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SparseBM: A Python Module for Handling Sparse Graphs with Block Models

The stochastic and latent block models are clustering and coclustering tools that are commonly used for network analyses, such as community detection or collaborative filtering. We present a variational inference algorithm for the stochastic block model and the latent block model for sparse graphs, which leverages on the sparsity of edges to scale up to a very large number of nodes. This algorithm is implemented in SparseBM, a Python module that takes advantage of the hardware speed up provided by graphics processing units (GPU).

Introduction

Dense graphs are usually represented by adjacency matrices as illustrated in Figure 1. When the average degree of vertices is low, most elements of the adjacency matrix are zero; the matrix is sparse. Such type of graph is commonly found in datasets generated from social networks or collaborative systems. For instance, the Movielens-25M dataset [Harper and [START_REF] Harper | The movielens datasets: History and context[END_REF] can be model by a bipartite network made of 120,000 users and 60,000 movies vertices with an average degree of 112 or by a biadjacency matrix with a sparsity rate of 97.7%. In such a context, the size of the adjacency matrix poses a computational problem for handling the model, be it the stochastic block model (SBM) [START_REF] Holland | Stochastic blockmodels: First steps[END_REF] or the latent block model (LBM) [Govaert and[START_REF] Govaert | Block clustering with Bernoulli mixture models: Comparison of different approaches[END_REF][START_REF] Nadif | Latent block model for contingency table[END_REF].

These generative models for random graphs rely on mixtures, assuming that the observations are generated from finite mixture components in rows and columns. They have found applications in many areas such as text analysis [START_REF] Selosse | Textual data summarization using the self-organized co-clustering model[END_REF], genomic analysis [START_REF] Aubert | Latent block model for metagenomic data[END_REF], ecology [START_REF] Bar-Hen | Block models for multipartite networks[END_REF], collaborative filtering [START_REF] Corneli | Co-clustering of ordinal data via latent continuous random variables and not missing at random entries[END_REF], or political analysis [Latouche et al., 2011, Wyse and[START_REF] Wyse | Block clustering with collapsed latent block models[END_REF]. These probabilistic models provide a co-clustering analysis of the nodes of a graph that can be compared, among others, spectral methods [START_REF] Inderjit | Co-clustering documents and words using bipartite spectral graph partitioning[END_REF][START_REF] Kluger | Spectral biclustering of microarray data: Coclustering genes and conditions[END_REF], mutual information methods [START_REF] Inderjit | Information-theoretic coclustering[END_REF], modularity based methods [START_REF] Labiod | Co-clustering for binary and categorical data with maximum modularity[END_REF] or non-negative matrix tri-factorization [START_REF] Ding | Orthogonal nonnegative matrix t-factorizations for clustering[END_REF].

Though adjacency lists are routinely used to represent sparse graphs in a compact way, the packages developed for SBM and LBM [START_REF] Leger | Blockmodels: A r-package for estimating in latent block model and stochastic block model, with various probability functions, with or without covariates[END_REF][START_REF] Singh Bhatia | Blockcluster: An r package for modelbased co-clustering[END_REF] rely on computations on dense adjacency matrices to benefit from the computational efficiency offered by matrix calculus. In this article, we show how to efficiently conduct inference with the SBM and LBM in very large sparse graphs, using a computational representation based on an adjacency list instead of an adjacency matrix. This inference optimized for sparse graphs is implemented in SparseBM, a Python module that also takes advantage of the hardware speed up provided by graphics processing units (GPUs).

Our contributions allow the analysis of graphs whose size is beyond the reach of current SBM and LBM implementations.

The article is organized as follows; we present the mathematical foundation of the stochastic and latent block models in Section 2. Section 3 describes the original variational inferences and the ones we propose to reduce the complexity for sparse graphs. We provide an overview of the functionalities of the SparseBM module through the various examples of Section 4. Section 5 then reports experiments on synthetic datasets that show that our computational tricks are relevant to analyze sparse matrices.

Stochastic and latent block models

Notation

Let n 1 be the number of vertices of a graph and n 2 the number of vertices of the second set when considering a bipartite graph. Sums and products relative to the first and second set of vertices (if bipartite) will be indexed respectively by i and j, and the classes of these two types of vertices will be indexed by q ∈ {1, . . . , k 1 } and l ∈ {1, . . . , k 2 }. The bounds of summations or products will be implicit, for example ∑ i will be a shorthand for

∑ n1 i=1 and ∏ ijql for ∏ n1 i=1 ∏ n2 j=1 ∏ k1 q=1 ∏ k2 l=1
. We use set-builder notation to describe sets that are defined by a predicate, rather than explicitly enumerated, a colon separator in sums and products specifying this domain. For example, ∑ ijql∶ i≠j, Xij =1 is the quadruple sum on i, j, q, and l, such as the indices i and j are not equal and X ij = 1, that is, an edge is present from vertex i to vertex j.

