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Abstract

We study the fundamental limits for reconstruction in weighted graph (or matrix) database
alignment. We consider a model of two graphs where π∗ is a planted uniform permutation
and all pairs of edge weights (Ai,j , Bπ∗(i),π∗(j))1≤i<j≤n are i.i.d. pairs of Gaussian variables
with zero mean, unit variance and correlation parameter ρ ∈ [0, 1]. We prove that there is a
sharp threshold for exact recovery of π∗: if nρ2 ≥ (4 + ε) logn + ω(1) for some ε > 0, there is
an estimator π̂ – namely the MAP estimator – based on the observation of databases A,B that
achieves exact reconstruction with high probability. Conversely, if nρ2 ≤ 4 logn − log log n −
ω(1), then any estimator π̂ verifies π̂ = π with probability o(1).

This result shows that the information-theoretic threshold for exact recovery is the same
as the one obtained for detection in a recent work by [WXY20]: in other words, for Gaussian
weighted graph alignment, the problemof reconstruction is notmore difficult than that of detec-
tion. Though the reconstruction task was already well understood for vector-shaped database
alignment (that is taking signal of the form (ui, vπ∗(i))1≤i≤n where (ui, vπ∗(i)) are i.i.d. pairs
in Rdu × Rdv), its formulation for graph (or matrix) databases brings a drastically different
problem for which the hard phase is conjectured to be wide.

The proofs build upon the analysis of the MAP estimator and the second moment method,
together with the study of the correlation structure of energies of permutations.

Introduction
Aligning databases We address the following problem: suppose that we have two databases
consisting in weighted graphs represented by their adjacency matrices A and B. For simplicity,
assume that the two graphs have same size and that each individual appears in both graphs. For
a given individual, its attached signal consists in weighted edges with all other users. Across
databases, edges that correspond to pairs of matched individuals are correlated. We consider the
following question: if the graphs are shown unlabeled (that is, if users are anonymized), is it possible
to recover the corresponding matching between databases by aligning them at the sight of their correlation
structure?

Intuitively, when thematrices are correlated enough, one can learn the truematching between
individuals present in the databases. In this study we investigate the precise conditions on cor-
relation under which exact reconstruction (or perfect de-anonymization) is feasible with high
probability.

De-anonymization problems aroused great interest when [NS08] were able to de-anonymize an
unlabeled dataset of film ratings (namely, the Netflix prize dataset) with the observation of a
publicly available database (namely the Internet Movie Database), using correlations between
the ratings. Since then, they have been studied in recent literature, in several versions and refor-
mulations. The range of applications has been widened to quantifying privacy issues related to
databases ([Dwo08]) or social networks ([NS09]).

Widespread attention was given on the graph alignment problem, focusing on more geometrical
databases ([CK17, CKMP18, DMWX18, FMWX19a, FMWX19b, GM20]). Lots of other natural
applications can bementioned, such as pattern recognition in image processing ([BBM05, CSS07]),
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aligning protein interaction networks in computational biology ([SXB08]) or performing ontology
alignment in natural language processing ([HNM05]).

Vector-shaped and graph-shaped databases From the theoretical point of view, fundamental
limits for the deanonymisation problem are nowwell understood when data only consists in vec-
tors u, v of given sizes n ([CMK18, ECK19]), that is when each user has its own signal, regardless
of its connections with others. In this setting, the problem can be phrased in terms of a Linear
Assigment Problem (LAP):

arg max
Π

〈Πu, v〉, (1)

where the maximum runs over all permutation matrices of size n. Even if greedy optimization is
easily seen to be exponential-time, LAP can be solved efficiently inO(n3) steps using the classical
Hungarian algorithm ([Kuh55]).

Another related problem is that of linear regression with an unknown permutation, studied
in [PWC16]: this time, one observes y = Π∗Ax∗ + w, where x∗ ∈ Rd is an unknown vector, Π∗ is
an unknown n × n permutation matrix, and w ∈ Rn is additive Gaussian noise. Here again, the
permutation Π∗ applies only on the left side of A, which corresponds to row permutation.

On the other hand, when the databases are graphs, the problem is different and can be phrased
this time in terms of a Quadratic Assigment Problem (QAP):

arg max
Π

〈A,ΠBΠT 〉. (2)

A significant difference with the previous vector-shaped setting is that this problem is known to
be NP-hard in the worst case, as well as some of its approximations ([MMS14, PRW94]). In the
case where the signal lies in the graph structure itself – that is, when (Ai,j , Bπ∗(i),π∗(j))1≤i<j≤n
are correlated pairs of Bernoulli variables – recent work ([CK17, CKMP18]) showed that there
exists a sharp threshold for exact recovery, where the signal-to-noise ratio can be expressed in the
correlated Erdős-Rényi model in terms of the size n of both graphs, the marginal edge probability
p and the correlation parameter s between edges of the two graphs. Indeed, they established that
exact (resp. almost exact) reconstruction is feasible with high probability if and only if nps ≥
log n+ω(1) (resp. nps ≥ ω(1)). When the signal is sparser, e.g. np = Θ(1), the problem of partial
graph alignment (that is, recovering only a positive fraction of vertices) has been recently explored
algorithmically ([GM20]) and theoretically ([HM20]).

Model ofGaussianWignermatrices This paper focuses on the casewhere signal lies inweights
on edges between all pairs of nodes. In order to rigorously analyze the fundamental limits of our
reconstruction problem, we will work in a probabilistic setting. The correlated Gaussian Wigner
model is first introduced by [DMWX18] as a standard model for random graph alignment, and
has been further investigated for its own sake in recent work ([FMWX19a, GLM19, WXY20]).

