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Abstract

■ Theories of visual recognition postulate that our ability to
understand our visual environment at a glance is based on the ex-
traction of the gist of the visual scene, a first global and rudimen-
tary visual representation. Gist perception would be based on the
rapid analysis of low spatial frequencies in the visual signal and
would allow a coarse categorization of the scene. We aimed to
study whether the low spatial resolution information available in
peripheral vision could modulate the processing of visual
information presented in central vision. We combined behavioral
measures (Experiments 1 and 2) and fMRI measures (Experiment 2).
Participants categorized a scene presented in central vision (artifi-
cial vs. natural categories) while ignoring another scene, either se-
mantically congruent or incongruent, presented in peripheral
vision. The two scenes could either share the same physical

properties (similar amplitude spectrum and spatial configuration)
or not. Categorization of the central scene was impaired by a
semantically incongruent peripheral scene, in particular when
the two scenes were physically similar. This semantic interference
effect was associated with increased activation of the inferior
frontal gyrus. When the two scenes were semantically congruent,
the dissimilarity of their physical properties impaired the categori-
zation of the central scene. This effect was associated with
increased activation in occipito-temporal areas. In line with the hy-
pothesis of predictive mechanisms involved in visual recognition,
results suggest that semantic and physical properties of the infor-
mation coming from peripheral vision would be automatically
used to generate predictions that guide the processing of signal
in central vision. ■

INTRODUCTION

Weunderstandmost of our visual environment at a glance,
regardless of its complexity. This ability would be based on
the rapid extraction of the gist from visual scenes, a first
global and rudimentary visual representation (Oliva,
2005). At a conceptual level, the gist refers to the semantic
content that can emerge quickly when a visual scene is
perceived. At the perceptual level, it refers to the structural
representation of the scene. In other words, the gist de-
scribes the structure, or spatial configuration, of the scene
(i.e., the presence of different elements and their spatial
relations). For example, the spatial configuration of a
beach scene can be described by arranging three large hor-
izontal bands, from top to bottom: one for the sky, one
thinner for the sea, and one last for the sand. Access to a
representation of the spatial configuration of the scene re-
quires a coarse, large-scale spatial analysis but does not re-
quire the analysis of details contained in the different part
of the scene. This information extracted at a large spatial
scale is contained in the low spatial frequencies (LSF) of
the visual signal, that is, the wide variations of signal in
luminance. On the contrary, the details or the precise
contours of the objects in the scene, which allow a finer
analysis, are contained in the high spatial frequencies

(HSF) of the visual signal. Thus, the extraction of the gist
would be prominently based on the rapid analysis of the
LSF of the visual signal, which would allow a coarse cate-
gorization of the scene and the objects that compose it.

This assumption is supported by neurophysiological
recordings in primates that have demonstrated the selec-
tivity of cells of the visual system to different spatial fre-
quencies (Skottun et al., 1991; De Valois, Albrecht, &
Thorell, 1982), as well as the faster propagation of LSF
through the magnocellular pathway than HSF through
the parvocellular pathway (Nowak & Bullier, 1997;
Nowak, Munk, Girard, & Bullier, 1995). The anatomical
and functional underpinnings of spatial frequency pro-
cessing have therefore led to the hypothesis of a coarse-
to-fine (CtF) analysis of visual information in scenes. The
rapid processing of LSF would allow a first categorization
that would then be refined, validated, or invalidated by
the progressive accumulation of information in HSF.
This predominant CtF scheme during scene perception
was evidenced in several behavioral studies (Kauffmann,
Chauvin, Guyader, & Peyrin, 2015; Musel, Chauvin, Guyader,
Chokron, & Peyrin, 2012; Schyns & Oliva, 1994; Parker,
Lishman, & Hughes, 1992).

Through a notorious experience using hybrid images,
Schyns and Oliva (1994) have made an important contribu-
tion to the CtF hypothesis. Hybrid images are constructed
by superimposing a filtered scene that preserves only the
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LSF information on another filtered scene that preserves
only HSF information. In this experiment, the two scenes
belonged to two different semantic categories (e.g., a high-
way scene in LSF superimposed on a city scene in HSF).
The hybrid image was briefly presented to participants
(30 or 150 msec), followed by an unfiltered target scene.
In half of the trials, the target scene was actually the unfil-
tered version of the LSF component or the HSF compo-
nent of the hybrid. In the other half of the trials, the
target scene was a new scene. Participants had to decide
whether the unfiltered target scene was present in the
hybrid image. When the hybrid image was presented for
30 msec, the participants were more likely to answer that
the target scene was present in the hybrid when it corre-
sponded to the LSF component of the hybrid than when
it corresponded to the HSF component. When the hybrid
image was presented for 150 msec, the reverse pattern
was observed. The participants answered more often
that the target scene was present in the hybrid when it
corresponded with the HSF component than the LSF
component. The results of this study indicate that the use
of spatial frequencies evolves over time. The LSF would
dominate the perception during the rapid processing of
the scenes whereas the analysis of the fine information
conveyed by HSF would be privileged when more time is
allocated to the processing of the scene. Subsequently,
other studies directly tested the hypothesis of the advan-
tage of a CtF sequence of processing (Kauffmann,
Chauvin, Guyader, et al., 2015; Musel et al., 2012). The
experimental paradigm consisted in presenting sequences
composed of six filtered images of the same scene
(bandpass filtering) and assembled from LSF to HSF or
from HSF to LSF, to impose a CtF or a fine-to-coarse
sequence of analysis, respectively. Results showed that the
categorization of these stimuli as indoor or outdoor scenes
was faster for the CtF sequences, suggesting that the
visual system benefits from rapidly accessing to LSF
before HSF.

Critically, the first representation of the visual scene,
based on LSF, would also trigger predictive mechanisms
that would then guide a more detailed visual analysis.
Consistent with predictive coding theories of visual pro-
cessing (de Lange, Heilbron, & Kok, 2018; Friston, 2005;
Rao & Ballard, 1999), the proactive model of visual object
recognition proposed by Bar (2003, 2007) postulates that
LSF contained in an object stimulus would be rapidly
projected via the magnocellular pathway on the pFC and
more particularly on the orbitofrontal cortex, which would
generate predictions based on the coarse characteristics of
the object. Predictions would be sent back into the infer-
otemporal cortex allowing to activate potential representa-
tions useful for the recognition of the object. Predictions
based on the rapid processing of LSF would thereby facil-
itate the final process of object recognition when HSF ar-
rive in the temporal cortex. Experimental arguments
supporting this assumption were actually provided in sev-
eral neuroimaging studies (Petras, ten Oever, Jacobs, &

Goffaux, 2019; Kauffmann, Bourgin, Guyader, & Peyrin,
2015; Kauffmann, Chauvin, Pichat, & Peyrin, 2015; Trapp
& Bar, 2015; Kauffmann, Ramanoël, & Peyrin, 2014; Mu &
Li, 2013; Peyrin et al., 2010; Kveraga, Boshyan, & Bar, 2007;
Bar et al., 2006).
Using hybrid images as in the works of Schyns and Oliva

