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Abstract
The stochastic and latent block models are clustering and coclustering tools that are com-

monly used for network analyses, such as community detection or collaborative filtering. We
present a variational inference algorithm for the stochastic block model and the latent block
model for sparse graphs, which leverages on the sparsity of edges to scale up to a very large
number of nodes. This algorithm is implemented in SparseBM, a Python module that takes
advantage of the hardware speed up provided by graphics processing units (GPU).

1 Introduction
Dense graphs are usually represented by adjacency matrices as illustrated in Figure 1. When the

average degree of vertices is low, most elements of the adjacency matrix are zero; the matrix is sparse.
Such type of graph is commonly found in datasets generated from social networks or collaborative
systems. For instance, the Movielens-25M dataset [Harper and Konstan, 2015] can be model by a
bipartite network made of 120,000 users and 60,000 movies vertices with an average degree of 112 or
by a biadjacency matrix with a sparsity rate of 97.7%. In such a context, the size of the adjacency
matrix poses a computational problem for handling the model, be it the stochastic block model (SBM)
[Holland et al., 1983] or the latent block model (LBM) [Govaert and Nadif, 2008, Nadif and Govaert,
2010].

These generative models for random graphs rely on mixtures, assuming that the observations are
generated from finite mixture components in rows and columns. They have found applications in
many areas such as text analysis [Selosse et al., 2020], genomic analysis [Aubert et al., 2016], ecology
[Bar-Hen et al., 2020], collaborative filtering [Corneli et al., 2020], or political analysis [Latouche
et al., 2011, Wyse and Friel, 2012]. These probabilistic models provide a co-clustering analysis of
the nodes of a graph that can be compared, among others, spectral methods [Dhillon, 2001, Kluger
et al., 2003], mutual information methods [Dhillon et al., 2003], modularity based methods [Labiod
and Nadif, 2011] or non-negative matrix tri-factorization [Ding et al., 2006].

Though adjacency lists are routinely used to represent sparse graphs in a compact way, the
packages developed for SBM and LBM [Leger, 2016, Bhatia et al., 2017] rely on computations on
dense adjacency matrices to benefit from the computational efficiency offered by matrix calculus. In
this article, we show how to efficiently conduct inference with the SBM and LBM in very large sparse
graphs, using a computational representation based on an adjacency list instead of an adjacency
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Figure 1: A binary graph on the left and its adjacency matrix on the center. The matrix on the right
is the adjacency matrix reorganized according to the node clustering infered by the stochastic block
model.

matrix. This inference optimized for sparse graphs is implemented in SparseBM, a Python module
that also takes advantage of the hardware speed up provided by graphics processing units (GPUs).
Our contributions allow the analysis of graphs whose size is beyond the reach of current SBM and
LBM implementations.

The article is organized as follows; we present the mathematical foundation of the stochastic and
latent block models in Section 2. Section 3 describes the original variational inferences and the ones we
propose to reduce the complexity for sparse graphs. We provide an overview of the functionalities of
the SparseBM module through the various examples of Section 4. Section 5 then reports experiments
on synthetic datasets that show that our computational tricks are relevant to analyze sparse matrices.

2 Stochastic and latent block models
2.1 Notation

Let n1 be the number of vertices of a graph and n2 the number of vertices of the second set when
considering a bipartite graph. Sums and products relative to the first and second set of vertices (if
bipartite) will be indexed respectively by i and j, and the classes of these two types of vertices will be
indexed by q ∈ {1, . . . , k1} and l ∈ {1, . . . , k2}. The bounds of summations or products will be implicit,
for example ∑i will be a shorthand for ∑n1

i=1 and ∏ijql for ∏n1
i=1∏

n2
j=1∏

k1
q=1∏

k2
l=1. We use set-builder

notation to describe sets that are defined by a predicate, rather than explicitly enumerated, a colon
separator in sums and products specifying this domain. For example, ∑ijql∶ i≠j, Xij=1 is the quadruple
sum on i, j, q, and l, such as the indices i and j are not equal and Xij = 1, that is, an edge is present
from vertex i to vertex j.

2.2 Stochastic block model
The binary stochastic block model (SBM) is a probabilistic model that classifies the vertices of a

graph. It is typically used to model the relationships (represented by edges) between homogeneous
objects (represented by vertices). For instance, a social network can be represented with a graph,
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possibly directed, in which the vertices are people and the edges are their interactions. Each edge
from vertex i to vertex j is associated to a random variable Xij that codes for its presence: Xij = 1
if an edge is present and Xij = 0 otherwise. The SBM assumes a partition of the vertices that
corresponds to a strong structure of the (n1 × n1) adjacency matrix X in homogeneous blocks. This
block structure is unveiled by reordering the rows and columns ofX according to their class index; for
k1 classes, the reordering reveals k1 × k1 homogeneous blocks in the adjacency matrix. The partition
is governed by the latent variable U , the n1×k1 indicator matrix of classes (Uiq = 1 if vertex i belongs
to class q and Uiq = 0 otherwise). The class indicator of vertex i will be denoted Ui. The SBM makes
several assumptions on the dependencies:

Vertex classes are independent and identically distributed The latent variables Ui are
independent and follow a multinomial distribution M(1;α), where α = (α1, ..., αk1) are the mixing
proportions of vertices:

P(U ;α) =∏
i

P(Ui;α)

P(Uiq = 1;α) = αq ,

with α ∈ S(k1−1) = {α ∈ Rk1
+ ∣∑q αq = 1}.

