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Abstract
Lempel-Ziv’78 is one of the most popular data compression algorithms. Over the last few decades
fascinating properties of LZ78 were uncovered. Among others, in 1995 we settled the Ziv conjecture
by proving that for a memoryless source the number of LZ78 phrases satisfies the Central Limit
Theorem (CLT). Since then the quest commenced to extend it to Markov sources. However, despite
several attempts this problem is still open. The 1995 proof of the Ziv conjecture was based on two
models: In the DST-model, the associated digital search tree (DST) is built over m independent
strings. In the LZ-model a single string of length n is partitioned into variable length phrases such
that the next phrase is not seen in the past as a phrase. The Ziv conjecture for memoryless source
was settled by proving that both DST-model and the LZ-model are asymptotically equivalent. The
main result of this paper shows that this is not the case for the LZ78 algorithm over Markov sources.
In addition, we develop here a large deviation for the number of phrases in the LZ78 and give a
precise asymptotic expression for the redundancy which is the excess of LZ78 code over the entropy
of the source. We establish these findings using a combination of combinatorial and analytic tools.
In particular, to handle the strong dependency between Markov phrases, we introduce and precisely
analyze the so called tail symbol which is the first symbol of the next phrase in the LZ78 parsing.
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1 Introduction

The Lempel-Ziv compression algorithm [16] is a universal compression scheme. It partitions
the text to be compressed into consecutive phrases such that the next phrase is the unique
shortest prefix (of the uncompressed text) not seen before as a phrase. For example,
aababbababbb is parsed as ()(a)(ab)(abb)(aba)(b)(bb). The LZ78 compression code consists of
a pointer to the previous phrase and the last symbol of the current phrase. The distribution
of the number of phrases and other related quantities (such as redundancy and code length)
are known for memoryless sources [10, 14] but research over the past 40 years has failed
to produce any significant progress for Markov sources. In this paper, we present novel
large deviations and precise redundancy results that had been wanting since the algorithm
inception, as well as some surprising findings regarding the difference between the memoryless
case and the Markov case.
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15:2 Lempel-Ziv’78 for Markov Sources

It is convenient to organize phrases (dictionary) of the Lempel-Ziv scheme in a digital
search tree (DST) [6] which represents a parsing tree. We assume throughout that A = {a, b}.
Then the root contains an empty phrase. The first phrase is the first symbol, say “a ∈ A”
which is stored in a node appended to the root. The next phrase is either (aa) ∈ A2 stored
in another node that branches out from the node containing the first phrase “a” or (ab) that
is stored in a node attached to the root. This process repeats recursively until the text is
parsed into full phrases (see Figure 1). A detailed description can be found in [3, 6, 8].

Figure 1 The DST-model vs LZ-model. In the DST-model we inserted eight (infinite) strings:
X1 = abb · · · , X2 = abb · · · , X3 = bbba · · · , X4 = abaaa · · · , X5 = bbaa · · · , X6 = baaa · · · ,
X7 = bbba · · · and X8 = abbbb · · · , where bold symbols denote DST tail symbols. In the LZ-model
we parsed one string X = ()(a)(ab)(b)(aaba)(bb)(bbb)(abb) with bold denoting LZ tail symbols.

We consider two models called the DST-model and the LZ-model. In the DST-model we
insert independent strings although each string may be generated by a source with memory
like a Markov source. In the LZ-model we parse a single string as shown in Figure 1. We
distinguish two types of DST and LZ models. To define them we need to introduce the path
length L as the sum of all depths in the digital search tree or the sum of all phrases in the
LZ model. In the “m”-DST model we insert m independent strings into a digital search
tree – leading to a variable path length denoted as Lm – while the “n”-DST model is built
over a random number of independent strings such that the total path length is equal to n.
Similarly, we have “m”-LZ and “n”-LZ models: In the former we construct m LZ phrases
to form a string of (variable) length denoted as Lm while in the “n”-LZ model we parse a
string of length n into a variable number of phrases that we denote as Mn. Throughout, m
will denote number of strings or phrases while n will stand for the length of a string.

There is a simple relation between Mn and Lm called the renewal equation which asserts

P (Mn > m) = P (Lm < n). (1)

Finally, observe that the code length of the LZ78 algorithm is Cn =
∑Mn

k=1dlog2(k)e +
dlog2(|A|)e since the pointer to the kth node requires at most dlog2 ke bits, while the next
symbol costs dlog2 |A|e bits. For binary alphabet A = {a, b} we simplify the code length to
Cn = Mn (log2Mn + 1).

To understand LZ78 behavior one must analyze the limiting distribution of Mn and/or
Lm connected through the renewal equation (1). For memoryless sources we benefited from
the fact the random variable Lm and Lm are probabilistically equivalent as shown in 1995
paper [3]. Unfortunately, this equivalence breaks for sources with memory such as Markov
sources. To capture this dependency we introduce the notion of the tail symbol. In the
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DST-model the tail symbol of an inserted string is the first non-inserted symbol of that string,
as shown in Figure 1. In the LZ-model the tail symbol of a phrase is the first symbol of the
next phrase (see Figure 1). Furthermore, in the Markov case there is additional complication,
even for the DST-model. In the DST-model we need to consider two digital search trees: one
built over all (independent) strings starting with symbol a ∈ A, and the second one built
over all strings that start with b ∈ A. At the end we construct a cumulative knowledge by
weighting over the initial symbols (see [7]).

In this paper, we present large deviation results for the number of phrases Mn in “n”-LZ
model and the average length of a LZ (Markov) string built over m phrases in the “m”-LZ
model.1 In the memoryless case we could read the number of phrases Mn directly from the
path length Lm of the m-DST model. It is not the case in the Markov model but through
the tail symbol distribution we will connect both quantities. Recall that Lm is the length of
a string generated by a Markov source which is parsed by the LZ78 scheme until we see m
phrases (our m-LZ model). This should be compared to the total path length Lm (notice
roman font for L) in the the m-DST model. In the memoryless case, we proved in [3, 5]
that the expected value of Lm and the expected value of the length of a string built from m

phrases, Lm, are the same. Somewhat surprisingly it is not the case for the Markov case.
We will prove in Theorem 5 that E[Lm]−E[Lm] = Θ(m).

Let us now briefly review literature on LZ78 and DST analysis. The goal is to prove
the Central Limit Theorem (CLT) for the number of phrases and establish precise rate of
decay of the LZ78 code redundancy for Markov sources. For memoryless sources, CLT was
already proved in [3] while the average redundancy was presented in [10, 14]. It should be
pointed out that since 1995 paper [3] no simpler, in fact, no new proof of CLT was presented
except the one by Neininger and Rüschendorf [13] but only for unbiased memoryless sources
(as in [1]). The only known to us analysis of LZ78 for Markov sources is presented in [7],
but the authors restricted their attention to a single phrase. We should point out that for
another Lempel-Ziv scheme known as LZ’77 algorithm, Fayolle and Ward [2] analyzed an
associated suffix tree built over a Markov string and obtained the distribution of the depth,
which allows us to conclude the limiting distribution of a phrase in the LZ’77 scheme (see
also [11, 12]). Regarding analysis of digital search trees, and in general digital trees, more
is known [8, 6, 15]. Digital trees for memoryless sources were analyzed in [1, 10, 6] while
digital trees under Markovian models were studied in [7, 9, 2]. This information is surveyed
in detail in [6].

