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A new representation of the Poincaré groups in n dimensions via dual hyperquaternions is developed, hyperquaternions being defined as a tensor product of quaternion algebras (or a subalgebra thereof). This formalism yields a uniquely defined product and simple expressions of the Poincaré generators, with immediate physical meaning, revealing the algebraic structure independently of matrices or operators. An extended multivector calculus is introduced (allowing an eventual sign change of the metric or of the exterior product). The Poincaré groups are formulated as a dual extension of hyperquaternion pseudo-orthogonal groups. The canonical decomposition and the invariants are discussed. As concrete example, the 4D Poincaré group is examined together with a numerical application. Finally, the hyperquaternion representation is compared to the quantum mechanical one. Potential applications include in particular, moving reference frames and computer graphics.

Introduction

The 4D-Poincaré group is the group of linear transformations leaving invariant the Lorentz metric ds 2 = c 2 dt 2 -dx 2 -dy 2 -dz 2 (with the signature + ---) and is constituted of rotations and space-time translations. This group is of great relevance in physics in particular, general relativity, relativistic quantum mechanics and particle physics, free particles being characterized by invariants of that group [START_REF] Adler | Quaternionic Quantum Mechanics and Quantum Fields[END_REF]. An important subgroup of the Poincaré group is the group of euclidean motions including rotations and translations in 3D euclidean space. Two major methods for physical applications have been developed in that case, the homogeneous matrix transform and dual quaternions [START_REF] Hladik | Quaternions réels, duaux et complexes. Ellipses[END_REF][START_REF] Wang | On the comparisons of unit dual quaternion and homogeneous transformation matrix[END_REF]. Generalizing the 4D-Poincaré group to the nD case (with an arbitrary signature), we shall call them Poincaré groups. Various representations of the Poincaré groups have been proposed either in specific dimensions or signatures and are often expressed in terms of matrices [START_REF] Cnops | An Introduction to Dirac Operators on Manifolds[END_REF][START_REF] Costa | Symplectic field theories: Scalar and spinor representations[END_REF][START_REF] Elstrodt | Kloosterman sums for Clifford Algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces[END_REF][START_REF] Elstrodt | Vahlen's group of Clifford matrices and spin-groups[END_REF][START_REF] Goodman | Symmetry, Representations and Invariants[END_REF][START_REF] Karakus | Screw theory in Lorentzian space[END_REF][START_REF] Lounesto | Clifford Algebras and Spinors[END_REF][START_REF] Ohnuki | Unitary Representations of the Poincaré Group and Relativistic Wave Equations[END_REF][START_REF] Porteous | Clifford Algebras and the Classical Groups[END_REF][START_REF] Saar | Mass, zero nass and[END_REF][START_REF] Traubenberg | Clifford algebras in physics[END_REF]. Yet, matrices are neither the only nor probably the best way to represent rotation groups. An alternative is to use Clifford algebras in particular hyperquaternions defined as a tensor product of quaternion algebras (or a subalgebra thereof). Recently, we have applied hyperquaternions to the unitary, unitary symplectic and pseudo-orthogonal groups in n dimensions [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF][START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF]. Here, we propose to develop a dual hyperquaternion representation of Poincaré groups. The method yields simple expressions of the Poincaré generators and an efficient computation (algebraic or numerical), distinct from the matrix one. Furthermore, it relates the Poincaré groups to a new algebraic setting thereby opening new perspectives of unification. After a short introduction specifying the basic concepts and notation, an extended multivector calculus is presented (allowing a possible sign change of the metric or of the exterior product). Then we discuss the nD Poincaré group, its algebra, a canonical decomposition into simple planes and the invariants. As concrete example, we study the 4D Poincaré group, provide a numerical example and compare the hyperquaternion representation to the quantum mechanical one. Potential applications include in particular, moving reference frames and computer graphics.

