); Longitudinal compression 

1. Introduction

Textile composite reinforcements, like the ones considered in this study, consist of weaved (or 

alternatively braided or stitched) yarns (Fig. 1). The yarns themselves are composed of a large number 

of continuous fibers, (e.g., 3000 to 48000 fibers in the case of a carbon fiber yarn). One can thus 

distinguish between the macroscopic scale (the scale of the preform) (Fig. 1a), the mesoscopic scale 

(the scale of the yarn) (Fig. 1b) and the microscopic scale (the scale of the fiber) (Fig. 1c) [1]. The 
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simulation of the deformation of textile reinforcements during the so-called draping phase makes it

possible to design the forming process but also to know the geometry of the reinforcement during the 

injection phase of Liquid Composite Molding (LCM) processes.  

The three scales, i.e., macro, meso and micro, are simultaneously present in the composite 

reinforcements but numerical simulations are carried out at one of these scales (sometimes several). 

Many analyses are carried out at the macroscopic scale, particularly when simulating the shaping of 

the reinforcement [2-7] and the injection in LCM processes [8,9]. Simulations at lower scales on the 

other hand give information concerning the internal structure of the deformed fibrous reinforcement. 

Some simulations are carried out at the microscopic scale, i.e., by modeling all fibers and their 

contacts [10-13]. The fibers in a yarn, and consequently in a reinforcement, are numerous and these 

approaches only concern a small domain. Meso-scale finite element (FE) modeling of textile 

reinforcements considers the preform as a set of yarns in contact with their neighbors. These yarns are 

seen as continuous materials. Some simulations at the mesoscopic scale concern the complete preform, 

but most are carried out on periodic reinforcements and concern the Representative Unit Cell (RUC) 

(Fig. 1b1 in the case of a glass plain weave). This RUC is the smallest elementary pattern making it 

possible to obtain the entire reinforcement by translation [14].  

Among many applications, mesoscopic analyses are used to determine homogenized properties 

[1, 14-18], damage initiation and development [1, 19-21]. Mesoscopic simulations of the RUC 

deformation during forming make it possible to determine the internal geometry of the yarns 

constituting the deformed reinforcement [22, 23]. This geometry conditions the permeability of the 

deformed reinforcement during injection [24-29]. The geometry of the yarns after forming also 

influences the mechanical properties of the final composite. 

In most mesoscopic analyses of composite textile reinforcements, the yarns are under tension. 

This corresponds to the classical condition of putting the fiber yarns under stress or loading. 

Nevertheless, considering the internal geometry of the reinforcement and the interlaces due to 

weaving, some yarns may be in a state of compression in the direction of the fibers (longitudinal 

compression). This is particularly the case during the compaction phase of a reinforcement that 

precedes the injection phase in an LCM process. If the reinforcement has binder yarns or yarns 

through the thickness (z-yarns), these can be in longitudinal compression. Experimental analysis and 
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simulation of the behavior of composite reinforcement yarns in longitudinal compression is the topic

of this article.  

Two main aspects are addressed. The stiffness in longitudinal compression of a fiber yarn (such 

as those used for composite reinforcements) is much smaller than the stiffness of this yarn under 

tension. The longitudinal compression behavior is analyzed experimentally and then integrated into 

the constitutive model used for the mesoscopic simulations of the deformation of the RUC. The 

second point analyzed is the transverse expansion during longitudinal compression of a fiber yarn. 

This expansion is important given the individual buckling of the fibers during longitudinal 

compression. The individual fibers buckle but the yarn, seen as a continuous material at the 

mesoscopic scale, expands by the Poisson effect.  

Some studies have been carried out to determine the Poisson ratio of fiber yarns. They concern 

the transverse strains of yarns under tension [30-34]. Some of these investigations have dealt with 

auxetic yarns, i.e., yarns with negative Poisson ratios [31-33]. However, to the best of our knowledge, 

there are no analyses of the transverse expansion of yarn in longitudinal compression, and this is thus 

one of the main goals of the present paper. It was shown by experiments that the ratio between the 

transverse expansion and the longitudinal compression was relatively constant for different 

compression ratios and various yarn dimensions. Consequently, one can propose a Poisson ratio which 

defines the transverse expansion of the yarn. The value of this ratio can be substantial (e.g., 11 for the 

analyzed reinforcement).  

The constitutive law taking into account the measured longitudinal compression and transverse 

expansion was used for the mesoscopic simulations of the compaction of the RUC of two composite 

reinforcements. The deformation of the yarns in longitudinal compression obtained by these 

simulations was found to be in good agreement with the experimental deformation achieved by X-ray 

tomography. 