The paper is organized as follows. In the next section we present our main results
regarding the LZ and DST models including the mean, variance and distribution of the
number of tail symbols in the DST model (see Theorem 2–4), and large deviations as well
as precise redundancy for the LZ model (see Theorems 5–6). We prove these findings in
Section 3 (DST model) and in Section 4 (LZ model), with most details delayed till the
appendix. Throughout we use combinatorics on words and analytic tools such as generating
functions, Poisson transform, analytic depoissonization, and Mellin transform.

2 Main Results

We consider a stationary ergodic Markov source generating a sequence of symbols drawn
from a finite alphabet A. In this paper we study only a binary Markovian process of order 1
with the transition matrix P = [P (c|d)]c,d∈A where A = {a, b}. In this section we present
our main results with proof delayed till Sections 3–4 and appendix. However, first we present
a road map of our methodology and findings.

1 From now on we drop the quotes around m and n to simplify the presentation.
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15:4 Lempel-Ziv’78 for Markov Sources

Our main goal is to analyze the Lempel-Ziv’78 scheme for Markovian input. However,
as discussed before, we first consider an auxiliary model named DST-model built over m
independent Markov strings, also called the m-DST model. However, for Markov sources
we need to construct two conditional digital search trees: one built over m Markov strings
all starting with symbol a ∈ A and the other DST built over m strings starting with b ∈ A.
We write c ∈ A for a generic symbol from A, that is, either c = a or c = b. For a given
c ∈ A, we consider m independent Markov strings all starting with c and build an m-DST
tree. For such a tree we analyze two quantities, namely the total path length denoted as
Lcm, and the number T cm(a) of inserted strings (all starting with c) with the tail symbol a,
that is, among m Markov strings there are T cm(a) strings with the tail symbol a. Clearly,
T cm(a) + T cm(b) = m. Throughout, we also assume that the tail symbol is always a so we just
write T cm := T cm(a). In Theorems 2-3 we summarize our new results regarding T cm, while in
Theorem 4 we present large deviation results for both T cm and Lcm.

Second, we consider the m-LZ model (in which we run LZ78 algorithm on a single
string until we see m phrases) and tie it up to the m-DST model just discussed. Here we
use a combinatorial approach. For a given sequence s over A of length m we compare in
Lemmas 10-11 two probabilities: (i) the probability that in the m-LZ model (constructed
from m LZ phrases) we end up with a LZ sequence of length n having all tail symbols equal
to s; and (ii) the probability that in the m-DST model (built over m independent Markov
strings) the resulting digital search tree has path length equal to n and all tail symbols are
equal to s. Using this, we present in Theorem 5 our large deviations for the m-LZ model and
using the renewal equation (1) in Theorem 6 we establish large deviations for the n-LZ model.
In Corollary 7 we find a precise expression for the redundancy of LZ78 for Markov sources.

Finally, when comparing the average path length Lcm in the m-DST model with the
length Lcm in the m-LZ model we shall use the following simple fact.

I Proposition 1. For δ < 1 let there exist B,C > 0 such that for a discrete random variable
Xm the following holds uniformly

P (Xm = k) ≤ B exp
(
−Cm−δ|k −Am|

)
. (2)

Then

E[Xm] = Am +O(mδ). (3)

Proof. Define Bm = mδ(logB)/C ≤ |k − Am|. Then it is easy to see that EXm =∑
k kP (Xm = k) = Am +

∑
k(k −Am)P (Xm = k), and the latter term can be estimated by

the integral 2B
∫∞

0 exp(−Cm−δx)(x+ 1)dx = O(mδ). This completes the proof. J

2.1 Results on DST
In this section we summarize our results for the m-DST model: We first focus on the number
of times, T cm := T cm(a), the tail symbol is a when all m Markov sequences start with c ∈ A.
Then we study the path length Lcm in the m-DST model when all sequences start with c.
Finally, we present large deviations for both T cm and Lcm.

For c ∈ A, let Dc
m(u) = E[uT cm ] be the probability generating function of T cm defined for

a complex variable u. We have the recursion:

Dc
m+1(u) = (P (a|c)u+ 1− P (a|c))

∑
k

(
m

k

)
P (a|c)kP (b|c)m−kDa

k(u)Db
m−k(u) (4)
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subject to Dc
0(u) = 1 and Dc

1(u) = P (a|c)u+ 1− P (a|c). Furthermore, define the bivariate
Poisson transform Dc(z, u) =

∑
m≥0 E[uT cm ] z

m

m! e
−z. From above we easily find the following

differential-functional equation

∂zDc(z, u) +Dc(z, u) = Dc
1(u)Da(P (a|c)z, u)) ·Db(P (b|c)z, u) (5)

with Dc(z, 1) = 1 where ∂z is the partial derivative with respect to variable z.
We now focus on the first Poisson moment Xc(z) = ∂uDc(z, 1) where ∂u is the derivative

with respect to variable u. We also study the Poisson variance Vc(z) = ∂2
uDc(z, 1) +Xc(z)−

(Xc(z))2, and the limiting distribution of T cm. After finding the asymptotic behavior of the
Poisson mean Xc(z) and variance Vc(z) for large z → ∞ we invoke the depoissonization
lemma of [4] to extract the original mean and variance:

E[T cm] = Xc(m)− 1
2m∂zXc(m) +O(Xc(m)/m), Var[T cm] ∼ Vc(m)−m[∂zXc(m)]2.

Let us start with the Poisson mean Xc(z). Taking the derivative of (5) with respect to u
and setting u = 1 we find

∂zXc(z) +Xc(z) = P (a|c) +Xa(P (a|c)z) +Xb(P (b|c)z). (6)

To complete this equation we need to calculate the initial values of E[T cm]. It is easy to
see that

E[T c0 ] = 0, E[T c1 ] = P (a|c), E[T c2 ] = P (a|c) + P (a|c)P (a|a) + P (b|c)P (a|b). (7)

In a similar fashion we can derive the differential-functional equation for the Poisson
variance. After some tedious algebra we arrive at

∂zVc(z) + Vc(z) = P (a|c)− P 2(a|c) + [∂zXc(z)]2 + Va(P (a|c)z) + Vb(P (b|c)z). (8)

Both differential-functional system of equations (5) and (7) can be solved using complicated
Mellin transform approach [15]. We provide details of our approach in the Appendix. For
now we need to introduce some extra notation to present our main results. For complex s
define

P(s) =
[
P (a|a)−s P (b|a)−s
P (a|b)−s P (b|b)−s

]
. (9)

For such P(s) we denote by λ(s) the main eigenvalue and π(s) the main eigenvector. We
notice that π(−1) is the stationary vector of the Markov process. We also need another
matrix

Q(s) =
∏
i≥1

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j))

defined for <(s) ∈ (−2, 0). Furthermore, 〈x,y〉 is the scalar product of vectors x and y.
Now we are in the position to formulate our main result.