(1994)mixed to a semantic interference paradigm,Mu and
Li (2013) in an EEG study, and then Kauffmann, Bourgin,
et al. (2015) in an fMRI study investigated how LSF could
directly influence the processing of HSF. In these studies,
hybrid images were constructed from scenes belonging to
two categories: the artificial category (urban or semi-urban
landscapes such as downtown streets, highways, etc.) and
the natural category (landscapes beach, mountain, forest,
etc.). The two scenes composing the hybrid image could
be either semantically congruent (e.g., the LSF of an artifi-
cial scene superimposed on the HSF of another artificial
scene) or semantically incongruent (e.g., the LSF of an ar-
tificial scene superimposed on theHSF of a natural scene).
The authors warned participants that the stimuli con-
tained two superimposed scenes, and asked them to at-
tend and categorize the HSF component as an artificial
versus natural scene, while ignoring the LSF component.
Behavioral results showed a semantic interference effect.
Participants were slower and made more errors to catego-
rize theHSF component scene of the hybrid imagewhen it
was semantically incongruent to the LSF component than
when it was semantically congruent. The authors also
tested whether this semantic interference effect could
be modulated by the physical similarity between the two
components of the hybrid image. Thus, in each condition
of semantic congruence, the two components of the
hybrid image were either physically similar (PhySim;
spatial superimposition—pixel by pixel—of the visual
information of the two scenes and similarity of their am-
plitude spectra) or physically dissimilar (PhyDis). Mu and
Li (2013), but not Kauffmann, Bourgin, et al. (2015),
observed that the semantic interference effect was even
greater when the two scenes shared the same physical
properties, suggesting that the influence of LSF on HSF
involves processing of both semantic and physical
properties.
On a neurobiological level, ERP results from Mu and Li

(2013) showed that the semantic interference effect was
associated with a negative frontal component (N1) 122 msec
after the hybrid image onset, well before the occipito-parietal
(P2) and occipital (P3) components, 247 and 344 msec
after the hybrid image onset, respectively. The difference
in amplitude between the congruent and incongruent
conditions on the early frontal component only appeared
when the two scenes were PhySim. fMRI results from
Kauffmann, Bourgin, et al. (2015) further showed greater
activation of the inferior frontal cortex (at the level of the
orbitofrontal cortex) when the LSF component was
semantically incongruent with the HSF component than
when it was congruent. The results of these two studies
showed that LSF information, even if not relevant to the
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task, would be processed automatically and would hinder
the categorization of the scene in HFS. Mu and Li (2013)
showed that this influence would be even greater when
the spatial arrangement of the physical properties of the
two scenes, as well as their spectral properties, are similar.
Physical characteristics in the LSF scene would be also
rapidly and automatically processed to generate predic-
tions, resulting in a greater interference on the HSF scene
categorization.
Unfortunately, the vast majority of experiments con-

ducted to support either the CtF hypothesis or the predic-
tivemechanisms of visual recognition are based on studies
using small stimuli only displayed in central vision, without
considering that the visual resolution varies considerably
across the visual field. The density of retinal ganglion cells
sensitive to HSF is the highest in the fovea whereas the
density of retinal ganglion cells sensitive to LSF increases
with eccentricity (Curcio & Allen, 1990; Wässle, Grünert,
Röhrenberck, & Boycott, 1990). Therefore, while our sub-
jective visual experience seems rich and detailed (partly
thanks to eye movements), the extraction of HFS is only
possible in the central retina, whereas the LSF are mainly
extracted at the level of the peripheral retina. Because the
majority of the signal in LSF comes from the peripheral
vision, we can expect the visual system to use the informa-
tion available in peripheral vision to activate predictions
on a visual input and then use them to guide the analysis
of the details contained in HSF in central vision.
The aim of this study was to understand how the low

spatial resolution of information available in peripheral vi-
sion could modulate the processing of visual information
presented in central vision. We combined behavioral
measures (Experiment 1 and Experiment 2) and fMRI
measures (Experiment 2) to investigate (1) whether a
scene displayed in peripheral vision interferes with the
categorization of a scene in central vision, (2) the role of
the physical similarities between the scenes in this effect,
and (3) the brain regions associated with the interference
effect. We adapted the stimuli and the experimental pro-
tocol of Kauffmann, Bourgin, et al. (2015) by presenting
the two scenes that originally are composed of a hybrid
image simultaneously on the horizontal axis, one in central
vision and the other one in peripheral vision, in either the
right or the left visual field. Here, the two scenes were not
filtered. Based on the nonhomogeneous spatial resolution
of the visual information across the visual field, we consid-
ered that the presentation of the scenes in peripheral
vision acted as a natural low-pass filter. We also believe that
the filtering procedure may affect some properties of the
signal, particularly when it comes from peripheral vision.
For example, crowding mechanisms (Whitney & Levi,
2011; Pelli, 2008) may not work the same on a low-pass
filtered image as they would on an intact image. By not
filtering the scenes, we aimed at better imitating the
natural signal and to preserve as much as possible the
functioning of the mechanisms specific to peripheral
vision. The two scenes belonged to the same category

(semantically congruent) or to different categories
(semantically incongruent). In addition, central and periph-
eral scenes could be either PhySim (similar amplitude
spectra and spatial configuration) or PhyDis. This ma-
nipulation allowed us to assess whether the predictions
resulting from the analysis of the peripheral scene are
purely related to a semantic content or if, on the contrary,
lower level physical characteristics are preserved in the
predictive signal to constrain the analysis of the central
scene. The participants categorized the scene presented
in central vision according to the artificial or natural scene
categories, while ignoring the scene presented in periph-
eral vision.

In the theoretical framework previously described, we
hypothesized that during the categorization of a scene in
central vision, the rapid processing of LSF available in the
peripheral scene would allow the emergence of a rudi-
mentary representation of the scene, named the gist.
This representation could thus rapidly activate predictions
about visual inputs, which would then constrain the
processing of detailed information available in central
vision. If these predictions guide the processing of infor-
mation present in central vision, we expected to observe
an interference effect of the peripheral scene on the cate-
gorization of the central scene. In behavioral measures, if
the semantic information extracted from the peripheral
scene is used to guide the categorization of the central
scene, this would result in a classical semantic interference
effect. We should observe more errors and longer re-
sponse times (RTs) when the peripheral scene does not
belong to the same semantic category as the central target
scene (incongruent condition) than when it does (congru-
ent condition). Furthermore, if these predictions also
carry information about the physical properties of the
scene (such as information on the content of spatial fre-
quencies and orientations or on the spatial configuration),
the semantic interference effect should be modulated by
the physical similarity between the two scenes. Indeed,
when the two scenes are semantically incongruent, an
erroneous prediction including physical properties of the
peripheral scene should be easier to reject if the central
scene does not share such physical properties than when
it does. In other words, the categorization of the central
scene in the semantically incongruent condition would
be even more impaired when the central scene matches
the predictions in terms of physical properties. We there-
fore expected an interaction between the semantic
congruence and the physical similarity of the scenes, that
is, a greater semantic interference of the scene in periph-
eral vision when the two scenes are PhySim.

Alternatively, physical properties of the peripheral
scenes may not be considered to activate predictions
and may only interfere with the categorization of the
central scene at early stages of visual processing as a visual
distractor. Indeed, the simple detection of differences in
low-level visual characteristics between the center and
the periphery could distract the participant for performing
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the categorization task in central vision. In this case, cate-
gorization performance would be impaired when the pe-
ripheral scene is PhyDis than similar irrespective of the
semantic congruence between the scenes. Here again,
the semantic interference effect should be modulated by
the physical similarity. However, in that case, the categori-
zation of the central scene in the semantically incongruent
condition would be evenmore impaired when the periph-
eral scene is PhyDis.

In fMRI measures, Kauffmann, Bourgin, et al. (2015)
previously observed that the semantic interference effect
increased concomitantly the activation of the inferior fron-
tal cortex (at the level of the orbitofrontal cortex) and the
occipito-temporal cortex (at the level of the fusiform and
parahippocampal gyri). We thus expected a greater activa-
tion of the inferior frontal cortex and occipito-temporal
cortex associated with the semantic interference effect.
Based on ERP results from Mu and Li (2013), these activa-
tions should be strengthened by the physical similarity
between the two scenes.

