
HAL Id: hal-03139784
https://hal.science/hal-03139784v1

Submitted on 12 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning local regularization for variational image
restoration

Jean Prost, Antoine Houdard, Andrés Almansa, Nicolas Papadakis

To cite this version:
Jean Prost, Antoine Houdard, Andrés Almansa, Nicolas Papadakis. Learning local regularization for
variational image restoration. International Conference on Scale Space and Variational Methods in
Computer Vision (SSVM’21), May 2021, Cabourg, France. pp.358-370, �10.1007/978-3-030-75549-
2_29�. �hal-03139784�

https://hal.science/hal-03139784v1
https://hal.archives-ouvertes.fr


Learning local regularization for variational
image restoration

Jean Prost1, Antoine Houdard1, Andrés Almansa2, and Nicolas Papadakis1

1 Univ. Bordeaux, Bordeaux INP, CNRS, IMB, UMR 5251,F-33400 Talence, France
jean.prost@math.u-bordeaux.fr

2 Université de Paris, MAP5, CNRS, F-75006 Paris, France

Abstract. In this work, we propose a framework to learn a local reg-
ularization model for solving general image restoration problems. This
regularizer is defined with a fully convolutional neural network that sees
the image through a receptive field corresponding to small image patches.
The regularizer is then learned as a critic between unpaired distributions
of clean and degraded patches using a Wasserstein generative adversarial
networks based energy. This yields a regularization function that can
be incorporated in any image restoration problem. The efficiency of the
framework is finally shown on denoising and deblurring applications.

1 Introduction

Inverse problems and convex regularization. Many image restoration tasks require
to solve an inverse problem. This can be addressed with a variational formulation
involving a data-fidelity term and a regularization term encouraging the solution
to satisfy given properties or to belong to a space of possible solutions. Some of
the most famous regularization terms used for image restoration are convex non-
smooth terms like the total variation [20], or `1 minimization of transform-domain
coefficients such as Wavelet frames [6,4] or local Fourier or DCT representations
[26]. However theses strategies tend to produce over-smoothed results, since they
represent only a rough approximation of natural image statistics and geometry.

CNN-based non-convex regularization. Later-on more accurate natural image
priors emerged in the form of non-convex regularization terms, such as patch-
based Gaussian mixture models (to be discussed below) or convolutional neural
networks (CNN). Most common CNN-based regularizers are, however, trained in
a way that the prior or regularizer itself is only partially and implicitly known
via its gradient [2,19,18] or proximal operator [24,16,27,12,21]. Such implicit
CNN regularizers, and the associated optimization algorithms, lack convergence
guarantees or do so under overly restrictive conditions on the regularizer, the
regularization parameter or the kind of inverse problems they can solve [18,21].

To overcome these limitations a new breed of explicit CNN-based regularizers
have been proposed, either in the form of the push-forward measure of a generative
model [3], a variational autoencoder [7], or more directly as a discriminator
network [15]. All these approaches are nevertheless limited to a particular class
of image and do not generalize to images of arbitrary size.



Patch-based non-convex regularization. Learning prior information has also been
widely studied from the patch point-of-view. The main idea is to learn the
prior knowledge from patches, that are local sub-images of small size, instead of
learning a prior from whole images. This allows to avoid the high-dimensional
issues faced when working with full-size image distributions. These approaches
rely on parametric models of the patch distribution such as Gaussian mixture
models [29,10,23]. However such simple models can not accurately represent the
complexity of the patch space.

In this work, we introduce an explicit non-convex regularization function
encoded with a fully convolutional neural network that acts as a local regularizer.
This prior knowledge on the patch distribution can be applied to a whole image
without size limitation. We propose (i) to learn the convolutional regularizer as
a discriminator between patches using the Wasserstein GAN framework [1] as
in [15], and (ii) to integrate this regularizer in patch-based models such as [29].