Given the vertex classes, the edge presences are independent and identically distributed
Given the vertex classes U , the edge presencesX are independent and follow a Bernoulli distribution
of parameter π = (πql; q = 1, ..., k1; l = 1, ..., k1): the probability of the presence of edge Xij depends
only on the classes of the two vertices i and j.

P(X ∣U ;π ) =∏
ij

P(Xij ∣Ui,Uj ;π )

P(Xij = 1∣UiqUjl = 1;π ) = πql .

To summarize, the parameters of the SBM are θ = (α,π) and the probability mass function of X
can be written as:

P(X; θ) = ∑
U∈I

⎛

⎝
∏
iq

αq
Uiq

⎞

⎠

⎛

⎝
∏
jl

αl
Ujl

⎞

⎠

⎛

⎝
∏
iqjl

φ(Xij ;πql)UiqUjl
⎞

⎠
,

where φ(Xij ;πql) = πXijql (1−πql)1−Xij is the mass function of a Bernoulli variable, and where I denotes
the set of all possible partitions of the n1 vertices into k1 groups.

2.3 Latent Block Model
The binary latent block model (LBM) can be seen as an extended binary SBM that co-classifies

the vertices of a bipartite graph. It is typically used to model the relationships between two types
of homogeneous objects, represented by nodes of type (1) and nodes of type (2). The LBM forms a
double partition with k1 groups in the set of vertices of type (1) and k2 groups in the set of vertices
of type (2). For instance, a recommendation system can be represented with a bipartite graph in
which type-(1) vertices are people, type-(2) vertices are items, and edges represent purchases. Each
edge from type-(1) vertex i to type-(2) vertex j is associated to a random variable Xij coding for
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its presence. The partitions of the two sets of vertices are governed by the latent variables U and
V , U being the n1 × k1 indicator matrix of the classes of type-(1) vertices, and V being the n2 × k2
indicator matrix of the classes of type-(2) vertices. The class indicator of type-(1) vertex i will be
denoted Ui, and similarly, the class indicator of type-(2) vertex j will be denoted V j . The (n1 × n2)
binary matrix X can be seen as the biadjacency matrix of the bipartite graph. The LBM makes
assumptions similar to those of the SBM on dependencies:

Independent and identically distributed vertex classes of the two partitions The latent
variables U and V are independent and follow respectively the multinomial distributions M(1;α)

and M(1;β), where α = (α1, ..., αk1) and β = (β1, ..., βk2) are the mixing proportions of vertices of
the sets (1) and (2):

P(U ,V ) =∏
i

P(Ui;α)∏
j

P(V j ;β)

P(Uiq = 1;α) = αq and P(Vjl = 1;β) = βl ,

with α ∈ S(k1−1) and β ∈ S(k2−1).

Given vertex classes, independent and identically distributed block entries in the biad-
jacency matrix Given U and V , the classes of vertices, the biadjacencies Xij are independent
and follow a Bernoulli distribution of parameter π = (πql; q = 1, ..., k1; l = 1, ..., k2): all elements of a
block follow the same probability distribution.

To summarize, the parameters of the LBM are θ = (α,β,π) and the probability mass function of
X can be written as:

P(X; θ) = ∑
(U ,V )∈I×J

⎛

⎝
∏
iq

αq
Uiq

⎞

⎠

⎛

⎝
∏
jl

βl
Vjl

⎞

⎠

⎛

⎝
∏
ijql

φ(Xij ;πql)UiqVjl
⎞

⎠
,

where φ(Xij ;πql) = πXijql (1−πql)1−Xij is the mass function of a Bernoulli variable, and where I (resp.
J) denotes the set of all possible partitions of the n1 type-(1) vertices (resp. n2 type-(2) vertices)
into k1 (resp. k2) groups.

3 Estimation procedure
3.1 Computationally efficient variational inference for sparse graphs

The generative modelling the SBM and LBM can be split into a set of unobserved latent variables
and a set of observed variables consisting ofX only. An observation ofX is referred to as incomplete
data, and an observation of X together with the latent variables is referred to as complete data.

Given the incomplete data, the objective is to infer the model parameters θ via maximum like-
lihood θ̂ = arg maxθ P(X; θ). When applying the Expectation Maximization (EM) algorithm to the
SBM or to the LBM to maximize P(X; θ), the computation of the complete log-likelihood at the
E-step requires the posterior distribution of the latent variables, which is intractable, because the
search space of the latent variables is combinatorially too large [Brault and Mariadassou, 2015].

This problem is well known in the context of co-clustering; for both SBM and LBM, some methods
[Celeux and Diebolt, 1985, Keribin et al., 2015] rely on a stochastic E-step with Monte Carlo sampling,
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Stochastic block model

Ui Uj

Xij

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∀i, Ui
iid
∼ M(1;α)

∀j, Uj
iid
∼ M(1;α)

∀i, j, Xij ∣UiqUjl = 1 ind
∼ B(πql)

with α ∈ Sk1−1 and πql ∈ [0,1]

Latent block model

Ui V j

Xij

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∀i, Ui
iid
∼ M(1;α)

∀j, V j
iid
∼ M(1;β)

∀i, j, Xij ∣Uiq = 1, Vjl = 1 ind
∼ B(πql)

with α ∈ Sk1−1, β ∈ Sk2−1 and πql ∈ [0,1]

Figure 2: Summary of the standard stochastic block model (left) and latent block model (right) with
binary data.

but these strategies are not suited to large-scale problems. We follow the variational reformulation
of the problem that is more efficient in high dimension. The variational EM (VEM) [Jordan et al.,
1999, Jaakkola, 2000] introduces qγ , a restricted set of parametric distributions defined over the latent
variables, and maximizes the following lower bound on the log-likelihood of the incomplete data:

J (qγ , θ) = log P(X; θ) −KL(qγ ∥ P(⋅∣X; θ)) , (1)

where KL stands for the Kullback-Leibler divergence and qγ denotes the variational distribution over
the latent variables. The criterion J (qγ , θ) can be rewritten as as the sum of a negative “energy”
and the entropy of qγ :

J (qγ , θ) = Eqγ [log P(X, ⋅ ; θ)] +H(qγ) , (2)
where Eqγ is the expectation with respect to the variational distribution and H(qγ) is the entropy
of the variational distribution. The variational distribution qγ is restricted to belong to a set of
distributions that lead to a tractable computation of the criterion of Equation 2. Here, as is usually
done in variational inference, the conditional independence of the latent variables is assumed; this is
known as the “mean-field approximation” [Parisi, 1988].

3.1.1 Variational inference of the stochastic block model

The mean-field approximation applied to the stochastic block model leads to the following form
of the variational distribution over the latent variable U :

qγ =∏
i

M(1;τ i)

where τ i ∈ Sk1−1 are the parameters of the variational multinomial distributions. Using the condi-
tional independence of the latent variable, the criterion J (qγ , θ) is expanded as:

J (qγ , θ) = Eqγ [log P(X ∣U ; θ)] +Eqγ [log P(U ;α)] +H(qγ) ,
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where
Eqγ [log P(X ∣U ; θ)] = ∑

ijql∶ i≠j
τiqτjl(Xij logπql + (1 −Xij) log(1 − πql)) (3)

Eqγ [log P(U ;α)] =∑
iq

τiq logαq

H(qγ) = −∑
iq

τiq log τiq .

As Equation 3 involves a sum on all the non-diagonal elements of the adjacency matrix X, the
computation of the criterion J (qγ , θ) is of complexity O(n1

2k1
2
) where n1 is the number of vertices

and k1 is the number of classes. When the considered graph is large, this complexity becomes
problematic: the adjacency matrix may not fit in memory and/or the computation time may be
prohibitive. However, Equation (3) can be rewritten by summing only the non-zero elements of the
adjacency matrix, lowering the complexity to O(#{ij ∶ Xij = 1}k1

2
) where #{ij ∶ Xij = 1} is the

number of non-zero entries in X:
Eqγ [log P(X ∣U ; θ)] = ∑

ijql∶ i≠j, Xij=1
τiqτjl(logπql − log(1 − πql))

+∑
ql

log (1 − πql)
⎛

⎝
(∑
i

τiq)
⎛

⎝
∑
j

τjl
⎞

⎠
−∑

i

τiqτil
⎞

⎠
.

We give the parameter estimates as defined for the original VEM inference in Algorithm 1 and
for the VEM inference optimized for sparse graphs in Algorithm 2. The memory complexity of the
algorithm, originally in O(n1

2), is reduced to O(#{ij ∶Xij = 1}).
Algorithm 1: VEM - Original version

Data: Adjacency matrix X

Inititialize τ , α, π

while J (t) −J (t−1) > atol do

repeat
Qil = ∑j∶ j≠i τjlXij

Rl = ∑i∶ i≠j τjl

τiq ∝ αq∏l π
Qil
ql (1 − πql)Rl−Qil

until convergence;

αq =
1
n1
∑i τiq

πql =
∑ij∶ i≠j τiqτjlXij
∑ij∶ i≠j τiqτjl

Algorithm 2: VEM - Sparse graph
Data: Sparse adjacency matrix X

Inititialize τ , α, π

while J (t) −J (t−1) > atol do

repeat
Qil = ∑j∶ j≠i,Xij=1 τjl

τiq ∝ αq∏jl∶ j≠i(1 −

πql)
τjl∏l (

πql
(1−πql))

Qil

until convergence;

αq =
1
n1
∑i τiq

πql =
∑ij∶ i≠j,Xij=1 τiqτjl

(∑i τiq)(∑j τjl)−∑i τiqτil

3.1.2 Variational inference of the latent block model

The mean-field approximation applied to the latent block model leads to the following form of
the variational distribution over the latent variables U and V :

qγ =∏
i

M(1;τ (U)i ) ∏
j

M(1;τ (V )j ) ,

6



where τ (U)i and τ (V )j are respectively the parameters of the variational multinomial distributions over
the latent variables U and V . Using the conditional independence of the latent variable, the criterion
J (qγ , θ) is expanded as:

J (qγ , θ) = Eqγ [log P(X ∣U ,V ; θ)] +Eqγ [log P(U ;α)] +Eqγ [log P(V ;β)] +H(qγ) ,

where

Eqγ [log P(X ∣U ,V ; θ)] = ∑
ijql

τ
(U)
iq τ

(V )
jl (Xij logπql + (1 −Xij) log(1 − πql)) (4)

Eqγ [log P(U ;α)] =∑
iq

τ
(U)
iq logαq

Eqγ [log P(V ;β)] =∑
jl

τ
(V )
jl logβl

H(qγ) = −∑
iq

τ
(U)
iq log τ (U)iq −∑

jl

τ
(U)
jl log τ (V )jl .

Equation 4 is rewritten analogously to Equation 3, reducing the computational complexity of J (qγ , θ)
from O(n1n2k1k2) to O(#{ij ∶Xij = 1}k1k2):

Eqγ [log P(X ∣U ,V ; θ)] = ∑
ijql∶Xij=1

τ
(U)
iq τ

(V )
jl (logπql − log(1 − πql))

+∑
ql

log (1 − πql)(∑
i

τ
(U)
iq )

⎛

⎝
∑
j

τ
(V )
jl

⎞

⎠
.