2. Meso-scale finite element (FE) modeling of textile composites

2.1. A mesoscopic mechanical model for fiber yarns 

During analysis at the mesoscopic scale, the fiber yarn is seen as an anisotropic continuous 

material. The yarns that were considered in this study were assumed to be a set of parallel fibers as 
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shown in Fig. 2. The twist of the fiber was neglected which was justified for a small twist angle and if

the segment of yarn was sufficiently short. Meso-FE modeling of the yarn requires a constitutive law 

that conveys the specific fibrous nature of the yarns that are assumed to be continuous solids, made of 

fibers, in a single direction. Among continuous mechanical models at large strain, rate constitutive 

equations are widely used [35-37] to relate the stress and strain rates: 

σ C : D
∇ =  (1) 

Here, D is the strain rate tensor, C  is the constitutive tensor and σ
∇

 is an objective time derivative of

the Cauchy stress σ . The objective stress rate σ
∇

 is the time derivative for an observer fixed with 

respect to the material. It avoids the stress change due to the rigid body rotation that exists in 
dσ

σ
dt

•
= .

The objective derivative can be defined from the rotation Q  of the rotated frame: 

( )σ σ σ σ Q Q σ Q Q
T Td

dt
∇  = −Ω⋅ + ⋅Ω = ⋅ ⋅ ⋅ 

 
& (2) 

where Q Q
•

Ω = ⋅ T
 is the rotation rate. The “rotated frame” rotates with the material. It is not unique. 

The most used rotations include that of the polar decomposition of the deformation gradient (Green-

Naghdi objective derivative) [38, 39] or the co-rotational frame rotation (Jaumann objective 

derivative) [40, 41]. They express the mean rotation of isotropic materials such as metals. Neither of 

them is suitable for fibrous materials, because the behavior of the fibrous medium is highly related to 

the fiber orientation which should be strictly followed [42, 43]. In the case of a fibrous material with a 

single direction of fibers, the rotation Φ  must be that of the fiber [22, 42, 43]. The rotated basis is 

attached to the fiber direction 1f . The second basis vector 2f is the projection of its materially 

convected initial position into the plane perpendicular to the fiber direction 1f . Finally 3f is orthogonal 

to 1f  and 2f . 

       In a simulation of the deformation of a reinforcement at mesoscopic state, Eq. (1) is integrated 

using the Hughes-Winget scheme over 
1n nt t t+∆ = −  [44]:

1 2 1 21

1 1 2 1C
n nn n

i i i i

n n n n

f f f f
σ σ ε+ ++

+ + +       = + ∆        (3) 

The analysis requires the components of the constitutive matrix [C] in the frame f i . 
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Fig. 3 shows the different deformation modes of the fiber yarn. Although longitudinal

compression was the goal of this paper, this section first considers, in order to present pre-existent 

models, the case of yarns under tension, which is the most common case [45]. In section 3 and those 

following, the case of compression in the direction of the fibers (longitudinal compression), which is 

the main objective of this study, is analyzed. 

The longitudinal Young modulus lE  (Fig. 3a) was measured by a tensile experiment on the 

single yarn. The yarn could be considered transversely isotropic [22], and consequently it had a single 

longitudinal shear coefficient ltG . This coefficient is small because of possible slippage between 

fibers in the yarn. It was identified by an inverse approach in a tensile test on a woven fabric. The 

mechanical behavior in the transverse section was defined by the surface change (Fig. 3b) and the 

transverse section shear (Fig. 3c). Consequently, the strain field in the yarn's cross section [ ]t fε can be 

decomposed into a spherical part and a deviatoric part [22]: 

23

23

0
[ ]

0

s d
t f

s d

ε ε ε
ε

ε ε ε
   

= +   −   
(4) 

Here, sε  is the spherical strain component ( 22 33) /( 2= +sε ε ε ), and dε  and 23ε  are the deviatoric

strain components ( 22 33) /( 2= −dε ε ε ). The decomposition holds for transverse strain and stress 

increments [ ]t fε∆  and [ ]t fσ∆ , which leads to the following constitutive relations: 

23 23∆ = ∆ ∆ = ∆ ∆ = ∆s s d dA B Cσ ε σ ε σ ε   (5)

where A , B  and C  are stiffness parameters. B and C are equal because of the isotropy in the 

transverse section of the yarn, and A  provides the resistance to the variation of sectional area. A and B 

depend on the strain in the yarn. The following forms have be proposed and identified [22]: 

0

−= s lnpA A e e
εε

0
spB B e ε−=        (6) 

The unknown parameters ( 0A , 0B , p , n ) can be identified by transverse compaction and biaxial 

tension experiments with the Levenberg-Marquardt inverse fitting algorithm [46]. In case of tension to 

the yarn, the change in transverse section is small, in particular for a yarn made of parallel fibers, and 

the Poisson ratio can be set to zero.  Finally, the constitutive matrix [ ] fC  of Eq. (3) is expressed as: 
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            (7)   

This mesoscopic mechanical model has been applied to simulate different modes of deformation of 

textile composite reinforcements and proved to be effective [22, 42, 47].  

A very unbalanced textile composite reinforcement is presented in Fig. 4. It is composed of 

three kinds of glass fiber yarns: warp yarns, weft yarns and binder yarns, where the warp yarn was 

much larger than the other two. The tensile stiffness of the yarns and the transverse mechanical 

parameters are given in Table 1.  

