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Abstract

The interaction of beam-like structures against surfaces is a challenging problem with applications
in engineering (wheel-rail contact, pipeline-soil interaction, ropes sliding on the seabed) and in
medical applications such as surgical planning and training (catheter navigation, aneurysm coiling,
stent deployment). This contact problem is traditionally solved using Total Lagrangian beam
formulations, which interact against Lagrangian triangulated surfaces. Overall, the computational
speed is affected, due to the nonlinearities of the beam formulation and, as well as due to the
expensive search algorithms, required to find the close point projection. In the search towards
an efficient beam to surface contact algorithm, this paper explores the combined use of 1) a
corotational beam formulation, where the motion of the beam element is decomposed in rigid
body and pure deformational parts and 2) an implicit description of the surface by means of
discrete signed distance fields (SDF), which can be seen as a Lagrangian beam immersed within
an Eulerian (rigid) solid. To do so, a previously reported implicit corotational formulation for
beam dynamics is modified to account for frictional contact, by means of a penalty term. The new
contributions are fully linearized to update the tangent operator and the system is integrated in
time by means of the HHT-α method. Overall, a consistent implicit contact dynamics formulation
is provided. A SDF, defined in a voxel-type grid, is used to represent implicitly the surface
geometry. The SDF values and derivatives are computed at the Lagrangian point of integration
of the beam by means of an efficient tensor product of compact, high order, 1D Kernels, as widely
used in immersed Fluid-Structure Interaction techniques. A wide variety of validation tests are
presented which prove the accuracy and robustness of the proposed algorithm.

Keywords: Contact, 3D Corotational beams, Nonlinear dynamics, Finite Elements, Eulerian Solids, Signed
Distance Fields

1. Introduction

Modeling beam to surface contact has applications in many fields of engineering, such as: civil
engineering ( pipeline-soil interaction [1], drill-string dynamics in oil extraction [2]), offshore and
naval engineering (mooring lines and capstains [3, 4], offshore risers sliding on the seabed [5, 6]) and
mechanical engineering (deployment of flexible antennas [7], belt-drives used in power transmission
[8], vibration of loosened joints [9]). This problem has also attracted the interest in biomedical
applications, specifically in the simulation of Minimally Invasive Surgery in which guidewires and
catheters are inserted through the opaque patient tissue with limited visual aids [10–13]. In many
of the above instances, there is also a need of fast computation, even real-time, such that decisions
can be made as the physical process evolves.

The beam to surface contact problem can be accurately solved by combining Total Lagrangian
formulations for the beam model, and triangulated or NURBS Lagrangian surfaces for the surface
model [14, 15]. The overall process is computationally expensive, due to the nonlinearities involved
in the beam formulation but also due to the expensive search algorithms, required to solve a
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minimal distance problem to find the close point projection [16]. In the pursue of real-time
computations alternative approaches have been used to simplify the beam model, on one hand,
and simplify the contact interaction on the other hand. Regarding the beam model, simplified
approaches have been used such as one dimensional string equations [17, 18], mass-spring models
[19], rigid multibody links [20] or hybrid models including the last two [21]. Regarding contact
(or collision) detection, this can be simplified by using bounding boxes or spheres surrounding
the target object [22]. Also, specific boundary conditions can be designed, as in the case of
sliding beams in small orifices [23–25], however this is limited to a limited number of problems.
In cardiovascular applications, some authors assume circular cross sections for the vessels, which
allows detecting penetration [26]. Each of these approaches provide faster computational speed at
the expense of a decrease in accuracy. On top of this, most of the publications use explicit time
integration, which limits the maximum time step size allowed for stability reasons. Alternatively,
in the search towards an efficient, yet accurate, beam to surface contact algorithm, this paper
explores using the following original contributions: 1) development of a consistent implicit 3D
corotational formulation for beam against master surface contact and 2) an implicit description of
the surface by means of discrete signed distance fields (SDF) defined in a voxel type background
mesh. The overall approach can be seen as a Lagrangian beam immersed within an Eulerian
(rigid) solid. The use of level sets and/or Eulerian solids in computational contact, has been
explored before for 3D solids in [27–32] but, to the best of the authors knowledge, this is the first
application where it is combined with a Lagrangian beam.

Corotational beams assume a split of the beam deformation into rigid and purely deformational
parts and have been largely used in the last decades [33–40]. This formulation allows modeling all
the nonlinearities in the rigid rotation, and using linear constitutive models for the deformational
part. In many thin beams applications, this allows for an accurate, yet computationally efficient so-
lution, and makes it one of the preferred choices in real-time simulation [41]. Among the challenges
faced in corotational beam formulations, comes the parametrization of 3D rotations. Numerous
papers use the ’rotational vector’ which allows for an additive update of the rotations but it limits
its use to rotations under 2π. Instead, Battini and co-workers [38] have largely explored the use
of a spatial form of the incremental rotation vector, which still allows for additive updates, but
only at the level of the iterative corrections. In [40], Le and coauthors extended this formulation
to dynamics, comparing very well against the total Lagrangian formulation of Simo and Vu-Quoc
[42, 43]. Regarding corotational beams and contact, the only contribution in implicit dynamics
formulation is found in [44] but it is limited to 2D planar elements. This paper proposes a 3D
implicit formulation of frictional dynamic contact by building up from the formulation of Le and
coauthors [40]. To do so, a friction penalty term is added into the variational formulation, which
is integrated along the beam centerline in spatial coordinates and gives rise to a distributed line
contact force [45–48]. The formulation assumes that the normal gap with respect to the surface
is given, as well as its spatial gradient and Hessian (which will be computed via interpolation of a
SDF). To facilitate convergence of the Newton Raphson algorithm, the normal contact pressure is
regularized via a quadratic contact potential [48, 49], whereas the stick-slip behavior is regularized
using a square root function [16]. The semi-discrete system of equations is solved in time using
HHT−α method [50]. In addition to the contact formulation, a new description of the corotational
beam kinematics is proposed, traditionally described by means of change of variables between a
moving and a global reference frame [35, 38]. To do so, finite-elasticity three dimensional theory is
used, as proposed in [51] for geometrically exact beams. By particularizing it to the corotational
formulation, interesting links are found with geometrically exact beam kinematics, while making
the previous developments in corotational beams still fully valid.

Regarding contact detection, the distance from the beam to the surface is found by interpolating
a discrete SDF (level set with gradient of norm one) given in a background voxel-type mesh, to the
Lagrangian point of integration. Specifically, the interpolation is carried out using kernel functions
as used in Material Point Method [52, 53] and immersed Fluid-Structure Interaction techniques
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[54–60]. Taking advantage of the Cartesian structure of the voxel mesh, a very efficient tensor
product of 1D kernels is used, which allows precomputing the interpolation stencils. Specifically,
the spline based 1D kernel proposed in [59] is chosen, which ensures continuity of the first and
second spatial derivatives, as required by the beam contact formulation. The paper analyzes
numerically the accuracy of the interpolation technique in approximating the SDF, its gradient
and Hessian by comparing it against an analytical solution. Next, five examples of beam to rigid
surface contact are shown to prove the accuracy and robustness of the proposed formulation.

The remainder of the paper is organized as follows. Section 2 summarizes the applied beam
formulation. Section 3 presents the frictional contact penalty formulation and its linearization.
Section 4 presents the interpolation used for the discrete SDF and the numerical analysis of its
order of accuracy. Section 5 presents the time integration method and computational aspects.
Section 6 a series of examples. Finally, section 7 presents the concluding remarks.

2. Beam formulation

We largely follow the notation in [50] in which a fully consistent tangent operator is proposed
for the dynamics of co-rotational beams. In what follows, a global reference system is defined
in the material configuration, which is given by the triad of Cartesian vectors Ei (i = 1, 2, 3).
Similarly, a reference system is defined in the spatial (Eulerian) configuration, given by the triad
ei (i = 1, 2, 3). As in [61], both triads are made coincident, i.e. Ei = δijej with δij being the
Kronecker delta. They are denoted with different symbols to differentiate between material and
spatial objects.

2.1. Parametrization of finite rotations

Rotations are parametrized by means of the rotational vector [38, 62, 63], defined as

θ = θn, (1)

with n the axis of rotation and θ the rotation angle given by

θ =
√
θ · θ. (2)

The relationship between the rotation angle and the rotation matrix is provided by the Ro-
drigues formula, given by

R(θ) = I +
sin θ

θ
S(θ) +

1− cos θ

θ2
S(θ)S(θ) = exp(S(θ)), (3)

where I is the 3× 3 identity matrix and S(θ) is the skew-symmetric matrix of θ, given by

S(θ) =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 . (4)

The variation of R(θ) is obtained by first constructing a superimposed infinitesimal rotation [43].
This is done by using the exponential map (3) and by noticing that, since R is a two point tensor,
the superimposed rotation needs to be a spatial quantity, i.e.

Rε = exp(εS(w))R (5)

and, therefore,

δR =
d

dε
Rε|ε=0 = S(δw)R, (6)
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with δw and S(δw) spatial objects defined as

δw = wiei, (7)

S(δw) = [S(δw)]ijei ⊗ ej, (8)

where δw is named the spatial spin vector and are infinitesimal spatial rotations superimposed to
the rotation R. Instead of a spatial spin vector, a material one can be used, defined as

δW = δWiEi, (9)

S(δW ) = [S(δW )]ijEi ⊗Ej, (10)

where δW and S(δW ) are the pull back of δw and S(δw), respectively, i.e.

δW = RT δw, (11)

S(δW ) = RTS(δw)R. (12)

Using (12) into (6) yields [43]

δR = RTS(δW ). (13)

The relationship between the spatial spin vector and the variation of the rotational vector are
given by

δw = Ts(θ)δθ, (14a)

δθ = T−1
s (θ)δw, (14b)

with

Ts(θ) = I +
1− cos θ

θ2
S(θ) +

θ − sin θ

θ3
S(θ)S(θ), (15a)

T−1
s (θ) =

(θ/2)

tan(θ/2)
I3×3 +

1

θ2

(
1− (θ/2)

tan(θ/2)

)
θθT − 1

2
S(θ). (15b)

The spatial form of the angular velocity and acceleration can be obtained from equation (6) as

S(ẇ) = ṘRT , (16a)

S(ẅ) = R̈RT + ṘṘT , (16b)

with ˙(·) = d
dt

(·) and (̈·) = d2

dtdt
(·). Finally, the spatial angular velocity can be calculated from the

time derivative of the rotational vector via equation (14b) to give

ẇ = Ts(θ)θ̇. (17)

2.2. Corotational beam kinematics

As an addition to the formulation presented in [38], the corotational beam kinematics is de-
scribed using finite-elasticity three dimensional theory as proposed in [51] for geometrically exact
beams.