Background: Quaternions and Hyperquaternions

We briefly introduce quaternions and hyperquaternions to specify the notations and basic concepts [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF][START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF][START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF]. The quaternion algebra H is constituted by quaternions

a = a 1 + a 2 i + a 3 j + a 4 k (a i ∈ R) (2.
1) where i, j, k satisfy the fundamental relations

i 2 = j 2 = k 2 = ijk = -1. (2.2)
The quaternion conjugate is

a c = a 1 -a 2 i -a 3 j -a 4 k with aa c = a 2 1 + a 2 2 + a 2 3 + a 2 4 , (ab) c = b c a c . (2.3) 
A hyperquaternion is a tensor product of quaternion algebras (or a subalgebra thereof). Thus, H⊗H is the tensor product of two quaternion algebras. Calling (i, j, k) and (I, J, K) two commuting quaternionic systems, one writes

(i, j, k) ⊗ 1 = (i, j, k) , 1 ⊗ (i, j, k) = (I, J, K) (2.4)
which uniquely specifies the tensor product. To define H ⊗ H ⊗ H, one introduces a third quaternionic system (l, m, n) commuting with the previous ones. Similarly, one obtains

H ⊗ H ⊗ • • • ⊗ H (and the subalgebras H ⊗ C, H ⊗ H ⊗ C, etc.
). Due to the isomorphism H ⊗ H m(4, R) where m(4, R) stands for real square matrices of degree 4, hyperquaternions yield all square real, complex and quaternionic matrices. A hyperconjugation H c ⊗ H c ⊗ • • • ⊗ H c entails the transposition, adjunction and the transposition quaternion conjugate [START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF].

Whereas Hamilton viewed quaternions as a 3D (if not 4D) system, Clifford, adopting Grassmann's ideas, considered quaternions as having only two generators (e 1 = i, e 2 = j, e 1 e 2 = k, e 2 1 = e 2 2 = -1) suitable for a 2D plane physics. He furthermore was the first to introduce tensor products of quaternion algebras, the concept of tensor product ("compounds of algebras") having been introduced a few years earlier. In his fundamental paper, Clifford proved that tensor products of quaternions constitute Clifford algebras [START_REF] Clifford | Applications of Grassmann's extensive algebra[END_REF]. A proof and an explicit expression of the generators is given in [START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF]. Lipschitz, shortly after and independently of Clifford, gave a simple expression of the n-dimensional euclidean rotation groups and thereby rediscovered the (even) Clifford algebra (constituted by products of an even number of generators) [START_REF] Lipschitz | Principes d'un calcul algébrique qui contient comme espèces particulières le calcul des quantitiés imaginaires et des quaternions[END_REF]. Moore, was to call Lipschitz's algebras hyperquaternions and developed a canonical decomposition (into simple orthogonal planes) thereof [START_REF] Moore | Hyperquaternions[END_REF][START_REF] Moore | Rotations in hyperspace[END_REF]. An extension of Moore's method to pseudo-euclidean rotations has recently been presented by the authors [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF]. An advantage of the hyperquaternion formalism over the matrix one, is to yield physically meaningful parameters and straightforward computations. Moreover, besides rotations, hyperquaternions yield all unitary and unitary symplectic groups [START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF]. Mathematically, hyperquaternions (defined as tensor products of quaternion algebras) are Clifford algebras C n (p, q) having n = p + q generators e i such that e i e j +e j e i = 0 (i = j), e 2 i = +1 (p generators) and e 2 i = -1 (q generators) where the generators are given in a compact hyperquaternionic form (for example e 1 = iKl, etc.). Products of distinct generators yield multivectors in V k , (0 ≤ k ≤ n) such as vectors e i (V 1 ), bivectors e i e j (i < j) (V 2 ), trivectors e i e j e k (i < j < k) (V 3 ) etc.. C + n (p, q) is the (even) subalgebra constituted by products of an even number of e i , C - n (p, q) is the rest of the algebra. The conjugate A c of a general element A is obtained by replacing the e i by their opposite -e i and reversing the order of the elements

(A c ) c = A, (AB) c = (B c ) (A c ) .
(2.5)

The commutator of two hyperquaternions is [A, B] = 1 2 (AB -BA) and the dual of A is A * = i d A where i d = e 1 ∧e 2 ∧• • •∧e n . The operations between the multivectors constitute the multivector calculus which we shall now examine.