Stochastic block model

The binary stochastic block model (SBM) is a probabilistic model that classifies the vertices of a graph. It is typically used to model the relationships (represented by edges) between homogeneous objects (represented by vertices). For instance, a social network can be represented with a graph, possibly directed, in which the vertices are people and the edges are their interactions. Each edge from vertex i to vertex j is associated to a random variable X ij that codes for its presence: X ij = 1 if an edge is present and X ij = 0 otherwise. The SBM assumes a partition of the vertices that corresponds to a strong structure of the (n 1 × n 1 ) adjacency matrix X in homogeneous blocks. This block structure is unveiled by reordering the rows and columns of X according to their class index; for k 1 classes, the reordering reveals k 1 × k 1 homogeneous blocks in the adjacency matrix. The partition is governed by the latent variable U , the n 1 × k 1 indicator matrix of classes (U iq = 1 if vertex i belongs to class q and U iq = 0 otherwise). The class indicator of vertex i will be denoted U i . The SBM makes several assumptions on the dependencies: Vertex classes are independent and identically distributed The latent variables U i are independent and follow a multinomial distribution M(1; α), where α = (α 1 , ..., α k1 ) are the mixing proportions of vertices:

P(U ; α) = i P(U i ; α) P(U iq = 1; α) = α q , with α ∈ S (k1-1) = {α ∈ R k1 + ∑ q α q = 1}.
Given the vertex classes, the edge presences are independent and identically distributed Given the vertex classes U , the edge presences X are independent and follow a Bernoulli distribution of parameter π = (π ql ; q = 1, ..., k 1 ; l = 1, ..., k 1 ): the probability of the presence of edge X ij depends only on the classes of the two vertices i and j.

P( X U

; π ) = ij P( X ij U i , U j ; π ) P( X ij = 1 U iq U jl = 1; π ) = π ql .
To summarize, the parameters of the SBM are θ = (α, π) and the probability mass function of X can be written as:

P(X; θ) = U ∈I ⎛ ⎝ iq α q Uiq ⎞ ⎠ ⎛ ⎝ jl α l U jl ⎞ ⎠ ⎛ ⎝ iqjl φ(X ij ; π ql ) UiqU jl ⎞ ⎠ , where φ(X ij ; π ql ) = π Xij ql (1-π ql ) 1-Xij
is the mass function of a Bernoulli variable, and where I denotes the set of all possible partitions of the n 1 vertices into k 1 groups.

Latent Block Model

The binary latent block model (LBM) can be seen as an extended binary SBM that co-classifies the vertices of a bipartite graph. It is typically used to model the relationships between two types of homogeneous objects, represented by nodes of type (1) and nodes of type (2). The LBM forms a double partition with k 1 groups in the set of vertices of type (1) and k 2 groups in the set of vertices of type (2). For instance, a recommendation system can be represented with a bipartite graph in which type-(1) vertices are people, type-(2) vertices are items, and edges represent purchases. Each edge from type-(1) vertex i to type-(2) vertex j is associated to a random variable X ij coding for its presence. The partitions of the two sets of vertices are governed by the latent variables U and V , U being the n 1 × k 1 indicator matrix of the classes of type-(1) vertices, and V being the n 2 × k 2 indicator matrix of the classes of type-(2) vertices. The class indicator of type-(1) vertex i will be denoted U i , and similarly, the class indicator of type-(2) vertex j will be denoted V j . The (n 1 × n 2 ) binary matrix X can be seen as the biadjacency matrix of the bipartite graph. The LBM makes assumptions similar to those of the SBM on dependencies: Independent and identically distributed vertex classes of the two partitions The latent variables U and V are independent and follow respectively the multinomial distributions M(1; α) and M(1; β), where α = (α 1 , ..., α k1 ) and β = (β 1 , ..., β k2 ) are the mixing proportions of vertices of the sets (1) and (2):

P(U , V ) = i P(U i ; α) j P(V j ; β) P(U iq = 1; α) = α q and P(V jl = 1; β) = β l ,
with α ∈ S (k1-1) and β ∈ S (k2-1) .