A straight beam with circular cross section is defined with deformed configuration Ω and mate-
rial configuration Ω0. Two additional configurations, Ω̄0 and Ω̄ are also defined. These configura-
tions contain, respectively, the positions of the beam in the initial and current positions absent of
rigid body motions. Both configurations are assumed to be very close, i.e. Ω̄ ' Ω̄0 and therefore
they are uniquely denoted by Ω̄. The basis vectors of Ω̄ are Ēi (i = 1, 2, 3) and are made coincident
with the material and spatial basis, i.e. Ēi = δijEj, Ēi = δijej.
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To define the beam position, an orthogonal system Ti (i = 1, 2, 3) is placed at the centroid of
the beam cross section in the material configuration. This system defines the local coordinates
{ξ1, ξ2, ξ3} with the arc-length parameter s = ξ1 ∈ [0, l0] that coincides with the axis of the beam,
defined by T1. The cross sections of the beam lie in planes defined by the basis vectors {T2,T3},
which depend on the arc-length parameter s. Accordingly, the beam is deformed into a current
configuration Ω, with an orthonormal frame ti defined also at the centroid of the beam cross
section. These vectors are defined through the following transformations

Ti(s) = Λ0(s)Ēi; Λ0(s) = Ti(s)⊗ Ēi = [Λ0]ij Ei ⊗ Ēj, (18)

ti(s, t) = Λ(s, t)Ēi; Λ(s, t) = ti(s, t)⊗ Ēi = [Λ]ij ei ⊗ Ēj. (19)

with Λ0, Λ being two point tensors that give, respectively, orthonormal triads Ti, ti (material and
spatial objects, respectively) as a function of the basis vectors Ēi. By comparing relationships
(18) and (19), a map between Ti and ti can be defined as

ti(s, t) = R(s, t)Ti(s); R(s, t) = Λ(s, t)Λ−T0 (s) = ti ⊗ Ti = [R]ij ei ⊗Ei, (20)

which is the mapping from the material to the current configuration which in fact uniquely de-
scribes the rotation of the cross section. Using the above definitions, the material and spatial
positions of the beam are given by

X(s, ξ2, ξ3) = X0(s) + ξ2T2(s) + ξ3T3(s), (21)

x(s, ξ2, ξ3) = x0(s) + ξ2t2(s) + ξ3t3(s), (22)

whereX0(s), x0(s) are, respectively, the position of the beam centerline in the material and current
configurations. In order to remove rigid body rotations, two mappings are defined between Ω̄ and
Ω0 and between Ω̄ and Ω. To do so, two frames that move rigidly with the beam axis are considered
[37]. This is a material frame Vi (i = 1, 2, 3) and a spatial frame vi (i = 1, 2, 3 ). In order to
compute vi (i = 1, 2, 3), the procedure detailed in [38] is used,

v1(t) =
x0(l0, t)− x0(0, t)

‖x0(l0, t)− x0(0, t)‖
; v3(t) =

v1(t)× p(t)

‖v1(t)× p(t)‖
; v2(t) = v3(t)× v1(t), (23)

with the auxiliary vector p given by

p(t) =
1

2
(t2(0, t) + t2(l0, t)), (24)

with an identical procedure to obtain, i.e Vi = vi(0) (i = 1, 2, 3). The above basis vectors allow
defining the following mappings

Vi = R0
eĒi; R0

e = Vi ⊗ Ēi =
[
R0
e

]
ij
Ei ⊗ Ēj, (25)

vi(t) = Re(t)Ēi; Re(t) = vi(t)⊗ Ēi = [Re]ij ei ⊗ Ēj, (26)

with R0
e being a two point tensor that goes from Ω̄ to Ω0 and Re a two point tensor that goes from

Ω̄ to Ω. It is worth noticing thatRe(0) = R0
e and that neitherR0

e norRe depend on the arc-length
parameter s, and hence define a rigid body rotation of the beam segment. These mappings allow
defining the cross sectional triads in the rigid body free configuration Ω̄, i.e.

T̄i(s) = (R0
e)
TTi(s), (27)

t̄i(s, t) = RT
e (t)ti(s, t). (28)

Equivalently to equation (20), a mapping can be defined between T̄i and t̄i as

t̄i(s, t) = R̄(s, t)T̄i(s), R̄(s, t) = RT
e (t)R(s, t)R0

e = t̄i(s, t)⊗ T̄i(s) = [R̄]ijĒi ⊗ Ēj. (29)
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where R̄ is a small rotation of the cross sectional vectors T̄i in Ω̄, now absent of rigid body motions.
Assuming the material beam as straight, the rotation matrix Λ0 can be made coincident with R0

e,
this is Λ0(s) = R0

e, while Ti = Vi and T̄i = Ēi. Taking all this into account, and omitting the
dependence with respect to t for clarity purposes, the material and spatial positions of the beam
centerline are given by

X0(s) = X0(0) + sV1, (30)

x0(s) = x0(0) + sv1 + u1(s)v1 + u2(s)v2 + u3(s)v3, (31)

where ui(s) (i = 1, 2, 3) are the positions of the beam centerline respect the rigid frame vi . Given
the definition of v1 in equation (23), the displacements ui(s) follow

u1(0) = 0; u1(l0) = ū; ū = ln − l0, (32a)

u2(0) = 0; u2(l0) = 0, (32b)

u3(0) = 0; u3(l0) = 0. (32c)

By removing rigid body rotations using R0
e, Re and rigid body translations using the position of

the centerline node at s = 0, the position of the beam points in the Ω̄ configuration can be defined
as

X̄(s, ξ2, ξ3) = X̄0(s) + ξ2Ē2 + ξ3Ē3; X̄0(s) = sĒ1 (33)

x̄(s, ξ2, ξ3) = x̄0(s) + ξ2R̄(s)Ē2 + ξ3R̄(s)Ē3; x̄0(s) = sĒ1 + u1(s)Ē1 + u2(s)Ē2 + u3(s)Ē3.
(34)

which defines the beam deformational displacement ū = x̄− X̄ in Ω̄ as

ū(s, ξ2, ξ3) = ū0(s) + ξ2(R̄(s)− I)Ē2 + ξ3(R̄(s)− I)Ē3; ū0(s) = u1(s)Ē1 + u2(s)Ē2 + u3(s)Ē3,
(35)

which is assumed to be very small, i.e. x̄ ' X̄. Via equation (33), it is worth noticing that
s = X̄1, ξα = X̄α.

It is useful now to write the deformation gradient using finite-elasticity three dimensional theory.
Following Auricchio and coauthors [51] this is defined as

F (s) =
∂x

∂ξi
⊗ ∂ξi
∂X

= R(s) + a(s)⊗ V1, (36)

where equation (20) has been used alongside with Ti = Vi. The vector a is defined as

a(s) = γ(s) + ξακα(s), (37)

with γ and κα defined as (see [51])

γ(s) = x′0(s)− t1(s), (38)

κα(s) = a′α(s). (39)

where (·)′ = d(·)
ds

.

Remark 2.2.1. In comparison with [51], it is worth noticing that R is the rotation from the
orthonormal basis Vi in the initial configuration (straight, but not parallel to the Ēi axis) to the
orthonormal triad ti in the current configuration. In [51], the orthonormal triad in the material
configuration coincides with the reference axes, i.e. Vi = δijĒj and, therefore, Λ0 = I and, via
equation (20), R = Λ.
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The deformation gradient (36) can be decomposed using a left decomposition to yield

F (s) = R(s)Ar(s); Ar(s) = I + ar(s)⊗ V1 (40)

with ar being, as defined in [51], the rotate-back of a in the material configuration, i.e.

ar(s) = R(s)Ta(s). (41)

Equation (40) shows that the deformation gradient can be decomposed by a pure rotation, on the
left, followed by a pure material stretch, on the right.

Alternatively, another interesting result can be obtained for the corotational formulation, which
links the formalisms described in [51], with the decomposition between rigid body motions and
small deformational displacements as described in, for example, [35, 38]. In fact, using the rigid
mappings defined in equations (25), (26), the following multiplicative decomposition can be carried
out

F (s) = ReF̄ (s)(R0
e)
T (42)

with F̄ being the deformation gradient in the configuration Ω̄, which is defined by

F̄ (s) = R̄(s) + ā(s)⊗ Ē1 (43)

with ā being now the rigid-rotate-back of a to the configuration Ω̄, i.e.

ā(s) = RT
e a(s) = γ̄(s) + ξακ̄α(s), (44)

with

γ̄ = x̄′0(s)− t̄1, (45)

κ̄α = RT
e t
′
α(s) = (RT

e tα(s))′ = ā′α = R̄′(s)Ēα. (46)

where the fact that Re is independent of the arc-length coordinate s has been used.

Remark 2.2.2. Differently from ar in (41), ā has been obtained in (44) by removing the rigid
body motions via Re and hence the denomination rigid-rotate-back. The relation between the two
is given by ar = R0

eR̄
T ā.

Remark 2.2.3. Equation (40) decomposes the deformation gradient into one material tensor,
Ar, followed by one rotation, R, both dependent on the arc-length parameter s. On the other
hand, equation (42) decomposes the deformation gradient into one rotation (R0

e)
T , followed by

one deformation gradient F̄ , followed by another rotation Re. In this case only F̄ is dependent
on the arc-length coordinate, which shows why the corotational formulations allow writing the
variational equations purely in Ω̄.

Assuming small rotations in Ω̄, the rotation tensor R̄ can be parametrized by a first order
approximation of (3),i.e.

R̄(s) = I + S(Θ̄(s)) (47)

where Θ̄ is the rotation vector in the configuration Ω̄. At the same time, assuming also small
displacements, it can be proved that the gradient of the displacements ū defined in (35) is given
by (see Appendix A)

∇ū = S(Θ̄) + ā⊗ Ē1. (48)

Using equations (47) and (48) into (43) yields the following approximation of F̄

F̄ ' I + ε(∇ū) + Ω(∇ū) (49)

which is the additive decomposition of the deformation gradient.
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Remark 2.2.4. Equations (42) and (49) show that, in the corotational approach, the global
deformation gradient can be seen as the multiplicative decomposition of a rigid rotation (from Ω0

to Ω̄), followed by a small deformation (in Ω̄), followed by another rigid rotation (from Ω̄ to Ω).

From equation (42), the Green-Lagrange strain tensor can be computed as

E = R0
eĒ(R0

e)
T , (50)

with

Ē =
1

2
(F̄ T F̄ − I) = Ē11Ē1 ⊗ Ē1 + Ē1αĒ1 ⊗ Ēα + Ēα1Ēα ⊗ Ē1, (51)

and

Ē11 =
1

2
(ā · ā) + (ā · t̄1) , (52a)

Ē1α = Ēα1 =
1

2
(ā · t̄α) , (52b)

where equation (43) has been used alongside equation (29). The total Green-Lagrange strain
tensor depends only on ā, this is the derivative of the local centerline displacement, ū′0, the local
rotation matrix R̄ and its derivative along the centerline R̄′ (see equations (44,45,46)). Assuming
again small strains, via equation (49), the Green-Lagrange strain tensor can be written as

Ē =
1

2
(F̄ T F̄ − I) ' ε(∇ū) (53)

which proves that by assuming small strains and small rotations in Ω̄, Ē approximates to the
small strain tensor ε(∇ū). Using equations (50) (53), the variation of the internal energy can be
computed as

δWint =

∫
Ω0

S : δE dΩ0 =

∫
Ω̄

σ̄ : δε̄ dΩ̄ =

∫
Ω̄

[σ̄11δε̄11 + σ̄1αδε̄1α + σ̄α1δε̄α1] dΩ̄ (54)

where the notation ε̄ ≡ ε(∇ū) has been used alongside the definition of

σ̄ =
(
R0
e

)T
SR0

e. (55)

Therefore, the internal virtual work can be written in terms of linear elasticity components in
Ω̄, which contributes in the efficiency of the corotational formulation, as all the nonlinearities are
taken care of via the elemental rigid body rotation Re. Specifically, the following relationship
between stresses and strains in Ω̄ is used

σ̄ = λ tr(ε̄)I + 2Gε̄ (56)

where λ, G are, respectively, the first and second Lamé parameters. Using the approximation
E ' λ+ 2G [51], the stress components contributing into equation (54) can be written as

σ̄11 = (λ+ 2G)ε̄11 ' Eε̄11, (57a)

σ̄1α = σ̄α1 = 2Gε̄1α = 2Gε̄α1, (57b)

where E is the Young’s modulus. Combining equations (54), (57), the internal energy of the
beam element can be written as

Wint =

∫
l0

(
1

2
E

∫
A

ε̄2
11 dA+

1

2
G

∫
A

(
(2ε̄12)2 + (2ε̄13)2

)
dA

)
ds. (58)

8



where Ω̄ = l0A alongside the fact that the cross sectional area remains unchanged have been
used. Finally, and before moving to the Finite Element discretization, it is useful to derive the
relationship between the variation of the different rotation tensors involved in the corotational
formulation. From equation (29), the following relationship is obtained

R̄(s) = RT
eR(s)R0

e. (59)

The variations of the above rotation tensors are obtained via equation (6). Omitting from now
on the dependence on s, t for clarity, this is

δR = S(δw)R, (60)

δRe = S(δwe)Re, (61)

δR̄ = S(δW̄ )R̄. (62)

The relationship between these variations is key in the development of the co-rotational formula-
tion. To do so, the variations δw and δwe are firstly rigidly rotated-back to the local configuration,
i.e.