Extended Multivector Calculus

As compared to the standard multivector calculus [START_REF] Casanova | L'algèbre vectorielle[END_REF], we present here an extended multivector calculus allowing a possible sign change of the metric or the exterior product [START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF][START_REF] Girard | Differential geometry revisited by biquaternion Clifford algebra[END_REF][START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF][START_REF] Girard | Algèbre de Clifford et Physique relativiste[END_REF].

The interior and exterior products of two vectors a (= n 1 a i e i ), b can be defined via the identity

ab ≡ ab + ba 2 + ab -ba 2 = λa.b + µa ∧ b (3.1)
where λ, µ are two constant coefficients equal to ±1 (making possible a sign change of the metric or of the exterior product) with

a.b = λ -1 ab + ba 2 , a ∧ b = µ -1 ab -ba 2 . (3.2)
Next, we consider products between a vector and a multivector. Given a multivector

A p = a 1 ∧ a 2 ∧ • • • ∧ a p (2 ≤ p < n)
where a p are vectors, we define the interior product [START_REF] Casanova | L'algèbre vectorielle[END_REF] a.

A p = p k=1 (-1) k+1 (a.a k ) a 1 ∧ • • • ∧ a k-1 ∧ a k+1 ∧ • • • ∧ a p . (3.3) 
The particular multivectors a ∧ A 2 , a ∧ A 3 are defined via the relations

aA 2 = λ µ (a.A 2 ) + a ∧ A 2 , aA 3 = λ (a.A 3 ) + µa ∧ A 3 . (3.4)
Generalized to a multivector A p (2 ≤ p < n), the above relations become

aA p = λ µ p-1 (a.A p ) + µ p a ∧ A p , (3.5) 
A p a = λ µ p-1 (A p .a) + µ p A p ∧ a. (3.6) 
Postulating, a priori

A p .a ≡ (-1) p-1 a.A p , A p ∧ a ≡ (-1) p a ∧ A p , (3.7) 
one derives from Eq. (3.6) after multiplication by (-1) p :

(-1)

p A p a = -λ µ p-1 (a.A p ) + µ p a ∧ A p . (3.8) 
Combining Eqs. (3.5)-(3.8), the general formulas yield

2a.A p = µ p-1 λ -1 [aA p -(-1) p A p a] , (3.9 
) 2a ∧ A p = µ -p [aA p + (-1) p A p a] (3.10) 
(giving the standard formulas for λ = µ = 1).

Interior and exterior products between multivectors are defined by

A p ∧ B q = a 1 ∧ (a 2 ∧ • • • ∧ a p ∧ B q ) , (3.11) 
A p .B q = (a 1 ∧ • • • ∧ a p-1 ) . (a p .B q ) (p ≤ q) (3.12)
with A p .B q = (-1) p(q+1) B q .A p [START_REF] Casanova | L'algèbre vectorielle[END_REF]. In particular, for bivectors B i one has

B 1 B 2 = B 1 .B 2 + B 1 ∧ B 2 + [B 1 , B 2 ] (3.13)
yielding respectively a scalar, a tetravector and a bivector. These relations constitute the basic computational rules of the hyperquaternion algebras which we shall now apply to the Poincaré groups.

Poincaré Groups in n Dimensions

In this section, we develop a hyperquaternion representation of the Poincaré group in n dimensions. To this effect, we embed the nD space in an affine (n + 1) D space and express the Poincaré group as rotations and reflections in the affine space. We begin with the algebraic formalism followed by the canonical decomposition and the invariants.

Algebraic Formalism

Consider a hyperquaternion algebra C n+1 (p , q ) having n + 1 (= p + q ) generators (squaring to ±1) e 1 , e 2 , . . . , e n , e n+1 and let X be an element of an affine space

X = e n+1 + εx (4.1)
where x belongs to the vector space V 1 with x = n i=1 e i x i (x i ∈ R) and ε commutes with all generators ε 2 = 0 . The hyperquaternion algebra C n (p, q) associated with V 1 (n = p + q) has the metric (with λ = µ = 1)

ds 2 = dx.dx = dx 2 = dx 2 1 + • • • + dx 2 p -dx 2 p+1 + • • • + dx 2 p+q . (4.2) A vector x is timelike if x.x > 0, spacelike if x.x < 0 and isotropic if x.x = 0.
The Poincaré group is constituted by the isometries of this metric, i.e., the pseudo-orthogonal group O (p, q) and translations which we shall consider successively.