1.1 Setup of the problem

The main goal of this paper is to perform image restoration by solving an
inverse problem. That is, finding the underlying true image x? from its perturbed
observation y that we consider here to be of the form

y = Ax? + ε, (1)

where ε ∼ N (0, σ2) is a Gaussian white noise and A is a degradation operator
that can typically be the identity (pure denoising), a mask (inpainting) or a
blurring kernel (deconvolution). These inverse problems can be addressed with a
variational formulation involving a regularization term. This amounts to find an
estimate x̂ of x? of the form

x̂ ∈ arg min
x

1
2σ2 ‖Ax− y‖

2 + λR(x), (2)

where ‖Ax− y‖2 is the data-fidelity term ensuring that the recovered image x̂
is close enough to the degraded observation y, R(x) is the regularization term
and λ ≥ 0 monitors the influence of both terms. In the case where R(x) =
− log(PX(x)) + C is derived from a prior probability distribution PX modeling
the data x, then x̂ from (2) corresponds to the maximum a posteriori estimator.

The choice of the regularization function R has a strong impact on the final
result. We propose to learn R through a local regularization functional r acting
on patches. Denoting as Ωx = {x1, · · · , xn} the set of all patches of size p × p
from an image x, this function takes as input an image patch xi and outputs a
score r(xi) that indicates how likely the patch is to be a clean one. As in [29], we
define the global regularization functional as the average value of the local scores
on the set of all patches of image x:

R(x) = 1
|Ωx|

∑
xi∈Ωx

r(xi). (3)
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Working with patches yields three main advantages. It first makes the learning
phase simpler, as a patch model contains far less parameters than a full image
model. Next, the number of images required for training is reduced, as a single
image already provides several thousands of patches. Finally, contrary to [15],
the regularization function can be applied on images of any size.

In practice, we consider r as a CNN with perceptual size equal to the patch
size p × p and taking values in R. This representation is more general than
Gaussian mixture models, and allows to encode complex distributions.

1.2 Contributions and outline.

We propose an image restoration method that relies on a regularization function
learned on patches and applied to any image size. It gathers the advantages of
previous CNN methods while avoiding the constraints of implicit plug & play
priors (convergence guarantee) and of GAN or VAE priors (image size).

In addition, the regularization function is learned in an unsupervised manner,
in the sense that it only relies on patch distributions of clean and degraded data
and it does not require paired data. We can therefore deal with an unknown
degradation model if a noisy dataset is available.

The organization of the paper is as follows. In Section 2, we propose an
unsupervised framework for the learning of a compact convolutional neural
network modeling the local patch regularity prior. We namely obtain the local
regularization functional r as a critic trained to distinguish noisy patches from
clean ones using the framework of Wasserstein generative adversarial models [1]. In
section 3, we provide implementation details to make the work fully reproducible.
We show in section 4 that the local functional r generalizes well to arbitrary levels
of noise, i.e. noise level unseen during training. In Section 5, we demonstrate that
the proposed framework is efficient for image denoising and deblurring.

2 Local regularization for image inverse problem

In this section we define our local image regularizer rθ as a convolutional neural
network and we describe how we use and train it.

Patch-based methods have shown to be efficient tools for solving inverse
problems in imaging [29]. Hence we aim at defining a regularization function rθ
depending on parameters θ ∈ Θ that encode prior knowledge at a patch level.
In the patch-based literature, such regularizers rely on statistical modeling of
the distribution of clean patches and the model parameters are usually inferred
with a maximum likelihood estimation [10]. This leads to two main limitations.
First, it requires to have access to the probability density function of the prior
distribution and consequently it does not properly represent the intrinsic low
dimensional manifold of clean patches. Second, maximizing the likelihood of a
complex model leads to non-convex problems that are difficult to solve in practice.

In order to tackle these issues, we propose to take advantage of having two
data sets of clean and degraded patches –not necessarily paired– and consider rθ
as a critic that tells us if a patch is more likely to be clean or degraded.
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We first detail in section 2.1 how the local regularization function is integrated
as a global regularizer on images in order to solve the variational problem (2). In
section 2.2, we present the framework to learn the regularizer as a critic between
two unpaired dataset of clean and degraded images.