It should be emphasized that the constitutive relation proposed above corresponds to cases 

where the yarns are under tension. The tensile modulus represents the tension stiffness. The 

compression stiffness in the fiber direction is different because of the fibrous constitution of the yarn. 

In addition, the Poisson ratios are assumed to be equal to zero. This assumption is possible for a yarn 

made of parallel fibers under tension as each fiber tends to be straight (Fig. 2). When a yarn is in 

longitudinal compression, on the other hand, there are induced transverse displacements.  

The next section demonstrates that the form of the constitutive matrix given in Eq. (7) is not 

sufficient to simulate the compaction of the textile reinforcement presented in section 2.2 due to the 

longitudinal compression of the binder yarn. Sections 3 through 5 analyze and introduce the 

longitudinal compression stiffness and the corresponding transverse expansion in the constitutive 

model.  

2.2. Simulation of the compaction of the textile reinforcement 

A transverse compaction of the textile reinforcement, shown in Fig. 4, was carried out inside an 

X-ray computed tomography system (Fig. 5). The textile reinforcement was compacted between two 

Plexiglas plates according to the following: initial thickness= 0.72 mm, thickness after compaction = 

0.40 mm, εcompaction = 44%. The micro-CT analysis gave the experimental deformed geometry of the 

yarns of the fabric after compaction (Fig. 6). The Plexiglas plates are not removed. They prescribed 



ACCEPTED MANUSCRIPT

7 

the compaction deformation and they do not modify the scanning quality. The simulation of this global

compaction was carried out using the mesh of the RUC, as shown in Fig. 7. The mesh was obtained 

from the X-ray tomography analysis [47, 48]. Periodic boundary conditions are used for the 

Representative Unit Cell (RUC) [14, 43]. Two points of the boundary in so-called paired positions on 

two opposite boundaries have the same displacements. 

The deformed shape obtained by simulation (using the constitutive model presented in section 2.1) 

is shown in Fig. 8. The simulated shape of the binder yarn was not correct. It presented wrinkles that 

were not observed in the micro-CT analysis. In addition, the width of the deformed binder yarn was 

smaller than the experimental one (Fig. 6 and 8). This binder yarn was subjected to longitudinal 

compression (Fig. 8) which could not be correctly modeled by the constitutive law presented above. In 

the following sections, the longitudinal compaction behavior and the related transverse expansion are 

analyzed and taken into account in the constitutive model. 

3. Longitudinal compression of the fiber yarn

The longitudinal compression stiffness comp
lK ( =comp co p

l
m

l lSK E ) of the binder yarns was 

measured by longitudinal compression experiments. The experimental setup and the tested specimens 

are shown in Fig. 9. The resistance of the yarns to longitudinal compression was small, and 

consequently a high accuracy force sensor was required (the one in this study was a 10-N sensor). 

Moreover, it was advised to compress several yarns at the same time (Fig. 9b). The compression 

velocity was 2 mm/min, which was slow enough to eliminate the dynamic influence.  

The longitudinal compression stiffness curves of the binder yarn are presented in Fig. 9c. The 

compression behavior of the yarn was almost linear in the first part of the curve after which the yarn 

buckled and the stiffness decreased. The buckling occurred sooner when the yarn was longer. 

Nevertheless, it was assumed that, during the analyzed reinforcement deformation the length of the 

yarns and the boundary conditions are such that there is no global buckling of the yarns and that the 

longitudinal compression stiffness was given by the first linear part of the test presented in Fig 9c.  

It should be noted that the longitudinal compression stiffness before buckling did not depend 

on the length of the yarn (or very little). The longitudinal compression stiffness of the binder yarn 

tested in Fig. 9 was 2.1=comp
lK N  which was much lower than the longitudinal tension stiffness. This 
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was taken into account in the constitutive matrix Eq. (7) in the case of longitudinal compression. In

practice, the large difference between the longitudinal tension and compression stiffnesses can lead to 

numerical difficulties in the transition zone. These problems were avoided by a smoothing of the 

tension-strain curve. In Fig. 10, when the longitudinal strains 
n

l
ε ,

1+n

l
ε  at the beginning and at the end 

of the step were such that 1 0+ <n n
l lε ε  (i.e., among the longitudinal strains at the beginning and at the 

end of the step, one was under tension and one was in compression), the longitudinal stiffness of the 

yarn used to update the tension stress at t
n+1 

was:  

1 1

1

( ) ( )
+ +

+

−
=

−

n n n n

l l l l l l

l n n

l l

K K
K

ε ε ε ε

ε ε
(8) 

4. Transverse expansion. Poisson ratio in longitudinal compression.

The initial shape of the constitutive matrix Eq. (7) neglects the transverse expansions. This is 

fairly well justified if the yarn is under tension and when it consists of parallel fibers such as those of 

the yarns shown in Fig.2 and 4. When the yarn is in longitudinal compression, the cross-section of the 

yarn increases significantly (Fig. 11c). It is thus necessary to take into account this transversal 

expansion in the mechanical behavior. For this, a Poisson ratio νlt is introduced into the constitutive 

matrix. 