The pseudo-orthogonal group O (p, q) is generated by at most n orthogonal symmetries. An orthogonal symmetry with respect to a plane (going through the origin) and perpendicular to a unit vector u u 2 = ±1 is expressed by the formula (see Appendix A)

x = uxu uu c (4.3) with x 2 = x 2 , uu c = -u 2 .
Hence, time and space like symmetries correspond respectively to

x = -uxu u 2 = 1 , x = uxu u 2 = -1 . (4.4) 
Combining r time and s space symmetries one obtains the four types of pseudo-orthogonal transformations A of O (p, q) as indicated in Table 1. Sub-Table 1. Hyperquaternion group O (p, q) with r time and s space symmetries (e: even, o: odd)

component L ↑ + L ↓ + L ↑ - L ↓ - (r, s) (e, e) (o, o) (e, o) (o, e) det A 1 1 -1 -1 x = axa c -axa c -axa c axa c aa c = 1 -1 1 -1 a ∈ C + n (p, q) C + n (p, q) C - n (p, q) C - n (p, q) groups of O (p, q) are [27] O (p, q) = L ↑ + ∪ L ↓ + ∪ L ↑ -∪ L ↓ -, (4.5 
)

SO + (p, q) = L ↑ + , SO (p, q) = L ↑ + ∪ L ↓ + . (4.6)
Furthermore,

L ↓ -= e 1 L ↑ + , L ↑ -= e p+1 L ↑ + , L ↓ + = e 1 e p+1 L ↑ + (4.7)
where e 1 , e p+1 can be replaced by other unit vectors of the same type. Thus, one has

a = e 1 a aa c = -1, a a c = 1, a ∈ C - n (p, q), a ∈ C + n (p, q) etc. (4.8)
Embedding C n (p, q) in the algebra C n+1 (p , q ), the O (p, q) group leaves the axis e n+1 unchanged and can be expressed as 

X = aXa c = e n+1 + εx (4.9) with x = ±axa c aa c = ±1, a ∈ C + n+1 (p , q ) or C - n+1 (p , q ) . A translation T (in V n ) is given by X = bXb c = e n+1 + ε (x + t) (4.10) with b = e εen+1 t 2 = 1 + εe n+1 t 2 bb c = 1, b ∈ C + n+1 (p , q ), e 2 n+1 =
P ↓ + P ↑ - P ↓ - det A 1 1 -1 -1 X = f Xf c -f Xf c -f Xf c f Xf c f f c = 1 -1 1 -1 f ∈ C + n+1 (p , q ) C + n+1 (p , q ) C - n+1 (p , q ) C - n+1 (p , q ) P = P ↑ + ∪ P ↓ + ∪ P ↑ -∪ P ↓ -, (4.12) 
P ↑ -= e p+1 P ↑ + , P ↓ -= e 1 P ↑ + , P ↓ + = e 1 e p+1 P ↑ + (4.13)

where P ↑ + is the restricted Poincaré group; for its Lie algebra, see Appendix B. Our next step will be the canonical decomposition of the restricted Poincaré group.