δW = RT
e δw, (63)

δW e = RT
e δwe, (64)

which after some algebra (see [38] for details) and in combination with equation (59) yields the
following relationship

δW̄ = δW − δW e. (65)

2.3. Finite Element Discretization

The beam centerline is discretized in N initially straight elements of length l
(e)
0 such that

l0 ' ∪N l(e)0 . 1 Each of these segments is defined by two nodes a = 1, 2 with material positions
Xa and spatial positions xa = Xa +ua, with ua being the nodal displacement. The cross section
rotation at the node is defined by the nodal rotation Ra, such that

u1 = u0(0); R1 = R(0), (66)

u2 = u0(l0); R2 = R(l0), (67)

(see Figure 1). The rotation matrices Ra are parametrized via the rotational vector θa, while their
variation requires the spatial spin vector wa, i.e.

Ra = exp(S(θa)); δRa = S(δwa)Ra, (a = 1, 2) (68)

which defines the elemental vector of global displacements and rotations, d, and their variation
δd

d =
[
uT1 θT1 uT2 θT2

]T
; δd =

[
δuT1 δwT

1 δuT2 δwT
2

]T
. (69)

Following the procedure explained in the previous section, two orthonormal triads Vi, vi are
build tangent to the axis connecting nodes 1 and 2 in the material and spatial configurations,
respectively, which are rigidly rotated using R0

e, Re (see equations (25), (26)). These mappings
allow to do rigid-rotate-back of the variations δd in the Ω̄ configurations, via

δD = ET δd; δD =
[
δUT

1 δW T
1 δUT

2 δW T
2

]
; E =

∂D
∂d

= diag(Re). (70)

1In what follows, the superscript (e) denoting an elemental quantity, is dropped for notational convenience, letter a ∈ {1, 2} is
reserved to nodal quantities and letter i ∈ {1, 2, 3} is used for defining dimensions.
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Additionally, the nodal centerline displacements and rotations in Ω̄, ūa and R̄a are defined as

ū1 = ū0(0); R̄1 = R̄(0) = RT
eR(0)R0

e = RT
eR1R

0
e, (71)

ū2 = ū0(l0); R̄2 = R̄(l0) = RT
eR(l0)R0

e = RT
eR2R

0
e, (72)

and via equations (32), (35), the displacement nodal values are given by

ū1 =

 0
0
0

 ; ū2 =

 ū
0
0

 (73)

and therefore the only non-zero component is ū, this is, the displacement of node 2 in the X̄1

direction. At the same time, the rotation matrices R̄a are parametrized via the rotational vector
Θ̄a, while their variation requires the spin vector W̄a, i.e

R̄a = exp(S(Θ̄a)); δR̄a = S(δW̄a)R̄a (a = 1, 2). (74)

From the nodal quantities ū, Θ̄1, Θ̄2 the centerline displacements ū0(ξ), and the cross section
rotational vector Θ̄(ξ) can be interpolated at any point of the centerline. To do so, the Bernoulli
hypothesis with linear interpolation for the axial displacement and axial rotation and cubic inter-
polation for the transverse displacements and rotations is chosen [40].

ū0 = u1(ξ)E1 + ut(ξ), (75)

with

u1(ξ) = N2(ξ)ū; ut(ξ) =

 0
u2(ξ)
u3(ξ)

 = P1(ξ)

[
Θ̄1

Θ̄2

]
. (76)

The rotations are interpolated as

Θ̄(ξ) = P2(ξ)

[
Θ̄1

Θ̄2

]
, (77)

with the expression of P1, P2 given in Appendix B. The above interpolations allow defining a
set of local nodal quantities and their variations, which will be used in the discretized variational
equation (54), i.e.

D̄ =
[
ū Θ̄T

1 Θ̄T
2

]T
; δD̄ =

[
δū δΘ̄T

1 δΘ̄T
2

]T
. (78)

with the following relationship between δD̄ and δd

δD̄ = Bδd, (79)

withB given in Appendix C. On top of this, the dynamic and frictional terms requires the variation
and time derivatives of the centerline displacement u0 as well as those of the centerline spin-vector
w0. From equation (75), the centerline displacement in the current configuration is given by

uh0 = u1N1(ξ) + u2N2(ξ) +Reu
t(ξ). (80)

The variation of uh0 is obtained from the equation above

δuh0 = ReH1E
T δd, (81)
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and the first and second time derivatives as

u̇h0 = ReH1E
T ḋ, (82)

üh0 = ReH1E
T d̈+ReC1E

T ḋ, (83)

with H1, C1 given in Appendix D. Regarding the rotational variables, equation (65) is used to
write

δW̄ h
0 = δW h

0 − δWe, (84)

which yields the following variations and first and second derivatives of the rotational variables

δwh
0 = ReH2E

T δd, (85)

ẇh
0 = ReH2E

T ḋ, (86)

ẅh
0 = ReH2E

T d̈+ReC2E
T ḋ, (87)

where again the expressions of H2, C2 are given in Appendix D.

Figure 1: Co-rotational element

2.4. Variational problem for beam dynamics

By making use of the Hamilton principle, the weak form of the equations of motion is stated
as

δW = δWint + δWkin − δWext = 0, (88)

with Wkin being the dynamic potential and Wext the potential of the external forces. The variation
of the internal energy is obtained via equation (58) and following the procedure described in [38].
This variation leads to the elemental internal forces, given by

δWint = (δd)TTint, (89)
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with Tint the elemental internal forces in Ω, defined as

Tint =
∂Wint

∂d
= BT T̄int ≡

[
F T

1 MT
1 F T

2 MT
2

]T
, (90)

with B the matrix expressing the relationship between δd and δD̄ via equation (79), Fa the nodal
force and Ma the nodal moment. Finally T̄int are the elemental internal forces in Ω̄ defined as

T̄int =
∂Wint

∂D̄
≡
[
N̄ M̄T

1 M̄T
2

]T
, (91)

with N̄ the elemental axial force and M̄a the nodal moments in Ω̄. As described in [38], given the
definition of the internal energy for a linear elastic material (58) and the use small strains in Ω̄
(51) a closed form expression can be obtained for T̄int for a given set of displacements D̄, without
resorting to numerical integration. Specifically, given the choice of Finite Element interpolation
for the centerline displacements (75) and rotations (77), this is given by (see for example [35, 38])

T̄int = K̄intD̄, (92)

with

K̄int =
1

l0



AE 0 0 0 0 0 0
0 GJ 0 0 −GJ 0 0
0 0 4EI33 0 0 2EI33 0
0 0 0 4EI22 0 0 2EI22

0 −GJ 0 0 GJ 0 0
0 0 2EI33 0 0 4EI33 0
0 0 0 2EI22 0 0 4EI22


, (93)

where I22, I33 are the moments of inertia respect to the X̄2, X̄3 axes and J is the torsional constant.
In order to obtain the tangent stiffness matrix, the variation of Tint is required. This is given by

δTint = Kintδd, (94)

with

Kint = BTK̄intB + K̃int (95)

and with K̃ provided in Appendix C.
The kinetic energy functional is given by (see for example [40, 64])

Wkin =
1

2

∫
l0

(Aρ(u̇0 · u̇0) + ẇ0 · Iρẇ0) ds. (96)

The variation of the potential Wkin in (96) combined with equations (81), (83), (85), (86), (87)
gives the inertia force vector

δWkin = T T
k δd, (97)

with Tk given by

Tk = E

∫
l0

(
AρH

T
1 R

T
e ü0 +HT

2 ĪρR
T
e ẅ0 +HT

2 S(Ẇ0)ĪρẆ0

)
ds, (98)

with

Ẇ0 = RT
e ẇ0, (99)

Īρ = R̄JρR̄
T . (100)
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and with ü0, ẇ0, ẅ0 given, respectively, by equations (83), (86), (87). Finally, to obtain the
tangent dynamic matrix, the variation of Tk is needed. As in [40], this is computed considering
only the contributions from the acceleration and velocity, this is, the centrifugal and dynamic
matrices

δTk 'Mδd̈+Ckδḋ, (101)

with

M = E

(∫
l0

AρH
T
1 H1 +HT

2 ĪρH2 ds

)
ET , (102)

Ck = E

(∫
l0

(
AρH

T
1 (C1 +C3) +HT

2 Īρ (C2 +C4) +HT
2

(
S(Ẇ0)Īρ − S(ĪρẆ0)

)
H2

)
ds

)
ET ,

(103)

with the expressions for C3, C4 provided in Appendix D.

3. Beam to rigid surface contact formulation

In order to consider the contact against a rigid surface, the weak form (88) is extended using
the variation of a penalty potential δWc as

δW = δWint + δWkin − δWext − δWc = 0. (104)

Following [16], a penalty potential is defined. This potential takes into account the normal and
frictional contributions of the beam contact against a rigid master surface Γs (see Figure 2a)

δWc =

∫ l0

0

(pNδgN + tT · δgT ) ds, (105)

with gN being the normal gap respect the master surface, gT the relative displacement in the
tangential direction, pN the contact pressure and tT the frictional contact traction. All values in
(105) are evaluated at the beam centerline by assuming that the beam radius is small enough to
disregard the couples generated by the frictional force [65]. Given the fact that circular beams are
used, gN is defined as

gN(s) = ds(s)− r, (106)

with ds(s) being the distance of a point on the beam centerline to the surface and r the radius of
the beam, which is assumed constant. The variation of gN is given by

δgN =
∂gN
∂x
· δx0 =

∂dΓs

∂x
· δu0 = n · δu0, (107)

with n being the surface normal. In order to obtain the variation of gT , the centerline displacement
is decomposed into its normal and tangential components, respect to the master surface [66], i.e.

δu0 = (δu0 · n)n+ δuT = δgN
∂gN
∂x

+ δgT . (108)

Isolating δgT in the above expression yields

δgT =

(
I − ∂gN

∂x
⊗ ∂gN

∂x

)
δu0, (109)

ġT =

(
I − ∂gN

∂x
⊗ ∂gN

∂x

)
u̇0. (110)
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(a) Continuum. (b) Discrete voxel mesh with a SDF.

Figure 2: Contact of a spatial beam element against a rigid surface.

In order to facilitate the convergence of the Newton Raphson algorithm, both the contact
pressure pN and frictional contact force tT are regularized. The contact pressure is evaluated
using the penalty regularization used in [45, 47–49]

pN = pN(gN) =



p̄N − εcgN , g ≤ 0

εcḡN − p̄N
ḡ2
N

g2
N − εcgN + p̄N , 0 < gN ≤ ḡN

0, g > ḡN

(111)

with εc being the penalty parameter, p̄N = 1
2
εcḡN and ḡN being the normal gap value at which

the contact pressure starts increasing (see Figure 3a). As in [47], ḡN is taken as 10% of the beam
radius. The frictional contact traction is evaluated using the regularization proposed in [16]

tT = tT (gN , ġT ) = −µpN(gN)
ġT√

‖ġT‖2 + εT
. (112)

with εT being a regularization parameter (see Figure 3b).
Replacing equations (81), (107), (109), (111) and (112) into the potential (105) yields the

following discrete contact force vector

Tc =

∫ l0

0

EHT
1 R

T
e fc ds, (113)

with H1 given in Appendix D, E given in equation (70) and with fc being the contact force, given
by

fc = pN(d)G(d; ḋ), (114)

with

G(x;d; ḋ) =
∂gN
∂x
− µ ġhT√

‖ġhT‖2 + ε
. (115)
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(a) Regularization of pN (b) Regularization of tT

Figure 3: Regularization of the normal and frictional forces.