2.1 Convolutional regularizers for variational problems

We define, for the variational problem (2), a regularization term R that takes into
account local prior knowledge of the images. To do so, we propose to consider
a class of functions rθ defined with a fully convolutional neural network with
parameter θ ∈ Θ. We enforce the perceptual size of this network to be the patch
size p×p. That is, the successive convolutions operate on a window no larger than
p× p pixels. Using this architecture permits to compute the global regularizer
R from (3) by directly applying rθ to the full image x and average the outputs.
Once learned the local regularizer r?θ , the variational problem to solve becomes

min
x

1
2σ2 ‖Ax− y‖

2 + λ

|Ωx|
∑
i

r?θ(xi). (4)

We propose to find a local minimizer of (4) by performing an explicit gradient
descent method. Let x` the image at iteration `, a gradient step of step size η
writes

x`+1 = x` − η

σ2A
∗(Ax` − y)− ηλ

|Ωx|
∑
i

∇r?θ(x`i), (5)

where A∗ is the adjoint operator of A. Contrary to plug & play methods that
rely on implicit schemes [24], this explicit scheme converges for differentiable
regularization functions and adequate time steps.

We now describe how the framework for learning the local regularization
function.

2.2 Adversarial Local Regularizer (ALR)

In order to train rθ as a critic between patch distributions, we consider the dis-
criminator framework introduced for generative adversarial networks [8], without
the generator network. Such approach nevertheless results in a critic rθ approx-
imating the hard clustering between clean and degraded patches. It therefore
induces steep gradients ∇rθ that may lead to numerical instabilities during the
minimization of problem (2).

As a consequence, we rather rely on the Wasserstein GAN [1] formulation
that amounts to approximate the optimal transport cost between the distribution
of clean patches Pc, and a distribution of degraded patches Pn. Relying on the
dual formulation of the optimal transport [22], an optimal critic r?θ is seen as a
Kantorovitch potential and shall satisfy

r?θ ∈ arg max
ϕ∈Lip1

Ez∼Pn
[ϕ(z)]− Ez∼Pc

[ϕ(z)] . (6)
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Under the assumption that the support of the clean patches distributionM is
compact [15], the solution of equation (6) corresponds to the distance function to
the clean data manifoldM. Each iteration of the gradient descent on equation
(2) thus brings our noisy data closer to the clean data.

In practice, imposing a neural network to be 1-Lipschitz is a difficult task and
we therefore use the formulation proposed in [9] that encourages the gradient
norm to be close to 1. This amounts to maximize the following quantity

D(θ) = Ez∼Pn
[rθ(z)]− Ez∼Pc

[rθ(z)]− µEz∼Pi
[(||∇zrθ(z)||2 − 1)2] (7)

where Pi is the distribution of all lines connecting samples in Pn and Pc. In
other words, the last term of (7) is a gradient penalty that makes the function
1-Lipschitz on the convex hull of the union of the support of Pc and Pn. By
enforcing the gradient ∇rθ to be of norm close to 1, vanishing gradient issues are
also avoided when solving problem (2) with gradient descent approaches.

We illustrate the properties of the regularization functional with a synthetic
example in Figure 1 containing random perturbations of clean data points located
on a circle. The learned regularization function rθ(z) therefore approximates the
distance function to the circle. The gradient ∇rθ(z) thus indicates the direction
to follow in order to transport z towards the a clean point within the circle.

Fig. 1: Regularization functional r(z) learned on a synthetic 2d denoising problem
with clean data (blue dots) on the circle and noisy ones (red crosses). The gradient
penalty ensures that the gradient ∇r is not flat close to the data manifoldM.

3 Practical considerations for image restoration

In this section, we provide implementation details to reproduce the proposed
framework. After presenting the architecture of the regularization network rθ, we
explain the training strategy and describe how image restoration is performed.