I Theorem 2. Consider a digital search tree built over m independent sequences (m-DST)
generated by a Markov source. We have E[T cm] = τc(m)m and E[Lcm] = m logm/h + m +
µc(m)m such that:

τc(m+ 1)− τc(m) = O(1/m) and µc(m+ 1)− µc(m) = O(1/m)
∀(c, d) ∈ A2 τc(m)− τd(m) = O(1/m) and µc(m)− µd(m) = O(1/m).

AofA 2020



15:6 Lempel-Ziv’78 for Markov Sources

Thus τc(m) = τ(m) +O(1/m) where τ(m) does not depend on initial symbol c. In fact,
τ(m) depends on the tail symbol, but since throughout the paper we assume the tail symbol
is always a, we drop this dependency on a in τ(m). We present precise formula on τ(m) in
the next theorem.

Similarly we have µc(m) = µ(m) + O(1/m). The function µ(m) for Markov sources is
given in Theorem 1 of [7]. For the memoryless source, it is h2

h + γ − 1 + α and the average
path length is m logm/h+mµ(m), as discussed in [3].

To complete our analysis of the tail symbol, we present now precise behaviour of τ(m).
We give a detailed proof in the Appendix.

I Theorem 3. For (a, b, c) ∈ A3 define

αabc = log
[
P (a|b)P (c|a)

P (c|b)

]
. (10)

(i) Aperiodic case. If not all {αabc} are rational, then τ(m) = τ̄ + o(1) with

τ̄ = πa + 1
λ′(−1) 〈

(
π′(−1) + πQ′(−1)

)
(I−P)Pea〉, (11)

where πa is the stationary distribution of symbol a, and ea is the vector made of a single
1 at the position corresponding to symbol a and zero otherwise.

Periodic case. If all {αabc} are rationally related, then for some ε > 0 we have τ(m) =
τ̄(m) +O(m−ε) with τ̄(m) = τ̄ +Q1(logm), where Q1(.) is a periodic function.

(ii) Variance. The variance Var[T cm] grows linearly, that is Var[T cm] ∼ mωa(m), where
ωa(m) = ω̄a for the aperiodic case and ωa(m) = ω̄a +Q2(m) for the periodic case, where
ω̄a is given explicitly in the Appendix in (B.16) of Theorem 14, and Q2(m) is a nonzero
periodic function for rationally related case, and zero otherwise.

(iii) Central Limit Theorem. For any c ∈ A we have

T cm −E[T cm]
Var[T cm]

d→ N(0, 1)

where N(0, 1) denotes the standard normal distribution.

Similarly we have the same behaviour for µ(m) which is equal to µ̄+ o(1) in the aperiodic
case and, in the periodic case, is equal to µ̄+Q3(logm) + O(m−ε) whose expressions are
in [3] and [7] where Q3(.) is a periodic function. For details the reader is referred to [7].

We notice that, unexpectedly, the number of tail symbols equal to a is not converging to
nπa as we should expect from a Markovian sequence. The reason is that the tail symbol is
not picked up at random in the sequence but occurs when the sequence path leaves the tree.

Finally, we present joint large deviations for both T cm and Lcm which is a new result
needed to establish large deviations for the LZ model. We prove it in Section 3.

I Theorem 4. Consider a digital search tree (DST) built over m independent sequences
generated by a Markov source. For all δ > 1/2 there exist B, C and β strictly positive such
that for all x > 0 uniformly in x

P
(
|T cm −E[T cm]|+ |Lcm −E[Lcm]| ≥ xmδ

)
≤ Be−xCm

β

(12)

for large m.
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Figure 2 The difference E[Lc
m]−E[Lc

m] by simulation confirming that it grows linearly with m.

2.2 Results for the LZ78 Model
Let us start with the m-LZ model. For a given m, let Lcm (note calligraphic L) be the length
of the LZ78 string composed of m phrases when the first phrase starts with symbol c. For
memoryless sources, this quantity is equivalent to the path length Lm in the associated DST
built over m independent strings. However, it is not the case for Markov sources. In Section 4
we prove Theorem 5 presented below by showing that E[Lcm]−E[Lcm] = Θ(m), unlike in the
memoryless case. Figure 2 compares the difference E[Lcm]−E[Lcm] obtained by simulation
results confirming our theoretical findings.

I Theorem 5. For m given, let m∗ := m∗(m) be the root of x− xτ(x)− (m− x)τ(m− x).
(i) The average length E[Lcm] of the LZ-sequence consisting of the first m phrases is (for

the aperiodic case)

E[Lcm] = m logm/h+µ(m∗)m∗+µ(m−m∗)(m−m∗) +m(1−H(m∗/m)/h) +O(mδ)
(13)

where H(x) = −x log x − (1 − x) log(1 − x) is the binary entropy and h the source
entropy.

(ii) For all δ > 1/2 there exist B,C, β > 0, and γ > 0 such that uniformly for all x > 0

P
(
|Lcm − E[Lcm]| ≥ xmδ

)
≤ Bmγe−xCm

β

(14)

for large m.

I Remark. The property of function τ(·) implies that the equation x−xτ(x)−(m−x)τ(m−x)
has a single root as we will see in the proof of Section 4. Notice that m∗/m converges to
τ̄ in the aperiodic case, and similarly µ(m∗)m∗ + µ(m −m∗)(m −m∗) is asymptotically
equivalent to µ̄m. In the periodic case there will be small periodic contributions (contained
in τ(m) and µ(m)) as shown in Theorem 3. Notice that H(m∗/m) is the tail symbol entropy,
which is equal to h when the source is memoryless.

Our next goal is to present large deviation for the number of LZ phrases in the n-LZ
model. LetM c

n be the number of phrases obtained by parsing a Markovian sequence of length
n starting with symbol c. By the renewal equation (1) we have P (M c

n > m) = P (Lcm < n)
for all legitimate m and n. This allows us to read large deviation of M c

n from Theorem 5.
Following the footsteps of Theorem 2 of [5] we arrive at our next main result.