Given vertex classes, independent and identically distributed block entries in the biadjacency matrix Given U and V , the classes of vertices, the biadjacencies X ij are independent and follow a Bernoulli distribution of parameter π = (π ql ; q = 1, ..., k 1 ; l = 1, ..., k 2 ): all elements of a block follow the same probability distribution.

To summarize, the parameters of the LBM are θ = (α, β, π) and the probability mass function of X can be written as:

P(X; θ) = (U ,V )∈I×J ⎛ ⎝ iq α q Uiq ⎞ ⎠ ⎛ ⎝ jl β l V jl ⎞ ⎠ ⎛ ⎝ ijql φ(X ij ; π ql ) UiqV jl ⎞ ⎠ , where φ(X ij ; π ql ) = π Xij ql (1 -π ql ) 1-Xij
is the mass function of a Bernoulli variable, and where I (resp. J) denotes the set of all possible partitions of the n 1 type-(1) vertices (resp. n 2 type-(2) vertices) into k 1 (resp. k 2 ) groups.

3 Estimation procedure

Computationally efficient variational inference for sparse graphs

The generative modelling the SBM and LBM can be split into a set of unobserved latent variables and a set of observed variables consisting of X only. An observation of X is referred to as incomplete data, and an observation of X together with the latent variables is referred to as complete data.

Given the incomplete data, the objective is to infer the model parameters θ via maximum likelihood θ = arg max θ P(X; θ). When applying the Expectation Maximization (EM) algorithm to the SBM or to the LBM to maximize P(X; θ), the computation of the complete log-likelihood at the E-step requires the posterior distribution of the latent variables, which is intractable, because the search space of the latent variables is combinatorially too large [START_REF] Brault | Co-clustering through latent bloc model: A review[END_REF].

This problem is well known in the context of co-clustering; for both SBM and LBM, some methods [Celeux andDiebolt, 1985, Keribin et al., 2015] rely on a stochastic E-step with Monte Carlo sampling, Stochastic block model but these strategies are not suited to large-scale problems. We follow the variational reformulation of the problem that is more efficient in high dimension. The variational EM (VEM) [START_REF] Michael | An introduction to variational methods for graphical models[END_REF][START_REF] Jaakkola | Tutorial on variational approximation methods[END_REF] introduces q γ , a restricted set of parametric distributions defined over the latent variables, and maximizes the following lower bound on the log-likelihood of the incomplete data:

U i U j X ij ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∀i, U i iid ∼ M(1; α) ∀j, U j iid ∼ M(1; α) ∀i, j, X ij U iq U jl = 1 ind ∼ B(π ql ) with α ∈ S k1-1 and π ql ∈ [0, 1] Latent block model U i V j X ij ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∀i, U i iid ∼ M(1; α) ∀j, V j iid ∼ M(1; β) ∀i, j, X ij U iq = 1, V jl = 1 ind ∼ B(π ql ) with α ∈ S k1-1 , β ∈ S k2-1 and π ql ∈ [0, 1]
J (q γ , θ) = log P(X; θ) -KL(q γ ∥ P(⋅ X; θ)) , (1) 
where KL stands for the Kullback-Leibler divergence and q γ denotes the variational distribution over the latent variables. The criterion J (q γ , θ) can be rewritten as as the sum of a negative "energy" and the entropy of q γ :

J (q γ , θ) = E qγ [log P(X, ⋅ ; θ)] + H(q γ ) , ( 2 
)
where E qγ is the expectation with respect to the variational distribution and H(q γ ) is the entropy of the variational distribution. The variational distribution q γ is restricted to belong to a set of distributions that lead to a tractable computation of the criterion of Equation 2. Here, as is usually done in variational inference, the conditional independence of the latent variables is assumed; this is known as the "mean-field approximation" [START_REF] Parisi | Statistical Field Theory[END_REF].