Canonical Decomposition of the Restricted Group

An element of the restricted Poincaré group P ↑ + being a rotation of SO + n+1 , one can apply the canonical decomposition of pseudo-orthogonal rotations presented in [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF]. To this effect, consider the algebra C n+1 (p , q ) having n + 1 generators with n = 2k (even) or 2k + 1 (odd) and the Poincaré transform

X = f Xf c (f f c = 1, f ∈ C + n+1 (p , q )). (4.14)
The even (dual) hyperquaternion f is of the type

f = S + P + P ∧ P 2!S + • • • + P ∧ P ∧ • • • (m factors) m!S m-1 (4.15)
where S is the scalar part of f and P is a (dual) bivector. From f one computes

B = P S = M + εN (4.16)
with

N = e n+1 n i=1 e i α i (α i ∈ R) , (4.17) 
where N is a simple plane (N ∧ N = 0) since all terms contain the vector e n+1 . The canonical decomposition

B = m i=1 b i B i yields at most m = k + 1 orthogonal simple (dual) planes B i B i = M i + εN i , B 2 i ∈ {±1, 0} . (4.18) 
From B i ∧ B i = 0, one obtains

(M i + εN i ) ∧ (M i + εN i ) = M i ∧ M i + 2εN i ∧ M i = 0 (4.19)
where we have used the commutativity of the exterior product of two bivectors; hence,

M i ∧ M i = 0, N i ∧ M i = 0 (4.20)
which entails that M i is a simple plane and that N i belongs to the same plane and anticommutes with it (N i M i = -M i N i ). For M i = 0, one has

B 2 i = (M i + εN i ) (M i + εN i ) = M 2 i = ±1 (4.21) which for B 2 i = -1 (b i = tan Φi 2 ) yields e Φ i 2 Bi = cos Φ i 2 + (M i + εN i ) sin Φ i 2 ; (4.22)
and for

B 2 i = 1 (b i = tanh Φi 2 ) e Φ i 2 Bi = cosh Φ i 2 + (M i + εN i ) sinh Φ i 2 . ( 4 

.23)

For M i = 0, one has a pure translation e εNi = 1 + εN i . Finally, one obtains the algebraically compact decomposition

f = e Φ 1 2 B1 e Φ 2 2 B2 • • • e Φm 2 Bm . (4.24) 
For each component

f i = e Φ i 2 Bi , the rotation R i = e Φ i
2 Mi is known. Writing

f i = R i T i (or T i R i ) (4.25)
the translation T i is obtained as

T i = R -1 i f i , (or f i R -1 i ). For the entire f , one has f = f 1 f 2 • • • f m where the f i commute, hence, f = (R 1 T 1 ) (R 2 T 2 ) • • • (R m T m ) = (R 1 R 2 • • • R m )(T 1 T 2 • • • T m ) = RT (4.26)
yielding the translation T = R -1 f. In the same way, one obtains

f = (T 1 R 1 ) (T 2 R 2 ) • • • (T m R m ) = (T 1 T 2 • • • T m ) (R 1 R 2 • • • R m ) = T R (4.27)
and finally T = f R -1 .

Invariants of the Restricted Group

The Poincaré invariants of the restricted group P ↑ + are obtained as follows. The intersection of the simple plane N with the space V n = span(e 1 • • • e n ) is a vector P, parallel to N giving the invariant P 2 . Next, we consider the multivectors

W 1 = P ∧ (M + εN ) = P ∧ M, (4.28) 
W 2 = P ∧ b 1 (M 1 + εN 1 ) ∧ b 2 (M 2 + εN 2 ) = (b 1 b 2 ) P ∧ M 1 ∧ M 2 , (4.29) W k-1 = (b 1 b 2 • • • b k-1 ) P ∧ M 1 ∧ M 2 ∧ • • • ∧ M k-1 (4.30)
yielding the invariant inner products

(W 1 .W 1 ), (W 2 .W 2 ), . . . , (W k-1 .W k-1 ). (4.31)
If the dimension of the space is even (n = 2m) , one thus obtains k -1 invariants and with P 2 , a total of k invariants. If the dimension of the space is odd (n = 2k + 1) , one has the k invariants above plus the pseudo-scalar

W m = (b 1 b 2 • • • b k ) P ∧ M 1 ∧ M 2 ∧ • • • ∧ M k (4.32)
which is an invariant by itself. As concrete example, we shall now examine the 4D Poincaré group.