3.1 Network architecture
The local regularization functional rθ is designed as a 6 layers convolutional
network. Each layer is made of 3× 3 convolution operations followed by ReLU
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activations [17]. This network has therefore a 15× 15 receptive field. No padding
is used. Hence, when a patch of the size of the network receptive field is fed to
the network rθ, the output is a scalar.

3.2 Training the regularization functional

The proposed regularization network is trained with patches matching the size
of the receptive field of the network. We create the dataset Dc of clean patches
by extracting all 15 × 15 patches from a 30000 image subset of the google
landmarks dataset [25]. Similarly, we create the dataset Dn of noisy patches by
extracting all 15×15 patches from another 30000 images subset of the landmarks
dataset, to which we added an additive white Gaussian noise with standard
deviation σtrain. Following [15], the local regularization network rθ is trained to
minimize the criterion (7) with Algorithm 1. We use the Adam optimizer [13]
with hyperparameters β1 = 0.9 and β2 = 0.999, and an exponential learning rate
decay, so that the learning rate α begins at a value of 10−3 for the first iteration,
and ends up at 10−4 for the last iteration. We use a batch size of m = 32 and
train the network for K = 105 iterations. The gradient-penalty parameter is set
to µ = 5.

Training samples of clean and noisy patches z, with their final regularizer
value rθ(z) ∈ R, are shown in Figure 2. As can be observed from the functional
values, there exists a slight ambiguity between texture patches (rθ(z) = −0.23
for the last patch of top row) and noisy homogeneous patches (rθ(z) = −0.27
for the first patches of bottom row). We nevertheless show in Figure 3 that the
distributions of clean and noisy patches are globally well separated.

Fig. 2: Value of the local regularization functional rθ trained with σtrain = 0.1
on clean (top row) and noisy (bottom row) patches (σ = 0.1).

3.3 Solving the variational problem

Image restoration is realized by solving the variational problem (2). To do so, we
search for the minimizing image x by performing 50 iterations of Adam [13], with
the momentum parameter set to the default values β1 = 0.9 and β2 = 0.999, and
an exponential learning rate decay, with an initial learning rate of 0.1 and a final
learning rate of 0.01 at the last iteration. We implement the method with the
pytorch deep learning framework, so that the gradient of the global regularization
functional R(x) can be easily computed using automatic differentiation.
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Algorithm 1 Learning the local regularization rθ
Input: Datasets Dc of clean patches and Dn of noisy patches; gradient penalty µ;
batch size m, number of iterations K
Output: regularization function rθ
for k = 1 to K do

Sample minibatches of m clean patches {zcj}mj=1 from Dc and m noisy patches
{znj }mj=1 from Dn and a random number α ∈ [0; 1]
Define interpolated patches zij = αzcj + (1− α)znj
for j = 1 to m do
Dj(θ) = rθ(znj )− rθ(zcj )− µ(||∇zrθ(zij)||2 − 1)2

end for
θ ← Adam(∇θ

∑m

j=1 Dj(θ))
end for

4 Generalization to unseen noise level

In this section, we study the robustness of the proposed regularization function to
noise variations. The adversarial training of the regularization function, presented
in the previous sections, requires to learn a different regularization function for
every different noise level σ. We show how this limitation can be overcome.

We first analyze the behaviour of regularization functions trained on a single
noise level σtrain and then used to denoise an image with a different noise level
σimg. Second, we propose to train the regularization functions with varying noise
levels and demonstrate experimentally the superiority of this approach.

4.1 Robustness to unseen noise level

To study the ability of the local regularization function to generalize to noise
levels unseen during training, we train 4 regularization functions on 4 different
noise levels σtrain ∈ {0.05, 0.1, 0.2, 0.4}. We then evaluate the quality of the
regularization of those networks on denoising tasks, for 5 different noise levels
σimg ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. The 4 networks share the same architecture and
the same training procedure as described in section 3.