Assume that the weighted adjacency matrices A and B of the two graphs G and G′ are sym-
metric, and sampled as follows: first draw the planted permutation π∗ uniformly at random in
Sn. Then all pairs of edge weights (Ai,j , Bπ∗(i),π∗(j))1≤i<j≤n are i.i.d. couples of normal variables
with zero mean, unit variance and correlation parameter ρ ∈ [0, 1]. Since all Gaussian variables
are independent from π∗, matrix B can also be drawn from A as follows:

B = ρ ·Π∗TAΠ∗ +
√

1− ρ2 ·H, (3)

where H is an independent copy of A, and Π∗ is the n× nmatrix representation of permutation
π∗, that is Π∗i,j = 1j=π∗(i).
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Figure 1: A sample from model (3) with n = 5. For representation, edges are colored according
to their weights, and the underlying alignment is u 7→ u′ for u ∈ {1, 2, 3, 4, 5}.

Detection problem A most recent paper ([WXY20]) studies fundamental limits for detection,
both in correlated Gaussian weighted and correlated Erdős-Rényi graphs. This time, the problem
is as follows: given A,B, are we able to distinguish between model (3) and a null model, where the two
graphs are just independent Gaussian weighted graphs? Intuitively, this problem is less demanding
than that of exact alignment, since the task is to detect – wherever in the graph – the presence
of a hidden planted alignment. Under the same model (3), Y. Wu, J. Xu and S. Yu showed that
detection is feasible with high probability if nρ2 ≥ 4 log n, whereas it is impossible if nρ2 ≤ (4 −
ε) log n for some ε > 0. Their study builds on an analysis of the likelihood ratio – as often in
detection problems. The contribution of this paper is to show that this sharp detection threshold
is also that of exact reconstruction. Interestingly, for Gaussian weighted graph alignment, the
problem of reconstruction is in fact not more difficult than that of detection.

After this paper was completed, the author was made aware of recent and independent work
conducted by [WXY21], which also obtains – among other things – the results of this paper, albeit
with different proof techniques.

Main results
In the sequel, weworkwith the correlated GaussianWignermodel described in (3), and establish
the precise (sharp) threshold for exact recovery of π∗ in this model.
Theorem 1 (Achievability part). If for n large enough

ρ2 ≥ (4 + ε) log n

n
(4)

for some ε > 0, then there is an estimator (namely, theMAP estimator) π̂ of π givenA,B such that π̂ = π∗

with probability 1− o(1).

Theorem 2 (Converse part). Conversely, if

ρ2 ≤ 4 log n− log log n− ω(1)

n
(5)

then any estimator π̂ of π given A,B verifies π̂ = π∗ with probability o(1).

Computational limits of exact recovery For the correlated Gaussian Wigner model (3), several
algorithms have been studied, usually as a first step in order to analyze further graph alignment
algorithms. The state-of-the-art polynomial-time algorithms are either based on degree profiles
([DMWX18]), or on a spectral method ([FMWX19a]). In both cases, these methods require the
noise parameter

√
1− ρ2 to be O (log−1 n

). [GLM19] study a simpler algorithm with lower com-
putational complexity (O(n2) versus O(n3)), requiring

√
1− ρ2 to be O(n−7/6). In any case, ρ

3



needs to tend to 1, and the regimes in which these methods work well are far from the funda-
mental limits established in this paper. The present paper thus corroborates the idea that matrix
alignment may be computationally hard even in the feasibility regime. In other words, the hard
phase can be conjectured to be really wide for this reconstruction problem. Proving a result of
that form however remains a very thorny question.

Paper organization
We first define our notations at the beginning of Section 1, and then establish a control on cor-
relations between energies of permutations, using Hanson-Wright inequality. The achievability
result is proved in Section 2: after showing that the classical first moment method fails, we take
advantage of the correlation structure established before to handle the sharp bound. Then, sec-
ond moment method is applied in Section 3 to show that lots of small perturbations of the true
underlying permutation have lower energies, establishing the converse bound. Finally, some ad-
ditional proofs are deferred to Appendix A. The proof techniques are not far from those used
by [ECK19], the main novelty being the use of correlation of energies, which is essential to both
achievability and impossibility result.

1 Preliminaries
1.1 Definitions and notations
For any positive integern, let [n] = {1, 2, . . . , n}. For two positive sequences {un} and {vn}, denote
un = O(vn) if there exists C > 0 such that un ≤ Cvn for all n. We will also write un = o(vn) (resp.
un = ω(vn)) if un/vn → 0 (resp. vn/un → 0). All limits considered are taken when n→∞.

Linear algebra We work with the canonical euclidean norm ‖ · ‖ on Rn, and 〈·, ·〉 the canonical
inner product on Rn or Rn×n. For any n× nmatrixM with real entries, its Frobenius norm ‖M‖F
and its operator norm ‖M‖op are defined as follows:

‖M‖F :=

 ∑
1≤i,j≤n

A2
i,j

1/2

and ‖M‖op := sup
X∈Rn\{0}

‖MX‖
‖X‖

.

Note that for any normalmatrix (that is, ifMTM = MMT ), then ‖M‖op equals ρ(M), the spectral
radius ofM .

Probability When working with model (3), we will denote by PA (resp. EA) the conditional
probability (resp. the conditional expectation) with respect to the randommatrixA. Throughout
the paper, N (µ, v) denotes a Gaussian variable (resp. vector) with mean µ and variance (resp.
covariance matrix) v. Such a Gaussian variable (resp. vector) is called standard if µ = 0 and v = 1
(resp. v is the identity matrix). We say that an event An happens with high probability (w.h.p) if
P(An)→ 1 when n→∞.

Permutations We denote by Sm the set of permutations of [m]. To any permutation σ ∈ Sm, we
can associate its m ×m matrix representation Σ defined by Σi,j = 1j=σ(i). Define Fσ the set of
fixed points of σ:

Fσ := {i ∈ [m], σ(i) = i} , (6)
and denote fσ := ]Fσ . Similarly, we define the set of unfixed points of σ:

Dσ := [m] \ Fσ = {i ∈ [m], σ(i) 6= i} , (7)

and we denote dσ := ]Dσ . For any d ∈ {0, . . . ,m} we define Sm,d the set of permutations of Sm
with exactly d unfixed points. Note that ]Sm,1 = 0 and that we have the inequality

]Sm,d =

(
m

m− d

)
] {σ ∈ Sd, Fσ = 0} ≤

(
m

m− d

)
d! ≤ md. (8)

4



Similarity between two permutations σ, σ′ ∈ Sn is measured by their overlap:

ov(σ, σ′) :=
1

n

n∑
i=1

1σ(i)=σ′(i) =
1

n
fσ−1◦σ′ .

