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ABSTRACT

Wavelet decompositions based on lifting schemes have been widely
used in image coding. Generally, the efficiency of such compres-
sion methods strongly depends on the design of the lifting operators,
namely the prediction and update filters. To improve their perfor-
mance, we propose in this paper to optimize these filters by resort-
ing to two learning strategies. In the first one, classical Fully Con-
nected Networks (FCNs) are exploited to perform the prediction and
update. In the second approach, we develop an adaptive learning
method that takes into account the input image, yielding a dynami-
cal model of FCN. Experimental results, carried out on the standard
Challenge Learned Image Compression (CLIC) dataset, show the
benefits that can be drawn from the proposed approaches compared
to conventional ones.

Index Terms— Lifting schemes, image compression, adaptive
wavelets, optimization, neural networks.

1. INTRODUCTION

For several decades, wavelets have attracted much attention in var-
ious signal and image processing fields like compressed sensing,
super-resolution, and compression [1, 2]. To generate a wavelet
representation of a given signal (or image), filter banks and lifting
scheme (LS) based architectures have been widely used in the lit-
erature. For instance, a great attention has been paid to LS-based
decomposition because of their many advantages in terms of com-
putational cost and their ability to guarantee perfect reconstruction
of the original signal [3, 4]. For these reasons, LS has been retained
in the JPEG2000 compression standard [5]. Moreover, it has been
extensively employed for data compression, and more specifically,
for still and stereo image coding [6] as well as video coding [7, 8].
A typical lifting structure is composed of prediction and update fil-
ters that respectively generate the detail and approximation wavelet
coefficients [9]. The performance of the LS strongly depends on the
choice of these filters. For this reason, various research works have
been devoted to the optimization of the prediction and update opera-
tors in order to build compact wavelet representation which are well
adapted to the input data contents [10, 11, 12, 13]. To this end, the
prediction filters are often optimized by minimizing the `2-norm of
the detail coefficients [14]. The minimization of the `1-norm has
also been investigated in [15]. However, the optimization of the
update filter is less obvious than the prediction one, and two main
approaches have been developed for that purpose. The first one con-
sists in minimizing the reconstruction error [14, 16]. The second one
aims at minimizing the error between the approximation coefficients

and the output of an ideal low-pass filter [13].
In order to further improve the performance of lifting-based image
coding schemes, it has been recently proposed to perform the pre-
diction stage in the conventional separable LS by making use of a
convolutional neural network [17]. However, in the latter work, a
mean filter has been substituted for the update stage. More generally,
other recent end-to-end compression methods have been developed
using various neural network architectures and a rate-distortion loss
function [18, 19, 20]. It should be emphasized that these methods do
not generate integer wavelet coefficients, and so, they are not suit-
able for lossless compression.
In this paper, we propose to investigate neural network architectures
for the design of adaptive LS-based coding techniques. To this re-
spect, a fully connected network will be first employed to perform
the prediction as well as the update in a 2D non separable lifting
structure. Then, the classical FCN architecture will be improved by
taking into account the input image adaptatively, yielding a dynam-
ical FCN model. To this end, we propose an iterative alternating
optimization algorithm to learn the parameters of this new model.
The remainder of this paper is organized as follows. In Section 2, we
recall the principles of the conventional 2D LS and the optimization
methodology. In Section 3, the proposed neural network-based LS
is described. Finally, experimental results are presented in Section 4
and some conclusions are given in Section 5.

2. CONVENTIONAL 2D LIFTING SCHEME

2.1. Non separable lifting structure

To perform efficient decompositions of images, possibly having nei-
ther horizontal nor vertical contours, a 2D Non Separable Lifting
Scheme (NSLS) composed of three prediction steps followed by an
update step has been proposed and widely investigated in the litera-
ture [21, 22]. The principle of this architecture, shown in Fig. 1 is
described next.
Let x and xj respectively denote the input image and its approx-
imation subband at resolution level j (where x0 = x). The con-
sidered 2D decomposition consists first in splitting the input signal
xj(m,n) into four polyphase components denoted by x0,j(m,n) =
xj(2m, 2n), x1,j(m,n) = xj(2m, 2n+1), x2,j(m,n) = xj(2m+
1, 2n), and x3,j(m,n) = xj(2m + 1, 2n + 1). Then, three pre-
diction filters P