EXPERIMENT 1

Methods

Participants

Twenty-six right-handed participants with normal or
corrected-to-normal visual acuity were included in this
experiment (24 women; mean age = 20, SD = 3 years).
They were all psychology students at University
Grenoble Alpes and received course credits for their
participation. They provided informed written consent
before participating in the study, in accordance with the
Code of Ethics of the World Medical Association
(Declaration of Helsinki, 2013).

Stimuli

Stimuli were 160 black-and-white photographs of scenes
(256-level gray scales, 256 × 256 pixels) from the
Labelme database (Oliva & Torralba, 2001), previously
used in works of Kauffmann et al. (2017) and Kauffmann,
Chauvin, Pichat, et al. (2015). Scenes belonged to two dis-
tinct semantic categories: 80 man-made scenes (buildings,
streets, highways) and 80 natural scenes (beach, open
countryside, forests). The mean luminance and standard
deviation (SD) of each scene were fixed at 117 (for pixel
values comprised between 0 and 255) and 64, respectively.
These values correspond to the mean luminance and the
mean SD of the 160 scenes.

Scenes were selected to form 80 pairs: 40 pairs of scenes
semantically congruent (congruent condition, 20 pairs of
man-made scenes and 20 pairs of natural scenes) and 40
pairs of scenes semantically incongruent (incongruent
condition; all composed of a man-made scene and a natu-
ral scene). Moreover, for each semantic congruence con-
dition (congruent and incongruent), half of pairs was

made of PhySim scenes and the other half was made of
PhyDis scenes. Based on the works of Kauffmann et al.
(2017) and Kauffmann, Chauvin, Pichat, et al. (2015), the
physical similarity between the two scenes was assessed
on two dimensions: (1) the similarity between their ampli-
tude spectrum in the Fourier space, based on the correla-
tion between pixel intensity values of the distribution of
amplitude over spatial frequencies and orientations of
the two scenes and (2) the similarity between their spatial
configurations, based on the correlation between pixel
intensity values of the two scenes, pixel per pixel. Two
scenes were considered as PhySim if both correlation
coefficients were superior to 0.6 and as PhyDis if the cor-
relation coefficient based on the amplitude spectrum was
inferior to 0.6 and the correlation coefficient based on
pixel intensity was inferior to 0.01. Thus, two PhySim
scenes shared similar statistics in terms of spatial frequen-
cies and dominant orientations, and they shared a subjec-
tively similar spatial configuration (spatial superimposition
pixel by pixel; Figure 1A).

Procedure

Pairs of scenes were displayed using E-prime software
(E-prime Psychology Software Tools Inc.) against a gray
background (pixel value of 117 on a 256-level grayscale
matching the scenes mean luminance value) on a 30-in.
monitor with a resolution of 3560 × 1600 pixels and a re-
fresh rate of 60 Hz. Participants sat in a darkened room,
with their head stabilized with a chinrest at 55 cm from
the screen. At this distance, each scene subtended 6 × 6
degrees of visual angle. Participants performed two exper-
imental blocks: one block with only PhySim pairs and the
other one with only PhyDis pairs. Within each block, pairs
of scenes were selected randomly within the two semantic
congruence conditions. Each trial began with a central fix-
ation dot for 500 msec to attract the gaze direction to the
center of the screen, immediately followed by a pair of
scenes for 100 msec to avoid saccadic eye movement usu-
ally initiated within 100–150 msec (Fischer & Weber,
1993). One scene of the pair was displayed at the center
of the screen, and the other one was randomly displayed
in either the left visual field (half trials) or the right visual
f ield (half trials), along the horizontal meridian
(Figure 1B). For each pair, one scene was displayed 2
times peripherally, once in the left visual field, once in
the right visual field (whereas the other scene was dis-
played 2 times in the central visual field), and 2 times in
the central visual field (whereas the other scene was dis-
played 2 times peripherally, once in the left visual field,
once in the right visual field). Thus, each scene of our stim-
ulus base was seen 4 times throughout the experiment.
The eccentricity of lateralized scenes in peripheral vision
was set at 3.75° of visual angle from their inner edge. The
peripheral image center was thus lateralized at 6.75° of vi-
sual angle. Thereafter, a gray background was displayed
for 1900 msec during which participant could answer.
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Participants had to ignore the peripheral scene and to
categorize the central scene as a man-made or a natural
scene by pressing the corresponding key with the forefin-
ger and the middle finger of their dominant hand. They
were instructed to respond as accurately and fast as possi-
ble. Response keys were counterbalanced across partici-
pants. For each trial, response accuracy and RTs (in
msec) were recorded. There were 320 trials in total, 80 in
each experimental condition (congruent-PhySim,
congruent-PhyDis, incongruent-PhySim, incongruent-
PhyDis). The experiment lasted about 20 min. Before the
experiment, participants underwent a training with pairs of
scenes that differed from those used in the experiment to
get familiarized with the stimuli, response keys, and task.

Results

RTs for each participant and each experimental condition
were trimmed to reduce the effect of extreme values, by
removing RTs exceeding ± 2.5 SDs from the mean. This
resulted in removing an average of 2.68% of the trials. A
logarithmic transformation was applied on RTs’ data to
bring the distribution of statistical models residuals closer
to normality.
We analyzed accuracy using mixed-effects logistic re-

gression models, and RTs with mixed-effects linear regres-
sion models, using lme4 (Bates, Mächler, Bolker, &
Walker, 2015) and lmerTest (Kuznetsova, Brockhoff, &
Christensen, 2017) packages in R. Mixed models take the
whole data set as input (i.e., accuracy for each trial of each
participant) and estimate simultaneously the effects at the
population level (fixed effects) and the variability of these
effects between participants (random effects). Estimation
of the random effects provides a precise estimate of the
fixed effects. Models aiming at testing our main hypothe-
ses included as independent variables either semantic

congruence only (for the test of the main semantic inter-
ference effect), physical similarity only (for the test of the
main effect of the physical similarity), or semantic congru-
ence and physical similarity (for the test of the interaction
effect). In addition, to ensure that there was no asymmetry
in the effect of the peripheral scene according to its loca-
tion in the visual field, we ran more complex interaction
models including the visual field (left and right visual
fields) in addition to the semantic congruence and physi-
cal similarity. We included in each model a varying inter-
cept by participant as a random factor. Because random
effects per se are not interesting in the context of our
research question and are only included in the model to
allow for better parameter estimates, we only report fixed
effects. In lme4 syntax, the model is written as follows:
DV ∼ 1 + effect of interest + (1 + effect of interest |
Participant), with DV as the dependent variable, either
accuracy or RTs, 1 as the intercept, and effect of interest
as the fixed-effects term that depends on the tested effect
(Congruence, Physical Similarity, Congruence × Physical
Similarity, Congruence×Physical Similarity× Visual Field).

For accuracy, the statistical significance of the logistic
models was tested with a Wald test and the size of the in-
terference effect was reported through the odds ratio
(OR), computed as odds(Congruent)/odds(Incongruent)
where odds(Congruent) is the exponential of the inter-
cept of the model and odds(Incongruent) is the exponen-
tial of intercept + β. For RTs, the linear models were fitted
using a restricted maximum likelihood estimation of vari-
ance component and statistical significance was tested by
deriving degrees of freedom using the Satterthwaite ap-
proximation. Effect sizes are reported through the percent
change (%change), computed as (exp(β) − 1) × 100. It
should be noted that we analyzed log(RTs), but raw RTs
(in msec) are actually displayed on the graphs. Statistical
significance was set at an alpha level of .05.