Observe that on a graph of size n, each permutation σ of the vertices [n] has a natural extension
to a canonical permutation on edges σE :

(
[n]
2

)
→
(

[n]
2

) defined as follows:

σE : e = {i, j} 7→ σE(e) = {σ(i), σ(j)} .

Note that the mapping σ 7→ σE is one-to-one as soon as n ≥ 3, since for all i ∈ [n] and j 6= j′ ∈
[n] \ {i}, edges σE({i, j}) and σE({i, j′}) have only one node in common, which is σ(i). We will
use the notation FE

σ = FσE (resp. DE
σ = DσE) the set of fixed edges (resp. unfixed edges) of σ.

Similarly we denote fE
σ = fσE and fE

σ := dσE , for brievity.
Note that dE

σ and are dσ are closely tied, since for all σ ∈ Sn, we have the inequality

dσ

(
n− dσ

2

)
≤ dE

σ ≤ dσ
(
n− dσ − 1

2

)
. (9)

Indeed, observe that
(i) the number of fixed edges is at least the number of pairs of fixed points, and

(ii) the number of fixed edges is exactly the number of pairs of fixed points plus the number
of pairs (i, j), i < j that are exchanged by σ (that is, the number of transpositions), this
number being at most dσ/2.

These remarks give that (
n− dσ

2

)
≤
(
n

2

)
− dE

σ ≤
(
n− dσ

2

)
+
dσ
2
,

which directly implies (9).
Remark 1. Note that inequality (9) gives the almost sure equivalents dE

σ ∼ dσn when dσ = o(n), and
dE
σ ∼ 1

2α(2− α)n2 when dσ = αn. In any case, dE
σ ∈

[
1
2dσn, dσn

]
.

1.2 MAP estimation, relative energy of permutations
Since π∗ is uniformly chosen, we work in a Bayesian setting: let us evaluate the posterior proba-
bility density of π∗ given A,B:

pπ∗|A,B (π|a, b) ∝ pπ∗,A,B (π, a, b)

∝ exp

− 1

2(1− ρ2)

∑
1≤i<j≤n

(
Bπ(i),π(j) − ρAi,j

)2 ,

where ∝ indicates equality up to some factors that do not depend on σ. Define the loss function

L(π,A,B) :=
∑

1≤i<j≤n

(
Bπ(i),π(j) − ρAi,j

)2
. (10)

This loss function can also be viewed as the energy associated with permutation π. Note that
the posterior distribution is a Gibbs measure corresponding to this energy L, with inverse tem-
perature β = 1

2(1−ρ2) . The MAP (maximum a posteriori) estimator is thus

π̂MAP := arg max
π

pπ∗|A,B (π|A,B) = arg min
π

L(π,A,B), (11)

where the minimum is taken over all permutations π ∈ Sn. The above formulation (11) is stan-
dard in the literature of graph and matrix alignment and meets the classical QAP formulation
(2), since

arg min
π

L(π,A,B) = arg max
Π

〈A,ΠBΠT 〉.

5



Theory from Bayesian optimal estimation guarantees that the best possible estimator for our
exact reconstruction problem, in the Bayes risk sense, is π̂MAP. Thus, if MAP estimator fails with
high probability, then no estimator can succeed. This is why this estimator is often studied in
exact reconstruction problems, as already done in previous works ([CK17, CMK18, ECK19]).

From now on we work conditionally on π∗ which can always be assumed to be id without loss
of generality. More precisely, we will make the variable change σ = π∗ ◦ π−1 ; writing B as a
function of σ,A and H , (10) becomes

L(σ,A,H) = ρ2
∑

1≤i<j≤n

(
Ai,j −Aσ(i),σ(j)

)2 − 2ρ
√

1− ρ2
∑

1≤i<j≤n

Hi,j

(
Ai,j −Aσ(i),σ(j)

)
+ (1− ρ2)

∑
1≤i<j≤n

H2
i,j .

The loss functionL applied to the ground truth π = π∗ – that is σ = id – gives the energy reference
(1− ρ2)

∑
1≤i<j≤nH

2
i,j . In order to compare any π with π∗ – or any σ with id – we further define

the relative energy of a permutation σ ∈ Sn:
δ(σ) := L(σ,A,H)− L(id, A,H)

= ρ2
∑

1≤i<j≤n

(
Ai,j −Aσ(i),σ(j)

)2 − 2ρ
√

1− ρ2
∑

1≤i<j≤n

Hi,j

(
Ai,j −Aσ(i),σ(j)

)
. (12)

We next omit in our notations the dependency on A and H of δ(σ).
Remark 2. This relative energy δ, also introduced by [CK17] for Erdős-Rényi graph alignment, is a mea-
surement of the quality of a proposed alignment: δ(σ) ≤ 0 means that σ−1 ◦ π∗ is a better alignment than
π∗ for A and B in the posterior sense. A crucial set is then

Q := {σ ∈ Sn, δ(σ) ≤ 0} .

Points of Q are alignments on which the posterior distribution puts important weights – at least greater
weights than that of the ground truth – or equivalently points of low energy. Note that id ∈ Q.

In view of (12), conditionally on A, δ(σ) is as follows:

δ(σ) = ρ2vσ − 2ρ
√

1− ρ2Xσ, (13)
where

vσ :=
∑

1≤i<j≤n

(
Ai,j −Aσ(i),σ(j)

)2
,

and X = (Xσ)σ∈Sn is a Gaussian vector, centered, with covariance given by

Cov(Xσ, Xσ′) =
∑

1≤i<j≤n

(
Ai,j −Aσ(i),σ(j)

) (
Ai,j −Aσ′(i),σ′(j)

)
:= cσ,σ′ .