AofA 2020



15:8 Lempel-Ziv’78 for Markov Sources

I Theorem 6. For all δ > 1/2 there exist B, C, β, and γ all strictly positive such that

P
(
|M c

n − `−1
c (n)| ≥ xnδ

)
≤ Bnγe−xCn

β

where `−1
c (.) is the inverse function of `c(m)= `(m)+o(1) defined as `(m) = m

h (logm+ β(m))
with

β(m) = hµ(m∗)m∗/m+ hµ(m−m∗)(m−m∗)/m− h+H(m∗/m)

where m∗ is defined in Theorem 5 and µ(m) has extra fluctuating function in the periodic case.

Using Theorem 6 we can find a precise estimate on the LZ78 redundancy. Indeed,
a good approximation for the LZ78 code length is Ccn = M c

n(logM c
n + 1). The average

conditional redundancy is defined as rcn := E[Ccn]/n− h, while the total average redundancy
is rn = πar

a
n + πbr

b
n.

I Corollary 7. The average redundancy rate rn satisfies for all 1
2 < δ < 1:

rn = h
1− β(`−1(n))

log `−1(n) + β(`−1(n)) +O(nδ−1 logn) ∼ h1− β(`−1(n))
logn ,

and more specifically in the aperiodic case we have

rn ∼ h
1− µ̄
logn + H(τ̄)− h

logn

where m∗/m→ τ̄ .

3 Proof of Theorem 4 for DST

Now we prove Theorem 4, that is, the joint large deviations for T cm and Lcm in the m-DST
model. We use Chernoff’s bounds, so we need to introduce some bivariate generating
functions. Define P cm,k,` = P (T cm = k & Lcm = `), P cm(u, v) = E[uT cmvLcm ] =

∑
k,` P

c
m,k,`u

kv`

and Pc(z, u, v) to be the Poisson generating function Pc(z, u, v) =
∑
m P

c
n(u, v) z

m

m! e
−z. The

following partial differential equation for Pc(z, u, v) is easy to establish from (5)

∂zPc(z, u, v) + Pc(z, u, v) = (uP (a|c) + P (b|c))Pa(P (a|c)zv, u, v)Pb(P (b|c)zv, u, v).

Lemma below is equivalent to Theorem 10 of [5] so we skip the proof in this conference
paper.

I Lemma 8. For all reals ε′ > 0 and ε > 0, there exists 0 < ϑ < π/2 and a complex
neighborhood U(0) of 0 such that iuniformly for (t1, t2) ∈ U(0)2 and | arg(z)| < ϑ so that
log(Pc(z, et1|z|

−ε′

, et2|z|
−ε′ )) exists and log(Pc(z, et1|z|

−ε′

, et2|z|
−ε′ ) = O(z1+ε).

To prove Theorem 4 we need the following property that will be established in the final
version of this paper.

I Lemma 9. For all δ > 1/2 there exists B such that∣∣∣P cm(eτ1m
−δ
, eτ2m

−δ
) exp(−m−δ(τ1E[T cm] + τ2E[Lcm]))

∣∣∣ ≤ B√m. (15)
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Now we proceed to prove Theorem 4. We apply Markov inequality for all θ and for all x > 0

P (|T cm−E[T cm|+ |Lcm−E[Lcm]|≥2xmδ) ≤ P (|T cm −E[T cm]| ≥ xmδ∨(|Lcm −E[Lcm]| ≥ xmδ)

≤
(
P cm(eθ, 1)e−E[T cm]θ + P cm(e−θ, 1)eE[T cm])θ

)
e−xθm

δ

+
(
P cm(1, eθ)e−E[Lcm]θ + P cm(1, e−θ)eE[Lcm])θ

)
e−xθm

δ

.

To complete the proof we will use (15) of Lemma 9. If we take τ1 = ±C and τ2 = 0 (and
reverse) for some C > 0 such that (τ1, τ2) ∈ U(0)2, and θ = Cm−δ

′ for some δ′ < δ, then we
find eθmδ = e−Cm

β with β = δ − δ′ > 0, and

P (|T cm −E[T cm]|+ |Lcm −E[Lcm]| ≥ 2xmδ) ≤ 4
√
mBe−xCm

β

which prove (12) of Theorem 4. We can readjust by taking 0 < β′ < β and the value of B to
omit the factor

√
m.

4 Proof of Theorem 5 for LZ

We now consider the LZ78 algorithm over a single infinite sequence generated by a Markov
source, that is, the n-LZ model and connect it to the n-DST model in which the path length
is equal to n (over a variable number of independently inserted strings). In the m-LZ model
there are exactly m LZ phrases, each being a block carved in the Markovian sequence. The
blocks are not i.i.d Markovian sequences.

Let Pcm,n be the probability that the length of the first m LZ phrases is exactly n (when
the first symbol is c), leading to the n-LZ model. Notice that not every pair (n,m) is feasible
in the LZ model since by adding another phrase the path length may “jump” by more than
one. We are interested in finding an asymptotic estimate of Pcm,n. We start by introducing
yet another model. Let s be a sequence of m symbols, namely s = (c1, . . . , cm) ∈ Am. For
c ∈ A we now compute the probability Pcs,n that an infinite Markovian sequence starting
with symbol c when parsed by LZ algorithm satisfies the following two properties: (i) the
first m blocks have tail symbols ci ∈ s for i ≤ m so that ci is the first symbol of block i+ 1;
(ii) the length of the first m LZ phrases is equal to n. If a string satisfies these two conditions,
then we say it is (s, n) compatible and that it belongs to the (s, n)-LZ model.

Given a string s of tail symbols we denote by tac (s) (resp. tbc(s)) the subsequence of s
consisting of tail symbols of the LZ blocks starting with symbol a (resp. starting by symbol
b). Now, it is easy to see that given the initial symbol c we can deduce the sequence of
tails symbols and initial symbols of all phrases just by looking at the sequence s, where the
initial symbol of the next phrase is the tail symbol of the previous phrase. For example, if
s = (a, b, a, b, b) and c = a we have the following tail symbol and initial symbol sequence
displayed in the following table:

block # initial symbol tail symbol
1 a a

2 a b

3 b a

4 a b

5 b b

By taking the blocks (phrases) starting with c = a we find taa(s) = (a, b, b) and the blocks
starting with b yield tba(s) = (a, b).
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Now we consider a sequence t of m symbols and introduce a new n-DST model which
we call (t, n)-DST model. We define by P ct,n the probability that m i.i.d. (independent)
Markovian sequences all starting with c satisfy the following two conditions (notice that
we use roman P for this probability and calligraphic P for LZ model): (i) the tail symbol
sequence follows the sequence t; (ii) the external path length of the DST is exactly n. We
will say that such m strings are (t, n)-fit if they satisfy the above conditions and call it
(t, n)-DST model. We also define

P cm,k,n =
∑

t: |t|=m,|t|a=k

P ct,n (16)

with |t| being the length of sequence t and |t|a being the number of symbols equal to a in it.
We finally establish the following fundamental lemma that connects the above two

parameters which also connects the LZ parsing over a single Markovian sequence and the
DST made of independent Markovian sequences, that is, (s, n)-LZ model and (t, n)-DST
model where t is a function of s.