The contact tangent matrix is obtained by linearizing Tc with respect the displacement and
velocity contributions (see Appendix E for details),

δTc = Kcδd+Ccδḋ, (116)

with Kc defined as

Kc = K1
c +K2

c +K3
c +K4

c , (117)

and with each of the terms given by

K1
c = −

∫ l0

0

EŜ(HT
1 F c)G

TET ds, (118a)

K2
c =

∫ l0

0

(
N7

l2n
EAT

1F cr −EGS(F c)P1PE
T

)
ds, (118b)

K3
c =

∫ l0

0

EHT
1 S(F c)G

TET ds, (118c)

K4
c =

∫ l0

0

EHT
1 R

T
eKfc ds, (118d)

where the full expression ofKfc is given in Appendix E, F c is the contact force rigidly-rotated-back
to the Ω̄ configuration, i.e.

F c = RT
e fc (119)

and Ŝ is the operator that transforms the 12× 1 array into a 12× 3 matrix as

Ŝ(a) =


S(a1)
S(a2)
S(a3)
S(a4)

 aI =

 a3(I−1)+1

a3(I−1)+2

a3(I−1)+3

 ; I ∈ {1, 2, 3, 4}. (120)

Finally, the dynamic contribution is given by

Cc =

∫ l0

0

EHT
1 R

T
eCfc ds, (121)

with Cfc given in Appendix E.

15



4. Interpolation of a discrete Signed Distance Field

The contact formulation presented in the previous section depends on the normal gap gN(x),

and its spatial gradient and Hessian, i.e. ∂gN (x)
∂x

, ∂2gN (x)
∂x∂x

. This section presents the necessary tools
to use a discrete SDF to compute the above quantities. To do so, an efficient interpolation based
on the tensor product of 1D kernels is presented in section 4.1. Section 4.2 assesses the accuracy
of the proposed framework to interpolate the signed distance.

4.1. Kernel Functions

At any Gauss point of the beam, represented by the isoparametric coordinate ξG, which is
located in the spatial domain at xG ≡ x0(ξG), the gap function, first and second derivatives are
needed, i.e. from equation (106),

gN(xG) = ds(xG)− r, (122)

∂gN(xG)

∂x
=
∂ds(xG)

∂x
, (123)

∂2gN(xG)

∂x∂x
=
∂2ds(xG)

∂x∂x
. (124)

It is assumed that the SDF is provided in a Cartesian grid in a three dimensional prismatic domain
Ωs = [xo1, x

f
1 ]× [xo2, x

f
2 ]× [xo3, x

f
3 ], discretized with N nodes, N = N1N2N3, defined as

xA =
(
xA1

1 , xA2
2 , xA3

3

)T
; A ≡ (A1, A2, A3), (125)

with

xAi
i = xoi + (Ai − 1)hi; Ai ∈ {1, Ni}; hi = (xfi − xoi )/(Ni − 1); i ∈ 1, 2, 3 (126a)

and hi being the grid size in the direction i. For simplicity, from now a uniform size will be
considered in all directions i.e. h = h1 = h2 = h3. At each of the voxel grid nodes, the signed
distance is given, i.e.

ds(x
A) = dAs (127)

and at any other point within the domain Ωs, the value of ds can be interpolated. Specifically, at
the integration point of the beam, i.e.

ds(xG) = IA(dAs ), (128)

where I is some interpolant function. Given the Cartesian grid chosen for the discrete SDF, one
dimensional kernel functions are chosen, as used in Immersed Boundary Fluid Structure Interaction
methods [58, 59, 67]. This is, for any point in x in space, the signed distance ds(x) is interpolated
as

ds(x) =
∑
A

VAd
A
s ϕ(x− xA), (129)

where VA = h3 and φ defined as a tensor product of 1D kernels, i.e.

ϕ(z) = φ
(z1

h

)
φ
(z2

h

)
φ
(z3

h

)
. (130)

This allows computing the first and second derivatives of ds as

∂ds(x)

∂x
=
∑
A

VAd
A
s

∂ϕ

∂x
(x− xA), (131)

∂2ds(x)

∂x∂x
=
∑
A

VAd
A
s

∂2ϕ

∂x∂x
(x− xA), (132)
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with

∂ϕ

∂zi
=

1

h
φ′
(zi
h

)
φ
(zj
h

)
φ
(zk
h

)
, (133)

∂2ϕ

∂zi∂zi
=

1

h2
φ′′
(zi
h

)
φ
(zj
h

)
φ
(zk
h

)
, (134)

∂2ϕ

∂zi∂zj
=

1

h2
φ′
(zi
h

)
φ′
(zj
h

)
φ
(zk
h

)
, (135)

where i 6= j 6= k. The use of the above interpolation strategy is very advantageous when using
Cartesian meshes (as the given voxel mesh), as the stencils involved in the interpolation (129)
can be precomputed in advance, and therefore no search is involved in computing the distance ds.
There is a wealth of 1D kernels functions φ proposed in the immersed FSI literature that could be
used in the above expressions. Yet, some of the proposed kernels do not satisfy continuity of the
second derivative [67], which would be detrimental for the proposed as second order derivatives of
φ are required (see equation 132). Instead, the spline-based kernel proposed in [59] is used, which
has a support of [−3h, 3h] and ensures continuity of the second derivative. This is given by

φ(r) =



0 r ≤ −3
− 29

7560
r7 − 5

72
r6 − 21

40
r5 − 17

8
r4 − 39

8
r3 − 243

40
r2 − 27

8
r − 81

280
−3 < r ≤ −2

17
1512

r7 + 1
8
r6 + 13

24
r5 + 79

72
r4 + 65

72
r3 + 7

120
r2 + 13

72
r + 1447

2520
−2 < r ≤ −1

− 11
756

r7 − 1
18
r6 + 7

36
r4 − 29

60
r2 + 691

1260
−1 < r ≤ 0

11
756

r7 − 1
18
r6 + 7

36
r4 − 29

60
r2 + 691

1260
0 < r ≤ 1

− 17
1512

r7 + 1
8
r6 − 13

24
r5 + 79

72
r4 − 65

72
r3 + 7

120
r2 − 13

72
r + 1447

2520
1 < r ≤ 2

29
7560

r7 − 5
72
r6 + 21

40
r5 − 17

8
r4 + 39

8
r3 − 243

40
r2 + 27

8
r − 81

280
2 < r ≤ 3

0 3 < r

(136)

which is designed, by construction, to interpolate exactly linear functions and with second-order
accuracy smooth functions [59, 67].

4.2. Numerical analysis of the signed distance interpolation error

In this section the accuracy of the interpolation strategy presented in the previous section is
analyzed numerically. To do so, the analytical signed distance function of a sphere is used, which
is defined as

ds(x) =
√

(x− P0) · (x− P0)−R0, (137)

with P0 being the location of the center of the sphere and R0 its radius. For the purpose of the

current analysis, these are chosen as P0 =
[

0.5 0.5 0.5
]T

and R0 = 0.3.
Five sets of voxel meshes are created in the domain Ωs = [−0.5, 1.5]× [−0.5, 1.5]× [−0.5, 1.5]

with mesh sizes h = {1/4, 1/8, 1/16, 1/32, 1/64}. At each of the nodes A of a given voxel mesh, the
signed distance dAs is stored as dAs = ds(x

A) via equation (137), which creates a SDF (see Figure
4a). At the same time, an auxiliary mesh is created with the final purpose of interpolating the
SDF values created in the previous step, mimicking what will be done at the beam Gauss point
xG. Additionally, the spatial gradient and Hessian are also computed at each of the nodes of this
auxiliary mesh. The auxiliary mesh is centered at P0, has a side length of l = 1, element size
haux = 1/32 and, in order to avoid overlapping of nodes with the background voxel mesh (which
could potentially benefit the global interpolation error), it is rotated 5 degrees respect to the X1,
X2 and X3 axes (see Figure 4b). Additionally, at each of the points of the auxiliary mesh, the
exact value of the signed distance, its gradient and Hessian can be obtained from equation (137)
which, in turn, allows computing the approximation error. As it can easily be proved, the gradient
and Hessian of the signed distance function (137) have a singularity at P0. Therefore, in order to
avoid numerical issues, the error analysis is limited to the region in which |ds(x)| ≤ 0.8R0.
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Figure 5 shows the L2-norms for the interpolated signed distance, dhs and the computed spatial
gradient and Hessian ∇dhs , ∇2dhs . It can be seen that all values converge to their analytical
counterpart with second-order accuracy, i.e. O(h2), which proves the adequacy of the algorithm,
initially designed for velocity fields, to interpolate distances and their derivatives. Particularly, it
is worth stressing the capacity of this interpolation strategy to compute gradients and Hessians
with the same order of accuracy without having the discrete values of these operators initially. Yet,
contact against such a smooth surface cannot always be warranted as sharp gradients are present
in real-life geometries. In such cases, as proved for the immersed boundary method, first-order
accuracy, i.e. O(h) is expected [67, 68]. Importantly, the discrete contact force fc in (114) and
its spatial derivatives will also approximated at the same order of the distance function ds(x) and
its spatial derivatives (i.e. second-order for smooth surfaces, first-order for non-smooth surfaces)
which, alongside the beam discretization will determine the contact algorithm order of accuracy.

(a) SDF in voxel mesh (b) Auxiliary mesh (c) SDF interpolated in auxiliary mesh

Figure 4: Interpolation of a SDF in a voxel mesh of h = 1/8

5. Time integration and computational aspects

Following the discretization in equations (90), (98) and (113), and upon assembly, the dis-
cretization of the weak form (104) is given by

R(D, Ḋ, D̈, t) = Tint(D, t) + Tk(D, Ḋ, D̈, t)−Tc(D, Ḋ, t)− Fext(D, t) = 0 (138)

where R is the residual, Tint, Tk, Tc are, respectively, the assembled vectors of nodal internal,
kinetic and contact forces and Fext is the vector of nodal external forces. At the same time, D is
the vector of nodal solutions, containing displacements and rotations, and Ḋ, D̈ are respectively,
its first and second time derivatives. Following equation (69), these are given by

D =


u1

θ1
...
uN
θN

 ; ∆D =


∆u1

∆w1
...

∆uN
∆wN

 ; Ḋ =


u̇1

ẇ1
...
u̇N
ẇN

 ; D̈ =


ü1

ẅ1
...
üN
ẅN

 , (139)

with N the number of nodes of the beam mesh. It is worth noticing that, in equation (138),

Tc depends both on D and Ḋ, due to the frictional contact term (see equations (114), (115)).
Equation (138) is discretized in time using the HHT-α method [69], as used in corotational beam
dynamics in [40, 50]. This yields

Rn+α = (1 + α)(Tn+1
int −Tn+1

c − Fn+1
ext )− α(Tn

int −Tn
c − Fn

ext) + Tn+1
k = 0 (140)
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Figure 5: Error in the discrete approximation of the signed distance of a sphere surface and its first and second
derivatives. Discontinuous line indicates second-order convergence slope.

with α a user-dependent parameter and where the superscript n (respectively n + 1) indicates
that the operator is evaluated at the time step t = n∆t (respectively t = (n+ 1)∆t). Finally, the
system is solved via a Newton Raphson algorithm using the following linearization

K̃∆D = −Rn+α (141)

with K̃ given by

K̃ = (1 + α) (Kint −Kc −Kext) +
1

β∆t2
M +

γ

β∆t
(Ck − (1 + α)Cc) , (142)

with β = 1
4
(1−α)2, γ = 1

2
(1−2α) and Kint, Kc, M, Ck, Cc assembled, respectively, from equations

(95), (117), (102), (103) and (121). Upon obtaining ∆D, the update of the displacement and
rotational variables is carried out following the procedure described in [40].