Note that for all σ ∈ Sn, cσ,σ = vσ . Elaborating on the correlation structure of these relative
energies is the object of the end of this section.

1.3 Control of covariance structure of relative energies
For all σ, σ′ ∈ Sn, cσ,σ′ can be written as follows

cσ,σ′ =
∑

e∈([n]
2 )

(
Ae −AσE(e)

) (
Ae −Aσ′E(e)

)
and satisfies

E [cσ,σ′ ] = ](DE
σ ∩ DE

σ′) + ](DE
σ ∩ DE

σ′ ∩ FE
σ−1◦σ′).

In particular,
E [vσ] = dE

σ + dE
σ = 2dE

σ .

Random variables cσ,σ′ only depend on the entries of A, which are Gaussian. Moreover,
cσ,σ′ being a quadratic form evaluated on a Gaussian vector, it can therefore be controlled using
Hanson-Wright inequality:

6



Lemma 1.1 (Hanson-Wright inequality ([HW71])). Let X be a standard Gaussian vector, and M a
deterministic matrix. Then there exists a universal constant c > 0 such that with probability at least 1−2δ:∣∣XTMX − TrM

∣∣ ≤ c(‖M‖F√log(1/δ) + ‖M‖op log(1/δ)
)
. (14)

We refer to [HW71] for a proof. Inequality (14) used in our context leads to the following
Corollary 1.1. There exists a universal constant C > 0 such that with high probability, for every d ∈
{2, . . . , n}, for all σ, σ′ ∈ Sn,d,∣∣cσ,σ′ − ](DE

σ ∩ DE
σ′)− ](DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′)
∣∣ ≤ Cd√n log n.

Proof. We first make the following observation: for any σ, σ′ ∈ Sn,

cσ,σ′ =
∑
e

(
Ae −Aσ(e)

) (
Ae −Aσ′(e)

)
= AT (IN − Σ)T (IN − Σ′)A,

where A = (Ae)e is viewed as a standard Gaussian vector of sizeN =
(
n
2

), and Σ (resp. Σ′) is the
N ×N permutation matrix associated with σE (resp. σ′E). Note that

Tr((IN − Σ)T (IN − Σ′)) = N − fE
σ − fE

σ′ + fE
σ−1◦σ′

(a)
= ](DE

σ ∩ DE
σ′) + ](DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′),

where (a) is obtained by noticing that

](DE
σ ∩ DE

σ′) + ](DE
σ ∩ DE

σ′ ∩ FE
σ−1◦σ′) = dE

σ + dE
σ′ − ](DE

σ ∪ DE
σ′) + fE

σ−1◦σ′ − ](F
E
σ ∪ FE

σ′)

and that ](DE
σ ∪ DE

σ′) + ](FE
σ ∪ FE

σ′) = N. For a fixed d and σ, σ′ ∈ Sn,d, one has

‖(IN − Σ)T (IN − Σ′)‖F ≤ ‖(IN − Σ′)‖F + ‖ΣT (IN − Σ′)‖F
= 2‖(IN − Σ′)‖F

≤ 2
√

2dE
σ′

≤ 2
√

2dn,

where we used (9) in the last step. One also has

‖(IN − Σ)T (IN − Σ′)‖op ≤ ρ(IN − Σ)× ρ(IN − Σ′)

≤ 2× 2 = 4.

Taking δ = n−(2d+2), Lemma 1.1 gives that with probability at least 1− 2δ,∣∣cσ,σ′ − ](DE
σ ∩ DE

σ′)− ](DE
σ ∩ DE

σ′ ∩ FE
σ−1◦σ′)

∣∣ ≤ c(2
√

2
√
d(2d+ 2)

√
n log n+ 4(2d+ 2) log n

)
≤ Cd

√
n log n, (15)

for some universal constant C > 0. The proof is concluded by checking that this inequality holds
w.h.p. for all d and σ, σ′ ∈ Sn,d : the probability that at least one pair (σ, σ′) contradicts (15) is
upper bounded by

n× (]Sn,d)2 × 2δ ≤ 2n1+2d−2d−2 = o(1).

In the rest of the paper we define the event

A :=
{
∀d ∈ [n],∀σ, σ′ ∈ Sn,d,

∣∣cσ,σ′ − ](DE
σ ∩ DE

σ′)− ](DE
σ ∩ DE

σ′ ∩ FE
σ−1◦σ′)

∣∣ ≤ Cd√n log n
}
,

(16)
which happens with probability 1− o(1) by Corollary 1.1.
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2 Achievability result
In this section, we establish Theorem 1.

2.1 Failure of first moment method
For the achievability result, the first strategy is to use the union bound (or first moment method)
to show that under condition (4) of Theorem 1,

P (MAP fails) = P (π̂MAP 6= π) = o(1).

As described hereafter, this naive method does not give the correct bound. Indeed, let us evaluate
P (δ(σ) ≤ 0) for a given σ 6= id. In view of the conditional distribution (13) of δ(σ) we have

P (δ(σ) ≤ 0) = E
[
EA
[
1δ(σ)≤0

]]
= E

[
PA
(
ρ2vσ − 2ρ

√
1− ρ2Xσ ≤ 0

)]
= E

[
PA
(
ρ2vσ − 2ρ

√
1− ρ2

√
vσ · N (0, 1) ≤ 0

)]
= E

[
PA

(
N (0, 1) ≥

ρ
√
vσ

2
√

1− ρ2

)]
≤ E

[
exp

(
− ρ2

8(1− ρ2)
vσ

)]
,

whereweused standardGaussian concentration in the last inequality: P (N (0, 1) ≥ t) ≤ exp(−t2/2).
Note that on event A defined in (16) and inequality (9),