Figure 1. (A) Example pairs of scenes with their amplitude spectrum used in Experiments 1 and 2: The two scenes of could be either semantically
congruent (e.g., two man-made scenes) and PhySim, semantically incongruent (a man-made scene and a natural scene) and PhySim, semantically
congruent (e.g., two man-made scenes) and PhyDis, or semantically incongruent (a man-made scene and a natural scene) and PhyDis. (B) Trial
schematic: One scene of the pair was displayed at the center of the screen, and the other one was randomly displayed either in the left visual field or
the right visual field, along the horizontal meridian. The peripheral image center was lateralized at 6.75° of visual angle.
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Mean error rate (mER) and mean correct reaction times
in milliseconds (mRT), with SD, for each experimental
condition (Semantic Congruence × Physical Similarity ×
Visual Field of Presentation) are reported in Table 1A.
Accuracy was very high over the different experimental
conditions, with distributions of error rates suggesting a
ceiling effect (Figure 2A). We tested whether the semantic
congruence between the peripheral and the central scene
influenced accuracy. This analysis showed a significant
main effect of semantic congruence (i.e., a semantic inter-
ference effect) on accuracy. The mER was significantly
higher when two scenes were semantically incongruent
than congruent (congruent:M= 3.75, SD= 4.57%; incon-
gruent:M= 4.74, SD= 4.67%; β=−0.26, OR= 1.29, z=
−2.32, p = .020; Figure 2A). We then tested the main ef-
fect of physical similarity between the scenes that was not
significant (PhySim = 5.96 ± 4.49%, PhyDis = 3.54 ±
2.80%, β = 0.56, z = 3.98, p < .001). There was no inter-
action between the semantic congruence and the physical
similarity (β=0.20, z=0.89, p= .374). It should be noted
that the interaction model including the visual field was not
significant (Semantic Congruence × Physical Similarity ×
Visual Field; β = 0.03, z = 0.07, p = .941).

Then, we tested whether the semantic congruence be-
tween the peripheral and the central scenes influenced RTs.
This analysis showed a significant main effect of semantic
congruence. The categorization of the central scene was
longer when the peripheral scene was semantically incon-
gruent than congruent (congruent=627±97msec, incon-
gruent = 641 ± 96 msec; β = 0.02, %change = 2.29%,
t(7693) = 4.72, p< .001). The main effect of physical simi-
larity was also significant. The categorization of the central
scene was longer when the peripheral scene was PhySim

than dissimilar (PhySim = 655 ± 105 msec, PhyDis = 611 ±
92 msec; β = 0.07, %change = 6.77%, t(7693) = 13.83,
p< .001). Importantly, the interaction model then showed
that the semantic interference effect was modulated by the
physical similarity between scenes (β=0.03, t(7691)=2.97,
p = .003; Figure 2A). More precisely, an analysis of the
simple effects showed that there was an interference effect
when the two scenes were PhySim (Congruent-PhySim =
645 ± 104 msec; incongruent-PhySim = 668 ± 108 msec;
β = 0.04, %change = 3.78%, t(3826) = 5.52, p < .001),
but not when they were PhyDis (congruent-PhyDis =
610 ± 98 msec; incongruent-PhyDis = 613 ± 87 msec;
β = 0.009, t(3840) = 1.38, p = .168). Moreover, the simple
effect of physical similarity was significant both when the two
scenes were semantically congruent (β= 0.051, t(3851) =
7.73, p < .001) and semantically incongruent (β = 0.080,
t(3815) = 11.87, p< .001). For both conditions, the cate-
gorization of the central scene was longer when the pe-
ripheral scene was PhySim than dissimilar. However, the
significant interaction suggests that the physical similarity
effect is more important in the incongruent than congru-
ent condition. The modulation of the interference effect
by the physical similarity did not depend on the visual
field (Semantic Congruence × Physical Similarity × Visual
Field; β = 0.008, t(7692) = 0.39, p = .694).

EXPERIMENT 2

Methods

Participants

Fifteen right-handed participants (who were not included
in Experiment 1) with normal or corrected-to-normal

Table 1.mER and mRT, with SDs, for Semantically Congruent and Incongruent pairs of Scenes, Either PhySim or Dissimilar (PhyDis)
and Displayed Either in Left Visual Field (LVF) or Right Visual Field (RVF) in (A) Experiment 1 and (B) Experiment 2

Congruent Incongruent

PhySim PhyDis PhySim PhyDis

LVF RVF LVF RVF LVF RVF LVF RVF

(A) Experiment 1

mER 3.87 3.46 3.95 3.67 5.14 5.05 4.43 4.34

SD 5.27 5.15 4.61 5.55 6.13 5.29 4.49 5.27

mRT 617 604 645 644 616 612 667 668

SD 107 92 104 109 91 90 108 114

(B) Experiment 2

mER 4.67 5.56 3.83 4.33 6.83 7.00 3.11 2.93

SD 4.58 5.59 4.52 4.58 6.58 5.01 5.11 3.37

mRT 621 605 618 604 643 636 622 605

SD 84 79 107 86 103 91 89 76
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visual acuity and no history of neurological disorders
(eight women; M = 23, SD = 3 years) participated in the
experiment. They provided informed written consent
before participating in the study, which was carried out
in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki) and
approved by the local ethics committee (CPP ID/RCB :
2016-A00637-44).

Stimuli and Procedure

Stimuli were the same as in Experiment 1 and displayed
using E-prime software. They were back-projected onto
a translucent screen positioned at the rear of the MRI mag-
net. Participants viewed the screen through a mirror fixed
on the head coil. In the scanner, the participants had
to categorize the central scene (as being “natural” or “arti-
ficial”) while ignoring the peripheral scene, as in

Experiment 1. Each trial began with a central fixation dot
on a gray background for 500 msec to control the gaze di-
rection to the center of the screen, immediately followed
by a pair of scenes for 100msec. One scene on the pair was
displayed at the center of the screen, and the other one
was randomly displayed in either the left visual field (half
trials) or the right visual field (half trials), along the hori-
zontal meridian. As in Experiment 1, the eccentricity of la-
teralized scenes was set at 3.75° of visual angle from their
inner edge. The image center was thus lateralized at 6.75°
of visual angle. Thereafter, a gray background was dis-
played for 1900 msec during which the participants could
answer. They were instructed to respond as accurately and
quickly as possible by pressing the keys of a response box
disposed inside the scanner with their right hand.
Response keys were counterbalanced across participants.
At each trial, accuracy and RT were recorded. Before the
test session, participants underwent a training session

Figure 2. mERs (in %) and mean correct RTs (in msec) in (A) Experiment 1 and (B) Experiment 2 for the categorization of the central scene in
semantically congruent and incongruent pairs of scenes, either PhySim or dissimilar (PhyDis). The small black dots are the averages of each
participant (slightly jittered horizontally for better visualization), and the bigger black dots with error bars indicate means at the group level and
95% confidence intervals.
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outside the scanner with pairs of scenes that differed from
those used in the experiment to get familiarized with the
stimuli and task.