Example: 4D Poincaré Group

The 4D-Poincaré group is of central importance in physics, in particular in relativistic quantum mechanics and general relativity [START_REF] Adler | Quaternionic Quantum Mechanics and Quantum Fields[END_REF][START_REF] Girard | Einstein's equations and Clifford algebra[END_REF][START_REF] Girard | Histoire de la Relativité Générale d'Einstein: Développement Conceptuel de la Théorie[END_REF]. We shall first present the algebraic formulation, then a numerical application with a canonical decomposition and the invariants. Finally, we shall compare the hyperquaternion representation with the quantum mechanical and octonionic operator representations. The metric of the algebra C 4 (1, 3) (e 4 = 0) is

ds 2 = dx.dx = dx 2 = dx 2 0 -dx 2 1 -dx 2 2 -dx 2 3
(5.2)

x = 3 i=0 e i x i , x i ∈ R .
The restricted Poincaré group P ↑ + is composed of spatial rotations, hyperbolic rotations (boosts) and space-time translations which are respectively given by a total of ten generators (each of the two first equations below yield three generators and the third one four)

e θ 2 B = cos θ 2 + sin θ 2 B B 2 = -1, B ∈ (l, m, n) , (5.3) 
e Φ 2 B = cosh Φ 2 + sinh Φ 2 B B 2 = 1, B ∈ (Il, Im, In) , (5.4) 
e ε λ 2 B = 1 + ε λ 2 B B 2 = (±1, 0) , B ∈ (K, Jl, Jm, Jn) , λ ∈ R . (5.5) 
The combination of these transformations generates the element f :

X = f Xf c f f c = 1, f ∈ C + 5 (2, 3) (5.6) 
(X = iI + εx, X = iI + εx ). The canonical decomposition of f leads to at most two simple orthogonal planes B i :

B = b 1 B 1 + b 2 B 2 = M + εN, (5.7) 
f = e Φ 1 2 B1 e Φ 2 2 B2 B 2 i = ±1, 0 . (5.8) 
The projection of the bivector N on the space V 4 = span(e 0 e 1 e 2 e 3 ) gives a vector P and the invariant P 2 which can be positive, negative or nil. The second invariant is (W 1 .W 1 ) with W 1 = P ∧ M . In the following, we shall provide a numerical example to illustrate the procedure.

Numerical Example

As numerical example of a canonical decomposition, we consider the product of a spatial rotation followed by a translation and a boost leading to the element f of the 4D-Poincaré transform X = f Xf c :

f = e Φ 2 2 mI e ε(-2Jl+K) e Φ 1 2 m = 2 + √ 3mI [1 + ε (-2Jl + K)] √ 3 2 + m 2 (5.9) tan Φ1 2 = 1 √ 3 = b 1 , tanh Φ2 2 = √ 3 2 = b 2 .
The canonical decomposition [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF] leads to the expression

f = e Φ 2 2 B2 e Φ 1 2 B1
(5.10) where Φ 1 , Φ 2 have the same values as above and B 1 , B 2 are two simple orthogonal commuting (dual) planes

B 2 1 = -1, B 2 2 = 1 B 1 = m -2εJ √ 3l + n , B 2 = mI + ε -Jm + 2 √ 3 K . (5.11) 
The relativistic invariants are obtained as follows. From the relation

B = M + εN (= b 1 B 1 + b 2 B 2 ), one finds M = m 1 √ 3 + √ 3 2 I , N = -J 2l + √ 3 2 m + 2 √ 3 n + K.
(5.12)

The orthogonal projection of the plane N on the 4-space V 4 = span(e 0 e 1 e 2 e 3 ) (= span(I)) gives a vector P via the formula

P = N * .V 4 = (iN ) .V 4 iN I -IiN 2 = -iIN = iK 2l + √ 3 2 m 2 √ 3 m + iJ (5.13)
and the first invariant P 2 = -61 12 .