∀d ∈ [n],∀σ ∈ Sn,d, vσ ≥ 2dE
σ − Cdσ

√
n log n ≥ dE

σ (2− 2εn) ,

setting εn = 2C
√

log n/n. Union bound then gives

P (MAP fails) ≤ P (∃σ ∈ Sn \ {id} , δ(σ) ≤ 0)

≤ o(1) +
∑

σ∈Sn\{id}

E
[
exp

(
− ρ2

8(1− ρ2)
vσ

)
1A

]

≤ o(1) +
∑

σ∈Sn\{id}

exp

(
− ρ2

8(1− ρ2)
(2− 2εn)dE

σ

)

≤ o(1) +
∑

σ∈Sn\{id}

exp

(
−ρ

2

4
(1− εn)dE

σ

)
,

where we used 1/(1− ρ2) > 1 in the last step. Let us now study the last sum, distinguishing the
terms according to d := dσ :

• As long as d = o(n), by Remark 1, the terms behave like exp
(
−ρ

2

4 (1− εn)dn
)
. By (8),

log ]Sn,d ≤ d log n so the partial sum is small if ρ24 (1 − εn)n − log n > 0, which gives the
necessary condition ρ2 ≥ 4 logn

n .
• However, the situation is different when it comes to large values of d. For instance, let us

study the contribution of derangements to the sum (that is, σ such that dσ = n). Note that
these derangements are very numerous (their number is ∼ e−1n!). Again by Remark 1,
their contribution is thus of order

e−1n! exp
(
ρ2(1− εn)n2/8(1− o(1))

)
= exp

((
n log n− ρ2n2/8

)
(1− o(1))

)
,

which gives a more restrictive condition: ρ2 ≥ 8 logn
n .

As seen here-above, this naive first moment method enables to ensure feasibility of exact re-
construction only in the regime where ρ2 ≥ 8 logn

n , which is not the optimal one. This bound
is actually quite rough here, because the variables are substantially correlated when d gets large
and their contributions make the first moment explode. The next section takes advantage of these
correlations in order to get access to the sharp bound.
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2.2 Improving the first moment method with correlations.
For all d ∈ {2, . . . , n}, define Ed the event:

Ed := {∃σ ∈ Sn,d, δ(σ) ≤ 0} .

In this Section we will assume that

ρ ≥ (2 + ε)

√
log n

n
,

for some ε > 0. Recall that we work on the event A defined in (16), and that conditionally on
entries of matrix A, we can write

δ(σ) = ρ2vσ − 2ρ
√

1− ρ2Xσ, (17)

where X = (Xσ)σ∈Sn,d is a Gaussian vector, centered, with covariance given by Cov(Xσ, Xσ′) =
cσ,σ′ . Also note that on event A, for all d ≤ αn and σ ∈ Sn,d, inequality (9) gives

vσ = (1− o(1))2dn(1− α/2). (18)

In view of (18), as previously done in Section 2.1, naive first moment method may suffice for
d ≤ αn:

P

 ⋃
2≤d≤αn

Ed

 ≤ o(1) +

αn∑
d=2

]Sn,d × P

(
N (0, 1) ≥

ρ
√
vσ

2
√

1− ρ2
∩ A

)

≤ o(1) +

αn∑
d=2

]Sn,d × P
(
N (0, 1) ≥ (1 + ε/2)

√
2d log n(1− α/2)(1− o(1))

)
≤ o(1) +

αn∑
d=2

exp (d log n− d log n(1 + ε)(1− α/2) + o(d log n)) ,

which is o(1) as soon as α < α0 := 2ε
1−ε/2 . It then remains to control the probabilities P(Ed)

for d ≥ α0n. As mentioned earlier, we take advantage of the correlation structure in (17). More
precisely, we show that all variablesXσ at a given level d = αnhave substantial positive covariance
when compared to their variance – of order α(2 − α)n2 on A by (18) – as shown in Figure 2. To
do so, we derive an appropriate lower bound for cσ,σ′ for σ, σ′ ∈ Sn,αn. This is the scope of the
following Lemma:
Lemma 2.1. With high probability, there exists a universal constant C1 > 0 such that for any d = αn
with fixed α > 0 and σ, σ′ ∈ Sn,αn:

Cov(Xσ, Xσ′) = cσ,σ′ ≥ f(α)n2 − C1n
3/2 log1/2 n,

with
f(α) :=

{
α2 if α < 1/2
α2 − 1

2 (2α− 1)2 if α ≥ 1/2
(19)

Thus for any ε′ > 0, with high probability, for any d = αn with fixed α > 0,

max
σ∈Sn,αn

Xσ ≤
√

2α (α(2− α)− f(α))n3/2 log1/2 n+ (2 + ε′)n log1/2 n.

The proof of this Lemma is obtained by working on event A defined in (16), and establishing
a lower bound on ](DE

σ ∩ DE
σ′), which is simply the number of edges that are deranged both by

σE and σ′E . It can be found in Appendix A.1.

9



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 y
 

y = f( )
y = (2 )

Figure 2: Plot on [0, 1] of normalized variance α(2 − α), together with the lower bound on the
normalized covariance (function f) defined by (19).

Then, since f(α) ≤ α(2− α) with elementary computations, according to Lemma 2.1, there is
an event B of probability 1− o(1) such that

max
σ∈Sn,d

Xσ ≤ (1 + o(1))
√

2α (α(2− α)− f(α))n3/2 log1/2 n

holds for all d = αnwith α > α0. Note that on event A ∩ B, for all d = αn and σ ∈ Sn,d,

ρ−1δ(σ) ≥ ρvσ − 2
√

1− ρ2 max
σ∈Sn,d

Xσ

≥ (1 + o(1))n3/2 log1/2 n
[
(2 + ε)α(2− α)− 2

√
2α (α(2− α)− f(α))

]
≥ (1 + o(1))× 2×

[
α(2− α)−

√
2α (α(2− α)− f(α))

]
n3/2 log1/2 n ≥ 0,

for n large enough, since it can be easily checked (see Appendix A.3) that
Lemma 2.2. For every α ∈ [0, 1],

α(2− α)−
√

2α (α(2− α)− f(α)) ≥ 0. (20)

Previous computations give that

P

 ⋃
d≥αn

Ed

 ≤ 1− P(A ∩ B) = o(1),

and ends the proof of Theorem 1.