(HH)
j , P

(LH)
j , and P

(HL)
j are applied to generate

three detail subbands oriented diagonally x
(HH)
j+1 , vertically x

(LH)
j+1

and horizontally x
(HL)
j+1 , respectively. Finally, an update filter Uj

is used to produce the approximation subband xj+1. Therefore, the
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Fig. 1. NSLS decomposition structure.

resulting wavelet coefficients are as expressed as follows:

x
(HH)
j+1 (m,n) = x3,j(m,n)−

(
(P

(HH)
0,j )>x

(HH)
0,j (m,n)

+ (P
(HH)
1,j )>x

(HH)
1,j (m,n) + (P

(HH)
2,j )>x

(HH)
2,j (m,n)

)
,

(1)
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where for every i ∈ {0, 1, 2} and o ∈ {HL,LH,HH},
• P

(o)
i,j = (p

(o)
i,j (s, t))(s,t)∈P(o)

i,j

and U
(o)
i,j = (u

(o)
i,j (s, t))(s,t)∈U(o)

i,j

are the prediction and update weight vectors whose supports are
respectively denoted by P(o)

i,j and U (o)
i,j .

• x
(o)
i,j (m,n) = (xi,j(m+ s, n+ t))

(s,t)∈P(o)
i,j

is a reference vector

used to generate x
(o)
j+1(m,n).

• x
(HH)
j+1 (m,n) = (x

(HH)
j+1 (m+ s, n+ t))

(s,t)∈P(LH)
1,j

and

x
(HH)
j+1 (m,n) = (x

(HH)
j+1 (m + s, n + t))

(s,t)∈P(HL)
1,j

are two ref-

erence vectors (possibly having different sizes) used to compute
x
(LH)
j+1 (m,n) and x

(HL)
j+1 (m,n), respectively.

• x
(o)
j+1(m,n) = (x

(o)
j+1(m + s, n + t))

(s,t)∈U(o)
i,j

is the reference

vector containing the set of detail samples used in the update step.

2.2. Prediction and update filters optimization

One key step in the design of LS-based image compression is the
choice of the predictor and update operators. While the latter are
kept fixed in the JPEG2000 compression standard [23], it is more in-
teresting to optimize such operators in order to build adaptive lifting-
based coding schemes which are better adapted to the image contents

[11, 13, 14]. To this respect, the prediction filters are generally op-
timized by minimizing the variance of the detail coefficients in the
orientation o:

J (P(o)
j ) =

Mj∑
m=1

Nj∑
n=1

(
xi,j(m,n)− (P

(o)
j )>x̃

(o)
j (m,n)

)2
(4)

where Mj × Nj represents the number of samples xi,j(m,n) to
be predicted, P

(o)
j is the prediction filter to be optimized and x̃

(o)
j

is the reference vector gathering all the coefficients used to gener-
ate the detail coefficients x(o)

j+1. Regarding the update filter, one re-
cent state-of-the-art method [13] aims at optimizing the update filter
by minimizing the quadratic error between the approximation signal
and the decimated version of the output of an ideal low-pass filter.
This criterion is expressed as follows:

J̃ (Uj) =

Mj∑
m=1

Nj∑
n=1

(
xj+1(m,n)− yj+1(m,n)

)2
=

Mj∑
m=1

Nj∑
n=1

(
x0,j(m,n) + U>j x̃j+1(m,n)− yj+1(m,n)

)2
(5)

where Uj is the update vector to be optimized, x̃j+1(m,n) is the
update reference vector composed of the detail signals x

(o)
j+1, and

yj+1(m,n) = (h ? xj)(2m, 2n), h being the impulse response of a
2D ideal rectangular low-pass filter. By minimizing the above crite-
riaJ and J̃ , it is easy to show that the optimal prediction and update
filters can be obtained by solving a linear system of equations [13].