While these regularizers have only been trained to distinguish between clean
patches and noisy patches for a particular noise level, they generalize well to
intermediate noise levels, in the sense that the regularizer value is an increasing
function of the noise level of its input patch. Figure 3 illustrates this point for
the noise level σtrain = 0.1. The overlap between the distribution for noise level
σ = 0 (top) and σ = 0.1 (bottom) is small, showing the ability of the regularizer
network to distinguish clean and noisy patches. Furthermore, the distribution for
noise level σ = 0.05 is located in between the distributions σ = 0 and σ = 0.1,
showing the ability of the network to generalize to intermediate noise levels but
also to extrapolate to the noise level 0.15.
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Fig. 3: Distribution of values rθ(x) for
a regularizer trained on noise level
σtrain = 0.1. It generalizes well to
patches x with an intermediate (0.05)
or extrapolated (0.15) noise levels.

Next, we evaluate denoising qual-
ity by measuring the average PSNR on
a validation set of 11 images. To that
end, we solve problem (2) for A = Id.
We denoise images with 5 noise lev-
els σimg ∈ {0.05, 0.1, 0.2, 0.3, 0.4}, and
we respectively set the regularization
parameter λ to {0.15, 0.35, 0.6, 0.8, 1}.
The results displayed on table 1
demonstrate that the trained regular-
ization functions generalize well to un-
seen noise level, as for all 5 levels of
noise σimg, the 4 regularization func-
tions yield average PSNR values that
are contained in an interval of size
smaller than 1 dB. Furthermore, reg-
ularization networks trained on small
noise levels σtrain ∈ {0.05, 0.1} generalize well to higher noise levels σtrain as
they perform even better than networks trained on the specific noise level.

We suggest that this is due to the fact that, when trained on a small noise
level, the regularization function is forced to learn a tight boundary between the
clean and the noisy distribution which favors denoising performance. However,
for the highest noise level σimg = 0.4, the regularization function trained on a
small noise level σtrain = 0.05 gives the worst results. As patches with very high
noise levels are not seen during the training of the regularization function trained
for σtrain = 0.05, we suggest that the gradient penalty is not enforced to 1 in
this region of the patch space. Thus there is no guarantee that the gradient of
the regularization function ∇rθ is indeed directed towards the space of possible
solutions. This prevents the optimization algorithm from finding a relevant local
minimum of (2).

4.2 Robustness to noise variation during training

We evaluate how robust the regularization function is to noise level variation
during training. To do so, we train a regularization function on a distribution
containing patches with noise level σtrain uniformly sampled in the interval
[0.05, 0.30]. We use the same network architecture and the same training procedure
as in section 3.

We evaluate the effectiveness of this regularization function by measuring
the average PSNR when this function is used for denoising. We compare the
performance with the prior trained on a single noise level in the last row of table
1. Results show that the regularization function trained with a varying noise
level has comparable performance with the regularization function trained on a
single-noise level. Furthermore, for high noise level, the regularization function
trained on a varying noise level significantly outperforms the regularization
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Table 1: Average PSNR on AWGN denoising, in function of the image noise level
σimg, and the noise level the regularization network was trained on σtrain. For
each image noise level, best result is displayed in bold, and second best result is
underlined. Regularization networks trained on small noise level σtrain generalizes
well to higher noise levels σimg. The regularization network trained on varying
level of noise σtrain ∈ [0.05; 0.3] performs better on high noise levels σimg.

σtrain

σimg 0.05 0.1 0.2 0.3 0.4

0.05 33.24 28.94 24.21 21.25 18.91
0.1 33.20 28.82 24.17 21.25 19.13
0.2 32.42 28.23 23.80 21.03 18.96
0.4 33.01 28.23 23.84 21.03 18.96

[0.05; 0.3] 32.92 28.90 24.91 22.58 20.84

function trained on a single-noise level. This illustrates the fact that training the
regularization function on varying noise level is actually beneficial.

We suggest that exposing the regularization function to various noise levels
during training combines two advantages. It first learns a tight boundary around
the clean patches distribution, as the networks trained on low noise levels. Second,
the gradient-penalty is enforced even on highly noisy patches, as the networks
trained on high noise levels.