The experiment included two functional scans designed
with a pseudorandomized event-related paradigm. Each
functional runwasmade of 160 events (40 by experimental
condition: congruent-PhySim, congruent-PhyDis,
incongruent-PhySim, incongruent-PhyDis) and of 26 rest
events (including six at the end of the scan, and during
which a fixation dot was displayed on a gray background).
The order of conditions and rest events was pseudoran-
domized based on an optimization algorithm (Friston,
Zarahn, Josephs, Henson, & Dale, 1999). The different
pairs of scenes were displayed after two different pseudo-
randomized orders, one for each functional run.With each
functional run, 186 functional volumes were acquired.
Each of them lasted 7 min and 45 sec.

fMRI Acquisition and Analysis

The experiment was performed using a whole-body 3 T
Philips scanner (Achieva 3.0T TX Philips, Philips Medical
Systems) with a 32-channel head coil at the Grenoble
MRI facility IRMaGe in France. For each functional scan,
a manufacturer-provided gradient-echo/ T2*-weighted
EPI method was used. Forty-two adjacent axial slices par-
allel to the bicommissural plane were acquired in sequen-
tial mode from the bottom to the top, including the
cerebellum. Slice thickness was 3 mm. The in-plane voxel
size was 3 × 3× 3mm (240 × 240 × 126 mm field of view
acquired with a 80 × 80 pixel data matrix; reconstructed
with zero filling to 80 × 80 pixels). The main sequence pa-
rameters were as follows: repetition time = 2.5 sec, echo
time =30 msec, flip angle = 82°. Before each functional
run, six “dummies scans” were acquired to allow for signal
equilibration. After the two functional runs, a T1-weighted
high-resolution three-dimensional anatomical volume was
acquired, by using a 3-D T1 TFE sequence (field of view =
256 × 224 × 175; resolution: 1.333 × 1.750 × 1.375 mm;
acquisition matrix: 192 × 115× 128 pixels; reconstruction
matrix: 288 × 288 × 128 pixels).

Functional data of each participant was then analyzed
using the general linear model (Friston et al., 1995) for
event-related designs. At the subject level, four conditions
of interest (congruent-PhySim, congruent-PhyDis,
incongruent-PhySim, and incongruent-PhyDis) were
modeled as four regressors convolved with a canonical
hemodynamic response function. We also entered the
movement parameters derived from realignment correc-
tions (three translations and three rotations) into the de-
sign matrix as additional factors of no interest to account
for head motion-related variance. Analyses were per-
formed at the individual subject level to examine the con-
trasts between conditions of interest. These contrast
images were then entered into second-level random effect
analyses to test for within-group effects (one-sample
t tests). The significance of activations was assessed with

a statistical threshold of 0.05, FWE rate corrected at the
cluster level, and a minimum cluster extent of 10 voxels.

Results

Behavioral Results

Behavioral data analyses were conducted as in Experiment 1.
mER and mRT, with SDs, for each experimental condition
(Semantic Congruence × Physical Similarity × Visual Field
of Presentation) are reported in Table 1B. In this experiment,
2.89% of trials were trimmed before the analysis of RTs.
Here again, the low rate of errors suggested a ceiling
effect (Figure 2A). There was no main effect of the se-
mantic congruence between the peripheral and the cen-
tral scenes on accuracy (congruent = 4.54 ± 3.97%,
incongruent = 4.96 ± 4.00%; β = −0.09, z = −0.69,
p = .488; Figure 2B). However, the main effect of the
physical similarity between the scenes was significant.
The mER was significantly higher when the two scenes
were PhySim than dissimilar (PhySim = 4.38 ± 4.57%,
PhyDis = 4.10 ± 4.46%, β = 0.07, z = 0.66, p = .512).
Importantly, the physical similarity interacted with the
semantic congruence (β = −0.68, z = −2.40, p =
.017). The analysis of the simple effects showed that there
was an interference effect when the two scenes were
PhySim (Congruent-PhySim: 5.00 ± 4.63%, incongruent-
PhySim: 6.92 ± 5.47%; β = −0.35, OR = 1.43, z =
−2.03, p= .042), but not when they were PhyDis (congru-
ent-PhyDis: 4.08 ± 3.73%, incongruent-PhyDis: 3.00 ±
2.71%; β = 0.32, z = 1.47, p = .143). In addition, when
the two scenes were semantically incongruent, the mER
was significantly higher when the two scenes were
PhySim than dissimilar (β = −0.90, OR = 2.46, z =
−4.48, p < .001). There was no main effect of the phys-
ical similarity when the two scenes were congruent (β =
−0.22, z = −1.11, p = .266). The interaction model
including the visual field was not significant (Semantic
Congruence × Physical Similarity × Visual Field; β =
0.03, z = 0.05, p = .958).
Then, we tested whether the semantic similarity

between the peripheral and the central scene influenced
RTs. This analysis showed a significant main effect of
semantic congruence on RTs. The categorization of the
central scene was longer when the peripheral scene was
semantically incongruent than congruent (congruent:
612 ± 85 msec, incongruent: 623 ± 84 msec; β = 0.02,
%change = 1.80%, t(4419) = 2.65, p = .008; Figure 2B).
The main effect of physical similarity was also significant.
Categorization of the central scene was longer when the
peripheral scene was PhySim than dissimilar (PhySim =
627 ± 85 msec, PhyDis = 609 ± 84 msec; β = 0.03, %
change = 2.65%, t(4419) = 3.89, p < .001). Unlike in
Experiment 1, there was no interaction between the
semantic congruence and the physical similarity (β =
0.03, t(4417) = 1.93, p = .054). Because the effect was
significant in Experiment 1 that was more powered
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(26 participants vs. 15 here), we still tested the simple ef-
fects in a post hoc analysis, at a Bonferroni-corrected sig-
nificance threshold of .0125 (α= .05/4). This analysis first
showed that, similarly to Experiment 1, there was a seman-
tic interference effect when the two scenes were PhySim
(congruent-PhySim: 615 ± 79 msec, incongruent-PhySim:
639 ± 93 msec; β = 0.03, %change = 3.22%, t(2176) =
3.26, p = .001), but not when they were PhyDis (congruent-
PhyDis: 611 ± 93 msec, incongruent-PhyDis: 611 ± 80msec;
β = 0.005, t(2227) = −0.01, p = .582). When the scenes
were semantically incongruent, the effect of the physical
similarity was significant (β = 0.04, %change = 4.04%,
t(2188) = 4.18, p < .001), RTs being longer when the
two scenes were PhySim than dissimilar. When the scenes
were semantically congruent, the effect of the physical
similarity was not significant (β = 0.01, t(2215) = 1.42,
p = .155). Finally, the interaction model including the
visual field was not significant (Semantic Congruence ×
Physical Similarity × Visual Field; β = −0.03, t(4418) =
−0.99, p = .324).