Variational inference of the stochastic block model

The mean-field approximation applied to the stochastic block model leads to the following form of the variational distribution over the latent variable U :

q γ = i M(1; τ i )
where τ i ∈ S k1-1 are the parameters of the variational multinomial distributions. Using the conditional independence of the latent variable, the criterion J (q γ , θ) is expanded as:

J (q γ , θ) = E qγ [log P(X U ; θ)] + E qγ [log P(U ; α)] + H(q γ ) , where E qγ [log P(X U ; θ)] = ijql∶ i≠j τ iq τ jl (X ij log π ql + (1 -X ij ) log(1 -π ql ))
(3)

E qγ [log P(U ; α)] = iq τ iq log α q H(q γ ) = - iq τ iq log τ iq .
As Equation 3 involves a sum on all the non-diagonal elements of the adjacency matrix X, the computation of the criterion

J (q γ , θ) is of complexity O(n 1 2 k 1 2
) where n 1 is the number of vertices and k 1 is the number of classes. When the considered graph is large, this complexity becomes problematic: the adjacency matrix may not fit in memory and/or the computation time may be prohibitive. However, Equation ( 3) can be rewritten by summing only the non-zero elements of the adjacency matrix, lowering the complexity to O

(#{ij ∶ X ij = 1}k 1 2 ) where #{ij ∶ X ij = 1} is the number of non-zero entries in X: E qγ [log P(X U ; θ)] = ijql∶ i≠j, Xij =1 τ iq τ jl (log π ql -log(1 -π ql )) + ql log (1 -π ql ) ⎛ ⎝ i τ iq ⎛ ⎝ j τ jl ⎞ ⎠ - i τ iq τ il ⎞ ⎠ .
We give the parameter estimates as defined for the original VEM inference in Algorithm 1 and for the VEM inference optimized for sparse graphs in Algorithm 2. The memory complexity of the algorithm, originally in

O(n 1 2 ), is reduced to O(#{ij ∶ X ij = 1}). Algorithm 1: VEM -Original version Data: Adjacency matrix X Inititialize τ , α, π while J (t) -J (t-1) > atol do repeat Q il = ∑ j∶ j≠i τ jl X ij R l = ∑ i∶ i≠j τ jl τ iq ∝ α q ∏ l π Q il ql (1 -π ql ) R l -Q il until convergence; α q = 1 n1 ∑ i τ iq π ql = ∑ ij∶ i≠j τiqτ jl Xij ∑ ij∶ i≠j τiqτ jl Algorithm 2: VEM -Sparse graph Data: Sparse adjacency matrix X Inititialize τ , α, π while J (t) -J (t-1) > atol do repeat Q il = ∑ j∶ j≠i,Xij =1 τ jl τ iq ∝ α q ∏ jl∶ j≠i (1 - π ql ) τ jl ∏ l π ql (1-π ql ) Q il until convergence; α q = 1 n1 ∑ i τ iq π ql = ∑ ij∶ i≠j,X ij =1 τiqτ jl (∑ i τiq) ∑ j τ jl -∑ i τiqτ il

Variational inference of the latent block model

The mean-field approximation applied to the latent block model leads to the following form of the variational distribution over the latent variables U and V :

q γ = i M 1; τ (U ) i j M 1; τ (V ) j , where τ (U ) i and τ (V ) j
are respectively the parameters of the variational multinomial distributions over the latent variables U and V. Using the conditional independence of the latent variable, the criterion J (q γ , θ) is expanded as:

J (q γ , θ) = E qγ [log P(X U , V ; θ)] + E qγ [log P(U ; α)] + E qγ [log P(V ; β)] + H(q γ ) ,
where

E qγ [log P(X U , V ; θ)] = ijql τ (U ) iq τ (V ) jl (X ij log π ql + (1 -X ij ) log(1 -π ql )) (4) E qγ [log P(U ; α)] = iq τ (U ) iq log α q E qγ [log P(V ; β)] = jl τ (V ) jl log β l H(q γ ) = - iq τ (U ) iq log τ (U ) iq - jl τ (U ) jl log τ (V ) jl .
Equation 4 is rewritten analogously to Equation 3, reducing the computational complexity of J (q γ , θ)

from O(n 1 n 2 k 1 k 2 ) to O(#{ij ∶ X ij = 1}k 1 k 2 ): E qγ [log P(X U , V ; θ)] = ijql∶ Xij =1 τ (U ) iq τ (V ) jl (log π ql -log(1 -π ql )) + ql log (1 -π ql ) i τ (U ) iq ⎛ ⎝ j τ (V ) jl ⎞ ⎠ .
We give the parameter estimates as defined for the original VEM inference in Algorithm 3 and for the VEM inference for sparse graphs in Algorithm 4.