I Lemma 10. For any s ∈ Am we have

Pcs,n =
∑
na

P atac (s),naP
b
tbc(s),n−na (17)

where nc (equal either to na or nb) is the path length in nc-DST model with all strings
starting with c, and tac (s), tbc(s) are substrings of s as defined above.

Proof. In this conference paper, we give a proof using an example to ease the present-
ation. Let us consider X = aabbababab · · · which results in the following LZ blocks:
()(a)(ab)(b)(aba)(ba)(b · · · ). Or equivalently X = aabbababab · · · where the initial block
(phrase) symbols are displayed in bold. We notice that the first five blocks (excluding
the initial empty block) accounts for a string of length 9. Thus the sequence X is (s, 9)
compatible with s = (a, b, a, b, b). Given that X starts with symbol a we have P (X) =
P (a|a)P (aa|a)P (abb|a)P (ba|b))P (abab|a)P (bab|b). Notice that we display in bold the tail
symbol of each block (which is the initial symbol of the next block). We must incorporate
P (X) into P as,9. In fact X should be viewed as the set of (infinite) strings having aabbababab
as the common prefix. We can rewrite P (X) by regrouping the terms with respect to the
initial symbol of each block as: P (X) = [P (aa|a)P (abb|a)P (abab|a)] × [P (ba|b)P (bab|b)] .
Observe that the sequence of strings (aa, abb, abab) are the prefixes of a set of tuples of
independent infinite strings that are all (sa, 6) compatible with sa = taa(s) = (a, b, b) under
the condition that the strings start with symbol a (the path length in the DST excludes the
tail symbols, thus we must remove one from the length of each prefix). The probability of such
event is exactly P (aa|a)P (abb|a)P (abab|a) and must be incorporated in P asa,6. Furthermore,
these sequences are used to build one (left) part of the DST tree with independent Markov
strings all starting with a. The same holds for the sequence of strings (ba, bab) which is (sb, 3)
compatible with sb = tba(s) = (a, b) and used to build the other part (right) of the DST tree.
This leads to (17). J

The next crucial lemma connects n-LZ and n-DST models.

I Lemma 11. The following holds

Pcm,n ≤
∑
na

∑
k

∑
ma

(
P ama,k,naP

b
m−ma,ma−k,n−na (18)

+P ama,k,naP
b
m−ma,ma−k−1,n−na + P ama,k,naP

b
m−ma,ma−k+1,n−na

)
where na is the total path length of the first ma phrases starting with an “a”.
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Proof. We naturally have Pcm,n =
∑
|s|=m Pcs,n where |s| is the length of the sequence s.

Similarly we have P cm,k,n =
∑

t,|t|=m,|t|a=k P
c
t,n with |t|a is the number of symbols identical

to a in t. The rest follows from Lemma 10 but we need to take into account some boundary
effects.

Let’s look at it in more details. By (17) and above we find

Pcm,n =
∑
|s|=m

∑
na

P atac (s),naP
b
tbc(s),n−na .

We now partition Aminto four sets Sc0(m), Sc1(m), Sc2(m) and Sc3(m):
s ∈ Sc0(m): if neither of the initial symbol c or the final symbol of s, namely cm is identical
to a. Thus the total number of tail symbols equal to a, namely |s|a is equal to |tac (s)|.
s ∈ Sc1(m): if both the final symbol and c are equal to a so that the total number of tail
(and initial) symbols equal to a is |tac (s)|.
s ∈ Sc2(m): if c = a but cm 6= a so that the number of tail symbols equal to a is |tac (s)|−1.
s ∈ Sc3(m): if c 6= a but the final symbol cm = a. Thus the number of tail symbols equal
to a is |tac (s)|+ 1.

Regrouping we have

Pcm,n =
∑

s∈Sc0(m)∪Sc1(m)

Pcs,n +
∑

s∈S2(m)

Pcs,n +
∑

s∈S3(m)

Pcs,n.

Now we have to deal with the right hand side of (18), that is, with the DST model. Let
T1(m) be the set of pairs of arbitrary sequences denoted as (ta, tb) such that |ta|+ |tb| = m

and |ta|a + |tb|a = |ta|. We notice that for s ∈ Sc1(m) ∪ Sc2(m): (tac (s), tbc(s)) ∈ T1(m), hence∑
s∈Sc0(m)∪Sc1(m)

Pcs,n =
∑
na

∑
s∈Sc0∪Sc1(m)

P ata(s),naP
b
tb(s),n−na

≤
∑
na

∑
(ta,tb)∈T1(m)

P ata,naP
b
tb,n−na .

Notice that we have an upper bound, since for some pair (ta, tb) in T c1 (m) there may not
exist s ∈ Sc1(m) ∪ Sc2(m) such that ta = ta(s) and tb = tb(s). For example, let c = a and for
m = 4 we set ta = (a, b) and tb = (b, a), so that |ta|a + |tb|a = |ta| but it is impossible to
find s such that (taa(s), tb(s)) = (ta, tb).

Thanks to (16) we have
∑

t: |t|=m,|t|a=k P
c
t,n = P cm,k,n leading to∑

(ta,tb)∈T1(m)

∑
na

P ata,naP
b
tb,n−na =

∑
ma,k

P ama,k,naP
b
m−ma,ma−k,n−na .

This proves the first term in the right hand side of (18). To prove the other two terms
we introduce T2(m) as the set of pairs of sequence (ta, tb) such that |ta| + |tb| = m and
|ta|a + |tb|a = |ta| − 1. In this case∑

s∈S2(m)

Pcs,n ≤
∑
na

∑
(ta,tb)∈T2(m)

P ata,naP
b
tb,n−na ,

and the second term of (18) is proved. And finally with T3(m) as the set of pairs of
sequence (ta, tb) such that |ta|+ |tb| = m and |ta|a + |tb|a = |ta|+ 1, we establish the third
term of (18). J
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To finish the proof of Theorem 5 we now use the previous lemmas to upper bound Pcm,n.
Let Pcm,n ≤ Kc

m,n(0) +Kc
m,n(1) +Kc

m,n(−1) with

Kc
m,n(i) =

∑
ma

∑
na

∑
k

P ama,k,naP
b
m−ma,ma−k−i,n−na .

To simplify our presentation we only studyKc
m,n(0). First, we rewrite the bound in Theorem 4

for the DST model as follows: for δ > 1/2 there exist B and C strictly positive such that

P cm,k,n ≤ B exp
[
−Cm−δ|k −E[T cm]| − Cm−δ|n−E[Lcm]|

]
.