1
[ ] [ ]

−=D C =
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0 0 0
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The mechanical behavior of the yarn in the transverse plane has been proven to be isotropic [22]. 

To analyze the transverse expansion, an experimental analysis of the geometry of the fiber yarn in 

longitudinal compaction was carried out. Fig. 11 shows the compression system and the camera that 

records the longitudinal compression and the transverse expansion (Fig.11c). A lamp improved the 

contrast between the yarn and the background (Fig 11b). The lengths of the tested samples were of the 

(9) 
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same order as those of the yarns in the woven reinforcement and were in the range 5 to 10 mm. Fig. 12

shows the transverse expansion obtained experimentally in the case of the binder yarn (of the fabric 

shown in Fig. 4) for a longitudinal compression of 0.73%. The diagram plots the displacement of the 

points of one free side of the yarn as shown in red dashed lines in Fig.11c 

The Poisson ratio νlt introduced in Eq. (9) was determined by an inverse approach [44]. 

Simulations of the longitudinal compression tests with transverse expansion were performed and 

compared to the experiments (Fig. 13 and 14). The Poisson ratio was optimized so that the transverse 

expansion obtained by the simulation was as close as possible to the experiment (Fig. 14). 

A priori, the Poisson ratio depends on the longitudinal compression strain and on the 

dimensions of the yarn. Fig. 15 shows the obtained Poisson ratio for longitudinal compression in the 

range 0.25% to 4%. Different lengths and widths of the specimen were considered. The obtained 

Poisson ratios of the fiber yarn varied with these factors. However, these variations were rather low. In 

a first approximation, for the sake of simplicity, a constant value of the Poisson ratio may be 

considered. For the binder yarn analyzed in the present work, the Poisson ratio was close to 11.8.  

Fig. 16 compares the experimental transverse expansions with the corresponding simulations 

carried out with a Poisson ratio equal to 11.8. The comparison was carried out at different longitudinal 

compression strains. The transverse expansions obtained in the simulations and the experiments were 

in good agreement, in particular for moderate longitudinal compression strains. 

In conclusion, a simple way to model transverse expansion is to consider a constant value of the 

Poisson ratio νlt. This proved correct for yarn dimensions similar to those in this study and moderate 

longitudinal compression strains (<5%). The obtained Poisson ratio (11.8) was much larger than 

classical values of more continuous materials (ν < 0.5 for isotropic materials). This Poisson ratio 

reflected, at the meso scale, buckling of the fibers at the micro scale.  

The binder yarns that were analyzed in this work were composed of parallel fibers without 

twist. The fibers could buckle easily thus giving a substantial transverse expansion. In the case of 

twisted yarns, this expansion should be less significant. 

5. Mesoscopic simulations taking into account longitudinal compression and transverse

expansion 
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5.1. Longitudinal compression of a warp yarn 

A warp yarn of the unbalanced fabric shown in Fig. 4 was subjected to a longitudinal 

compression strain of 5%. The initial length specimen was 10 mm. In Fig. 17, the deformed shapes 

obtained by different simulation models were compared with the micro CT image of the deformed 

yarn segment. In Fig. 17b, the original model Eq. (7) was used. A global buckling of the yarn was 

obtained which did not correspond to the experiment. In Fig. 17c, the longitudinal compressive 

stiffness such as analyzed in section 3 was introduced in the simulation. There was no longer any 

buckling but the deformed shape suffered from a lack of transverse expansion. Finally, both 

longitudinal compressive stiffness and transverse expansion (as analyzed in section 4) were used in the 

simulation shown in Fig. 17d. The deformed shape obtained by the mesoscopic simulation was in 

good agreement with the experiment (Fig. 17d). 

5.2. Compaction of a textile reinforcement 

The unbalanced textile reinforcement presented in Fig. 4 and 6 was compacted between two 

Plexiglas plates (εcompaction = 44%). This simulation was carried out in section 2.2 with the original 

constitutive law Eq. (7) and led to spurious buckling of the binder yarn (Fig. 8). The simulation was 

now performed with the models proposed in section 3 and 4 for longitudinal compression and 

transverse expansion. The deformed shapes obtained by these simulations were compared to the 

experimental micro-CT images of the deformed fabric in Fig. 18. Buckling of the binder yarn was 

avoided when the longitudinal compression model presented in section 3 was taken into account (Fig. 

18c). A correct transverse expansion was achieved when both longitudinal compression thickness and 

transverse expansion were modeled as proposed in sections 3 and 4 (Fig. 18d). 

The compaction stress versus volume fraction is plotted Fig. 19 for three different mesh 

fineness. The number of nodes and wedge elements are specified in fig. 19. The compaction stresses 

obtained in the three case are very close. The coarse mesh is sufficient for this analysis. This is also 

the case for the other the calculations presented in the paper. A refinement of mesh used does not 

change the results significantly. 