To get the other one, one computes

W 1 = P ∧ M = P M + M P 2 = i -Jl + Jm √ 3 + √ 3iJn - K 2 ∈ V 3 , (5.14) 
yielding the second invariant

W 1 .W 1 = - 49 12 = P 2 (M ⊥ ) 2 (5.15)
where M ⊥ is the component of M perpendicular to P [12]

M ⊥ = P -1 (P ∧ M ) = 1 61 24l - √ 3m -8 √ 3n -10Il + 32 √ 3mI -14 √ 3In (5.16)
and M 2 ⊥ = 49 61 . The Clifford dual of the three-vector W 1 is the vector

W W = IW 1 = i -Kl + Km √ 3 + √ 3iKn + J 2 (5.17)
giving the same invariant W 2 = W 2 1 (with I = e 0 e 1 e 2 e 3 ). The vector W plays a similar role as the Pauli-Lubanski vector in quantum mechanics. This numerical example illustrates the fact that the dual hyperquaternion formulation completely reveals the abstract algebraic properties of the Poincaré group making it perhaps more accessible than other representations.

Other Representation

Other representations of the 4D-Poincaré group exist. In quantum mechanics, the translations and rotations (spatial and hyperbolic) are represented respectively by the operators

P µ = ∂ ∂x µ , M µν = x µ ∂ ∂x ν -x ν ∂ ∂x µ (5.18)
acting on a spin-0 wave function with the mass as invariant. For a spin-1/2 Dirac wave function, Poincaré generators are

P µ = ∂ ∂x µ , M µν = x µ ∂ ∂x ν -x ν ∂ ∂x µ - 1 4 [γ µ , γ ν ] (5.19)
where γ µ are the Dirac matrices with the anticommutator {γ µ , γ ν } = -2g µν having as invariants the mass and the spin [START_REF] Adler | Quaternionic Quantum Mechanics and Quantum Fields[END_REF]. Both representations have the same Lie algebra as the hyperquaternion representation, the latter being however spin independent (see Appendix B). where O stands for the octonion algebra which is related to quaternions [START_REF] Dray | The Geometry of Octonions[END_REF][START_REF] Gording | The unified standard model[END_REF]. Though this algebra is neither a Clifford algebra nor associative, it shares with the hyperquaternionic approach the idea that physics might result from algebra and in particular from tensor products of algebras. Yet, since groups and group representations are associative, operators have to be constructed which seem to be isomorphic to the complex Clifford algebra C 6 (C) leading to the isomorphisms

C 6 (C) m(8, C) m(4, R) ⊗ m(2, C) (H ⊗ H) ⊗ (H ⊗ C) .
(5.20)

Hence, in the end, it seems that the octonionic approach is compatible with the hyperquaternionic one. Though Poincaré groups are very important, they do not constitute the largest covariant group of physics. Thus Maxwell's equations in vacuum are covariant with respect to the conformal group which contains the Poincaré group as subgroup. Is it possible to express the conformal groups as hyperquaternions? This will be the object of a next study.

Conclusion

The paper has given a new dual hyperquaternion representation of Poincaré groups in n dimensions distinct from the matrix one. The formalism yields simple expressions of the Poincaré generators, with immediate physical meaning. After the introduction of an extended multivector calculus, the algebraic formalism of the Poincaré groups has been developed as well as the canonical decomposition and invariants. As example, the 4D-Poincaré group and a numerical example have been examined. Finally, the hyperquaternion representation has been compared to the quantum mechanical one. It is hoped that the dual hyperquaternion representation might deepen the abstract algebraic understanding of the Poincaré groups and provide a new compact, efficient computational tool. Potential applications include in particular, moving reference frames and computer graphics. 

5. 1 .

 1 Algebraic Formulation Consider the hyperquaternion algebra H ⊗ H ⊗ C ( C 5 (2, 3)) having five generators (see Appendix C) e 0 = iJ, e 1 = iKl, e 2 = iKm, e 3 = iKn, e 4 = iI.(5.1)

The 4 (e i e j e r e s -e r e s e i e j ) = 1 4 (e i e j e r e s + e i e r e j e s ) = 1 2 η 2 εe n+1 e i 1 ≤