Algorithm 3: VEM -Original version

Data: Adjacency matrix X Inititialize τ (U ) , τ (V ) , α, β, π while J (t) -J (t-1) > atol do repeat

Q il = ∑ j τ (V ) jl X ij R l = ∑ j τ (V ) jl τ (U ) iq ∝ α q ∏ l π Q il ql (1 -π ql ) R l -Q il S jq = ∑ i τ (U ) iq X ij T q = ∑ i τ (U ) iq τ (V ) jl ∝ β l ∏ q π Sjq ql (1 -π ql ) Tq-Sjq until convergence; α q = ∑ i τ (U ) iq n1 β l = ∑ j τ (V ) jl n2 π ql = ∑ ij τ (U ) iq τ (V ) jl Xij ∑ ij τ (U ) iq τ (V ) jl
Algorithm 4: VEM -Sparse graph Data: Sparse adjacency matrix X Inititialize τ (U ) , τ (V ) , α, β, π while J (t) -J (t-1) > atol do repeat

Q il = ∑ j∶ Xij =1 τ (V ) jl τ (U ) iq ∝ α q ∏ jl (1 -π ql ) τ (V ) jl ∏ l π Q il ql (1-π ql ) Q il S jq = ∑ i∶ Xij =1 τ (U ) iq τ (V ) jl ∝ β l ∏ iq (1 -π ql ) τ (U ) iq ∏ q π S jq ql (1-π ql ) S jq
until convergence;

α q = ∑ i τ (U ) iq n1 β l = ∑ j τ (V ) jl n2 π ql = ∑ ij∶X ij =1 τ (U ) iq τ (V ) jl ∑ i τ (U ) iq ∑ j τ (V ) jl

Initialization

The optimization process does not ensure convergence towards a global optimum of the criterion J (q γ , θ). EM-like algorithms are known to be sensitive to initialization, particularly when applied to models with discrete latent spaces, and may get stuck into unsatisfactory local maxima [Biernacki et al., 2003, Baudry andCeleux, 2015].

A simple heuristic consists in training for a few iterations from several random initializations, and pursuing optimization for the solutions with highest value of the variational criterion [see, e.g., small EM for mixtures [START_REF] Baudry | EM for mixtures[END_REF]. Another approach is to rely on cheaper clustering methods, such as k-means or spectral clustering, to initialize the algorithm [START_REF] Shireman | Examining the effect of initialization strategies on the performance of Gaussian mixture modeling[END_REF]. These methods bring out good estimates but spend a great deal of computing and memory resources when the data matrices get bigger. Some existing methods such as online k-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] are adapted to handle large matrices and could be used. However for simplicity reasons, the initialization procedure implemented in SparseBM is limited to multiple random initializations.

Selection of the number of classes

The Integrated Completed Likelihood criterion (ICL), inspired by the Bayesian Information Criterion, was originally proposed to select a relevant number of classes for mixture models [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]. It was extended to select an appropriate number of classes in the SBM [START_REF] Daudin | A mixture model for random graphs[END_REF] and in the LBM [START_REF] Keribin | Model selection for the binary latent block model[END_REF].

The ICL criterion for the standard SBM reads:

ICL SBM (k 1 ) = log P( X, U θ; k 1 )P(θ; k 1 )dθ = max θ log P(X, U ; θ) - k 1 2 2 log (n 1 (n 1 -1)) - k 1 -1 2 log n 1 + o(log n 1 ) ,
with P(θ; k 1 ) the prior distribution of parameters as set by [START_REF] Daudin | A mixture model for random graphs[END_REF].

The ICL criterion for the standard LBM reads:

ICL LBM (k 1 , k 2 ) = log P( X, U , V θ; k 1 , k 2 )P(θ; k 1 , k 2 )dθ = max θ log P(X, U , V ; θ) - k 1 k 2 2 log (n 1 n 2 ) - k 1 -1 2 log n 1 - k 2 -1 2 log n 2 + o(log n 1 ) + o(log n 2 ) ,
with P(θ; k 1 , k 2 ) the prior distribution of parameters as modeled by [START_REF] Keribin | Model selection for the binary latent block model[END_REF]. In practice, as the log-likelihood maximum can not be computed, its variational approximation is used. By taking into account the latent variables, ICL is clustering-oriented, whereas BIC or AIC are driven by the faithfulness to the distribution of X [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF].