Whole-Brain fMRI Results

The analysis of accuracy and RT showed no effect of the
visual field. This factor was therefore not further consid-
ered in the analysis of fMRI data. The main objective of
these analyses was to identify brain regions associatedwith
the semantic interference effect by contrasting activations
elicited by the incongruent condition to activations elic-
ited by the congruent condition ([incongruent > congru-
ent] contrast; Figure 3A). When considering both
physical similarity conditions, the result of this contrast
did not reveal any significant activation. By convention
and for exploratory purposes, we also tested the reverse
[congruent > incongruent] contrast. This contrast
showed an activation of the right lingual gyrus (Montreal
Neurological Institute coordinates of the peak: 12x,− 73y,
− 10z, BA 18, k= 143, t= 7.09; Figure 3B). We also tested
the effect of the physical similarity between the central
and peripheral scenes with the [PhySim > PhyDis] and
[PhyDis > PhySim] contrasts. Neither of the two contrasts
revealed any significant activation. We next assessed the
interaction between the semantic congruence and the
physical similarity between the two scenes. A significant
interaction was observed in the right temporal cortex at
the level of the middle temporal gyrus (54x, −52y, 2z,
BA 37/21, k = 39, t = 5.98).
As behavioral results of Experiments 1 and 2 highlighted

a semantic interference effect when the two scenes were
PhySim, we thus tested the effect of semantic congruence
with the [incongruent > congruent] and [congruent >
incongruent] contrasts for each condition of physical
similarity independently. When two scenes were PhySim
(PhySim condition), the [incongruent-PhySim >
congruent-PhySim] contrast revealed a bilateral activation
within the frontal cortex, reflecting the interference effect
observed in behavior. This activation was located in the

inferior frontal gyrus (pars orbitalis and pars triangularis)
and extended in both hemispheres to the anterior insular
cortex (right hemisphere: 33x, 11y, 2z, BA 47/13, k= 131,
t= 7.59; left hemisphere:−33x, 23y, 2z, BA 47/13, k= 58,
t= 4.11; Figure 3B). On the other hand, the reverse [con-
gruent-PhySim > incongruent-PhySim] contrast did not
reveal any significant activation. When two scenes were
PhyDis (PhyDis condition), the [incongruent-PhyDis >
congruent-PhyDis] contrast did not reveal any significant
cluster, reflecting the lack of interference effect observed
in behavior. However, the reverse contrast ([congruent-
PhyDis > incongruent-PhyDis]) shows amore widespread
activation in the visual regions of the right hemisphere. In

Figure 3. (A) Activations elicited by the semantic interference effect
([incongruent>congruent] contrast). (B) Activations elicited by the reverse
contrast ([congruent > incongruent]) as well as by the same contrast for
the PhyDis condition ([congruent-PhyDis > incongruent-PhyDis]). (C)
Activations elicited by the physical dissimilarity ([congruent-PhyDis >
congruent-PhySim] contrast). All activations are reported at a statistical
threshold of p< .05 FWE-corrected at the cluster level. The z value (mm)
represents the slice level with respect to the bicommissural plane.
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this specific case, we observed activations at the junction
between the fusiform gyrus and the inferior temporal gy-
rus (48x, −55y, −13z, BA 19/37, k = 52, t = 5.26), and in
the cuneus (12x, −91y, 11z, BA 47/13, k = 42, t = 4.80).

We also tested the effect of physical similarity between
the central and peripheral scenes with the [PhySim >
PhyDis] and [PhyDis > PhySim] contrasts for each condi-
tion of semantic congruence independently. When the
scenes were semantically congruent, the [congruent-
PhyDis > congruent-PhySim] contrast revealed bilateral
activations within the occipito-temporal cortex at the level
of the lingual and fusiform gyri (peak coordinate in the left
hemisphere: −24x, −61y, −19z, BA 19/37, k = 259, t =
4.41; in the right hemisphere: 39x, −70y, −16z, BA 19/37,
k = 89, t = 3.97; Figure 3C). The reverse [congruent-
PhySim > congruent-PhyDis] contrast did not reveal any
significant activation. Finally, when the scenes were
semantically incongruent, neither [incongruent-PhySim >
incongruent-PhyDis] and [incongruent-PhySim >
incongruent-PhyDis] contrasts reveal any significant cluster.

DISCUSSION

Experiment 1 showed that the categorization of a scene in
central vision was influenced by the presence of a scene in
peripheral vision. Participants made more errors to cate-
gorize the central scene when the peripheral scene was
semantically incongruent than congruent. This result sug-
gests that peripheral information is processed automati-
cally at a semantic level and integrated into the process
of recognition in central vision. Consistently with Mu
and Li (2013) who used hybrid images, we observed that
this peripheral interference effect on RTs was strengthened
when the two scenes shared similar physical properties
(i.e., similar amplitude spectra and spatial configurations).
In the present experiment, the task was easier than the one
used with hybrid images, possibly favoring the observation
of an effect of physical similarity not observed in the works
of Kauffmann, Bourgin, et al. (2015). Importantly, this result
suggests that a peripheral scene PhyDis did not act as a
visual distractor, but that physical properties of the pe-
ripheral scene are also integrated into the process of rec-
ognition in central vision.

In Experiment 2, we adapted Experiment 1 to the fMRI
technique to couple behavioral measures with neurobio-
logical measures. We first observed the same behavioral
interference effect of Experiment 1 on correct RTs. The
interference effect was less consistent between the two
experiments for the proportion of errors, which is possibly
because of the sample size, smaller in Experiment 2 than in
Experiment 1. However, in Experiment 2, we observed
that participants made more errors and had longer RTs
to categorize a central scene when an incongruent
peripheral scene was PhySim than dissimilar. This result
supports again the use of physical properties of the
peripheral scene for categorizing the central scene. fMRI
results showed that the semantic interference effect was

associated with the bilateral activation of the inferior fron-
tal gyrus, extending to the anterior insula. In other words,
this region was more active when the central and periph-
eral scenes were incongruent than congruent. This activa-
tion was only observed when the two scenes had similar
physical properties, again emphasizing the role of the
physical properties of stimuli in the semantic interference
effect of the peripheral scene. An unexpected result con-
cerns the occipito-temporal cortex activation observed
when the two scenes were semantically congruent but
did not share similar physical properties.

Peripheral Vision Influence and Physical
Similarity Effect

Several studies have highlighted the importance of periph-
eral vision during the categorization of scenes (Trouilloud
et al., 2020; Loschky, Szaffarczyk, Beugnet, Young, &
Boucart, 2019; Lukavsky, 2019; Geuzebroek & van den
Berg, 2018; Boucart, Moroni, Thibaut, Szaffarczyk, &
Greene, 2013; Larson & Loschky, 2009). The categoriza-
tion of scenes remains possible even in far peripheral
vision (70° retinal eccentricity; Boucart et al., 2013).
Using a window-scotoma paradigm in which participants
saw either the central part of a scene (window stimulus)
or the peripheral part by hiding its center (scotoma stim-
ulus), Larson and Loschky (2009) showed that the partici-
pants’ categorization performance was higher in the
scotoma/peripheral than the window/central condition.
Using similar stimuli, Trouilloud et al. (2020) revealed that
scene sequences revealing the peripheral part of a scene
before the central part were categorizedmore rapidly than
the reverse sequences. The low resolution of peripheral
vision would therefore be more useful than the high reso-
lution of central vision to categorize a scene very quickly.
Lukavsky (2019) presented scotoma and window stimuli
simultaneously and asked participants to attend to and
categorize one of the stimuli while ignoring the other
one. Similarly to our study, stimuli were either semantically
congruent or incongruent. Participants’ performances de-
creased when the two scenes were incongruent whatever
the stimuli to categorize (i.e., the scotoma orwindowone),
suggesting that the information available in peripheral
vision could not be ignored and was integrated to the pro-
cessing of central information, and vice-versa. Roux-Sibilon
et al. (2019) demonstrated that the information available in
peripheral vision facilitates the processing of foveated
objects in a visual scene in a predictive way, by presenting
the information in peripheral vision slightly before the one
in central vision. Participants performed a categorization
task of an object displayed in central vision while a seman-
tically congruent or incongruent scene background was
displayed in peripheral vision and had to be ignored.
Results showed that the congruence effect was stronger
when the peripheral scene was displayed before the
object’s onset. Participants’ performance was higher to
categorize objects in a congruent scene background than
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in an incongruent one. In line with the hypothesis of pre-
dictive mechanisms involved in visual recognition, these
results suggest that when the scene background was suffi-
ciently processed before the object onset, participants au-
tomatically used this information in the peripheral visual
field (although it was irrelevant to the task) and generated
predictions about the visual input in central vision.
Similarly, in the present experiment, we hypothesized that
the rapid processing of LSF in the peripheral scene would
allow the emergence of the gist of the scene used to acti-
vate predictions about visual inputs, which would then
constrain the processing of the central scene. We thus ex-
pected an interference effect of the peripheral scene on the
categorization of the central scene formalized by an effect
of semantic congruence between the target scene in cen-
tral vision and the distracting scene in peripheral vision
(better performance when the peripheral scene was con-
gruent than incongruent).
Overall, the patterns of behavioral results of the two ex-