5.3. Compaction of a 3D textile reinforcement 
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A 3D orthogonal non-crimp woven fabric is presented in Fig. 20 in its undeformed state [48]. It 

was subjected to a global compaction between two Plexiglas plates (εcompaction = 22%). The yarns were 

made of glass fibers, and the principal properties of the 3D reinforcement are listed in Table 3. In 

addition to the warp and weft yarns that were in the plane of the fabric, Z-yarns insured the 

mechanical behavior of the reinforcement through its thickness.  

The transverse compaction of the reinforcement was carried out within an X-ray tomograph. 

The deformed geometry obtained by micro-CT is presented Fig. 21a. The Z-yarns were subjected to 

longitudinal compression during the overall compaction of the reinforcement. Periodic boundary 

conditions are used for the Representative Unit Cell (RUC) [14, 43]. Two points of the boundary in 

so-called paired positions on two opposite boundaries have the same displacements. Fig. 21b shows 

the result of the simulation carried out with the initial constitutive law Eq. (7) in which the 

longitudinal tension and compression stiffnesses were the same. Consequently, the simulation led to 

spurious buckling of the Z-yarns. These wrinkles were avoided in the simulations shown in Fig. 21c 

by using the longitudinal compression law presented in section 3. The transverse expansion of the Z-

yarns observed in the micro-CT image (Fig. 20a) was correctly obtained by the simulation in Fig. 21d 

when the transverse expansion model presented in section 4 was taken into account.  

 

Conclusions 

An analysis and a model of the longitudinal compression and transverse expansion of fiber 

yarns in meso FE simulations of textile composite reinforcements has been proposed. For certain 

loadings of a preform, some yarns can be subjected to longitudinal compression. This is particularly 

the case for binder yarns and z-yarns when the reinforcement is globally compacted, for instance 

before injection in an LCM process. The longitudinal compression must be taken into account in the 

mechanical model because it is specific and significantly different from the tensile behavior. The 

longitudinal compression stiffness is low in comparison to the tensile rigidity because the individual 

fibers buckle easily. Nevertheless it was shown for glass fiber yarns that this stiffness was fairly 

constant before the global buckling of the yarn.  

The transverse expansion is substantial. The Poisson ratio expresses the buckling of individual 

fibers in the behavior of the yarn seen as a continuous material. It was shown in the present paper that 



ACCEPTED MANUSCRIPT

12 
 

a constant Poisson ratio could be identified for glass fiber yarns (without twists) and that the value was 

substantial (11.8).  Mesoscopic simulations taking into account longitudinal compression and 

transverse expansion gave results in good agreement with the experimental deformations obtained by 

micro-CT analysis. In a mesoscopic analysis, the yarn is seen as a continuous medium, which is a 

strong assumption, especially when the yarn is in longitudinal compression. The fibers buckle and lead 

to an important transverse expansion. The fibers are moving away from each other. The hypothesis of 

a continuous medium for the yarn, that supposes any mesoscopic analysis, is probably more 

questionable than for the yarns in tension. This point is a subject that will have to be investigated in 

future work concerning the mesoscopic analysis of textile reinforcements 

The present experiments need to be performed on a large set of fiber yarns to check the validity of 

the results. In particular, it will be necessary to analyze to what extent and in what range a constant 

Poisson ratio can describe the transverse expansion. The influence of the internal structure of the yarn, 

and especially of the twists of the fibers, must be also investigated.  

Acknowledgements 

This work was supported by the ANR, (National Research Agency), grant aap-rmnp-2011-TAPAS and by 

the China Scholarship Council (CSC)(D. Wang). 

 

References 

 
[1] Lomov, S. V., Ivanov, D. S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., & Hirosawa, S. (2007). Meso-FE 

modelling of textile composites: Road map, data flow and algorithms. Composites Science and Technology, 
67(9), 1870-1891. 

[2] Yu, W. R., Harrison, P., & Long, A. (2005). Finite element forming simulation for non-crimp fabrics using a 
non-orthogonal constitutive equation. Composites Part A: Applied Science and Manufacturing, 36(8), 1079-
1093.  

[3] Hamila, N., & Boisse, P. (2007). A meso–macro three node finite element for draping of textile composite 

preforms. Applied Composite Materials, 14(4), 235-250. 
[4] Ten Thije, R. H. W., & Akkerman, R. (2009). A multi-layer triangular membrane finite element for the 

forming simulation of laminated composites. Composites Part A: Applied Science and Manufacturing, 40(6), 
739-753. 

[5] Gereke, T., Döbrich, O., Hübner, M., & Cherif, C. (2013). Experimental and computational composite textile 
reinforcement forming: a review. Composites Part A: Applied Science and Manufacturing, 46, 1-10.  

[6] Wang, P., Legrand, X., Boisse, P., Hamila, N., & Soulat, D. (2015). Experimental and numerical analyses of 

manufacturing process of a composite square box part: Comparison between textile reinforcement forming 
and surface 3D weaving. Composites Part B: Engineering, 78, 26-34. 