Thus

Kc
m,n(0) ≤

∑
ma+mb=m

∑
k≤ma

∑
na+nb=nB

2 exp
[
−Cm−δa |k −E[T cma ]

−Cm−δa |na −E[Lama | − Cm
−δ
b |ma − k −E[T bmb ]− Cm

−δ
b |nb −E[Lbmb |

]
.

From here we use ma,mb ≤ m to find

Cm−δa |k−E[T cma ] +Cm−δa |na−E[Lama |+Cm−δb |ma−k−E[T bmb ] +Cm−δb |nb−E[Lbmb | ≥

Cm−δ|k −E[T cma ] +Cm−δ|na −E[Lama |+Cm−δ|ma − k −E[T bmb ] +Cm−δ|nb −E[Lbmb |

≥ Cm−δ|ma −E[T ama ]−E[T bmb ]|+ Cm−δ|n−E[Lama ]−E[Lbmb ]|.

Replacing the E[T cm] by τc(m)m and E[Lcm] by m logm/h+m+mµc(m) we arrive at

Kc
m,n(0) ≤ B2m

∑
ma+mb=m

exp
(
−Cm−δ|ma −maτa(ma)−mbτb(mb)|

)
× exp

(
−Cm−δ|n−m logm/h+m(H(ma/m)/h− 1)−maµa(ma)−mbµb(ma)|

)
.

Without changing the order of magnitude we further can replace τc(m) by τ(m) and µc(m)
by µ(m).

We now focus only on the aperiodic case and set τ(m) = τ̄m and µ(m) = µ̄m. (We know
that even in this case for small values of m, the µ(m) and τ(m) are not exactly linear in m,
but we handle it later.) Thus our term Kc

m,n(0) is bounded by

B2m
∑
ma≤m

exp[−Cm−δ|ma− τ̄m|] exp[−Cm−δ|n−m logm/h−µ̄m+m(H(ma/m)/h−1)|].

If we take any δ′ > δ we find

Kc
m,n(0) ≤ B2m

∑
ma≤m

exp[−Cm−δ|ma − τ̄m|]

× exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(ma/m)/h− 1)|].

We observe that exp[−Cm−δ|ma − τ̄m|] attains its maximum at ma = m∗ = τ̄m. Thus

Kc
m,n(0) ≤ B2

∑
ma≤m∗

eCm
−δ(m−m∗)×exp[−Cm−δ

′
|n−m logm/h−µ̄m+m(H(ma/m)/h−1)|]]

+B2
∑

ma≥m∗
eCm

−δ(m∗−m) × exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(ma/m)/h− 1)|]].
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Notice that the terms eCm−δ(m−m∗) and eCm−δ(m∗−m) form a geometrically decreasing series
with rate e−Cm−δ . Since |mH((ma + 1)/m)−mH(ma/m)| ≤ logm, the term

exp[−Cm−δ
′
|n−m logn/h− µ̄m+m(H(ma/m)/h− 1)|]]

is at most geometrically increasing with a rate em−δ
′

logm/h which is smaller than eCm−δ .
Therefore, the whole series has its maximum at ma = m∗ and

Kc
m,n(0) ≤ 2B2

∑
k=0∞

e−Ck(m−δ−logm/hm−δ
′
)

× exp[−Cm−δ
′
|n−m logn/h− µ̄m+m(H(m∗/m)/h− 1)|]]

= 2B2

1− e−(m−δ−logm/hm−δ′ )C

× exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(m∗/m)/h− 1)|]]

= O(2B2mδ) exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(τ̄)/h− 1)|]].

Including all contributions, the final estimate for some B′ > 0 is

Pcm,n ≤ B′m1+δ exp[−Cm−δ|n−m logm− µ̄m+m(H(τ̄)/h− 1)|].

This gives the large deviation estimate and E[Lcm,n] = m logm/h+ µ̄m−m(H(τ̄)/h− 1) +
O(mδ) by Fact 1. We recognize in H(τ̄) the entropy of the tail symbol.

In fact the quantities τ(m) and µ(m) are not exactly τ̄m and mµ̄. To handle it we observe
that due to their slowly varying properties, the function exp(−Cm−δ|ma−τ(ma)ma−τ(m−
mb)(m−ma)| attains the maximum for m∗ such that

m∗ = −τa(m∗)m∗ − τb(m∗)(m−m∗).

Indeed the function ma − E[T ama ] − E[T bmb ] is strictly increasing thus this value is unique.
Then again E[Lcm] = m logm/h+m∗µ(m∗) + (m−m∗)µ(m−m∗)−m(H(m∗/m)/h− 1),
and therefore E[Lcm] +mH(m∗/m) + o(m). The latter is equal to E[Lcm] +mH(τ̄) + o(m)
in the aperiodic case. To complete the proof of Theorem 5 we just use Fact 1 applied to Lm.

5 Conclusions

In this paper we analyze the Lempel-Ziv’78 algorithm for binary Markov sources, a problem
left open since the algorithm inception. To handle the strong dependency between Markov
phrases, we introduce and precisely analyze the so called tail symbol which is the first symbol
of the next phrase in the LZ78 parsing. We focus here on the large deviations for the number
of phrases in the LZ78 and also give a precise asymptotic expression for the redundancy which
is the excess of LZ78 code over the entropy of the source. In future work we plan to extend
our analysis to non-binary Markov sources and present some bounds on the central limit
theorem. Furthermore, we shall study LZ78 for Markov sources of higher order, however, this
will require a new approach to the tail symbols which may span over consecutive phrases.
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A Proof of Theorem 3(i): Mean

We first analyze asymptotically X(z) = (Xa(z), Xb(z)) that satisfies the system of differential-
functional equations (6). We solve this system, and then apply Mellin transform and
depoissonization to prove Theorem 3(i).

Since for all integer m, we have T cm ≤ m, we notice that the function Xc(z) is O(z) both
when z → ∞ and when z → 0. Thus the function X(z) has no Mellin transform defined
as Xc(s) =

∫∞
0 Xc(z)zs−1dz (see [15] for more on the Mellin transform). To correct this

we introduce X̃c(z) = Xc(z)−Gc(z) with Gc(z) = (E[T c1 ]z + E[T c2 ]z2/2)e−z which is O(z3)
when z → 0, where E[T c1 ] and E[T c2 ] are defined in (7).

The Mellin transform X∗c (s) of X̃c(z) on the strip <(s) ∈] − 3,−1[ exists. The Mellin
transform of ∂zX̃c(z) exists too on the strip <(s) ∈]− 2, 0[. Thus the two Mellin transforms
coexist on the strip <(s) ∈]− 2,−1[ and satisfies [15]
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− (s− 1)(X∗c (s− 1) +G∗c(s)) +X∗c (s) +G∗c(s)
= P (a|c)−s(X∗a(s) +G∗a(s)) + P (b|c)−s(X∗b (s) +G∗b(s))

where G∗c(s) for c ∈ A is the Mellin transform of Gc(z) and has the explicit expression
E[T c1 ]Γ(1 + s) + E[T c2 ]Γ(s+ 2)/2. This expression is here for completeness.