3 Converse bound: second moment method for transpositions
In this section, we prove Theorem 2. As already stated in the introduction, theory from Bayesian
optimal estimation guarantees that the best possible estimator for our exact reconstruction prob-
lem, in the Bayes risk sense, is π̂MAP. We will show that under assumption (5) of Theorem 2, this
MAP estimator fails with high probability, which implies that no estimator can succeed.

This converse bound is obtained by a secondmoment argument, showing that with high prob-
ability, there are lots of permutation τ 6= id – in fact, transpositions – such that δ(τ) is negative, that

10



is, τ−1 ◦ π∗ is a substantially better alignment than π∗, with lowest energy. Let us denote Tn ⊂ Sn
the set of all permutations of [n] that are transpositions. For all τ ∈ Tn, we have dE

τ = 2(n − 2).
Corollary 1.1 gives that the event

C :=
{
∀τ, τ ′ ∈ Tn,

∣∣cτ,τ ′ − ](DE
τ ∩ DE

τ ′)− ](DE
τ ∩ DE

τ ′ ∩ FE
τ◦τ ′)

∣∣ ≤ C√n log n
}

happens with probability 1 − o(1) for C > 0 large enough. In particular, on C, for C > 0 large
enough,

∀τ ∈ Tn, |vτ − 4n| ≤ C
√
n log n.

In this section we are working under the assumption (5) that we recall here:

ρ2 ≤ 4 log n− log log n− ω(1)

n

We are about to show the following: under condition (5), with high probability,

] {τ ∈ Tn, δ(τ) < 0} = ω(1). (21)

Todo so, weuse the classical Paley-Zygmund inequality, proven inAppendixA.4 for self-containment:
Lemma 3.1 (Paley-Zygmund inequality). Let Y be a real random variable with positive mean and finite
variance. Then for all 0 ≤ c ≤ 1,

P (Y ≥ cE [Y ]) ≥ (1− c)2 E [Y ]
2

E [Y 2]
.

Thus, in the case where E
[
Y 2
]
∼ E [Y ]

2, taking c→ 0 implies that Y ≥ o(E [Y ]) with high probability.

Define
X :=

∑
τ∈Tn

1δ(τ)<0. (22)

Using a standard coupling argument in (22), one can see thatX is decreasing with ρ, thus we can
assume without loss of generality that

ρ2 =
4 log n− log log n− an

n
, (23)

with a sequence (an)n such that an = ω(1) and an = o(log log n). We compute the first moment
of X , in view of the conditional distribution of δ(τ) given in (13):

E [X] ≥ E [X1C ] =
n(n− 1)

2
E

[
PA

(
N (0, 1) ≥

ρ
√
vτ

2
√

1− ρ2
∩ C

)]

≥ n(n− 1)

2
E
[
(1− o(1))PA

(
N (0, 1) ≥ 1

2

√
4 log n− log log n− an

√
4− Cn−1/2 log1/2 n

)]
=
n(n− 1)

2
E
[
(1− o(1))PA

(
N (0, 1) ≥

√
4 log n− log log n− an − o(1)

)]
∼ n2

4
√

2π
√

log n
exp

(
−2 log n+

log log n

2
+
an
2

)
=

1

4
√

2π
exp

(an
2

)
→∞.

Note that (23) is thus precisely the condition ensuring that E [X1C ] → ∞. The second moment
argument computation being a little more technical, we encapsulate it into the following Lemma:
Lemma 3.2 (Second moment computation of X1C). Let Y := X1C . Under assumption (23),

E
[
Y 2
]
≤ (1 + o(1))E [Y ]

2
.
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Proof of Lemma 3.2. We represent a transposition τ by its only 2−cycle (i j) with i < j. We then
distinguish two cases in couples τ = (i j) 6= τ ′ = (k `) ∈ Tn:

• We write τ ∩ τ ′ = ∅when τ and τ ′ have no common point in their 2−cycle: i 6= k and j 6= l.
When τ ∈ Tn is fixed, note that

] {τ ′ ∈ Tn, τ ∩ τ ′ = ∅} =
(n− 2)(n− 3)

2
.

• We write τ ∩ τ ′ 6= ∅ when τ and τ ′ are different but share one common point: for instance
τ = (3 5) and τ = (5 11) verify τ ∩ τ ′ 6= ∅. When τ ∈ Tn is fixed, note that

] {τ ′ ∈ Tn, τ ∩ τ ′ 6= ∅} = 2(n− 2).

Note that

E
[
Y 2
]

= E [Y ] +
∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) +
∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P(δ(τ) < 0, δ(τ ′) < 0, C).

We now evaluate these two sums. For this, we will need the following Lemma, which proof is
deferred to Appendix A.5.
Lemma 3.3 (Control of deviation probabilities for correlated Gaussians). Let Z1, Z2 be two Gaus-
sian variables with mean 0, variance 1 and correlation αn ∈ [0, 1]. For any tn such that tn →∞,

(i) If αntn → 0, then for n large enough

P (Z1 > tn, Z2 > tn) ≤ e−2t2n + (1 + o(1))P (Z1 > tn)P (Z2 > tn) . (24)

(ii) More generally,

P (Z1 > tn, Z2 > tn) ≤ (1 + o(1))
1 + αn√

2π tn
exp

(
− t2n

1 + αn

)
. (25)

First case: τ ∩ τ ′ = ∅. Without loss of generality we can assume that τ = (1 2) and τ ′ = (3 4).
The following diagram shows the simple action of τ and τ ′ on an interesting (overlapping) subset
of edges.