periments of this study are consistent with these previous
findings and allow us to draw the same conclusions. First,
and consistent with our hypothesis, we observed an inter-
ference effect of peripheral vision on categorization in
central vision. In addition, in both experiments, we ob-
served a ceiling effect that occurred when accuracy data
were considered alone (the average proportion of errors
was around 0.05%), suggesting that the categorization task
was easy to perform, making it difficult to detect the ex-
pected effects. Regarding RTs, the semantic interference
effect was observed in both experiments. This effect sug-
gests that even if the peripheral scene presented is useless
for performing the task, its processing is automatic and in-
tegrated to the categorization process of the scene in cen-
tral vision. Results of this study can be explained by a
predictive mechanism in which the information coming
from peripheral vision would be automatically used to
generate predictions integrated into the processing of sig-
nal in central vision. In the context of predictive coding
models of visual perception (de Lange et al., 2018; Bar,
2003, 2007; Friston, 2005), an irrelevant prediction com-
pared to the central scene to categorize would lead to a
prediction error that would delay the process. In everyday
life, this mechanism would have an interest for the visual
system. Prediction error could be used to update prior
knowledge about the visual input.
In both experiments, we observed that the interference

effect of peripheral vision was dependent on the physical
similarity between the two scenes. Indeed, we observed a
significant semantic interference effect when the two
scenes were PhySim, but not when they were PhyDis.
This result suggests that the physical characteristics of
the peripheral stimulus were also used and modulated the
processing of the signal in central vision. In addition,
the interaction effect suggests that these low-level proper-
ties would be used in priority to generate predictions, be-
cause the PhyDis peripheral scene did not influence the
categorization in central vision. However, we strongly

believe that the integration of high-level information in
PhyDis peripheral scenes remains plausible. Indeed, we
can hypothesize that predictions containing the highest
level of information conveyed by these peripheral scenes
are still useful. However, the influence of these predictions
would be minimal and therefore the absence of interfer-
ence effect in the condition PhyDis may be either related
to a problem of experimental design or statistical power.
It is also possible that the processing of the PhyDis infor-
mation between the two scenes facilitated the rejection
of erroneous semantic predictions about the central
scene, resulting in a reduced interference effect.

How to explain that the effect of semantic interference
was amplified by the physical similarity of the peripheral
scene? Our interpretation is that, in the context of such
an artificial/natural categorization task, physical informa-
tion (i.e., low-level statistics and overall spatial configura-
tion) extracted in peripheral vision could rapidly be used
to generate semantic predictions about the visual input in
central vision (i.e., its category, either natural or artificial).
Indeed, previous studies have, for example, shown that
the mere distribution of spatial frequencies across domi-
nant orientations available in the amplitude spectrum of
scenes, or coarse spatial features such as the degree of
openness or expansion of scenes, can be sufficient to dis-
tinct scene categories such as natural and man-made envi-
ronments (Torralba &Oliva, 2003; Oliva & Torralba, 2001).
When the peripheral and central scenes are semantically
incongruent, the extraction of physical information in
the peripheral scene would lead to erroneous semantic
predictions. If the central scene is however consistent with
these predictions in terms of physical properties (i.e.,
PhySim condition), its processing would result in increas-
ing the uncertainty about the actual irrelevance of the pre-
dictions and, thus, the conflict between (1) top–down
predictions based on peripheral vision and (2) bottom–
up processing of the central scene. Therefore, the effect
of physical similarity observed in both experiments sug-
gests that the gist representation resulting from the anal-
ysis of a low spatial resolution information available in
peripheral vision, and influencing recognition in central
vision, would not be of a purely semantic nature. On the
contrary, the representation would retain some low-level
properties of the stimulus. The two dimensions that we
manipulated to establish the physical similarity were (1)
the amplitude spectral properties of the scenes (i.e., distri-
bution of amplitude over spatial frequencies and orienta-
tions) and (2) their spatial configuration (i.e., spatial
superimposition, pixel by pixel, of the luminance informa-
tion). Unfortunately, the nature of our stimuli did not
allow us to disentangle between these two dimensions,
which would be useful to know more precisely which
low-level properties of the stimulus are the most impor-
tant for gist-based visual predictions.

Although our experimental paradigm allows us to pre-
cisely control some parameters of physical similarity, it is
not very ecological. For example, we did not take into
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account the phenomenon of cortical magnification
(Daniel & Whitteridge, 1961). The projection of informa-
tion from central and peripheral visions on the primary vi-
sual cortex undergoes a deformation so that the central
vision is overrepresented at the cortical level in compari-
son to peripheral vision. Consequently, to stimulate the
same number of cells of the primary visual cortex, the an-
gular size of a scene presented in peripheral visionmust be
larger than the one in a scene presented in central vision.
As it was not the case in this study (both scenes sized 6° of
visual angle), it is therefore possible that we have under-
estimated the size of the interference effect and that the
influence of peripheral vision would have been more
important with a peripheral scene covering a larger part
of the peripheral visual field.

Neural Bases of the Peripheral Vision Influence

In Experiment 2, we used fMRI to investigate the cerebral
regions involved in the interference effect of peripheral
vision. Previous neuroimaging studies (Kauffmann,
Chauvin, Pichat, et al., 2015; Kauffmann et al., 2014;
Peyrin et al., 2010; Kveraga et al., 2007; Bar et al., 2006)
suggest that predictions are generated through the rapid
processing of LSF in the inferior frontal cortex and espe-
cially in its orbitofrontal part. Predictions would then be
transmitted to the occipito-temporal cortex where they
would be compared to the ascending signal resulting
mainly from the processing of HSF. The ascending signal
that does not correspond to predictions would then be
transmitted to the inferior frontal cortex to update the pre-
dictions. The larger the prediction error, the more the ex-
changes between these two regions should be important,
which would result in an increase in brain activity. For ex-
ample, in the works of Kauffmann, Bourgin, et al. (2015),
participants had to categorize the HSF scene of a hybrid
image presented in central vision while ignoring the LSF
scene, either congruent or not with the HSF scene. The
activity induced by the semantically congruent condition
was subtracted from the one induced by the semantically
incongruent condition. The semantic interference effect
was associated with a bilateral activation of the inferior
frontal gyrus (at the level of the orbitofrontal cortex), as
well as the fusiform and parahippocampal gyri. Very simi-
larly, in our fMRI experiment, even if the central scene was
not filtered in HSF, participants could categorize a central
scene of high spatial resolution while ignoring a peripheral
scene of low spatial resolution (i.e., LSF content), either
congruent or not with the central scene. When contrasting
the congruent condition to the incongruent condition
([incongruent > congruent] contrast), we also observed
a bilateral activation of the inferior frontal gyrus. This
activation was only observed when the two scenes were
PhySim, a result consistent with our behavioral results
showing a semantic interference effect only in case of
physical similarity.