We give the parameter estimates as defined for the original VEM inference in Algorithm 3 and for
the VEM inference for sparse graphs in Algorithm 4.
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Algorithm 3: VEM - Original version
Data: Adjacency matrix X

Inititialize τ (U), τ (V ), α, β, π

while J (t) −J (t−1) > atol do

repeat
Qil = ∑j τ

(V )
jl Xij

Rl = ∑j τ
(V )
jl

τ
(U)
iq ∝ αq∏l π

Qil
ql (1 − πql)Rl−Qil

Sjq = ∑i τ
(U)
iq Xij

Tq = ∑i τ
(U)
iq

τ
(V )
jl ∝ βl∏q π

Sjq
ql (1 − πql)Tq−Sjq

until convergence;

αq =
∑i τ

(U)
iq

n1

βl =
∑j τ

(V )
jl

n2

πql =
∑ij τ

(U)
iq τ

(V )
jl

Xij

∑ij τ
(U)
iq τ

(V )
jl

Algorithm 4: VEM - Sparse graph
Data: Sparse adjacency matrix X
Inititialize τ (U), τ (V ), α, β, π
while J (t) −J (t−1) > atol do

repeat
Qil = ∑j∶Xij=1 τ

(V )
jl

τ
(U)
iq ∝

αq∏jl(1 − πql)τ
(V )
jl ∏l

π
Qil
ql

(1−πql)Qil

Sjq = ∑i∶Xij=1 τ
(U)
iq

τ
(V )
jl ∝

βl∏iq(1 − πql)τ
(U)
iq ∏q

π
Sjq
ql

(1−πql)Sjq

until convergence;

αq =
∑i τ

(U)
iq

n1

βl =
∑j τ

(V )
jl

n2

πql =
∑ij∶Xij=1 τ

(U)
iq τ

(V )
jl

∑i τ
(U)
iq ∑j τ

(V )
jl

3.2 Initialization
The optimization process does not ensure convergence towards a global optimum of the criterion

J (qγ , θ). EM-like algorithms are known to be sensitive to initialization, particularly when applied
to models with discrete latent spaces, and may get stuck into unsatisfactory local maxima [Biernacki
et al., 2003, Baudry and Celeux, 2015].

A simple heuristic consists in training for a few iterations from several random initializations,
and pursuing optimization for the solutions with highest value of the variational criterion [see, e.g.,
small EM for mixtures Baudry and Celeux, 2015]. Another approach is to rely on cheaper clustering
methods, such as k-means or spectral clustering, to initialize the algorithm [Shireman et al., 2015].
These methods bring out good estimates but spend a great deal of computing and memory resources
when the data matrices get bigger. Some existing methods such as online k-means [MacQueen,
1967] are adapted to handle large matrices and could be used. However for simplicity reasons, the
initialization procedure implemented in SparseBM is limited to multiple random initializations.

3.3 Selection of the number of classes
The Integrated Completed Likelihood criterion (ICL), inspired by the Bayesian Information Cri-

terion, was originally proposed to select a relevant number of classes for mixture models [Biernacki
et al., 2000]. It was extended to select an appropriate number of classes in the SBM [Daudin et al.,
2008] and in the LBM [Keribin et al., 2012].
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The ICL criterion for the standard SBM reads:

ICLSBM(k1) = log∫ P(X,U ∣θ;k1 )P(θ;k1)dθ

= max
θ

log P(X,U ; θ) − k1
2

2
log (n1(n1 − 1)) − k1 − 1

2
logn1 + o(logn1) ,

with P(θ;k1) the prior distribution of parameters as set by Daudin et al. [2008].
The ICL criterion for the standard LBM reads:

ICLLBM(k1, k2) = log∫ P(X,U ,V ∣θ;k1, k2 )P(θ;k1, k2)dθ

= max
θ

log P(X,U ,V ; θ) − k1k2

2
log (n1n2)

−
k1 − 1

2
logn1 −

k2 − 1
2

logn2 + o(logn1) + o(logn2) ,

with P(θ;k1, k2) the prior distribution of parameters as modeled by Keribin et al. [2012]. In practice,
as the log-likelihood maximum can not be computed, its variational approximation is used. By taking
into account the latent variables, ICL is clustering-oriented, whereas BIC or AIC are driven by the
faithfulness to the distribution of X [Biernacki et al., 2000].

Being dependent on the log-likelihood, the ICL criterion is also sensitive to the VEM solution, and
thus to its initialization, which usually leads to an irregular ICL behavior during the exploration of
the number of groups. To get a smoother ICL response, SparseBM implements a procedure, known
as “split and merge” or “forward and backward” [Tabouy, 2019], that relies on the two alternated
strategies to “split” and “merge” groups. Starting from a trained model with k1 groups, the split
strategy explores all models obtained by splitting one of the k1 groups and keeps the best model
estimation in terms of ICL. The split strategy brings out models with more and more groups until
no model improves upon the best ICL criterion found so far, and thus for a few iterations. In our
implementation the number of groups considered should not exceeds min(1.5 ⋅ nbestq , nbestq + 10) with
nbestq being the number of groups of the best model found so far in the split strategy. The merge
strategy then starts backward, from the model with the highest number of groups, and explores
all models obtained by merging two groups. It generates new model estimations with a decreasing
number of groups until merging becomes pointless (e.g., from a SBM with only two groups). The
split and merge procedure is repeated until no best model estimations comes out for a few iterations
(two in the implementation we propose).