 44221 Lie commutator being defined as [A, B] = AB -BA, one obtains for i = j = r = s and [M ij , M rs ] = 1 jr e i e s = η jr M is (B.2)with η jr = (e j e r + e r e j ) /2. Similarly, one has[M ij , M rs ] = η is M jr (j = i = s = r) , (B.3) [M ij , M rs ] = -η js M ir (i = j = s = r) , (B.4) [M ij , M rs ] = -η ir M js (j = i = r = s) ; (B.5)combining all possible cases for the rotations one gets[M ij , M rs ] = η jr M is + η is M jr -η js M ir -η ir M js . (B.6)For the nD-translations, the generators areM (n+1)i = 1 i ≤ n, ε 2 = 0, e 2 n+1 = -1 (B.7)(for e 2 n+1 = 1, the one takes M i(n+1) = -M (n+1)i ). One has the relationsM (n+1)i , M(n+1)j = 0 (∀i, j) (B.8) and for i = j = k M ij , M (n+1)k = ε 4 e i e j e (n+1) e k -e (n+1) e k e i e j = εe n+1 4 (e i e j e k + e k e j e i ) = εe n+1 2 η jk e i = η jk M (n+1)i ; (B.9) similarly, for k = i = j, one hasM ij , M (n+1)k = -η ik M (n+1)j . (B.10)Combining the two cases above, one obtains for the translationsM ij , M (n+1)k = η jk M (n+1)i -η ik M (n+1)j. (B.11)Projecting the plane M (n+1)i on the space V n one obtains, for e 2 n+1 = -1, the vectorP i = e n+1 M (n+1)i = ε2e n+1 e n+1 e i = -ε 2 e i . (B.12) For e 2 n+1 = +1, one has P i = e n+1 M i(n+1) = ε 2 e n+1 e i e n+1 = -ε 2 e i . (B.13)

Table 2 .

 2 Combining the pseudo-orthogonal group O (p, q) and the translations T , one obtains the full Poincaré group of Table2with the relations Hyperquaternion Poincaré group component P ↑

	-1	(4.11)

n i=1 e i t i , t i ∈ R (if e 2 n+1 = 1, one takes b = e ε t 2 en+1

). Since bb c = 1 and b ∈ C + n+1 (p , q ), a translation corresponds to a rotation of SO + n+1 .

  The hyperquaternion representation thus constitutes a new form of representation (with hyperquaternion generators) distinct from the quantum mechanical one, revealing the abstract algebraic structure of the Poincaré group. It is to be noticed that dual hyperquaternions lead for certain Poincaré groups to a unitary repre-Another Poincaré representation, developed for the standard model, makes use of a tensor product of the four division algebras R ⊗ C ⊗ H ⊗ O

sentations (H ⊗ H ⊗ C m(4, C)) and to unitary symplectic ones for others (H ⊗ H ⊗ H m(4, H)) .
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Appendix A. Orthogonal Plane Symmetry

For the convenience of the reader, we derive here the formula of Eq. (4.3) [START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF][START_REF] Girard | Algèbre de Clifford et Physique relativiste[END_REF]. The orthogonal symmetric x of a vector x with respect to a plane orthogonal to a vector u satisfies the equations x = x + ku, u.

x

Appendix B. Lie Algebra of the nD-Poincaré Group

We first give the Lie algebra of the restricted Poincaré group P ↑ + and then of the full group P .

B.1. Restricted Group

Consider an nD space imbedded in an n + 1 hyperquaternion algebra having the generators e 1 , e 2 , . . . , e n , e n+1 . The Lie generators of the rotations are

The complete Lie algebra of the restricted Poincaré group can thus be expressed in the standard abstract form 

The hyperquaternion algebra H⊗H⊗C C 5 (2, 3) can be viewed as an eightdimensional vector space over the (real) quaternion algebra with the basis {1, l, m, n}. Thus, any hyperquaternion A can be written as a linear combination of eight linearly independent basis elements (1, I, J, K, i, iI, iJ, iK)

The multivector structure of A can be derived from Eq. (5.1) as follows: where e 0123 = e 0 e 1 e 2 e 3 , etc.. Then, the product of two elements A, B can be implemented (algebraically or numerically) in Mathematica with its quaternion product, e.g., [q i ] * * [q j ] . For the convenience of the reader, the complete multivector structure is given in the table below.