[7] Dangora, L. M., Mitchell, C., White, K. D., Sherwood, J. A., & Parker, J. C. (2016). Characterization of 
temperature-dependent tensile and flexural rigidities of a cross-ply thermoplastic lamina with 
implementation into a forming model. International Journal of Material Forming, 1-10. DOI 
10.1007/s12289-016-1327-2  

[8] Advani, S. G. (Ed.). (1994). Flow and rheology in polymer composites manufacturing (No. 10). Elsevier 

science.  



ACCEPTED MANUSCRIPT

13 

[9] Ruiz, E., Achim, V., Soukane, S., Trochu, F., & Bréard, J. (2006). Optimization of injection flow rate to 

minimize micro/macro-voids formation in resin transfer molded composites. Composites science and 
technology, 66(3), 475-486. 

[10] Durville, D. (2010). Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. 
International journal of material forming, 3(2), 1241-1251. 

[11] Latil, P., Orgéas, L., Geindreau, C., Dumont, P. J. J., & Du Roscoat, S. R. (2011). Towards the 3D in situ 
characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Composites 
Science and Technology, 71(4), 480-488. 

[12] El Said, B., Ivanov, D., Long, A. C., & Hallett, S. R. (2016). Multi-scale modelling of strongly heterogeneous 
3D composite structures using spatial Voronoi tessellation. Journal of the Mechanics and Physics of Solids, 
88, 50-71. 

[13] Daelemans, L., Faes, J., Allaoui, S., Hivet, G., Dierick, M., Van Hoorebeke, L., & Van Paepegem, W. (2016). 
Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under 
tensile and shear loading using the digital element method. Composites Science and Tech., 137, 177-187. 

[14] Miehe, C., & Dettmar, J. (2004). A framework for micro–macro transitions in periodic particle aggregates of 
granular materials. Computer Methods in Applied Mechanics and Engineering, 193(3), 225-256. 

[15] Tang, X., & Whitcomb, J. D. (2003). General techniques for exploiting periodicity and symmetries in 
micromechanics analysis of textile composites. Journal of Composite Materials, 37(13), 1167-1189. 

 [16] Wan, Y., Zhang, F., Gu, B., Sun, B., & Wang, Y. (2015). Predicting dynamic in-plane compressive properties 
of multi-axial multi-layer warp-knitted composites with a meso-model. Composites Part B: Engineering, 77, 
278-290. 

[17] Rahali, Y., Giorgio, I., Ganghoffer, J. F., & Dell'Isola, F. (2015). Homogenization à la Piola produces second 
gradient continuum models for linear pantographic lattices. International Journal of Engineering Science, 
97, 148-172. 

[18] Giannaros, E., Kotzakolios, T., Tsantzalis, S., & Kostopoulos, V. (2017). Implementation and calibration of 
meso-scale modeling technique for simulation of tensile behavior of fabric materials. Composites Part B: 
Engineering, 119, 1-9. 

 [19] Pickett, A. K., & Fouinneteau, M. R. C. (2006). Material characterisation and calibration of a meso-
mechanical damage model for braid reinforced composites. Composites Part A: Applied Science and 
Manufacturing, 37(2), 368-377. 

[20] Xu, J., Lomov, S. V., Verpoest, I., Daggumati, S., Van Paepegem, W., & Degrieck, J. (2016). A comparative 
study of twill weave reinforced composites under tension–tension fatigue loading: Experiments and meso-
modelling. Composite Structures, 135, 306-315. 

[21] Raman, V., Drissi-Habti, M., Guillaumat, L., & Khadhour, A. (2016). Numerical simulation analysis as a tool 
to identify areas of weakness in a turbine wind-blade and solutions for their reinforcement. Composites 
Part B: Engineering, 103, 23-39. 

[22] Badel, P., Vidal-Sallé, E., Maire, E., & Boisse, P. (2008). Simulation and tomography analysis of textile 
composite reinforcement deformation at the mesoscopic scale. Composites Science and Technology, 
68(12), 2433-2440.  

[23] Bayraktar, H., Ehrlich, D., Scarat, G., McClain, M., Timoshchuk, N., & Redman, C. (2015). Forming and 
performance analysis of a 3D-woven composite curved beam using meso-scale FEA. Sampe Journal, 51(3), 
23-29. 

[24] Bickerton, S., Šimáček, P., Guglielmi, S. E., & Advani, S. G. (1997). Investigation of draping and its effects on 
the mold filling process during manufacturing of a compound curved composite part. Composites Part A: 
Applied Science and Manufacturing, 28(9), 801-816.  

[25] Tran, T., Comas-Cardona, S., Abriak, N. E., & Binetruy, C. (2010). Unified microporomechanical approach 
for mechanical behavior and permeability of misaligned unidirectional fiber reinforcement. Composites 
Science and Technology, 70(9), 1410-1418. 

[26] Causse, P., Ruiz, E., & Trochu, F. (2013). Influence of preforming on the quality of curved composite parts 
manufactured by flexible injection. International journal of material forming, 6(3), 341-362. 