Being dependent on the log-likelihood, the ICL criterion is also sensitive to the VEM solution, and thus to its initialization, which usually leads to an irregular ICL behavior during the exploration of the number of groups. To get a smoother ICL response, SparseBM implements a procedure, known as "split and merge" or "forward and backward" [START_REF] Tabouy | Impact of Sampling on Structure Inference in Networks : Application to Seed Exchange Networks and to Ecology[END_REF], that relies on the two alternated strategies to "split" and "merge" groups. Starting from a trained model with k 1 groups, the split strategy explores all models obtained by splitting one of the k 1 groups and keeps the best model estimation in terms of ICL. The split strategy brings out models with more and more groups until no model improves upon the best ICL criterion found so far, and thus for a few iterations. In our implementation the number of groups considered should not exceeds min(1.5 ⋅ n best q , n best q + 10) with n best q being the number of groups of the best model found so far in the split strategy. The merge strategy then starts backward, from the model with the highest number of groups, and explores all models obtained by merging two groups. It generates new model estimations with a decreasing number of groups until merging becomes pointless (e.g., from a SBM with only two groups). The split and merge procedure is repeated until no best model estimations comes out for a few iterations (two in the implementation we propose).

Block clustering with SparseBM

SparseBM is a Python module that implements the Bernoulli latent block model and stochastic block model variational inference, optimized for large and sparse graphs. The estimation procedure is fully written with tensor expressions to easily leverage parallel computing. The module can optionally make use of the CuPy library that provides GPU accelerated computing. As CuPy and NumPy share the same interface, only one agnostic code is implemented. The SparseBM module is distributed through the PyPI repository (https://pypi.org/project/sparsebm/) and the documentation is available at https://sparsebm.readthedocs.io/.

Installation guidelines

As the module is available through PyPI repository, it can be installed with the package installer pip:

pip install sparsebm

To leverage GPU accelaration, the CuPy module must be installed with pip or anaconda or directly with the extra argument when installing SparseBM:

pip install sparsebm[gpu]
For users that do not have GPU, we advise the free serverless Jupyter notebook environment provided by Google Colab (https://colab.research.google.com/) where the Cupy module is already installed and ready to use with one GPU.

SparseBM: A Python interface

The main features exposed to the user are:

• generate_SBM_dataset and generate_LBM_dataset, two functions optimized to generate large and sparse graphs using either the SBM or the LBM;

• SBM and LBM, two classes implementing the stochastic block model and latent block model inference optimized for sparse graphs and using the multiple random initialisations strategy;

• ModelSelection a class implementing the model selection algorithm based on split-merge strategy and making use of the SBM or LBM for inference.

In the following sections, we give more details and provide examples of the use of these algorithm.

Sparse network generation: network generation avoids the manipulation of dense matrices by creating the adjacency matrix X block by block.

The function generate_SBM_dataset generates a network from the SBM with a specified number of nodes n 1 , a number of classes k 1 , class proportions (α ∈ S k1-1 ), and array of connection probabilities (π ∈ [0, 1] k1×k1 ) between classes. The argument symmetric indicates wether the adjacency matrix is symmetric, when clustering an undirected graph. The generated sparse adjacency matrix X (from class scipy.sparse.coo_matrix) and the generated indicator matrix of the latent classes U are returned in a dictionary at keys "data" and "cluster_indicator". If no argument is given to generate_SBM_dataset, a random affiliation graph [START_REF] Matias | Statistical clustering of temporal networks through a dynamic stochastic block model[END_REF] is generated:

>>>

>>> from sparsebm import generate_SBM_dataset >>> dataset = generate_SBM_dataset() A similar function called generate_LBM_dataset generates a bipartite network following the LBM and returns a dictionary that contains the adjacency matrix and the indicator matrices of the row and column latent classes.

Stochastic block model: the SBM is encapsulated in the SBM class that inherits from the sklearn.base.BaseEstimator that is the base class for all estimators in scikit-learn. A number of classes k 1 should be specified with the parameter n_clusters, otherwise the default value 5 is used. If the Cupy module is installed, the class uses the GPU with the largest memory available. The parameter use_gpu can disable this behaviour and the parameter gpu_index can enforce the use of a specific GPU.

The class implements the random initializations strategy that corresponds to the execution of n_iter_early_stop EM steps on n_init random initializations, followed by iterations until the convergence of the criterion for the n_init_total_run-best preliminary results; n_iter_early_stop, n_init and n_init_total_run are parameters of the class.

The convergence of the criterion J (q γ , θ) is declared when

J (t) (q γ , θ) -J (t-5) (q γ , θ) ≤ (atol + rtol ⋅ J (t) (q γ , θ) ) ,
with atol = 1e-4 and rtol = 1e-10 being respectively the absolute tolerance and the relative tolerance.