An alternative but convenient way to see this equations is to consider the vector X∗(s)
made of the quantities X∗c (s), c ∈ A which is also the Mellin transform of the vector X̃(z)
made of the coefficients X̃c(z). This yields the linear equation

−(s− 1)(X∗(s− 1) + G∗(s− 1)) + X∗(s) + G∗(s) =

= P(s)(X∗(s) + G∗(s))

where G∗(s) is the vector of the G∗c(s). It can be rewritten in

(s− 1)(X∗(s− 1) + G∗(s− 1)) = (I−P(s))(X∗(s) + G∗(s)).

This kind of equation has been studied in [7] where we introduce a new function x(s)

X∗(s) + G∗(s) = Γ(s)x(s).

Thus the equation becomes x(s− 1) = (I−P(s))x(s), which leads to x(s) =
∏
i≥0(I−P(s−

i))−1K where K is a constant vector. Notice that the matrices very likely don’t commute
thus the product order is specified from the left to right. Indeed we have

K =

∏
j≥2

(I−P(−j))−1

−1

x(−2) =
j=2∏
j=−∞

(I−P(j))x(−2). (A.1)

To handle it we need an explicit formula for x(−2). The following lemma from [7] is
useful in this regard. We provide a proof for completeness.

I Lemma 12. Let {fn}∞n=0 be a sequence of real numbers having the Poisson transform

F̃ (z) =
∞∑
n=0

f̃n
zn

n! e
−z :=

∞∑
n=0

fn
zn

n! , (A.2)

which is an entire function. Furthermore, let its Mellin transform F (s) have the following
factorization

F (s) =M[F̃ (z); s] = Γ(s)γ(s).

Assume that F (s) exists for <(s) ∈ (−2,−1), and that γ(s) is analytic for <(s) ∈ (−∞,−1).
Then

γ(−n) =
n∑
k=0

(
n

k

)
(−1)kf̃k = (−1)nfn, for n ≥ 2. (A.3)

Proof. Notice that fn and f̃n are related by [15]

f̃n =
n∑
k=0

(
n

k

)
(−1)n−kfk , n ≥ 0 .
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Define for some fixedM ≥ 2, the function F̃M (z) =
∑M−1
n=0 fn

zn

n! . Due to our assumptions,
we can continue F (s) analytically to the whole complex plane except s = −2,−3, . . . . In
particular, for <(s) ∈ (−M,−M + 1) we have F (s) =M[F̃ (z)− F̃M (z); s]. As s→ −M , due
to the factorization F (s) = Γ(s)γ(s), we have

F (s) = 1
s+M

(−1)M

M ! γ(−M) +O(1) ;

thus by the inverse Mellin transform, we have

F̃ (z)− F̃M (z) = (−1)M

M ! γ(−M)zM +O(zM+1) as z → 0 . (A.4)

But

F̃ (z)− F̃M (z) =
∞∑
i=M

fn
zn

n! = fM
zM

M ! +O(zM+1) . (A.5)

Comparing (A.4) and (A.5) shows that γ(−M) = (−1)MfM =
∑M
k=0

(
M
k

)
(−1)kf̃k. J

Now we can compute x(−2) using above and (7) leading to

x(−2) =
[
T a2 − 2P (a|a)
T b2 − 2P (a|b)

]
. (A.6)

In another notation x(−2) = (P2 − P)ea, where ea is the vector made of a single 1 at a
position and zero otherwise.

Next, we notice that the vector

Γ(s)
∏
i≥0

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j))x(−2)

may have a double pole on s = −1 since Γ(s) has a pole and also (I − P(s))−1 since
I−P(−1) = I−P is singular. But in fact the pole multiplicity is reduced by one, as prove
below. Let us also define

Q(s) =
∏
i≥1

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j)).

Then x(s) = (I−P(s))−1Q(s)x(−2).
We notice that when s→ −1, then Q(s) = I + (s+ 1)Q′(−1) +O((s+ 1)2). Furthermore

let λ(s) be the main eigenvalue of matrix P(s) and 1(s) and π(s) be respectively the right
and left main eigenvectors. We have λ(−1) = 1, 1(−1) = 1 is all made of one’s, and π(−1)
is the stationary distribution of the Markov source.

From the matrix spectral representation [15] we have

P(s) = λ(s)1(s)⊗ π(s) + R(s) = λ(s)Π(s) + R(s) (A.7)

where R(s) is the automorphism of the eigenplan orthogonal to the main eigenvector and
Π(s) = 1(s)⊗ π(s) where ⊗ is the tensor product. Note that Π ·P = P ·Π = Π. Then

(I−P(s))−1 = 1
1− λ(s)1(−s)⊗ π(s)

− 1
λ′(−1) (1′(−1)⊗ π(−1) + 1⊗ π′(−1)) + R(−1)−1 +O(s+ 1).
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Finally

(I−P(s))−1Q(s)x(−2) = 1⊗ π(s)(I−P)ea
1− λ(s) − 1

λ′(−1) (1′(−1)⊗ π + 1⊗ π′(−1))

+R−1(−1) + (s+ 1)
1− λ(s)1⊗Q′(−1) +O(s+ 1).

Since
s+ 1

1− λ(s) → −
1

λ′(−1)

when s→ −1, and ΠP(I−P)ea = (Π−Π)ea = 0. Also

R−1(−1)(I−P)Pea = Pea − 〈πPea〉1 = Pea − 〈πea〉1. (A.8)

We finally have

lim
s→−1

x(s) = Pea − πa1− 1
λ′(−1)1〈

(
π′(−1) + πQ′(−1)

)
(I−P)Pea〉, (A.9)

where πa is the coefficient of the stationary distribution π at symbol a.
Now we are in position to establish asymptotics of Xc(z) for large z and through

depoissonization asymptotics of E[T cm]. The inverse Mellin transform is

X̃c(z) = 1
2iπ

∫ x+i∞

x−i∞
X∗c (s)z−sds (A.10)

valid for all x ∈]− 2,−1[. Remembering that Tc(z) = X̃c(z) + P (a|c)z we have indeed

X̃(z) = 1
2iπ

∫ x+i∞

x−i∞
Γ(s)x(s)z−sds− 1

2iπ

∫ x+i∞

x−i∞
G∗(s)z−sds. (A.11)

We know that T(z)− X̃(z) is decaying exponentially fast when z →∞.
Moving the line of integration toward the right, we meet a single pole at s = −1 of

G∗(s)z−z and its residues is −zPea. Then

1
2iπ

∫ x+i inf ty

x−i∞
G∗(s)z−sds = −Pea +O(z−M )

for all M > 0.
The value −1 is also a simple pole for z−sΓ(s)x(s). We know that its residue is

−z
(

Pea − πa1− 1
λ′(−1)1〈

(
π′(−1) + πQ′(−1)

)
(I−P)Pea〉

)
. (A.12)

Therefore we have

X(z) = z

(
πa + 1

λ′(−1)1〈
(
π′(−1) + πQ′(−1)

)
(I−P)Pea〉

)
1 + o(z). (A.13)

For irrational case, we know that s = −1 is the only pole on the line <(s) = −1, leading to
the error term o(z) coming from other poles of (I−P(s))−1 which may occur on the right
half plan of s = −1.