3. PROPOSED FULLY CONNECTED NETWORKS BASED
LIFTING SCHEME

In order to benefit from the capabilities of neural networks to per-
form powerful nonlinear approximation, we propose to design the
prediction and update operators based on the two following FCN
models.

3.1. Classical FCN-based LS

3.1.1. FCN-based prediction stage

As the detail signal x(o)
j+1 corresponds to a prediction error, the first

three prediction steps in the proposed FCN-based LS can be rewrit-
ten as

x
(o)
j+1(m,n) = xi,j(m,n)− x̂i,j(m,n)

= xi,j(m,n)− f
(o)
j (x̃

(o)
j (m,n)) (6)

where xi,j(m,n) (with i ∈ {1, 2, 3}) is the polyphase component
to be predicted and x̂i,j(m,n) = f

(o)
j (x̃

(o)
j (m,n)) is the predicted

value. This value corresponds to the output of a standard FCN ar-
chitecture applied to the input vector x̃

(o)
j (m,n) which represents

the reference vector used in the prediction step for generating the
associated detail signal x(o)

j+1(m,n). More precisely, as illustrated
by Fig. 2, L hidden layers are firstly used to generate the predicted
value x̂i,j(m,n) from the input reference vector x̃

(o)
j (m,n). The

output values of their neurons (or units) are computed by applying
a linear combination (with bias) followed by a non-linear activation
function. The involved parameters in these layers will be denoted by



Θ
(o)
j . Then, an output layer with a single neuron is applied allowing

us to compute x̂i,j(m,n) from the unit values of the last hidden layer
based on a linear combination operation. The weight parameters of
this last layer will be designated by w

(o)
j .
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Fig. 2. FCN-based prediction stage.

The set of weights
(
Θ

(o)
j ,w

(o)
j

)
is learnt by performing for-

ward and backward propagation passes, while minimizing a loss
function. To this end, each FCN-based prediction stage is trained
by minimizing the squared `2-norm of the prediction error (i.e. the
Mean Square Error (MSE)) given by

L(xi,j , x̂i,j) =
1

Mj ×Nj

Mj∑
m=1

Nj∑
n=1

(
xi,j(m,n)− x̂i,j(m,n)

)2
.

(7)
To optimize the above loss function, a Mini-Batch Gradient De-
scent (MBGD) algorithm is employed [24]. After the convergence
of the algorithm, the resulting optimal weights

(
Θ

(o)
j ,w

(o)
j

)
are

used to compute x̂i,j(m,n) and then the detail wavelet coefficients
x
(o)
j+1(m,n) are derived using (6). Note that this process can be sep-

arately performed on each prediction stage of the NSLS.

3.1.2. FCN-based update stage

It should be noted that the computation of the approximation coeffi-
cients is quite different from that of the detail coefficients, and so, it
cannot be directly performed by following the previously described
FCN approach. For this reason, we propose to focus on the optimiza-
tion method often used to optimize the update filter (and described
in Section 2). Thus, inspired from (5), we define the following error
signal ej(m,n):

ej(m,n) = tj(m,n)− t̂j(m,n)

= tj(m,n)− f
(LL)
j (x̃j+1(m,n)) (8)

where tj(m,n) = yj+1(m,n) − x0,j(m,n). According to (8),
the update optimization problem is reformulated as a prediction
problem that consists in optimally predicting the target input signal
tj(m,n) from the reference signal x̃j+1(m,n). Therefore, simi-
larly to the previous FCN-based prediction optimization tasks, the
FCN-based update aims at finding the predicted value t̂j(m,n) =

f
(LL)
j (x̃j+1(m,n)) from the input reference vector x̃j+1(m,n).