[27] Zeng, X., Brown, L. P., Endruweit, A., Matveev, M., & Long, A. C. (2014). Geometrical modelling of 3D 
woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical 
properties. Composites Part A: Applied Science and Manufacturing, 56, 150-160. 

[28] Blais, M., Moulin, N., Liotier, P. J., & Drapier, S. (2017). Resin infusion-based processes simulation: coupled 
Stokes-Darcy flows in orthotropic preforms undergoing finite strain. International Journal of Material 
Forming, 10(1), 43-54. 

[29] Caglar, B., Orgéas, L., du Roscoat, S. R., Sozer, E. M., & Michaud, V. (2017). Permeability of textile fabrics 
with spherical inclusions. Composites Part A: Applied Science and Manufacturing, 99, 1-14. 

[30] Sadykova, F. K. (1972). The Poisson ratio of textile fibres and yarns. Fibre Chemistry, 3(2), 180-183. 



ACCEPTED MANUSCRIPT

14 

[31] Ravirala, N., Alderson, K. L., Davies, P. J., Simkins, V. R., & Alderson, A. (2006). Negative Poisson’s ratio 
polyester fibers. Textile research journal, 76(7), 540-546. 

[32] Du, Z., Zhou, M., Liu, H., & He, L. (2015). Study on negative Poisson’s ratio of auxetic yarn under tension: 
Part 1–Theoretical analysis. Textile Research Journal, 85(5), 487-498. 

[33] Du, Z., Zhou, M., He, L., & Liu, H. (2015). Study on negative Poisson’s ratio of auxetic yarn under tension: 
Part 2–Experimental verification. Textile Research Journal, 85(7), 768-774. 

[34] Takatera, M., Arichi, T., Peiffer, J., Zhu, C., & Kim, K. (2017). Continuous measurement of apparent 
Poisson’s ratio for yarn based on omni-directional diameters. Textile Research Journal, 87(6), 739-746.  

[35] Xiao, H., Bruhns, O. T., & Meyers, A. (1997). Hypo-elasticity model based upon the logarithmic stress rate. 
Journal of Elasticity, 47(1), 51-68. 

[36] De Borst R., Crisfield, M. A., Remmers, J. J., & Verhoosel, C. V. (2012). Nonlinear finite element analysis of 
solids and structures. John Wiley & Sons. 

[37] T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary, (2013) Nonlinear Finite Elements for Continua and 
Structures. John wiley & sons. 

[38] Naghdi, P. M., & Wainwright, W. L. (1961). On the time derivative of tensors in mechanics of continua. 
Quarterly of Applied Mathematics, 19(2), 95-109.  

[39] Green, A. E., & Naghdi, P. M. (1965). A general theory of an elastic-plastic continuum. Archive for rational 
mechanics and analysis, 18(4), 251-281.  

[40] Jaumann, G. (1911). Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzungsber. 
Akad. der Wissenschaften in Wien, CXVII (Mathematisch IIa), 120, 385-530 

[41] Johnson, G. C., & Bammann, D. J. (1984). A discussion of stress rates in finite deformation problems. 
International Journal of Solids and Structures, 20(8), 725-737.  

[42] Boisse, P., Gasser, A., Hagege, B., & Billoet, J. L. (2005). Analysis of the mechanical behavior of woven 
fibrous material using virtual tests at the unit cell level. Journal of materials science, 40(22), 5955-5962. 

[43] Badel, P., Vidal-Sallé, E., & Boisse, P. (2008). Large deformation analysis of fibrous materials using rate 
constitutive equations. Computers & Structures, 86(11), 1164-1175. 

[44] Hughes, T. J., & Winget, J. (1980). Finite rotation effects in numerical integration of rate constitutive 
equations arising in large-deformation analysis. International journal for numerical methods in engineering, 
15(12), 1862-1867. 

[45] Komeili, M., & Milani, A. S. (2016). On effect of shear-tension coupling in forming simulation of woven 
fabric reinforcements. Composites Part B: Engineering, 99, 17-29. 

[46] Schnur, D. S., & Zabaras, N. (1992). An inverse method for determining elastic material properties and a 
material interface. International Journal for Numerical Methods in Engineering, 33(10), 2039-2057. 

[47] Naouar, N., Vidal-Sallé, E., Schneider, J., Maire, E., & Boisse, P. (2014). Meso-scale FE analyses of textile 
composite reinforcement deformation based on X-ray computed tomography. Composite Structures, 116, 
165-176. 

[48] Naouar, N., Vidal-Salle, E., Schneider, J., Maire, E., & Boisse, P. (2015). 3D composite reinforcement meso 
FE analyses based on X-ray computed tomography. Composite Structures, 132, 1094-1104. 

[49] Boussu, F., Cristian, I., & Nauman, S. (2015). General definition of 3D warp interlock fabric architecture. 
Composites Part B: Engineering, 81, 171-188. 