4 Block clustering with SparseBM
SparseBM is a Python module that implements the Bernoulli latent block model and stochastic

block model variational inference, optimized for large and sparse graphs. The estimation procedure is
fully written with tensor expressions to easily leverage parallel computing. The module can optionally
make use of the CuPy library that provides GPU accelerated computing. As CuPy and NumPy share
the same interface, only one agnostic code is implemented. The SparseBM module is distributed
through the PyPI repository (https://pypi.org/project/sparsebm/) and the documentation is
available at https://sparsebm.readthedocs.io/.
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4.1 Installation guidelines
As the module is available through PyPI repository, it can be installed with the package installer

pip:

pip install sparsebm

To leverage GPU accelaration, the CuPy module must be installed with pip or anaconda or directly
with the extra argument when installing SparseBM:

pip install sparsebm[gpu]

For users that do not have GPU, we advise the free serverless Jupyter notebook environment pro-
vided by Google Colab (https://colab.research.google.com/) where the Cupy module is already
installed and ready to use with one GPU.

4.2 SparseBM: A Python interface
The main features exposed to the user are:

• generate_SBM_dataset and generate_LBM_dataset, two functions optimized to generate large
and sparse graphs using either the SBM or the LBM;

• SBM and LBM, two classes implementing the stochastic block model and latent block model
inference optimized for sparse graphs and using the multiple random initialisations strategy;

• ModelSelection a class implementing the model selection algorithm based on split-merge strat-
egy and making use of the SBM or LBM for inference.

In the following sections, we give more details and provide examples of the use of these algorithm.

Sparse network generation: network generation avoids the manipulation of dense matrices by
creating the adjacency matrix X block by block.

The function generate_SBM_dataset generates a network from the SBM with a specified number
of nodes n1, a number of classes k1, class proportions (α ∈ Sk1−1), and array of connection probabilities
(π ∈ [0,1]k1×k1) between classes. The argument symmetric indicates wether the adjacency matrix is
symmetric, when clustering an undirected graph. The generated sparse adjacency matrix X (from
class scipy.sparse.coo_matrix) and the generated indicator matrix of the latent classes U are
returned in a dictionary at keys “data” and “cluster_indicator”.

>>> from sparsebm import generate_SBM_dataset
>>> import numpy as np
>>>
>>> connection_probabilities = np.array(
... [
... [0.1, 0.036, 0.012, 0.0614],
... [0.036, 0.074, 0.0, 0.0],
... [0.012, 0.0, 0.11, 0.024],
... [0.0614, 0.0, 0.024, 0.086],
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... ]

... )
>>>
>>> dataset = generate_SBM_dataset(
... number_of_nodes=10 ** 3,
... number_of_clusters=4,
... connection_probabilities=connection_probabilities,
... cluster_proportions=np.array([0.25, 0.25, 0.25, 0.25]),
... symmetric=True,
... )
>>> graph = dataset["data"]
>>> cluster_indicator = dataset["cluster_indicator"]

If no argument is given to generate_SBM_dataset, a random affiliation graph [Matias and Miele,
2017] is generated:

>>> from sparsebm import generate_SBM_dataset
>>> dataset = generate_SBM_dataset()

A similar function called generate_LBM_dataset generates a bipartite network following the LBM
and returns a dictionary that contains the adjacency matrix and the indicator matrices of the row
and column latent classes.

Stochastic block model: the SBM is encapsulated in the SBM class that inherits from the
sklearn.base.BaseEstimator that is the base class for all estimators in scikit-learn. A number
of classes k1 should be specified with the parameter n_clusters, otherwise the default value 5 is
used. If the Cupy module is installed, the class uses the GPU with the largest memory available.
The parameter use_gpu can disable this behaviour and the parameter gpu_index can enforce the use
of a specific GPU.

The class implements the random initializations strategy that corresponds to the execution of
n_iter_early_stop EM steps on n_init random initializations, followed by iterations until the
convergence of the criterion for the n_init_total_run-best preliminary results; n_iter_early_stop,
n_init and n_init_total_run are parameters of the class.

The convergence of the criterion J (qγ , θ) is declared when

J
(t)

(qγ , θ) −J
(t−5)

(qγ , θ) ≤ (atol + rtol ⋅ ∣J (t)(qγ , θ)∣) ,

with atol = 1e−4 and rtol = 1e−10 being respectively the absolute tolerance and the relative tolerance.

>>> from sparsebm import SBM
>>> model = SBM(
... n_clusters=4,
... max_iter=10000,
... n_init=100,
... n_init_total_run=10,
... n_iter_early_stop=10,
... rtol=1e-10,
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... atol=1e-4,

... verbosity=1,

... use_gpu=True,

... gpu_index=0,

... )

The class implements a fit method to learn from the adjacency matrix of a graph, being either
sparse (class scipy.sparse) or not (class numpy.array):

>>> model.fit(graph)

---------- START RANDOM INITIALIZATIONS ----------
100 of 100 Initializations: [100% ] [ Elapsed Time: 0:00:03 ]
---------- START TRAINING BEST INITIALIZATIONS ----------
10 of 10 Runs: [100% ] [ Elapsed Time: 0:00:01 ]

When successfully inferred, the class proportionsα of the SBM, the array π of connection probabilities
and the labels of the classes are available by the model properties
group_membership_probability, group_connection_probabilities and labels. The Integrated
Completed Loglikelihood can be computed with the method get_ICL. The inferred labels can be
compared with the true ones using the adjusted rand index [Hubert and Arabie, 1985] that computes
a similarity measure between two clusterings:

>>> from sparsebm.utils import ARI
>>> ari = ARI(cluster_indicator.argmax(1), model.labels)
>>> print("Adjusted Rand index is {:.2f}".format(ari))
>>> print("ICL is {:.4f}".format(model.get_ICL()))

Adjusted Rand index is 1.00
ICL is -74473.8386

The function reorder_rows reorders the rows of a sparse matrix enabling an easy visualization (see
Figure 3) of the adjacency matrix reordered according to the estimated or true classes:

>>> from sparsebm.utils import reorder_rows
>>> reorder_rows(graph, np.argsort(model.labels))
>>> graph = graph.transpose()
>>> reorder_rows(graph, np.argsort(model.labels))
>>> graph = graph.transpose()

Latent block model: the LBM class encapsulates the latent block model and its random initialisa-
tion procedure. Its usage is similar to the SBM class and we refer the reader to the documentation of
the SparseBM module or examples for more details. To measure the agreement between co-clustering
partitions, the module proposes an implementation of the co-clustering adjusted rand index (CoARI)
[Robert et al., 2020], which is an extension of the adjusted rand index for co-clustering.

12



(a) (b) (c)

Figure 3: Adjacency matrix of a network with n1 = 1000 nodes generated by a SBM. The size of black
pixels representing edges is enlarged for visualization reasons: (a) original adjacency matrix, (b)
adjacency matrix reordered according to the true classes, (c) adjacency matrix reordered according
to the classes returned by inference. Note that the permutation of classes observed between (b) and
(c) is irrelevant for clustering purposes.

Model selection: the ModelSelection class encapsulates the model selection algorithm based
on the split and merge strategy. The argument model_type specifies the model to use and
n_clusters_max specifies the upper bound on the number of groups the algorithm can explore.
The split strategy stops when the number of classes is greater than min(1.5 ⋅ nnq_best, nnq_best +
10, n_clusters_max) with nnq_best being the number of classes of the best model found so far
during the split strategy. The merge strategy stops when the minimum relevant number of classes is
reached. The split and merge strategy alternates until no best model is found for two iterations.

The argument plot specifies if an illustration is displayed to the user during the learning process
(see Figure 4).

>>> from sparsebm import ModelSelection
>>> sbm_model_selection = ModelSelection(
... model_type="SBM",
... n_clusters_max=30,
... plot=True,
... use_gpu=True,
... gpu_index=None,
... )

To learn from a sparse network, the class implements the fit method and returns the best model
found.

>>> sbm_selected = sbm_model_selection.fit(graph, symmetric=True)
>>> number_of_clusters = dataset['cluster_indicator'].shape[1]
>>> print(f"Best ICL is {sbm_selected.get_ICL():.4f}")
>>> print(f"The original number of classes was {number_of_clusters}")
>>> print(f"The model selection picked {sbm_selected.n_clusters} classes")
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Figure 4: Illustration displayed during model selection with merge and split strategy for a SBM.

Best ICL is -44162.1115
The original number of classes was 4
The model selection picked 4 classes

Sckikit-learn integration: the SBM and LBM implemented in Sparsebm use the Scikit-learn in-
terface style; models are thus compatible with the pipelines, model selection, and evaluation metrics.
We illustrate the integration with Scikit-learn with a gridsearch algorithm to select the best number
of classes. In this example, the GridSearchCV instance receives the SBM model and runs the algo-
rithm with the numbers of classes specified. The model are compared together with the Integrated
Completed Likelihood criterion implemented in the SBM model. A number of jobs to run in parallel is
specified with the argument n_jobs; the SparseBM module is using all GPUs available in the system.
The number of jobs in parallel should never be higher that the number of GPUs in the system.

>>> from sparsebm import SBM
>>> import sklearn
>>> from sklearn import metrics
>>>
>>> graph = dataset["data"]
>>> clusters_index = dataset["cluster_indicator"].argmax(1)
>>> number_of_nodes = graph.shape[0]
>>>
>>> model = SBM(verbosity=0)
>>> train = test = np.arange(number_of_nodes)
>>> n_clusters = [1, 2, 3, 4, 5, 6, 7, 8]
>>> grid = sklearn.model_selection.GridSearchCV(
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... estimator=model,

... n_jobs=4,

... param_grid={"n_clusters": n_clusters},

... cv=[[train, test]],

... verbose=1,

... )
>>> print("Start grid search algorithm")
>>> grid.fit(graph, symmetric=True)
>>> ari = metrics.adjusted_rand_score(
... clusters_index, grid.best_estimator_.labels
... )
>>> print(
... "Best number of classes is {} according to ICL".format(
... grid.best_params_["n_clusters"]
... )
... )

Start grid search algorithm
Fitting 1 folds for each of 8 candidates, totalling 8 fits
[Parallel(n_jobs=4)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=4)]: Done 8 out of 8 | elapsed: 22.4s finished
Best number of classes is 4 according to ICL
Adjusted Rand Index is 0.97891220269305

4.3 SparseBM: A command line interface
The SparseBM module comes with a command line interface to run the LBM and SBM inference

and to generate networks. The SBM/LBM model selection algorithm to chose the best number of
classes according to the ICL criterion is available. The command sparsebm must be followed by the
positional argument sbm or lbm or modelselection or generate to use respectively the stochastic
block model inference or the latent block model inference or the model selection algorithm or to
generate a network with one of these models.