But in the rational case, there is the possibility of other poles regularly spaced on the
axis <(s) = −1 with some specific matrices P detailed in [7] where the coefficients αabc are
introduced. In these very specific cases (the uniform probability distribution on A is one
of them) the o(z) term should be replaced by a term zQc(log z) + O(z1−ε), where Qc is a
periodic vector of very small amplitude and mean zero, and ε > 0 depends on the matrix P.
This proves Theorem 3(i).

AofA 2020



15:18 Lempel-Ziv’78 for Markov Sources

B Proof of Theorem 3(ii): Variance

We now analyze asymptotically V(z) = (Va(z), Vb(z)) that satisfies the system of differential-
functional equations (8). In order to apply depoissonization, for θ ∈ [0, π/2] we define C(θ)
as the complex cone containing the complex number z such that | arg(z)| ≤ θ on increasing
domains [15, 5]

Ck(θ) = {z, z ∈ C(θ)&|z| ≤ ρk}

with ρ = minc{ 1
P (a|c) ,

1
P (b|c)}.

Our first goal is to prove that Vc(z) = O(z). We shall use use the increasing domain
approach [15] applied to (8) following the footsteps of the proof of Lemma 7A of [3]. From
Fact 1 of [3] we conclude that

Vc(z) = Vc(ρz)e−z(1−ρ) + e−z
∫ z

ρz

ex (Va(P (a|c)x) + Vb(P (b|c)x) + g(x)) dx (B.14)

where g(z) = P (a|c)− P 2(a|c) + [Xc
z(z)]2 = O(1). Indeed, it follows from Fact 1 of [3] that

the differential equation like

f ′(z) = b(z)− a(z)f(z) (B.15)

satisfies

f(z) = f(z0)eA(z0)−A(z) +
∫ z

z0

b(x)eA(x)−A(z)dx

where A(z) =
∫
a(z) is the primitive function of a(z). Setting in (B.15) f(z) = Vc(z),

b(z) = Va(P (a|c)z) + Vb(P (b|c)z) + g(z) and a(z) = 1 we obtain (B.14).
Now we apply induction over the increasing domains. In short, we assume that for

z ∈ Ck(θ) we have |Vc(z)| ≤ Bk|z| for some Bk. Using the induction of the increasing
domains we prove, as in the Appendix of [3] that Bk are bounded. This completes the proof,
after applying the depoissonization lemma of [4].

In order to find a precise estimate of the asymptotic development of V(z) we denote
V∗(s) the Mellin transform of V(z). From (8) we arrive at

−(s− 1)V∗(s− 1) + V∗(s) = P(s)V∗(s) + g∗(s),

where g∗(s) is the Mellin transform of the vector made of the coefficients (∂zXc(z))2. Let
V∗(s) = Γ(s)B(s) and g∗(s) = Γ(s)G(s). Then

B(s) = (I−P(s))−1 (B(s− 1) + G(s)) .

The quantity (I−P(s))−1 has a pole at s = −1. Together with Γ(s) it would give a double
pole at s = −1 which is not possible, as proved above. Indeed, notice that the coefficient at
the double pole at s = 1 is Π(B(−2) + G(−1). But G(−1) is the the coefficient at z of g(z)
and B(−2) is the coefficient at z2 of V(z), as already proved in Lemma 12. Then we easily
see that B(−2) + G(−1) = P2ea −Pea, and consequently the coefficient at the double pole
at s = 1− is equal to Π(P2ea −Pea) = (Π−Π)ea = 0, as desired.

Therefore, the contribution of pole s = −1 to the asymptotic of V(z) is B(−1) becomes

B(−1) = 1
λ′(−1)

(
〈π′(−1)(B(−2) + G(−1))〉+ 〈π(B′(−2) + G′(−1))〉

)
1

+(I−R(−1))−1(B(−2) + G(−1)).
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Notice also that (I−R(−1))−1(P2ea −Pea) = 〈πPea〉1−Pea = 〈πea〉1−Pea.
The real issue here is how to compute B′(−2) and G′(−1), which we address next.

I Lemma 13. Let a function g(z) =
∑
n≥1

an
n! z

n and f(z) = g(z)e−z =
∑
n≥1

bn
n! z

n. Let
also gk(z) =

∑
n≤k

an
n! z

n and fk(z) = f(z)− gk(z)e−z with f∗k (s) being its Mellin transform
defined for −k − 1 < <(s) < 0. Then

lim
s→−k

(
f∗(s)
Γ(s)

)′
= f∗k (−k)

(
1

Γ(s)

)′
s=−k

+
∑
n≤k

an
n!

(
s〈n〉

)′
s=−k

= f∗k (−k)(−1)n−1n! +
∑
n≤k

an
n!

(
s〈n〉

)′
s=−k

where s〈n〉 = Γ(s+n)
Γ(s) = (s+ n− 1)× · · · × s.

Proof. We start with a simple identity

f∗(s)− f∗k (s)
Γ(s) =

∑
n≤k

an
n! s
〈n〉

which is easy to derive. But the Mellin transform of fk(z) and f∗k (s) are defined for
−k− 1 < <(s) < 0. The derivative of f∗k (s)/Γ(s) at s = −k is equal to f∗k (−k)

(
Γ−1(s)

)′
s=−k

since Γ−1(−k) = 0. Finally we notice that [15]

lim
s→−k

(
1

Γ(s)

)′
= lim
s→−k

Ψ(s)
Γ(s) = lim

s→−k

(s+ n)Ψ(s)
(s+ n)Γ(s) = (−1)n−1n!

where Ψ(s) is the psi function. J

In absence of specific properties on fk(z) there is no other way than numerical computation
to get an estimate of f∗k (−k). Finally, we can present a precise asymptotic expression for the
variance.

I Theorem 14. We have V(z) = ω̄a1z + o(z) in the aperiodic case, and in the periodic case
V(z) = ω̄a1z +Q2(log z)z +O(z1−ε) for some ε > 0 and Q2(.) being a periodic function of
small amplitude and mean zero, where

ω̄a = 1
λ′(−1)

(
〈π′(−1)((P− I)Pea〉+ 〈π(B′(−2) + G′(−1))〉

)
+ 〈πea〉. (B.16)

Notice that ω = B(−1) + Pea.
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