{1, 3} τ←→ {2, 3}
τ ′ l l τ ′
{1, 4} τ←→ {2, 4}

We then see that ](DE
τ ∩DE

τ ′) + ](DE
τ ∩DE

τ ′ ∩FE
τ◦τ ′) = 4 + 0 = 4. So, denoting ατ,τ ′ :=

cτ,τ′√
vτvτ′

,
on C,

|ατ,τ ′ | ≤
C
√
n log n+ 4

4n− C
√
n log n

= O

(√
log n

n

)
.

In view of the conditional distribution of δ(τ) given in (13):

∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) = (1− o(1))
∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P (Zτ > tn, Zτ ′ > tn) , (26)

with tn =
√

4 log n− log logn− an, where Zτ , Zτ ′ are two Gaussian variables of mean 0, with
correlation coefficient αn of order O(log1/2 n−1/2). Since αntn → 1, by lemma 3.3 case (i), the
sum in (26) is upper bounded by

(1− o(1))
n(n− 1)

2
× (n− 2)(n− 3)

2
×
[
Ce−2t2n + (1− o(1))P (Z1 > tn)P (Z2 > tn)

]
≤ (1 + o(1))E [Y ]

2
.
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Second case: τ ∩τ ′ 6= ∅. Without loss of generality we can assume that τ = (1 2) and τ ′ = (2 3).
We can immediately deduce that ](DE

τ ∩ DE
τ ′) + ](DE

τ ∩ DE
τ ′ ∩ FE

τ◦τ ′) = (n − 2) + 0 = n − 2. So,
denoting ατ,τ ′ :=

cτ,τ′√
vτvτ′

, on C,

|ατ,τ ′ | ≤
C
√
n log n+ n− 2

4n− C
√
n log n

∼ 1

4
.

Again, in view of the conditional distribution of δ(τ) given in (13):

∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) = (1− o(1))
∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P (Zτ > tn, Zτ ′ > tn) , (27)

with tn =
√

4 log n− log logn− an, where Zτ , Zτ ′ are two Gaussian variables of mean 0, with
correlation coefficient αn ∼ 1/4. By Lemma 3.3 case (ii), the sum in (27) is upper bounded by

(1− o(1))
n(n− 1)

2
× 2(n− 2)×

[
(1 + o(1))

1 + αn√
2π tn

exp

(
− t2n

1 + αn

)]
≤ C ′′n3 log−1/2(n) exp

(
−16

5
log n+ o(log n)

)
= o(1) = o(E [Y ]

2
).

Lemma 3.2 together with Payley-Zigmund inequality (Lemma 3.1) implies that Y ≥ o (E[Y ])
with high probability and thus proves (21) and the converse result of Theorem 2.
Remark 3. We have shown here that under condition (5), there is with high probability a great number of
negative relative energy points near the ground truth, none of them being of significant interest to recover
exactly our permutation. We may also study this relative energy far from the planted permutation, which
would be interesting to address the problem of almost exact (resp. partial) alignment, which consists in
finding an estimator π̂ that coincides with π on at least n− o(n) (resp. some positive fraction of n) points.
In the light of our result which shows that exact recovery is not more difficult than detection, we can also
conjecture that the same threshold nρ2/ log n = 4 is sharp for the tasks of almost exact and partial recovery.
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A Additional proofs
A.1 Proof of Lemma 2.1: lower bound on correlations of relative energies
Proof. Recall that we work under event A. Fix α ∈ (0, 1] and take d = αn and σ, σ′ ∈ Sn,d. The
proof is obtained by establishing a fine lower bound on ](DE

σ ∩DE
σ′), which is simply the number

of edges that are deranged both by σE and σ′E . In order to establish this lower bound, let us
assume that σ and σ′ have ](Dσ ∩ Dσ′) = βn common unfixed points, with β ∈ [0, α]. We then
form edges in DE

σ ∩ DE
σ′ in the following way:

• First, by taking all pairs but the pairs made of points in the complement of Dσ ∩ Dσ′ and
thosemade of pairs (i, j) that are transpositions of σ or σ′, we obtain at least 1

2β(2−β)n2−αn
edges.

• Then, add new edges made of one extremity inDσ \Dσ′ and one inDσ′ \Dσ . SinceDσ (resp
Dσ) is stable by σ (resp. by σ′), all these (α− β)2n2 edges are in DE

σ ∩ DE
σ′ .

Finally we formed g(α, β)n2 − αn edges, with

g(α, β) :=
1

2
β2 + (1− 2α)β + α2, (28)

which is minimal on [0, α] at β = 2α − 1 if α ≥ 1/2, or at β = 0 if α < 1/2. In any case, this
minimum is f(α). The first inequality is established by applying inequality (16) of event A.

For the second part, consider a centered vector Z = (Zσ)σ∈Sn,αn such that all Zσ have same
variance vα and Cov(Zσ, Zσ′) = cα for σ 6= σ′, with vα, cα defined as follows:

vα := α(2− α)n2 − C1n
3/2 log1/2 n,

cα := f(α)n2 − C1n
3/2 log1/2 n.

for some C1 > 0 large enough. Note that on event A, for all α ∈ (0, 1], all σ, σ′ ∈ Sn,αn,
Cov(Zσ, Zσ′) ≤ Cov(Xσ, Xσ′),

so one has that for all t > 0,

P
(

max
σ∈Sn,αn

Xσ > t ∩ A
)
≤ P

(
max

σ∈Sn,αn
Zσ > t

)
. (29)

We now control the right-hand side of (29) with this classical Lemma, which proof is find here-
after in Appendix A.2:
LemmaA.1 (Maximumof totally correlatedGaussian variables). LetZ be a centeredGaussian vector
of size N , such that all Zi have same variance v and Cov(Zi, Zj) = c for i 6= j. Then

P
(

max
1≤i≤N

Zi >
√

2(v − c) logN + 2
√
v log logN

)
≤ 2

logN
. (30)