Latent block model: sparsebm lbm command line returns a JSON file that contains the two
partitions and the estimated parameters of the model. The usage of the command is detailed below:

sparsebm lbm --help

usage: sparsebm lbm [-h] [-k1 N_ROW_CLUSTERS] [-k2 N_COLUMN_CLUSTERS]
[-o OUTPUT] [-sep SEP] [-niter MAX_ITER] [-ninit N_INIT]
[-early N_ITER_EARLY_STOP] [-ninitt N_INIT_TOTAL_RUN]
[-t TOL] [-v VERBOSITY] [-gpu USE_GPU] [-idgpu GPU_INDEX]
ADJACENCY_MATRIX

optional arguments:
-h, --help show this help message and exit
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mandatory arguments:
ADJACENCY_MATRIX List of edges in CSV format
-k1 N_ROW_CLUSTERS, --n_row_clusters N_ROW_CLUSTERS

number of row clusters
-k2 N_COLUMN_CLUSTERS, --n_column_clusters N_COLUMN_CLUSTERS

number of row clusters

output:
-o OUTPUT, --output OUTPUT

File path for the json results.

optional arguments:
-sep SEP, --sep SEP CSV delimiter to use. Default is ','
-niter MAX_ITER, --max_iter MAX_ITER

Maximum number of EM step
-ninit N_INIT, --n_init N_INIT

Number of initializations that will be run
-early N_ITER_EARLY_STOP, --n_iter_early_stop N_ITER_EARLY_STOP

Number of EM steps to perform for each initialization.
-ninitt N_INIT_TOTAL_RUN, --n_init_total_run N_INIT_TOTAL_RUN

Number of the best initializations that will be run
until convergence.

-t TOL, --tol TOL Tolerance of likelihood to declare convergence.
-v VERBOSITY, --verbosity VERBOSITY

Degree of verbosity. Scale from 0 (no message
displayed) to 3.

-gpu USE_GPU, --use_gpu USE_GPU
Specify if a GPU should be used.

-idgpu GPU_INDEX, --gpu_index GPU_INDEX
Specify the gpu index if needed.

Stochastic block model: sparsebm sbm command line returns a JSON file that contains the
partition and the estimated parameters of the model. A summary of the usage of the command is
given:

sparsebm sbm --help

usage: sparsebm sbm [-h] [-sep SEP] [-o OUTPUT] [-k N_CLUSTERS] [-s SYMMETRIC]
[-niter MAX_ITER] [-ninit N_INIT]
[-early N_ITER_EARLY_STOP] [-ninitt N_INIT_TOTAL_RUN]
[-t TOL] [-v VERBOSITY] [-gpu USE_GPU] [-idgpu GPU_INDEX]
ADJACENCY_MATRIX

Model selection: sparsebm modelselection sbm or sparsebm modelselection lbm command
line returns a JSON file that contains the partition (two if LBM is used) and the estimated parameters
of the best model found.
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sparsebm modelselection --help

usage: sparsebm modelselection [-h] -t TYPE [-gpu USE_GPU] [-idgpu GPU_INDEX]
[-s SYMMETRIC] [-p PLOT] [-o OUTPUT]
ADJACENCY_MATRIX

Graph generation: sparsebm generate command line returns a JSON file that contains the
partition and a CSV file that contains the adjacency list of the graph. A summary of the usage of
the command is given:

sparsebm generate --help

positional arguments:
{sbm,lbm} model to generate data with

sbm use the stochastic block model to generate data
lbm use the latent block model to generate data

Example: with the two following commands, a network is generated and trained with a SBM using
the model selection algorithm:

sparsebm generate sbm
sparsebm modelselection edges.csv -t=sbm

---------- START Graph Generation ----------
25 of 25 Generating block: [100% ]
Groups and params saved in ./groups.json
Edges saved in ./edges.csv
Spliting

Explore models from 1 classes
...

Merging
Explore models from 5 classes
...

Best icl is -53481.1475
Model has been trained successfully.
Value of the Integrated Completed Loglikelihood is -53481.1475
The model selection picked 3 classes
Results saved in results.json

5 Experiments and discussion
5.1 Benefit of our inference optimized for sparse graphs.

We compare our inference optimized for sparse graphs to the original inference designed for dense
graphs. We provide here experiments on the latent block model only, similar results can be obtained
for the stochastic block model.
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Figure 5: Median computation times for inferring the parameters of a latent block model as a function
of the sparsity of the bipartite graph (size 10 000× 5 000); ▲ is for the algorithm optimized for sparse
graph; ★ is for the original algorithm.

5.1.1 Fixed graph size, varying sparsity

A network is generated following an LBM with n1 = 10 000 nodes of type (1) equally divided in
three classes and n2 = 5 000 nodes of type (2) equally divided in four classes, with parameters

α =
⎛
⎜
⎝

1/3
1/3
1/3

⎞
⎟
⎠

and β =

⎛
⎜
⎜
⎜
⎝

1/4
1/4
1/4
1/4

⎞
⎟
⎟
⎟
⎠

and π = 2−ε ⋅
⎛
⎜
⎝

1 1/4 1/4 1/2
1/4 1/4 1/4 1/4
1/2 1/4 1/2 1/2

⎞
⎟
⎠
, (5)

where ε ∈ {1,⋯,6} defines the sparsity level of the graph. For each value of ε, a network is generated
using these model parameters; the size of the generated networks is fixed, and their sparsity increases
with ε.

The model parameters are estimated for each network using the original variational inference and
the one optimized for sparse graphs (Algorithms 3 and 4, respectively). This process is repeated 100
times for each graph size.