ACCEPTED MANUSCRIPT

     

 

 

 

 

Figure 1. The three scales of the fiber reinforcement.  

(a) Macroscopic scale, (b) mesoscopic scale, (b1) mesoscale FE analysis, (c) microscopic scale. 

 

 

 

 

Figure 2. Yarn in a textile reinforcement. X-ray tomography imaging. 

 

 

 

 

 

Figure 3. Different deformation modes of the yarn at mesoscopic scale. 

(a) 

(b1) 

(c) (b) 
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Figure 4. Unbalanced textile reinforcement 

Figure 5. Transverse compaction of the textile reinforcement between two plates within a X-ray 

computed tomography system 

Warp yarn 

Binder yarn 

2 mm 
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Figure 6. Deformed geometry of the yarns of the fabric after compaction 

Figure 7. Meso FE mesh of the RUC ((Representative Unit Cell) 

Figure 8. Simulation of the compaction based on the initial mechanical model presented in section 2. 

ε11 is the strain in the fiber direction. 

ε11= -1.9 %

ε11= -4.2 %

ε11= -0.3 %

ε11= -1.1 %
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Figure 9. Longitudinal compression experiments on binder yarns  

(a) Experimental setup. (b) Tested specimens. 

 (c) Longitudinal compression curves for two different length of the specimens 

(a) 

(c) 

(b) 
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Figure 10. Transition between longitudinal tension and compression 

Figure 11. Transverse expansion experiment: (a)(b) experimental setup, 

(c) transverse expansion of the yarn in longitudinal compression 

(a) (b) 

(c) 
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Fig. 12. Transverse expansion along a 10 mm yarn for a 0.73% longitudinal compression. 

 

 

 

 

Figure 13. Inverse approach to determine the Poisson ratio in longitudinal compression. 

(a) Experiments, (b) Simulation. 

 

 

Figure 14.  Determination of the Poisson ratio by inverse fitting 
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Figure 15. Measured Poisson Ratios for different dimensions 

and longitudinal compression strains (L0 : initial length; W0 initial width) 

 

 

 

 

Fig. 16. Comparison of experimental and simulated transverse expansion for νlt=11.8 at different 

longitudinal compression strains 
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Figure 17.  Longitudinal compression of a warp yarn. 

(a) Micro CT image of the deformed shape. (b) Simulation with the initial model. 

(c) Simulation taking longitudinal compression stiffness (d) Simulation taking longitudinal compression 

stiffness and transverse expansion. 

Figure 18. Transverse compaction of an unbalanced textile reinforcement.  

(a) Micro-CT analysis (b) Simulation with the original model.  

(c) Simulation taking into account the model of the longitudinal compression presented section 3. 

(d) Simulation taking into account the model of the longitudinal compression presented section 3 

and the model of the transverse expansion presented section 4. 

(a) 
(b) 

(d) 
(c) 

(a) 

(b) 

(c) 

(d) 
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Mesh1 Mesh2 

Mesh3 

Figure 19. Compaction stress versus volume fraction in the transverse compaction of an unbalanced 

textile reinforcement for three different meshes. 

Number of nodes: 20826 

Number of wedge elements: 30122 

 

Number of nodes: 5490 

Number of wedge elements: 6574 

 

Number of nodes: 1634 

Number of wedge elements: 1590 
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Figure 20. 3D orthogonal non-crimp woven fabric. Initial state  

 

 
 

Figure 21. Compaction of a 3D reinforcement. Comparison of the deformed shapes.  

(a) X-ray tomography (b) original mesoscopic model  

(c) with longitudinal compression model of section 3 (d) with longitudinal compression model of 

section 3 and transverse expansion model of section 4.  

1.82 
1.52 

1.79 mm 1.2 mm 

a) b) 

c) d) 
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0A 0B n p

0.02MPa 0.015MPa 1000 20.6

( )l warp
K ( )l weft

K ( )l binder
K ltG

19000 N 2740 N 2340 N 20MPa

Table 1. Mechanical parameters of the unbalanced fabric, Kl is the tensile stiffness of the yarn (Tension 

load/extension strain), Glt is the Coulomb modulus. 

Thickness Material density Area density

0.72mm 30.522kg m 22204kg m

Warp Binder Weft 
Sectional area 0.5735 mm2 0.0798 mm2 0.0868 mm2 

Insertion density 4 yarns per 
centimeter 

4 yarns per 
centimeter 

4 yarns per 
centimeter 

Table 2. Characteristics of the unbalanced fabric 

Roving 

Tex 
(g/km), 
±6% 

Filament 
diameter 

(µm) 

Number of 
filaments in 

a yarn 

Area 
density 

(g/m2) 

Fabric 

thickness 

(mm) 

900 15 2000 2722 3.1 

Warp Binder Weft 
Sectional area 0.6 mm2 0.52 mm2 0.53 mm2 

Insertion density 4 yarns per 
centimeter 

4 yarns per 
centimeter 

4 yarns per 
centimeter 

Table 3. Characteristics of the non-crimp 3D orthogonal weave reinforcement 