At the beginning of each time step, prior to the Newton Raphson algorithm, the predictor
proposed in [70] is used. Following [47], the Newton-Raphson algorithm is solved by checking the
norm of the increment vector in (139) and the norm of the residual in (140). The iteration finishes
once both norms are smaller than their respective prescribed tolerances, εR, εD, i.e. ‖R‖ ≤ εR,
‖∆D‖ ≤ εD. Also, following [47], if the Newton-Raphson algorithm fails to converge after 10
iterations, the time step is divided by two. Afterwards, and once the algorithm successfully
converges in 8 solves, the time step is multiplied by two (this increase stops once the initial time
step is recovered).

Regarding the interpolation of the SDF, as described in section 4, this can be efficiently imple-
mented due to the Cartesian structure of the voxel mesh. Specifically, given a Lagrangian point
of integration, it is very simple to find in which voxel element it has fallen (if any). Once this
is found, the interpolation (129) is carried out using a precomputed stencil. By doing this, the
computation of the distance at the Lagrangian point of integration becomes a quick sum over the
stencil nodal values, therefore avoiding any search. In case the Lagrangian point of integration
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falls outside the background voxel mesh, a numerically large value is assigned to ds, which makes
pN = 0 via equation (111).

6. Verification and examples

Each of the SDF involved in these examples has been generated using SDFgen [71]. All examples
have been simulated using 3 Gauss points for integrating the dynamic contributions and 5 Gauss
points for integrating the contact contributions. The tolerances in the Newton-Raphson iterations
are set to to εR = εD = 1 · 10−5. All the examples show quadratic convergence in the Newton-
Raphson iterations.

6.1. Vibrations of a beam constrained by two end stops

This example is used as a benchmark test and was first published in [9, 17, 18]. A beam
constrained to move in theX1−X3 plane has a length L = 10 m, moment of inertia I22 = 1.688·10−3

m4, cross sectional area A = 1.4923 ·10−5 m2, Young’s modulus E = 2 ·1011 Pa, density ρ0 = 8000
Kg/m3 and Poisson’s ratio ν = 0. The beam has its left end clamped and two rigid stops located
at its right end that constrain the displacement above and below X3 = ±0.1 m. The original
results published in [9, 17, 18] were obtained by modeling the one dimensional of a string and,
therefore, the end-stops where modeled as a singular constrain located exactly at X3 = 10 m.
In this case, a two dimensional beam is modeled and the tip can move freely in the X1 and X3

directions. Because of this, the end-stops are created as two rigid prisms of 0.3 × 0.04 × 0.1 m

centered at X =
[

10 0 ±0.15
]T

m (see Figure 6a), while non-frictional contact is imposed
only at the right end node. In order to mimic the literature results, no radius is considered when
computing the normal gap gN , i.e. r = 0 in equation (106). A uniform time-varying body force

is applied along the beam, with the value b =
[

0 0 sin(10t)
]T

, which causes the beam right
tip to impact against the end-stops and excite high frequency modes. The beam is modeled using
three choices for the number of elements, nel = {20, 80, 320} with corresponding time step of
∆t = {5 · 10−4, 1.25 · 10−4, 3.125 · 10−5} s. The penalty parameter is set to εc = 1 · 106. The
end-stops are modeled using a SDF in a voxel-type grid 175 × 45 × 219 nodes of element size
h = 0.002 m. Figure 6b shows the isovolume of this SDF.

Figure 7 shows the variation of the u3 component of the displacement of the beam tip with
time for different refinements of the beam mesh. Both the displacement and time are made
adimensional using the same procedure as in [18]. It can be seen that high frequency modes are
excited with successive impacts and chattering as the beam tip impacts the top and bottom stops.
This is highlighted in Figure 8, which zooms in the right end displacement at the first impact.
The solution compares very well against that of [18], with some differences when the beam tip
is freely moving between the two stops. This difference is probably due to the two-dimensional
character of the solution, as the beam tip can freely move in the X1 and X3 directions, which is a
substantial difference with respect to the string vibration solution obtained in [18]. Figure 9 shows
the pathlines of the beam tip in the X1 − X3 plane, which shows this two dimensional motion.
This plot also shows how the solution converges with successive refinement of the beam mesh.

6.2. Beam against sphere

This example compares the accuracy of the discrete SDF versus the use of an analytical signed
distance function. A beam of length L = 10 cm and radius R = 0.3 mm has its base point
constrained to oscillate back and forth in the X1 direction (the rest of the beam points are free
to move and rotate in any direction). The beam has a Young’s modulus E = 5 GPa, Poisson
ratio ν = 0.33 and density ρ0 = 7850. The beam impacts against a sphere centred at P0 =[

5 0.5 8
]T

cm and radius R0 = 4 cm. Figure 10a describes the problem setup while Figure
10b shows the prescribed displacement of the beam base point. The sphere surface is defined
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(a) Initial Setup (b) Isovolume of the SDF

Figure 6: Vibrations of a beam constrained by two end stops. Initial setup and SDF

Figure 7: Vibrations of a beam constrained by two end stops for different discretizations. Normalized u3 displace-
ment of the beam tip.

first using an analytical signed distance function, see equation (137), and then by using 3 discrete
SDF defined in a domain Ωs = [−0.05, 0.15]× [−0.1, 0.1]× [−0.05, 0.15] of (20× 20× 20) voxels,
(40× 40× 40) voxels and (80× 80× 80) voxels (see Figure 11). The penalty parameter is set to
εc = 5 · 104 and no friction is considered, i.e. µ = 0.0.

Figure 12 shows snapshots of the solution at t = 1.25 s, comparing different voxel discretiza-
tions with the analytical SDF. Additionally, a video animation is provided in Appendix F in the
electronic version of the document. Visually, it is observed that for coarser voxel meshes, the beam
undergoes some penetration within the sphere surface. In order to quantify that penetration, the
analytical SDF is used to compute the maximum penetration at the centerline. To do so, the
centerline position is postprocessed via the interpolation defined in equation (80) and using 80
points per element between ξ = 0 and ξ = l0. At each of this postprocessed points, the pene-
tration is evaluated via equation (106) and the analytical signed distance function (137). Using
this procedure, Figure 13 shows the maximum normalized penetration. It can be seen how the
maximum penetration is reduced with the refinement of the voxel mesh. Also, the finest voxel
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(a) Zoom 1 (b) Zoom 2

Figure 8: Vibrations of a beam constrained by two end stops nel = 320. Normalized u3 displacement of the beam
tip.

Figure 9: Vibrations of a beam constrained by two end stops, different discretizations. u1 versus u3 displacement
of the beam tip.
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mesh gives maximum penetration levels of the order of the analytical solution, which is around
50% of the beam radius.

Finally, the computational efficiency of the proposed distance interpolation algorithm is assessed
qualitatively. Figure 14 shows the ratio of computational time (wall clock time) to physical time
when using different discretizations of the SDF or the analytical signed distance. It can be seen that
when using the discrete SDF the computational time is increased around 50% as compared to the
computation when using the analytical signed distance equation. The differences in computational
time between the different discretizations are significantly smaller than that, which proves that the
interpolation algorithm is barely affected by the size of the background mesh h. This is a significant
difference with respect to traditional contact search methods, where the size of the master surface
mesh plays a big role in the computational time. Again, this assessment is purely qualitative and a
more accurate assessments should be carried out by comparing against standard contact methods.
Figure 14 also shows that the ratios of computational to physical time are of the order of 300,
approximately. This is due to the fact that the algorithm has been implemented in Matlab using
dense matrices and no vectorization and therefore, is open to substantial optimizations. This would
allow reducing very significantly the ratio shown in the figure and approach real-time computation
(ratio = 1) for this example. Finally, it is worth mentioning that the ratio fluctuations as shown
in Figure 14 are due to the adaptive time step strategy described in section 5, which forces a
reduction of the time step when contact occurs.

(a) Initial Setup (b) Imposed displacement

Figure 10: Beam against sphere. Initial setup and imposed displacement.

6.3. Contact between a cable and a rigid cylinder

This example is taken from [20, 72] and shows the robustness of the contact algorithm in a
friction dominated scenario. A circular cable of length 3.0 m is inclined 0.925 rad respect to the
X3 axis with a lumped mass of 5.0 kg placed at its end. The cable has a radius r = 0.01 m, density
ρ0 = 7919 kg/m3 and Young’s modulus E = 1 · 108 Pa. The rigid cylinder has a length of 3.0 m
and radius of 0.1 m. The cable has an initial angular speed w = [0, 0, 2] rad/s and is subjected

to gravitational force, which is imposed through a constant body force b = ρ0 [0, 0,−9.8]T m/s2.
The position of the top end of the cable is set to Xo = [−0.8,−0.115, 3.0] m2, which accounts
for an initial gap of 5 · 10−3 m (see Figure 15). The surface SDF is given in a voxel-type grid of
25 × 25 × 250 voxels, element size h = 0.0125 m and it is centered at the cylinder longitudinal

2The first component of Xo has been decided by the authors, as it was not detailed in [20, 72]
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(a) 20× 20× 20 voxels (b) 40× 40× 40 voxels (c) 80× 80× 80 voxels

Figure 11: Beam against sphere. Different SDF voxel meshes used for the simulation.

(a) 20× 20× 20 (b) 40× 40× 40 (c) 80× 80× 80 (d) Analytical

Figure 12: Beam against sphere. View on the X1 −X3 plane of beam contacting the sphere for different levels of
discretization of the SDF as compared to the analytical solution. Time step t = 1.25 s.

axis as shown in Figure 16. The cable is first modeled using 20 beam elements and time step
size ∆t = 5 · 10−4. The penalty parameter is set to εc = 1 · 106 and three different friction
coefficients are used, µ = {0.00, 0.10, 0.30}. Figure 17 shows three snapshots of the solution for
µ = 0.1 at different time instants. Figure 18 quantifies the vertical displacement of the beam tip
for the different friction coefficients. Additionally, a video animation is provided in Appendix F in
the electronic version of the document, where the evolution of the solution is compared between
µ = 0.00 and µ = 0.30. As expected, the higher the friction coefficient, the smaller the vertical
oscillations, as the cable sticks more onto the cylinder surface. Next, the cable is modeled using
three choices for the number of beam elements, nel = {10, 20, 40} with corresponding time steps
of ∆t = {1 · 10−3, 5 · 10−4, 2.5 · 10−4} s and µ = 0.30. Figure 19 shows the vertical displacement
of the cable tip point for these different discretizations. As it can be seen, the difference in the
solution between 20 and 40 elements is very small, in contrast to the Absolute Nodal Coordinate
formulation reported in [73], which required at least 40 elements to obtain a converged solution.
Finally, Figure 20 shows the normal and frictional force vectors at time t = 3.0 s for a friction
coefficient µ = 0.1 s. As it can be seen, the normal force vectors are perpendicular to the isosurface
of the discrete SDF, while the frictional force vectors are tangent to that isosurface, proving the
accuracy of the SDF interpolation (see section 4) in modeling the gradients of the surface normal,
∂gN
∂x

.
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Figure 13: Beam against sphere. Normalized centerline maximum penetration using the different discretizations of
the SDF as compared to using the analytical signed distance function.

Figure 14: Beam against sphere. Ratio of the computational (wall clock) time against physical time for different
discretizations of the voxel mesh.
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Figure 15: Contact between a cable and a rigid cylinder. Initial Setup.
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(a) Voxel grid. (b) Iso-volume. (c) Clip.