The medians of the computation times are presented in Figure 5 as a function of the sparsity of
the graph (that is, one minus the ratio of actual edges to the n1 × n2 edges of the complete bipartite
graph). The execution times reported here correspond to the overall estimation protocol, that is,
(i) 20 EM steps from 100 random initializations, followed by (ii) iterations until convergence of the
criterion for the 10 best results reached after these 20 initial steps (see Section 4). The architecture
used is a NVIDIA DGX Server with a Tesla V100-SXM2-32GB GPU.

The execution times of the original inference (★ in Figure 5) are nearly constant, except for
high sparsity levels, where the difficulty of estimation is increased, requiring more EM steps to
reach convergence. For our inference optimized for sparse graphs (▲ in Figure 5), the quasi-linear
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Figure 6: Median computation times for inferring the parameters of a latent block model as a function
of the graph size n1 × n2 (fixed sparsity rate of 98.76%); ▲ is for the algorithm optimized for sparse
graph, ★ is for the original algorithm.

trend of execution times in relation to the sparsity rate gives an experimental confirmation of the
O(#{ij ∶Xij = 1}k1k2) computational complexity.

5.1.2 Fixed graph sparsity, varying size

A second series of network is generated following the LBM, using the parameters of the previous
experiment, except that ε is now fixed to 5, leading to a sparsity rate of 98.76%, and that the sizes
of the bipartite graph, n1 and n2, vary. The model parameters are estimated for each network using
the original variational inference and the one optimized for sparse graphs. The random initialization
strategy and the hardware architecture used are as in the previous experiments.

The medians of the computation times are reported in Figure 6 as a function of the size of the
bipartite graph n1×n2. Using the original inference (★ in Figure 6), the GPU is out of memory (OOM)
with graphs bigger than 10 000×5 000 due to the O(n1n2) memory complexity of the algorithm. The
inference implemented in SparseBM (▲ in Figure 6) can be applied to much bigger graphs as its
memory complexity is in O(#{ij ∶ Xij = 1} and gets some execution times scaling linearly with the
size of the graphs.

5.2 Comparing SparseBM with existing R packages.
We compare the LBM inference from SparseBM, Blockcluster [Bhatia et al., 2017] and Block-

models [Leger, 2016], using the previous experimental setup with varying graph size.
For a fair comparison between packages, the architecture used is an Intel Xeon Gold 6138 CPU

(2.00GHz) with 16 GB RAM (Blockcluster and Blockmodels are not designed for GPU). Due to
this limited computation power, we lighten the previous optimization protocol: we still use 100
random initializations, but they are only updated for 10 EM steps (a single step for Blockmodels as
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Figure 7: Median computation times (CPU), using existing implementations for inferring the pa-
rameters of a latent block model as a function of the graph size n1 × n2 with a fixed sparsity rate
of 98.76%; ▲ is for SparseBM, ★ is for Blockmodels and + is for Blockcluster. The median of the
computation real elapsed time using SparseBM with GPU is also displayed (●) for reference. The
graphic on the left zooms in on smaller networks.

this number is hard-coded); then, only the (single) best initialization is selected to pursue until the
convergence of the criterion.

The medians on a hundred repetitions of the execution times are reported in Figure 7. The
algorithms from Blockmodels and Blockcluster are saturating the RAM memory with networks of
sizes respectively (15 000×7 500) and (40 000×20 000), while the implementation of SparseBM allows
bigger networks as shown in Section 5.1. Note that the limited memory footprint of SparseBM
provided by the sparse reformulation of the inference is essential to reach the low computation times
(real elapsed time) with GPU (● in Figure 7). Indeed, using LBM on large networks would not be
possible otherwise due to the very limited memory size available in common GPUs.

We verify that the solutions obtained by the different packages are of comparable accuracy by
calculating their similarity with the true generated coclustering. To measure this similarity, we use
the coclustering adjusted rand index scores (CoARI) [Robert et al., 2020], whose median values are
reported in Table 1. The scores increase for bigger networks as the inference problems gets easier;
the scores for SparseBM and Blockcluster are similar, and we suppose that the poorer performance
of Blockmodels is mainly due to the lighter initialization procedure.
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CoARI measured with packages
Network size (n1 ⋅ n2) SparseBM Blockcluster Blockmodels

1.25 × 105 0.05 0.05 0.05
5.00 × 105 0.11 0.11 0.09
1.13 × 106 0.18 0.18 0.12
2.00 × 106 0.26 0.26 0.15
3.13 × 106 0.33 0.32 0.18
4.50 × 106 0.41 0.41 0.20
1.25 × 107 0.68 0.68 0.25
5.00 × 107 0.93 0.93 0.30
1.13 × 108 0.98 0.98 OMM
2.00 × 108 1.00 1.00 OMM

Table 1: Median of the coclustering adjusted rand index (CoARI, a similarity measure between two
coclusterings), using existing implementations, as a function of the graph size n1 × n2 with a fixed
sparsity rate of 98.76%.

6 Conclusion
SparseBM is a Python module for estimating Bernoulli block models in large and sparse networks,

relying on the stochastic and latent block models. After a brief review of the mathematical foundations
of these models, we present the details of the calculations that are used in this package to reduce the
complexity of the original formulation of the variational inference. These computation tricks enable
the modeling of large sparse networks for which computational and memory requirements prohibit
the use of the original approach.

We present the command line interface and the Scikit-learn compatible Python API of the module
through examples, and we conduct experiments on synthetic datasets showing that this inference is
computationally efficient, enabling to analyze many more networks in a given computation time, and
more importantly, much larger sparse networks than the ones that can be handled by current packages.
In future releases of the SparseBM module, we plan to extend the models to other probability
distributions that may result in sparse graphs, such as the zero-inflated Poisson.
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