The associated FCN weight parameters
(
Θ

(LL)
j ,w

(LL)
j

)
are op-

timized by minimizing a loss function similar to the previous one,
i.e L(tj , t̂j). Once the network is trained, the resulting optimal
weights allow us to compute the output t̂j(m,n) from the input
reference vector x̃j+1(m,n). Then, the final approximation coef-
ficients resulting from the FCN-based update stage are deduced as
follows:

xj+1(m,n) = x0,j(m,n) + t̂j(m,n). (9)

3.2. Dynamical FCN-based LS

In order to design a FCN-based LS which is better adapted to the
image to be encoded, we introduce a novel architecture, referred to
as dynamical FCN. For this purpose, let us recall the main operations
performed inside the classical FCN model, which is the composition
of two main blocks. The first one, parameterized by Θ

(o)
j , allows the

outputs of the neurons of the hidden layers to be computed. The sec-
ond block, parameterized by w

(o)
j , produces the output of the FCN

based on a linear combination of the neuron values delivered at the
last hidden layer. It can thus be viewed as some kind of optimized
average pooling. Subsequently, we propose to adjust the computa-
tion of the weight parameters of the second block by making them
dependent on the input image. As a result, the weights of the last
layer of our dynamic model depend on the input image xj,k, and so,
they will be denoted by w

(o)
j,k , where index k indicates the k-th image

xj,k in the dataset. To this end, the training process of the traditional
FCN model needs to be modified. More precisely, due to the depen-
dence between the parameters w

(o)
j,k and Θ

(o)
j , we propose to learn

this set of parameters by using an iterative algorithm that alternates
between the computation of w

(o)
j,k and the update of Θ

(o)
j . Thus,

the training process will be performed as follows. For each image
xj,k, two principal steps will be performed in an iterative way. Let
us start from a given initialization of Θ

(o)
j . In the first step of each

iteration `, we first produce the output of the last hidden layer y
(o)
j,k

using the conventional FCN model. Then, the weight parameters of
the last layer w

(o)
j,k are computed by minimizing the `2-norm of the

prediction error. This minimization results in the following weights:

w
(o,`)
j,k =

(
E[y

(o)
j,k(m,n)y

(o)
j,k(m,n)>]

)−1

E[xi,j,k(m,n)y
(o)
j,k(m,n)].

(10)
After that, in the second step, we update the weights of the hidden
layers while setting the weights of the output layer to the values ob-
tained in the first step w

(o,`)
j,k . Thus, we have

Θ
(o,`)
j = argmin

Θ
(o)
j

∑
m,n

(
xi,j,k(m,n)− (w

(o,`)
j,k )>y

(o)
j,k(m,n;Θ

(o)
j )
)2

.

(11)

These two steps are alternatively repeated until the convergence of
our algorithm. This alternating optimization technique is summa-
rized in the following algorithm.
Algorithm 1: Alternating optimization
For each resolution j and subband o:

À Initialize the weights Θ
(o,0)
j

Á for ` = 1, 2, . . .

(a) For each image k, compute y
(o)
j,k using the weights

Θ
(o,`−1)
j and deduce the optimal weights of the output

layer w
(o,`)
j,k using Eq. (10).

(b) Update the parameters Θ
(o,`)
j by minimizing the loss

function defined in (11) using the MBGD algorithm.

It is worth noting that Step Á(a) is performed for each image of the
training dataset. Thus, the mini-batch size (i.e number of training
samples used to compute the gradient and update the parameters of
the model) correspond to the number of pixels to be predicted for
each input image xj,k. Moreover, in practice, the adaptive weights
w

(o)
j,k should be computed for each test image and sent to the decoder,

which generates a very small transmission overhead.