>>> The class implements a fit method to learn from the adjacency matrix of a graph, being either sparse (class scipy. When successfully inferred, the class proportions α of the SBM, the array π of connection probabilities and the labels of the classes are available by the model properties group_membership_probability, group_connection_probabilities and labels. The Integrated Completed Loglikelihood can be computed with the method get_ICL. The inferred labels can be compared with the true ones using the adjusted rand index [START_REF] Hubert | Comparing partitions[END_REF] that computes a similarity measure between two clusterings: >>> from sparsebm.utils import ARI >>> ari = ARI(cluster_indicator.argmax(1), model.labels) >>> print("Adjusted Rand index is {:.2f}".format(ari)) >>> print("ICL is {:.4f}".format(model.get_ICL()))

Adjusted Rand index is 1.00 ICL is -74473.8386
The function reorder_rows reorders the rows of a sparse matrix enabling an easy visualization (see Figure 3) of the adjacency matrix reordered according to the estimated or true classes: >>> from sparsebm.utils import reorder_rows >>> reorder_rows(graph, np.argsort(model.labels)) >>> graph = graph.transpose() >>> reorder_rows(graph, np.argsort(model.labels)) >>> graph = graph.transpose() Latent block model: the LBM class encapsulates the latent block model and its random initialisation procedure. Its usage is similar to the SBM class and we refer the reader to the documentation of the SparseBM module or examples for more details. To measure the agreement between co-clustering partitions, the module proposes an implementation of the co-clustering adjusted rand index (CoARI) [START_REF] Robert | Comparing high-dimensional partitions with the co-clustering adjusted rand index[END_REF], which is an extension of the adjusted rand index for co-clustering. The split strategy stops when the number of classes is greater than min(1.5 ⋅ nnq_best, nnq_best + 10, n_clusters_max) with nnq_best being the number of classes of the best model found so far during the split strategy. The merge strategy stops when the minimum relevant number of classes is reached. The split and merge strategy alternates until no best model is found for two iterations. The argument plot specifies if an illustration is displayed to the user during the learning process (see Figure 4). We illustrate the integration with Scikit-learn with a gridsearch algorithm to select the best number of classes. In this example, the GridSearchCV instance receives the SBM model and runs the algorithm with the numbers of classes specified. The model are compared together with the Integrated Completed Likelihood criterion implemented in the SBM model. A number of jobs to run in parallel is specified with the argument n_jobs; the SparseBM module is using all GPUs available in the system. The number of jobs in parallel should never be higher that the number of GPUs in the system. , 2, 3, 4, 5, 6, 7, 8 

>>> from sparsebm import SBM >>> import sklearn >>> from sklearn import metrics >>> >>> graph = dataset["data"] >>> clusters_index = dataset["cluster_indicator"].argmax(1) >>> number_of_nodes = graph.shape[0] >>> >>> model = SBM(verbosity=0) >>> train = test = np.arange(number_of_nodes) >>> n_clusters = [1

SparseBM: A command line interface

The SparseBM module comes with a command line interface to run the LBM and SBM inference and to generate networks. The SBM/LBM model selection algorithm to chose the best number of classes according to the ICL criterion is available. The command sparsebm must be followed by the positional argument sbm or lbm or modelselection or generate to use respectively the stochastic block model inference or the latent block model inference or the model selection algorithm or to generate a network with one of these models.

Latent block model: sparsebm lbm command line returns a JSON file that contains the two partitions and the estimated parameters of the model. The usage of the command is detailed below: We compare our inference optimized for sparse graphs to the original inference designed for dense graphs. We provide here experiments on the latent block model only, similar results can be obtained for the stochastic block model. Execution time (sec.)

sparsebm lbm --help usage: sparsebm lbm [-h] [-k1 N_ROW_CLUSTERS] [-k2 N_COLUMN_CLUSTERS] [-o OUTPUT] [-sep SEP] [-niter MAX_ITER] [-ninit N_INIT] [-early N_ITER_EARLY_STOP] [-ninitt N_INIT_TOTAL_RUN] [-t TOL] [-v VERBOSITY] [-gpu USE_GPU] [-idgpu
Figure 5: Median computation times for inferring the parameters of a latent block model as a function of the sparsity of the bipartite graph (size 10 000 × 5 000); ▲ is for the algorithm optimized for sparse graph; ★ is for the original algorithm.