The activation of the inferior frontal gyrus was consis-
tent with those observed in previous studies aiming at
studying the involvement of this region in the generation
of LSF-based predictions about the visual input
(Kauffmann, Bourgin, et al., 2015; Bar et al., 2006).
Coordinates of the peak of activation (33x, 11y, 2z in the
right hemisphere and −33x, 23y, 2z in the left hemi-
sphere) were close to the one observed in Kauffmann,
Bourgin, et al. (2015) in the right hemisphere (two peaks:
29x, 25y, −36z and 37x, 32y, 2z). The similarity of activa-
tion between these two studies suggests that there would
be common prediction mechanisms based on the rapid
analysis of LSF, whether these come from the central visual
field (Kauffmann, Bourgin, et al., 2015) or from the periph-
eral visual field (Experiment 2). Our activation of the infe-
rior frontal gyrus was also close to the one observed by Bar
et al. (2006):−36x, 23y,−14z. Unfortunately, the low tem-
poral resolution of fMRI did not allow to investigate the
time point of the categorization process at which the infe-
rior frontal gyrus is involved. In our fMRI experiment, the
hypothetical role of the inferior frontal gyrus in the gener-
ation of predictions is based on a set of coherent research
results, which make it possible to consider this frontal re-
gion as playing an important role in visual recognition. In
this context, our interpretation is that the low spatial res-
olution information extracted in peripheral vision could be
rapidly conveyed to the inferior frontal gyrus to generate
predictions about the category of the peripheral scene
(high-level abstract information). Predictions were either
relevant (semantically congruent condition) or irrelevant
(semantically incongruent condition) for the categoriza-
tion of the central scene. In the case of an irrelevant pre-
diction, the predictive signal compared to the ascending
information in the central scene would lead to a conflict
or prediction error. The resolution of this conflict (i.e., dis-
entangling between alternative responses) and/or the up-
dating of predictions based on the processing of ascending
information from the central scene would thus result in in-
creased activation of the inferior frontal gyrus. This inter-
pretation would be also consistent with the known role of
inferior frontal cortex in monitoring response conflict res-
olution (e.g., Nee, Wager, & Jonides, 2007). Using hybrid
images, Kauffmann, Bourgin, et al. (2015) observed that
the semantic interference effect increased concomitantly
the activation of the occipito-temporal cortex (fusiform
and parahippocampal gyri). An additional analysis of func-
tional connectivity showed that the interference effect in-
creased the functional connectivity between the fusiform
gyrus and the inferior frontal gyrus (at the level of the or-
bitofrontal cortex). Authors postulated that the predictive
signal would be compared to the ascending HSF informa-
tion in the occipito-temporal cortex, leading to a pre-
diction error and to greater exchanges between the
occipito-temporal and the orbitofrontal cortex. In the
present experiment, we failed to observe significant activa-
tion of the occipito-temporal cortex. However, the use of a
more liberal statistical threshold ( p <.005, uncorrected)
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reveals an activation of the left fusiform gyrus when the
two scenes shared the same physical properties (−36x,
−52y, −16z, AB 37, k = 22, t = 3.97). The absence of
significant activation in these regions may be because of
the ease of our behavioral task, in comparison to studies
using hybrid images (Kauffmann, Bourgin, et al., 2015).
Interestingly, we observed that the semantic interfer-

ence effect was strengthened when the two scenes shared
similar physical properties. This result suggests that the
physical properties of the peripheral scene are integrated
in the recognition process of the central scene. More pre-
cisely, in the theoretical framework proposed above, pre-
dictions would be also based on the processing of physical
properties in the peripheral scene (such as information on
the content of spatial frequencies and orientation or on
the spatial configuration). Thus, when a semantically
incongruent peripheral scene leads to erroneous predic-
tions about the category of the central scene, the resolu-
tion of the conflict should be easier if the physical
information also leads to an erroneous prediction (periph-
eral scene PhyDis). On the contrary, a peripheral scene for
which physical properties are similar to the one of the
central scene could lead the visual system to believe
that the prediction is relevant. In such a case, this would
result in an additional conflict, increasing the activation
of the inferior frontal gyrus.
Our experiment therefore brings another experimental

evidence of the role of the inferior frontal gyrus in visual
perception and, in particular, in the processing of low res-
olution information to be used for predictive mechanisms.
Despite a growing body of evidence allowing to interpret
the involvement of this region in predictive visual process-
ing, its precise causal role, as well as the type of information
that it represents, has yet to be explored. Moreover, influ-
ential predictive coding theories of visual processing do not
include the need for such a cortical hub to trigger predic-
tions. For instance, hierarchical predictive coding models
based on the proposition of Rao and Ballard (1999; see also
Spratling, 2017; Huang & Rao, 2011) state instead that neu-
ronal activity is predicted at each stage of visual processing,
as a result of extra classical receptive fieldsmechanisms and
feedback loops from adjacent higher areas. The idea of a
cortical hub for prediction in the place of the inferior frontal
gyrus has now to be theoretically conciliated with more
classical views of predictive coding.
Finally, when contrasting the incongruent condition to

the congruent condition of PhyDis scenes ([congruent-
PhyDis > incongruent-PhyDis] contrast), we observed ac-
tivation within the right occipital and temporal cortices.
Occipito-temporal activations were also observed when
we assessed the physical similarity effect for congruent
scenes ([congruent-PhyDis > congruent-PhySim] con-
trast). In both contrasts, the activation is driven by the pre-
sentation of two scenes of the same category (e.g., two
natural scenes) but whose spatial arrangement and spec-
tral properties are different (e.g., a forest scene with a lot
of energy in HSF and in the vertical orientations in central

vision vs. a beach scene with large uniform blobs in LSF in
peripheral vision). Again, in the theoretical framework
proposed above, this result could be interpreted as reflect-
ing the fact that, even when the two scenes are semanti-
cally congruent, the physical properties of the peripheral
scene may still be used to generate predictions about the
physical properties of the category of the central scene.
When erroneous (i.e., PhyDis condition), these predic-
tions would lead to a prediction error: The semantic con-
tent of the central scene would be accurately predicted,
but its physical properties would not correspond to what
was expected for this category based on the peripheral
scene. This would result in a conflict and greater recruit-
ment of occipito-temporal regions to disentangle between
alternative interpretations, suggesting the role of these re-
gions in coding prediction error related to the physical
properties of scenes.

Conclusion

These two experiments showed that information in pe-
ripheral vision is automatically processed when categoriz-
ing scenes in central vision and that it influences this
categorization. We interpreted these results in the context
of predictive models of visual recognition in which the in-
ferior frontal gyrus would be part of a cortical system that
manages sensory predictions. Indeed, predictions would
rely on low-level visual information related to the physical
characteristics of the scene (amplitude spectrum, spatial
configuration). This was suggested by the larger semantic
interference effect in the condition of physical similarity,
but also the observation of impaired categorization of
the central scene when it was semantically congruent to
the peripheral scene, but PhyDis. This study leads us to
question the nature of the physical characteristics used
to activate the predictions. Is this information contained
in the amplitude spectrum? Or is it rather spatial informa-
tion such as the configuration of the scene described by
the arrangement of the blobs? Roux-Sibilon et al. (2019)
recently observed that the interference effect of a scene
background on the categorization of an object in central
vision disappears when the amplitude spectrum of the
scene background was preserved, but the spatial configu-
ration was altered (phase scrambling of scene images).
This result thus suggests that information contained in
the amplitude spectrum is not necessarily sufficient to trig-
ger predictions and that phase information, conveying the
spatial configuration of the scene, may be critical to trigger
peripheral predictions. Using stimuli that take into
account the cortical magnification factor, future studies
should explicitly manipulate the physical characteristics
of peripheral vision that could ensure this function.
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