Figure 16: Contact between a cable and a rigid cylinder. SDF voxel mesh.

(a) t = 1.0 s (b) t = 1.5 s (c) t = 2.0 s

Figure 17: Contact between a cable and a rigid cylinder. Snapshots of the solution at different time steps for
µ = 0.1.
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Figure 18: Contact between a cable and a rigid cylinder. u3 displacement of the tip point for different friction
coefficients.

Figure 19: Contact between a cable and a rigid cylinder. u3 displacement of the beam tip with different discretiza-
tions for µ = 0.3.
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(a) Normal contact vectors. (b) Frictional contact vectors

Figure 20: Contact between a cable and a rigid cylinder. Close up of the contact friction vectors at the Gauss
points. Time t = 3 s, friction coefficient µ = 0.1.

6.4. Impact of a ring against a rigid surface

This example is designed to test the conservation properties of the algorithm [74, 75]. A flexible
ring with a centerline radius R = 9.5 m has a circular cross section of radius r = 0.5 m. The ring
is made of flexible material with properties E = 100 Pa, ν = 1 · 10−4 and ρ0 = 1 · 10−2 Kg/m3.

The ring has an initial uniform speed of v0 =
[√

2,−
√

2, 0
]T

m/s with its center initially located

at X0 = [0, 0, 0]T m. A rigid surface is placed at X3 = −12 m3. The penalty parameter is taken as
εc = 5000, the time step size as ∆t = 0.2 s and the ring is discretized using 64 beam elements. The
simulation is run using three different friction coefficients, µ = {0.00, 0.15, 0.30}. Figure 22 shows
a snapshot of the solution at t = 40.0 s alongside the pathlines for µ = 0.00 and µ = 0.30. It can
be seen that the reflection angle increases with increasing friction, as reported in [74]. Regarding
the conservation of energy, Figure 23 shows the evolution of the kinetic, internal and total energy
for µ = 0.15. It can be seen that, by using the HHT-α method, the solution shows an overall
dissipative trend, and is stable up to very long time steps, not experiencing any energy blow up,
which is a crucial test in impact problems [75].

Figure 24 compares the conservation of the total energy for different friction coefficients. The
energy dissipation increases with the friction coefficient, as expected. It can also be seen that the
total energy dissipates even in the frictionless case, when no physical dissipation is added into
the system. A large amount of this dissipation, of the order of 9 %, occurs during the contact
(and sliding) against the rigid surface. This is due to the combination of the proposed contact
penalty algorithm with the non-conservative HHT-α time integrator. This result is consistent
with other reported results in the literature when a contact spatial discretization is combined with
a non-conservative time integrator (see [18, 76, 77] for different impact examples with numerical
energy loss due to a non-conservative time integrator). Briefly explained, this is due to the non-
satisfaction of the persistency condition, i.e. pN ġN = 0, which is one of the fourth Kuhn-Tucker
contact conditions, and the only one that involves a rate of the normal gap [76]. Given that
a material time derivative is involved in this condition, the joint spatial discretization and time
integration should be designed to ensure its satisfaction. Failing to do this might result in energy
blow up, which is not the case for the current algorithm, or dissipation of the total energy during

3As the main purpose of this example is evaluating the conservation properties of the joint contact algorithm and time integrator,
in this case the rigid surface is simply modeled using an analytical signed distance (trivial in the case of a flat surface).
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impact (see [17] for successive energy losses during consecutive impact), which is due to negative
power introduced into the system during contact [76]. Energy preserving contact time integrators
have been proposed in [76–80]. It is also worth mentioning that energy preservation in the context
of beam dynamics poses also a significant challenge, as time integration of the rotational variables
adds additional complexity, and has been explored in, for example, [62, 81].

Figure 21: Impact of a ring against a rigid surface. Initial Setup.

(a) µ = 0.00 (b) µ = 0.30

Figure 22: Impact of a ring against a rigid surface. Comparison of the ring pathlines until t = 40.0 s for different
friction coefficients.

6.5. Dropping net on the Stanford Dragon

This example is designed to show the robustness of the algorithm in complex contact scenarios.
A net of 11 × 13 threads of lengths L1 and L2 is placed immediately above the Stanford Dragon
[82], covering a larger area of that corresponding to its floor projection. The net geometry and
position are detailed in Figure 25 and Table 1. The threads have a circular cross section of radius
r = 2 ·10−4 m, and their material properties are E = 10 GPa, ν = 0.0, ρ0 = 1500 Kg/m3. The net

is initially at rest and under the action of gravity, defined as a constant body force b = [0,−9.8, 0]T

m/s2. Regarding the discretization, 786 beam elements are used to model the net and the initial
time step is set to ∆t = 5 · 10−4 s. The penalty parameter is chosen as εc = 1 · 108 and the friction
coefficient as µ = 0.1. The simulation is run from time t = 0.0 s to time t = 19 · 10−2 s, when
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Figure 23: Impact of a ring against a rigid surface. Evolution of the kinetic, internal and contact energies for
µ = 0.15.

Figure 24: Impact of a ring against a rigid surface. Comparison of the total energy conservation for different friction
coefficients.
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the net has covered the whole solid and prior to any self contact of the net. The Stanford Dragon
SDF is given in a voxel-type grid of 236 × 176 × 123 nodes with element size h = ·10−3 m (see
Figure 26). Figure 27 shows the solution at different time steps. Additionally, a video animation
is provided in Appendix F in the electronic version of the document. During the falling process,
complex interactions between the net and the different parts of the dragon geometry occur, which
are accurately captured by the proposed algorithm. Figure 28 highlights the solution at the final
time step, by showing different views. In order to assess the penetration, Figure 29a evaluates
the percentage of Gauss points that are in contact or penetrating the body. Gauss points in
contact are identified as those that have a normal gap gN ≤ ḡN = 0.1r (see section 3). Further
to that, the number of Gauss points at different levels of penetration (represented as a fraction
of the beam radius) are also computed. As it can be seen, all Gauss points are either contacting
(0.0 ≤ gN ≤ ḡN) or non-contacting the Dragon surface, with no Gauss point penetrating the
surface. Next, the same evaluation is carried out by processing the penetration of the beam points
in Figure 29b. To do so, the centerline position is postprocessed in the same way as in example 6.2,
but now the distance ds(x) is evaluated using the interpolation technique described in section 4,
as no analytical distance function is available. As it can be seen, the majority of the beam length
in the contact region (i.e. gN ≤ ḡN) has a penetration between the range −r ≤ gN ≤ 0.1r (i.e.
the majority of the points in the contact region do not penetrate further than the beam radius).
In short, the algorithm ensures that no Gauss point penetrates the surface and this results into a
small percentage of the beam length penetrating the dragon surface. This is specially important
as the voxel mesh element size is significantly larger than the beam radius, i.e. h/r = 5.0, which
proves the accuracy of the contact algorithm proposed in section 3. To further strengthen this
last point, Figure 30 shows the maximum and mean penetration of the centerline points with
gN ≤ 0. It can be seen that the maximum penetration is smaller than 2r (0.4h), while the mean
penetration is of the order of 0.4r (0.08h).

(a) Lateral view. (b) Top view.

Figure 25: Dropping net on the Stanford Dragon. Initial setup.
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(a) Iso-volume. (b) Clip.

Figure 26: Dropping net on the Stanford Dragon. SDF voxel mesh.

(a) t = 7 · 10−2 s. (b) t = 11 · 10−2 s.

(c) t = 15 · 10−2 s. (d) t = 19 · 10−2 s.

Figure 27: Dropping net on the Stanford Dragon. Position of the grid at different time steps.
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XA

[
9.375 · 10−2, 2.55 · 10−1,−1.875 · 10−3

]T
m

XB

[
3.8625 · 10−1, 2.55 · 10−1, 241875 · 10−1

]T
m

L1 2.925 · 10−1 m
L2 2.4375 · 10−1 m

Table 1: Dropping net on the Stanford Dragon. Geometric information of the initial setup.

(a) Lateral view. (b) Front view.

(c) Top view.

Figure 28: Dropping net on the Stanford Dragon. Different views of the solution at time t = 19 · 10−2 s.
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(a) Percentage of Gauss points. (b) Percentage of beam centerline length.

Figure 29: Dropping net on the Stanford Dragon. Stacked area plots showing the percentage of Gauss points and
length contacting / penetrating the surface.

Figure 30: Dropping net on the Stanford Dragon. Maximum and mean normalized penetration.
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7. Conclusions

This paper pursued the development of a fast, yet accurate and robust, algorithm for beam
to surface contact. To do so, a new implicit dynamics formulation for the simulation of 3D
beam contact against rigid surfaces has been presented. The formulation builds from an efficient
corotational beam dynamics formulation previously reported. The corotational beam kinematics
has been rewritten using 3D kinematics description, linking it with geometrically exact beam
theory. Frictional contact terms have been added and linearized, providing a consistent implicit
dynamics formulation for frictional contact. Contact search is avoided by using a discrete signed
distance field to represent the rigid surface, in which the Lagrangian beam is immersed. The
contact distance, gradient and Hessian, as required by the beam formulation, are computed at the
beam Gauss point by using an interpolation based in a tensor product of 1D kernels, as used in
immersed fluid-structure interaction techniques. The use of this interpolation, facilitated by the
Cartesian structure of the voxel mesh, is highly efficient as the stencil can be precomputed and
no search is required when computing the distance to the surface.

Regarding the numerical results, it has been numerically proved that the interpolated signed
distance, spatial gradient and Hessian converge with second-order accuracy to the analytical solu-
tion, i.e. O(h2), for smooth surfaces while first-order convergence, i.e. O(h), is expected for sharp
surfaces. This fact, alongside the beam discretization, determines the contact algorithm order
of accuracy. Next, the robustness and applicability of the overall contact framework has been
proven by providing a series of challenging examples. Firstly, the solution matches well against
literature results in a beam fast impact problem. Next, an example has been proposed to test
the accuracy of the surface discretization by comparing the penetration for different voxel sizes.
Using the same parameters for the beam material and discretization, it can be seen that the pen-
etration decreases for finer voxel mesh sizes, as expected. In the same example, the efficiency of
the interpolation strategy has been assessed qualitatively, proving that the computational time is
barely affected by the refinement of the voxel mesh. A literature example in a friction dominated
scenario shows that the proposed algorithm converges faster than previously reported results using
Absolute Nodal Coordinate formulation. Using a standard benchmark, it has also been proved
that the combination of the proposed frictional contact terms with the HHT-α time integrator
provide a globally dissipative solution, avoiding energy blow-ups after long physical time. Finally,
the algorithm has been tested in a complex contact scenario by using a SDF of the Stanford
Dragon. The penetration levels of the beam centerline are of the order of the beam radius, which
is smaller than the voxel mesh size and which proves the robustness of the contact algorithm.