4. EXPERIMENTAL RESULTS

To evaluate the proposed FCN-based LS design methods, we have
used the CLIC image dataset1. This dataset has been recently made
available in the context of a workshop related to the Challenge on
Learned Image Compression (CLIC 2018). For the training phase,
the dataset is composed of 585 images with different sizes and the
simulations are carried out by using Keras with TensorFlow backend
on an NVIDIA Tesla V100 32 GB GPU. For the test phase, we
have selected 35 images from the test CLIC dataset, which are then
cropped into 512 × 512 non-overlapping patches, yielding 55 test
images. Note that this dataset is composed of color images which
have been transformed to grayscale images coded at 8 bpp. Note
that coding the luminance component is generally more challenging
than the chrominance ones in color images.
The proposed methods are compared to the conventional 5/3 linear
transform used in the lossless compression mode of JPEG2000.
Note that this transform is referred to as Fix-NSLS since the weights
of prediction and update filters are kept fixed. A comparison to its
optimized version (OPT-NSLS) is also performed where prediction
and update filters are optimized as described in Section 2. For a fair
comparison, the proposed FCN-based lifting construction methods
have been tested by considering the same supports of the prediction
and update filters. The two FCN architectures are implemented
using L = 3 hidden layers with dimensions 128 × 64 × 32 neu-
rons. Moreover, the Parametric Rectified Linear Unit (PReLU) has
been employed as an activation function. As mentioned earlier, we
used a dynamic mini-batch size corresponding to the number of
pixels to be predicted in each image. For the proposed alternating
optimization technique, we have considered 5 iterations to optimize
the weight parameters for each input training image and 60 epochs
for the convergence of the algorithm, while initializing the weights
Θ

(o,0)
j,k to the values obtained with the classical FCN model. Fig. 3

shows the convergence of the loss function of our proposed model
during the first prediction stage of the NSLS using random and FCN
initializations.

Fig. 3. Loss function evolution for the proposed alternating opti-
mization technique.

Note that all these methods are carried out over three resolution
level. For both the FCN- and DFCN-based methods, all the pre-
diction and update models are separately trained at the different
resolution levels. These methods are evaluated in terms of energy
compaction of the detail wavelet coefficients using MSE and PSNR
criteria. In addition, the entropy of the resulting wavelet representa-
tion is also computed in order to have an evaluation of the resulting
bitrate in the context of lossless coding.
Table 1 shows the average prediction performance, evaluated in
terms of MSE and PSNR computed over all the detail coefficients of
the test images. The average entropy of the image wavelet represen-
tations is also provided. To this end, a rounding operator is applied

1http://www.compression.cc/2018/challenge/

to the predicted value to generate integer wavelet coefficients. First,
it can be noticed that the classical FCN-based model results in a gain
of about 0.3-0.5 dB in terms of PSNR compared to the fixed as well
as the optimized NSLS. Further improvements of about 0.75 dB in
terms of PSNR are achieved by the proposed dynamic FCN-based
model. Moreover, in terms of entropy, the proposed dynamic FCN-
based model achieves an average gain of about 0.1 bpp compared to
the conventional fixed and optimized NSLS as well as the classical
FCN-based approach. For instance, it has been observed that the
gain with respect to the linear transforms is greater than 0.1 bpp for
22 test images and reaches up to 0.3 bpp. In addition to the lossless
compression performance, some preliminary tests have been car-
ried out in the context of lossy compression. Fig. 4 illustrates an
example of reconstructed images after JPEG2000 coding/decoding
at 0.35 bpp. It can be seen that the proposed dynamic FCN ap-
proach leads to better visual quality and sharper edges. This is also
confirmed by the provided SSIM values.

5. CONCLUSION AND PERSPECTIVES

In this paper, we have presented two FCN models to optimize the
prediction and update operators for lifting-based coding schemes.
While the first one exploits a classical FCN architecture, the sec-
ond one uses a novel dynamical model taking into account the in-
put image. Experimental results show the benefits of the proposed
FCN-based approaches for building more efficient lifting schemes.
Ongoing research aims at increasing the supports of prediction and
update steps. Moreover, the use of a rate-distortion loss function is
currently investigated.

Table 1. Comparison of different LS design methods.
Method MSE PSNR entropy

(in dB) (in bpp)
Fix-NSLS 170.09 27.75 4.34
OPT-NSLS 160.93 27.95 4.33
FCN-NSLS 149.21 28.27 4.32

DFCN-NSLS 127.46 29.02 4.24

(a) (b): SSIM=0.681

(c): SSIM=0.696 (d): SSIM=0.706
Fig. 4. (a) Original test image. Zoom on the reconstructed images at
0.35 bpp using: (b) OPT-NSLS, (c) FCN-NSLS, (d) DFCN-NSLS.
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