5 Experiments

We evaluate the effectiveness of our learned regularization functional on two
image restoration tasks, image denoising and image deblurring.

5.1 Denoising

We evaluate our method on additive white Gaussian noise denoising, which
corresponds to solving (2) with A = I. We compare our method against two
common patch-based denoising algorithms, BM3D [5] and EPLL [29], on 3 noise
levels σimg ∈ {0.1, 0.2, 0.4}. We use our model trained on varying noise level
σtrain ∈ [0.05, 0.3], with the regularization parameter λ respectively set to 0.15,
0.35 and 1. For BM3D, we use the implementation of [14] with default parameters,
and for EPLL we use the implementation of [11] with default parameters and a
prior GMM model learned on RGB patches.

The average PSNR and LPIPS [28] on the BSD68 dataset for the 3 methods
are presented in Table 2, and examples of denoised images are shown on Figure 4.
For the 3 noise levels, the adversarial local regularization denoising outperform
EPLL and BM3D in terms of PSNR, while having comparable perceptual quality.
This illustrates the ability of convolutional neural networks to be used as local
regularizers when trained the right way.
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Table 2: Comparisons in terms of PSNR (left) and LPIPS (right) of the patch-
based denoising algorithms ALR, EPLL and BM3D, for white Gaussian noise.
Results are averaged on the 68 images of the BSD68 dataset.

PSNR LPIPS
σ ALR EPLL BM3D ALR EPLL BM3D
0.1 28.85 28.77 28.26 0.29 0.28 0.30
0.2 24.88 24.92 24.69 0.44 0.42 0.43
0.4 21.58 19.75 20.25 0.57 0.61 0.58

(a) noisy (b) BM3D (c) EPLL (d) ALR (e) clean
(20.35dB) (25.48dB) (25.48 dB) (26.96 dB)

Fig. 4: Visual comparison of patch-based denoising methods for σ = 0.1.

5.2 Deblurring

To illustrate the adaptability of our local regularization function, we consider
image deblurring. This corresponds to solving (2) with a linear degradation
operator A taken as a convolution operation with a blur kernel k, that is y =
k ∗ x+ ε. Figure 5 shows an example of image deblurring using our learned local
regularization function. The image is blurred with a 7× 7 Gaussian kernel with
standard deviation σk = 3, and an additive white Gaussian noise of standard
deviation σ = 0.03.

(a) blurry (b) ALR (c) clean
(22.17dB) (25.36dB)

Fig. 5: Illustration of deblurring using a 7 × 7 Gaussian kernel with standard
deviation σk = 3.
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6 Conclusion and Perspectives

We propose a new strategy to solve inverse problem in imaging using a convolu-
tional neural network as a local regularization function. The local regularization
network is trained to discriminate between clean and noisy patches, and the
global regularization function is defined as the average value of the local function
over the set of all image patches. Working with a local regularization function
offers several advantages : it works with any image size, it requires less training
data and has less parameters than a full size model. Furthermore, the fully
convolutional architecture of the network makes it computationally efficient to
compute the global regularization function and its gradient.

Experimental results on image denoising show that our method outperforms
popular patch-based denoising algorithm such as EPLL and BM3D, illustrating
the potential of convolutional networks to acts as regularization function for
inverse imaging problems.

We believe that improving the training criterion of the regularization function
could improves the performance of the regularization. Indeed, the training crite-
rion of our local regularization network corresponds to the 1-Wasserstein distance.
The regularizer thus grows linearly with the distance to the clean data manifold,
whereas the data-fidelity term is quadratic. We suggest that these unbalanced
terms make the variational problem difficult to solve, especially for high noise
levels. We believe that learning a regularization term based on the 2-Wasserstein
distance could help to overcome this limitation, as the learned regularization
function would then grow with the square of the distance to the clean manifold.
Acknowledgements. This study has been carried out with financial support from
the French Research Agency through the PostProdLEAP project (ANR-19-CE23-
0027-01).
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