The proposed framework could be improved in different ways. Firstly, the algorithm has been
implemented in Matlab in a non-optimized code (dense matrix, no vectorization). Therefore, the
current implementation allows for substantial optimization via use of sparse matrices and lower
level languages. Once this is done, and keeping in mind that both the corotational beam models
and the 1D kernel interpolation have been proven to be effective algorithms in their respective areas
of application, the overall framework could be an excellent candidate for accurate real-time contact
simulation. Yet, a detailed comparison, in terms of efficiency, of the proposed framework against
other standard contact algorithms is required in order to prove that hypothesis. Regarding the
time integration, despite the HHT-α method provides a globally dissipative solution, as pointed in
[50], energy-preserving time integrators could be implemented, which would improve the solution
in terms of time accuracy. A significant limitation of the current formulation is that it only
considers contact against rigid surfaces. In order to extend it to contact against deformable
surfaces, the use of an Eulerian formulation for hyperelastic solids could be explored [29]. Finally,
the current formulation does not consider contact (or self contact) of the beam elements. To model
such phenomena, a unified beam to beam contact approach as the one presented in [47] could be
adapted from a Total Lagrangian to a (Lagrangian) corotational beam formulation as presented
in this paper. Overall, this would result into a Lagrangian beam to beam contact formulation
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combined with the presented SDF beam to surface contact formulation.
Finally, it is worth mentioning that the current algorithm is well-suited to its application

in cardiovascular medicine and, specifically, simulation of guidewire navigation and stent-graft
deployment [12, 83]. In these applications efficient or even real time simulations are needed for
training purposes and for decision making during the pre-operative and intra-operative phases.
Additionally, medical imaging data is traditionally provided in voxel type meshes where SDF can
be obtained automatically [84]. By using the proposed framework, the creation of patient-specific
triangular meshes would be avoided, which usually requires experienced user input and takes
an important part of the simulation work-flow [85]. Yet, cardiovascular applications, in general,
require taking into account the deformation of the vessel wall [12]. Therefore, the presented work
can be seen as a first step towards this final goal.
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Appendix A. Kinematics assuming small displacements and rotations

Assuming small rotations in Ω̄, the rotation tensor R̄ can be approximated as

R̄(Θ̄) ' I + S(Θ̄) (A.1)

and its first derivative as

R̄′ ' S(Θ̄′). (A.2)

At the same time, by assuming small displacement of the centerline in Ω̄, the derivatives of the
transversal displacements are given by

u′2(s) ' Θ̄3(s), (A.3)

u′3(s) ' −Θ̄2(s). (A.4)

The above approximations are used to better analyze the structure of the deformation gradient
F̄ , as defined in (43), which is repeated for convenience,

F̄ (s) = R̄(s) + ā(s)⊗ Ē1, (A.5)

with ā given by (see equation (44))

ā(s) = γ̄(s) + ξακ̄α(s), (A.6)

and, via equations (45), (46),

γ̄ = x̄′0(s)− t̄1, (A.7)

κ̄α = R̄′(s)Ēα. (A.8)

Using equations (34), (35) alongside approximations (A.3), (A.4), x̄′0 can be written as

x̄′0 = Ē1 + u′1(s)Ē1 + u′2(s)Ē2 + u′3(s)Ē3 ' u′1(s)Ē1 + t̄1, (A.9)

which yields

γ̄ = u′1(s)Ē1. (A.10)
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At the same time, via approximation (A.2) and by omitting the high order terms, κ̄α can be
rewritten as

κ̄2 =
(
Θ̄′(s)× T̄2

)
'

 Θ̄′1
Θ̄′2
Θ̄′3


Ēi

×

 −Θ̄3

1
Θ̄1


Ēi

=

 Θ̄′2Θ̄1 − Θ̄′3
−Θ̄3Θ̄′3 − Θ̄′1Θ̄1

Θ̄′1 − Θ̄3Θ̄′2


Ēi

'

 −Θ̄′3
0

Θ̄′1


Ēi

, (A.11)

κ̄3 =
(
Θ̄′(s)× T̄3

)
'

 Θ̄′1
Θ̄′2
Θ̄′3


Ēi

×

 Θ̄2

−Θ̄1

1


Ēi

=

 Θ̄′2 + Θ̄′3Θ̄1

Θ̄2Θ̄′3 − Θ̄′1
−Θ̄′1Θ̄1 − Θ̄′2Θ̄2


Ēi

'

 Θ̄′2
−Θ̄′1

0


Ēi

. (A.12)

Using the results in equations (A.10), (A.11), (A.12) into (A.6) finally yields

ā =

 u′1 − ξ2Θ̄′3 + ξ3Θ̄′2
−ξ3Θ̄′1
ξ2Θ̄′1


Ēi

. (A.13)

On the other hand, the displacement ū can be approximated assuming small rotations by
replacing approximation (A.1) into equation (35), to yield

ū(s) =

 u1(s)
u2(s)
u3(s)


Ēi

+ ξ2

 −Θ̄3

1
Θ̄1


Ēi

+ ξ3

 Θ̄2

−Θ̄1

1


Ēi

=

 u1(s)− ξ2Θ̄3(s) + ξ3Θ̄2(s)
u2(s) + ξ2 − ξ3Θ̄1(s)
u3(s) + ξ2Θ̄1(s) + ξ3


Ēi

,

(A.14)

and the gradient can be obtained by reminding that, in the configuration Ω̄, X̄1 = s, X̄α = ξα,
which yields

∇ū =
∂ū

∂X̄
'

 u′1(s)− ξ2Θ̄′3(s) + ξ3Θ̄′2(s) −Θ̄3(s) Θ̄2(s)
Θ̄3(s)− ξ3Θ̄′1(s) 1 −Θ̄1(s)
−Θ̄2(s) + ξ2Θ̄′1(s) Θ̄1(s) 1

 (A.15)

where, again, the small displacement assumption (A.3), (A.4) has been used. Finally, comparing
the result above with equation (A.13), yields

∇ū ' S(Θ̄) + ā⊗E1. (A.16)

The above gradient can be approximated using a sum of symmetric and antisymmetric tensors

∇ū = ε(∇ū) + Ω(∇ū), (A.17)

with

ε(∇ū) =
1

2

 2
(
u′1(s)− ξ2Θ̄′3(s) + ξ3Θ̄′2(s)

)
−ξ3Θ̄′1(s) ξ2Θ̄′1(s)

−ξ3Θ̄′1(s) 0 0
ξ2Θ̄′1(s) 0 0

 =
1

2
(ā⊗E1 +E1 ⊗ ā) ,

(A.18)

Ω(∇ū) =
1

2

 0 −2Θ̄3 + ξ3Θ̄′1 2Θ̄2 − ξ2Θ̄′1
2Θ̄3 − ξ3Θ̄′1 0 −2Θ̄1

−2Θ̄2 + ξ2Θ̄′1 2Θ̄1 0

 = S(Θ̄) +
1

2
(ā⊗E1 −E1 ⊗ ā) .

(A.19)
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Appendix B. Isoparametric interpolation

The Finite Element interpolation matrices are

P1(ξ) =

 0 0 0 0 0 0
0 0 N3(ξ) 0 0 N4(ξ)
0 −N3(ξ) 0 0 −N4(ξ) 0

 (B.1)

P2(ξ) =

 N1(ξ) 0 0 N2(ξ) 0 0
0 N5(ξ) 0 0 N6(ξ) 0
0 0 N5(ξ) 0 0 N6(ξ)

 (B.2)

with ξ ∈ [0, l0] and the shape functions given by

N1(ξ) = 1− ξ

l0
, N2(ξ) = 1−N1, (B.3)

N3(ξ) = ξ

(
1− ξ

l0

)2

, N4(ξ) = −
(

1− ξ

l0

)
ξ2

l0
, (B.4)

N5(ξ) =

(
1− 3ξ

l0

)(
1− ξ

l0

)
, N6(ξ) =

(
3ξ

l0
− 2

)
ξ

l0
. (B.5)

Appendix C. Internal force vector, stiffness matrix

The relationship between δd and δD̄ requires several steps, as explained in [38]. For the sake
of completeness, the main results are summarized in what follows. Firstly, the variation of R̄a

requires the spin vector δW̄a, which does not appear in the variational equation (54). Therefore,
an additional set of nodal quantities is considered that inclues the variation of the spin vectors
W̄a,

D̄∗ =
[
ū W̄ T

1 W̄ T
2

]T
; δD̄∗ =

[
δū δW̄ T

1 δW̄ T
2

]T
, (C.1)

The relationship between δD̄ and δD̄∗ given via equation (14a) as

δD̄ = B̄δD̄∗; B̄ =

 1 0T 0T

0 T−1
s (Θ̄1) 03×3

0 03×3 T−1
s (Θ̄2)

 . (C.2)

Next, the relationship between δD̄∗ and δd is given by

δD̄∗ = B̄∗δd, B̄∗ =

[
r

PET

]
, (C.3)

with E given in equation (70). The vector r gives the relationship between the variation δū and
the variation of the global displacements, i.e. and the expressions for r and P given by

δū = rδd; r =
[
−v1

T 0T v1
T 0T

]
. (C.4)

At the same time, using equation (65), P gives the relationship between the variation of the spin
variables in Ω̄, δW̄a and δD, i.e.[

δW̄1

δW̄2

]
= P δD = PET δd; P =

[
03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3

]
−
[
GT

GT

]
, (C.5)
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and

GT =
∂We

∂D =

 0 0 η/ln η12/2 −η11/2 0 0 0 −η/ln η22/2 −η21/2 0
0 0 1/ln 0 0 0 0 0 −1/ln 0 0 0
0 −1/ln 0 0 0 0 0 1/ln 0 0 0 0


(C.6)

with

η =
q1

q2

, η11 =
q11

q2

, η12 =
q12

q2

, η21 =
q21

q2

, η22 =
q22

q2

. (C.7)

Combining equations (C.2) and (C.3) yields the relationship between δd and δD̄

δd = BδD̄; B = B̄B̄∗. (C.8)

Given the above relationship, the tangent stiffness can be obtained via equations (90), (94)

δTint = δ(BT T̄int) = δ(B̄T
∗ B̄

T T̄int) = Kintδd, (C.9)

with

Kint = BTK̄intB + K̃; K̃ = B̄T
∗ K̄hB̄∗ +Km (C.10)

with K̄ given in equation (93) and Kh given by

K̄h =
∂B̄T ¯Tint
∂D̄∗

∣∣∣∣
T̄int

=

 0 0T 0T

0 K̄h1 03×3

0 03×3 K̄h2

 ; K̄ha =
∂T−Ts (Θ̄a)M̄a

∂W̄a

∣∣∣∣
M̄a

, (C.11)

K̄ha = ηa
(
Θ̄aM̄

T
a − 2M̄aΘ̄

T
a + (Θ̄a · M̄a)I3×3

)
T−1
s (Θ̄a)

+ µi
(
S(Θ̄a)S(Θ̄a)M̄aΘ̄

T
a

)
T−1
s (Θ̄a)

− 1

2
S(M̄a)T

−1
s (Θ̄a) (C.12)

and

ηa =
2 sin Θ̄a − Θ̄a(1 + cos Θ̄a)

2(Θ̄a)2 sin Θ̄a

, µa =
Θ̄a(Θ̄a + sin Θ̄a)− sin2(Θ̄a/2)

4(Θ̄a)4 sin2(Θ̄a/2)
. (C.13)

Finally Km is given by

Km = DN̄ −EQGTET +EGar, (C.14)

with N̄ being the first component of T̄int (see equation (91))), r given in equation (C.4) and D,
Q, a given by

D =


D3 03×3 −D3 03×3

03×3 03×3 03×3 03×3

−D3 03×3 D3 03×3

03×3 03×3 03×3 03×3

 ; D3 =
1

ln
(I3×3 − v1v

T
1 ), (C.15)

Q =


S(Q1)
S(Q2)
S(Q3)
S(Q4)

 , a =

 0
η([M̄∗1 ]1 + [M̄∗2 ]1)/ln − ([M̄∗1 ]2 + [M̄∗2 ]2)/ln

([M̄∗1 ]3 + [M̄∗2 ]3)/ln

 . (C.16)
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In the above definition of Q, Qi are the block components of

P Tm =
[
QT

1 QT
2 QT

3 QT
4

]
; m =

[
M̄T
∗1 M̄T

∗2
]
, (C.17)

with M̄T
∗a being the nodal moments related to the displacements D̄∗,

T̄∗ =
∂Wint

∂D̄∗
= B̄∗T̄int ≡

[
N̄ M̄T

∗1 M̄T
∗2
]T
. (C.18)