Note that for vα, cα previously defined, one has√
2(vα − cα) log ]Sn,αn ≤

√
2α(α(2− α)− f(α))n3/2 log1/2 n, (31)

and for n large enough,
2
√
vα log log ]Sn,αn ≤ 2

√
α(2− α)n

√
log n+ log log n ≤ (2 + ε′)n log1/2 n. (32)

Finally, we use equations (29)–(32) to conclude that for n large enough:

P
(
∃d = αn, α > α0, max

σ∈Sn,d
Xσ >

√
2α (α(2− α)− f(α))n3/2 log1/2 n+ (2 + ε′)n log1/2 n

)
≤ 1− P(A) +

∑
d=αn, α>α0

P
(

max
σ∈Sn,αn

Zi >
√

2(vα − cα) log ]Sn,αn + 2
√
vα log log ]Sn,αn

)
≤ o(1) +

∑
d=αn, α>α0

2

log ]Sn,αn
≤ o(1) +

2n

log ]Sn,α0n
= o(1) +

2

α0 log n
= o(1),

and Lemma 2.1 is proved.
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A.2 Proof of Lemma A.1: maximum of totally correlated Gaussian variables
Proof. Let us make a change of variables which preserves the joint distribution:

(Z1, Z2, . . . , ZN ) =
(√
c ξ0 +

√
v − c ξ1, . . . ,

√
c ξ0 +

√
v − c ξN

)
,

where ξ0, . . . , ξN are independent standard Gaussian random variables. The maximum thus
writes

max
1≤i≤N

Zi =
√
c ξ0 +

√
v − c max

1≤i≤N
ξi

Then, with the classical inequality P (N (0, 1) ≥ t) ≤ e−t
2/2, then with probability at least 1 −

1/(logN), one has:

√
c ξ0 ≤

√
2c log logN, and √

v − c max
1≤i≤N

ξi ≤

√
2(v − c) logN

(
1 +

log logN

logN

)
,

so with probability at least 1− 2/(logN):

max
1≤i≤N

Zi ≤
√

2(v − c) logN +
√

2 log logN
(√
c+
√
v − c

)
≤
√

2(v − c) logN + 2
√
v log logN,

where we used √c+
√
v − c ≤

√
2v in the last step.

A.3 Proof of Lemma 2.2
Proof. For α ∈ (0, 1],

(20) ⇐⇒ α2(2− α)2 ≥ 2α (α(2− α)− f(α))

⇐⇒ f(α) ≥ α2 − α3/2.

The inequality is verified for α < 1/2. To conclude the proof of (20), it remains to check that for
1 ≥ α ≥ 1/2, f(α) ≥ α2 − α3/2, which is equivalent to

α2 − 1

2
(2α− 1)2 ≥ α2 − α3/2 ⇐⇒ α3 − 4α2 + 4α− 1 ≥ 0

⇐⇒ (α− 1)(α2 − 3α+ 1) ≥ 0

⇐⇒ α2 − 3α+ 1 ≤ 0 ⇐⇒ α ≥ 3−
√

5

2
∼ 0.382...

A.4 Proof of Lemma 3.1: Payley-Zygmund inequality
Proof. Using Cauchy-Schwarz inequality,

E[Y ] = E
[
Y 1Y <cE[Y ]

]
+ E

[
Y 1Y≥cE[Y ]

]
≤ cE [Y ] + E[Y 2]1/2 P(Y ≥ cE [Y ])1/2,

which gives E[Y ]2 (1− c)2 ≤ E[Y 2]P(Y ≥ cE [Y ]).

A.5 Proof of Lemma 3.3: Control of deviation probabilities for correlated
Gaussians

Proof. Let us first make a change of variable which preserves the joint distribution:

(Z1, Z2) = (Z,αnZ +
√

1− α2
nZ
′),
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with Z,Z ′ two independent standard Gaussian variables.

Proof of (i):Note that standard Gaussian concentration gives P (Z > 2tn
∣∣Z > tn

)
∼ 1

2e
−3t2n/2.

Thus, for n large enough

P (Z1 > tn, Z2 > tn) ≤ P (Z > tn) e−3t2n/2 + P (Z > tn)P
(
αnZ +

√
1− α2

nZ
′ > tn, Z ≤ 2tn

∣∣Z > tn

)
≤ e−2t2n + P (Z > tn)P

(
Z ′ > tn − 2αntn +O(tnα

2
n)
)

≤ e−2t2n + P (Z > tn)P (Z ′ > tn − o(1))

≤ e−2t2n + (1 + o(1))P (Z > tn)P (Z ′ > tn)

= e−2t2n + (1 + o(1))P (Z1 > tn)P (Z2 > tn) .

Proof of (ii): For any (sn) such that sn ≤ tn for all n, one has

E
[
esnZ

∣∣Z > tn
]

=
1√
2π

∫ +∞

tn

esnz−z
2/2dz

(
1√
2π

∫ +∞

tn

e−z
2/2dz

)−1

= es
2
n/2

∫ +∞

tn−sn
e−z

2/2dz

(∫ +∞

tn

e−z
2/2dz

)
∼ tn
tn − sn

exp
(
s2
n/2− (tn − sn)2/2 + t2n/2

)
=

tn
tn − sn

esntn .

Using independence of Z,Z ′ and Chernoff bound, we get, taking sn such that αsn = utn with
u < 1, for n large enough,

P
(
αZ +

√
1− α2Z ′ > tn

∣∣Z > tn

)
≤ (1 + o(1))

tn
tn − αsn

exp

(
αsntn +

1− α2

2
s2
n − sntn

)
≤ (1 + o(1))

1

1− u
exp

((
u+

u2(1− α2)

2α2
− u

α

)
t2n

)
(a)

≤ (1 + o(1))(1 + α) exp

(
−1− α

1 + α
· t

2
n

2

)
where we took u = α

1+α < 1 in (a). The proof follows from this last inequality, together with the
bound P (Z > tn) ≤ 1√

2πtn
exp

(
− t

2
n

2

)
.
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