Appendix D. Time derivatives and variations of the centerline displacements and
rotations

In order to derive the dynamic force vector as well as the tangent dynamic matrices, the
variations of the centerline displacements uh0 and their time derivatives, as well as the variations
of the centerline spin vectors wh

0 and their time derivatives are needed. For completness, the
main results of [40] are summarized, but for more details the reader is refered to that paper. The
variation of the centerline displacement, δuh0 is obtained via equation (80),

δuh0 = δu1N1(ξ) + δu2N2(ξ) + δReu
t(ξ) +Reδu

t(ξ). (D.1)

The variation δRe is obtained via equations (61), (64) as

δRe = ReS(δWe). (D.2)

with (see equations (70), (C.6)),

δWe =
∂We

∂D δD = GTET δd. (D.3)

The variation of ut is given by

δut = P1

[
δΘ̄1

δΘ̄2

]
' P1

[
δW̄1

δW̄2

]
= P1PE

T δd, (D.4)

where equation (C.5) has been used and where, as in [40], it has been assumed that Ts(Θ̄a) ' I
due to small rotations (see equation 14b). Replacing the above results into (D.1),

δuh0 = ReH1E
T δd, (D.5)

with

H1(ξ) = N (ξ) + P1(ξ)P − S(ut(ξ))GT . (D.6)

with

N (ξ) =
[
N1(ξ)I 0 N2(ξ)I 0

]
. (D.7)

The variation ofH1 is useful to compute second derivatives and also to obtain the tangent dynamic
matrices. This is given by

δH1 =
N7

l2n
A1rδd− S(δut)GT , (D.8)

with

N7 = N3 +N4, (D.9)
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A1 =

 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0

 . (D.10)

Via equation (D.5), the first and second derivatives of uh0 can be computed as

u̇h0 = ReH1E
T ḋ, (D.11)

üh0 = ReH1E
T d̈+ReC1E

T ḋ, (D.12)

with

C1 = S(Ẇe)H1 + Ḣ1 −H1E (D.13)

and Ḣ1 obtained from equations (D.8), (D.4) as

Ḣ1 =
N7

l2n
A1rḋ− S(u̇t)GT ; u̇t = P1PE

T ḋ. (D.14)

Regarding the rotation variables, the varition of wh
0 is obtained fom equation (84) and doing a

rigid-push-forward with Re

δwh
0 = ReH2E

T δd, (D.15)

with

H2(s) = P2(s)P +GT . (D.16)

As for H1, it is useful to obtain the variation of H2. This is given by

δH2 =
N8

l2n
A2rδd, (D.17)

with

N8 = N5 +N6 − 1, (D.18)

A2 =

 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0

 . (D.19)

Via equation (D.15), the angular velocity and angular acceleration are obtained as

ẇh
0 = ReH2E

T ḋ, (D.20)

ẅh
0 = ReH2E

T ḋ+ReC2E
T ḋ, (D.21)

with

C2 = S(Ẇe)H2 + Ḣ2 −H2E. (D.22)

In order to obtain the tangent matrix, the variation of Tk in equation (98) is needed. As in
[40], this is computed considering only the contributions from the acceleration and velocity, this
is, the centrifugal and dynamic matrices

δTk 'Mδd̈+Ckδḋ (D.23)
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The following variables require linearization

Ũh
0 ≡ RT

e ü
h
0 = H1(d)E(d)T d̈+C1(d, ḋ)E(d)T ḋ, (D.24)

W̃ h
0 ≡ RT

e ẅ
h
0 = H2(d)E(d)T d̈+C2(d, ḋ)E(d)T ḋ, (D.25)

Ẇ h
0 ≡ RT

e ẇ
h
0 = H2(d)E(d)T ḋ, (D.26)

where equations (83), (86) and (87) have been used for the definition of with ü0, ẇ0, ẅ0. The

variations of the above quantities are obtained by linearizing only respect to ḋ and d̈ to give

δŨh
0 'H1E

T δd̈+ (C1 +C3)ET δḋ, (D.27)

δW̃ h
0 'H2E

T δd̈+ (C2 +C4)ET δḋ, (D.28)

δẆ h
0 'H2(d)E(d)T δḋ. (D.29)

In the above equations, C3 and C4 are defined as

C3 = −S(h1)GT +
N7

l2n
A1ḊrE + S(Ẇe)P1P +H1F1G

T , (D.30)

C4 = −S(h2)GT +
N8

l2n
A2ḊrE +H2F1G

T , (D.31)

with Ḋ taken from equation (70) as

Ḋ = ET ḋ =
[
U̇T

1 Ẇ T
1 U̇T

2 Ẇ T
2

]T
, (D.32)

h1, h2 defined as

h1 = H1Ḋ, (D.33)

h2 = H2Ḋ, (D.34)

and, finally, F1 given by

F1 =


S(U̇1)

S(Ẇ1)

S(U̇2)

S(Ẇ2)

 . (D.35)

Appendix E. Linearization of the contact force vector

This appendix explains in detail the linearization of the discrete contact force vector, which
leads to the different terms desribed in equations (116), (117), (118) and (121). To start with, the
contact force vector defined in equation (113) is repeated here for convenience,

Tc =

∫ l0

0

EHT
1 R

T
e fc ds, (E.1)

with fc given by

fc = pN(d)G(d; ḋ); G(x;d; ḋ) =
∂gN
∂x
− µ ġhT√

‖ġhT‖2 + ε
. (E.2)

δTc = Kcδd+Ccδḋ; Kc = K1
c +K2

c +K3
c +K4

c . (E.3)
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and, in order to facilitate their derivation, the following abbreviations are used (see for example
[47])

K1
c δd =

∫ l0

0

t1c , ds, (E.4a)

K2
c δd =

∫ l0

0

t2c ds, (E.4b)

K3
c δd =

∫ l0

0

t3c ds, (E.4c)

K4
c δd+Ccδḋ =

∫ l0

0

t4c ds, (E.4d)

with

t1c = δEHT
1 R

T
e fc, (E.5a)

t2c = E(δH1)TRT
e fc, (E.5b)

t3c = EHT
1 (δRe)

Tfc, (E.5c)

t4c = EHT
1 R

T
e δfc. (E.5d)

Before moving forward with the above linearizations, it is useful to provide some preliminary
results. Firstly, fc is rigidly rotated back to give

F c = RT
e fc. (E.6)

At the same time the operator Ŝ(·) is defined, which transforms a 12 × 1 array a into a 12 × 3
matrix A as

A = Ŝ(a) =


S(a1)
S(a2)
S(a3)
S(a4)

 ; aI =

 a3(I−1)+1

a3(I−1)+2

a3(I−1)+3

 ; I ∈ {1, 2, 3, 4}, (E.7)

with the operator S as defined in equation (4).
In order to obtain t1c , the variation δE is needed. This can be obtained from its definition (70)

and equation (D.2), to give

δE = E


S(δWe) 0 0 0

0 S(δWe) 0 0
0 0 S(δWe) 0
0 0 0 S(δWe)

 . (E.8)

And, in order to obtain trc, the variation of δfc is needed. From equation (E.2) this can be obtained
as

δfc = δpNG + pNδG, (E.9)

which in turn requires the variations δpN and δG. The variation of pN depends only on δd and is
given as

δpN = p′N(gN)δgN = p′N(gN)
∂gN
∂x
·
(
ReH1E

T δd
)
, (E.10)
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with p′N obtained from (111)

p′N = p′N(gN) =



−εc, g ≤ 0

2
εcḡN − p̄N

ḡ2
N

gN − εc, 0 < gN ≤ ḡN

0. g > ḡN

(E.11)

The variation of δG has contributions in δd and δḋ. This can be obtained from (E.2) as

δG = δ

(
∂gN
∂x
− µ ġhT√

‖ġhT‖2 + ε

)

=
∂2gN
∂x∂x

ReH1(s)ET δd

− µ√
‖ġhT‖2 + ε

(
I − 1

‖ġhT‖2 + ε
(ġhT ⊗ ġhT )

)
δġhT . (E.12)

where equation (D.5) has been used. The above result requires the variation δġhT , which is given
by

δġhT = Aδd+Bδḋ; A = A1 +A2 +A3 +A4, (E.13)

with

A1 =−
(
∂gN
∂x
· (ReH1Ḋ)

)
∂2gN
∂x∂x

ReH1E
T

− ∂gN
∂x
⊗
(
EHT

1 R
T
e

∂2gN
∂x∂x

ReH1Ḋ
)
, (E.14a)

A2 =−
(
I − ∂gN

∂x
⊗ ∂gN

∂x

)
ReS(H1Ḋ)GTET , (E.14b)

A3 =

(
I − ∂gN

∂x
⊗ ∂gN

∂x

)(
N7

l2n
ReA1Ḋr +ReS(GT Ḋ)P1PE

T

)
, (E.14c)

A4 =

(
I − ∂gN

∂x
⊗ ∂gN

∂x

)
ReH1Ŝ(Ḋ)GTET , (E.14d)

B =

(
I − ∂gN

∂x
⊗ ∂gN

∂x

)
ReH1E

T . (E.14e)

Using (E.10), (E.12), (E.13) into (E.9) yields

δfc = Kfcδd+Cfcδḋ, (E.15)

with

Kfc = p′N(gN)

(
G ⊗ (EHT

1 R
T
e

∂gN
∂x

)

)
+ pN

(
∂2gN
∂x∂x

ReH1(s)ET − µ√
‖ġhT‖2 + ε

(
I − 1

‖ġhT‖2 + ε
(ġhT ⊗ ġhT )

)
A
)
, (E.16)

Cfc = −pN
µ√

‖ġhT‖2 + ε

(
I − 1

‖ġhT‖2 + ε
(ġhT ⊗ ġhT )

)
B. (E.17)
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Using (E.6), (E.7), (E.8), (E.15) alongside (D.3), (D.4), (D.8) into (E.5) gives

t1c = δEHT
1 F c = E


S(δWe)

[
HT

1 F c

]
1:3

S(δWe)
[
HT

1 F c

]
4:6

S(δWe)
[
HT

1 F c

]
7:9

S(δWe)
[
HT

1 F c

]
10:12


= −EŜ(HT

1 F c)δWe = −EŜ(HT
1 F c)G

TET δd, (E.18a)

t2c = EδHT
1 F c = E

(
N7

l2n
A1rδd− S(δutl)G

T

)T
F c

=
N7

l2n
EAT

1F c (rδd) +EGS(δut)F c

=
N7

l2n
EAT

1F crδd−EGS(F c)P1PE
T δd, (E.18b)

t3c = EHT
1 (δRe)

Tfc = EHT
1 (ReS(δWe))

T fc = −EHT
1 S(δWe)F c

= EHT
1 S(F c)δWe = EHT

1 S(F c)G
TET δd, (E.18c)

t4c = EHT
1 R

T
e δfc = EHT

1 R
T
e

(
Kfcδd+Cfcδḋ

)
. (E.18d)

Finally, using the results in (E.18) into (E.4), the different tangent terms in (E.3) are given by

K1
c = −

∫ l0

0

EŜ(HT
1 F c)G

TET ds, (E.19)

K2
c =

∫ l0

0

(
N7

l2n
EAT

1F cr −EGS(F c)P1PE
T

)
ds, (E.20)

K3
c =

∫ l0

0

EHT
1 S(F c)G

TET ds, (E.21)

K4
c =

∫ l0

0

EHT
1 R

T
eKfc ds, (E.22)

Cc =

∫ l0

0

EHT
1 R

T
eCfc ds. (E.23)

Appendix F. Supplementary data
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Video 1: Beam against sphere. Comparison of the solutions obtained using 3 different voxel mesh discretizations.

Video 2: Contact between a cable and a rigid cylinder. Comparison of the solutions obtained using µ = 0.00 and
µ = 0.30.
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