Fixed graph size, varying sparsity

A network is generated following an LBM with n 1 = 10 000 nodes of type (1) equally divided in three classes and n 2 = 5 000 nodes of type (2) equally divided in four classes, with parameters

α = ⎛ ⎜ ⎝ 1 3 1 3 1 3 ⎞ ⎟ ⎠ and β = ⎛ ⎜ ⎜ ⎜ ⎝ 1 4 1 4 1 4 1 4 ⎞ ⎟ ⎟ ⎟ ⎠ and π = 2 - ⋅ ⎛ ⎜ ⎝ 1 1 4 1 4 1 2 1 4 1 4 1 4 1 4 1 2 1 4 1 2 1 2 ⎞ ⎟ ⎠ , ( 5 
)
where ∈ {1, ⋯, 6} defines the sparsity level of the graph. For each value of , a network is generated using these model parameters; the size of the generated networks is fixed, and their sparsity increases with .

The model parameters are estimated for each network using the original variational inference and the one optimized for sparse graphs (Algorithms 3 and 4, respectively). This process is repeated 100 times for each graph size.

The medians of the computation times are presented in Figure 5 as a function of the sparsity of the graph (that is, one minus the ratio of actual edges to the n 1 × n 2 edges of the complete bipartite graph). The execution times reported here correspond to the overall estimation protocol, that is, (i) 20 EM steps from 100 random initializations, followed by (ii) iterations until convergence of the criterion for the 10 best results reached after these 20 initial steps (see Section 4). The architecture used is a NVIDIA DGX Server with a Tesla V100-SXM2-32GB GPU.

The execution times of the original inference (★ in Figure 5) are nearly constant, except for high sparsity levels, where the difficulty of estimation is increased, requiring more EM steps to reach convergence. For our inference optimized for sparse graphs (▲ in Figure 5), the quasi-linear 

(#{ij ∶ X ij = 1}k 1 k 2 ) computational complexity.

Fixed graph sparsity, varying size

A second series of network is generated following the LBM, using the parameters of the previous experiment, except that is now fixed to 5, leading to a sparsity rate of 98.76%, and that the sizes of the bipartite graph, n 1 and n 2 , vary. The model parameters are estimated for each network using the original variational inference and the one optimized for sparse graphs. The random initialization strategy and the hardware architecture used are as in the previous experiments.

The medians of the computation times are reported in Figure 6 as a function of the size of the bipartite graph n 1 ×n 2 . Using the original inference (★ in Figure 6), the GPU is out of memory (OOM) with graphs bigger than 10 000 × 5 000 due to the O(n 1 n 2 ) memory complexity of the algorithm. The inference implemented in SparseBM (▲ in Figure 6) can be applied to much bigger graphs as its memory complexity is in O(#{ij ∶ X ij = 1} and gets some execution times scaling linearly with the size of the graphs.

Comparing SparseBM with existing R packages.

We compare the LBM inference from SparseBM, Blockcluster [START_REF] Singh Bhatia | Blockcluster: An r package for modelbased co-clustering[END_REF] and Blockmodels [START_REF] Leger | Blockmodels: A r-package for estimating in latent block model and stochastic block model, with various probability functions, with or without covariates[END_REF], using the previous experimental setup with varying graph size.

For a fair comparison between packages, the architecture used is an Intel Xeon Gold 6138 CPU (2.00GHz) with 16 GB RAM (Blockcluster and Blockmodels are not designed for GPU). Due to this limited computation power, we lighten the previous optimization protocol: we still use 100 random initializations, but they are only updated for 10 EM steps (a single step for Blockmodels as Figure 7: Median computation times (CPU), using existing implementations for inferring the parameters of a latent block model as a function of the graph size n 1 × n 2 with a fixed sparsity rate of 98.76%; ▲ is for SparseBM, ★ is for Blockmodels and + is for Blockcluster. The median of the computation real elapsed time using SparseBM with GPU is also displayed (•) for reference. The graphic on the left zooms in on smaller networks. this number is hard-coded); then, only the (single) best initialization is selected to pursue until the convergence of the criterion.

The medians on a hundred repetitions of the execution times are reported in Figure 7. The algorithms from Blockmodels and Blockcluster are saturating the RAM memory with networks of sizes respectively (15 000 × 7 500) and (40 000 × 20 000), while the implementation of SparseBM allows bigger networks as shown in Section 5.1. Note that the limited memory footprint of SparseBM provided by the sparse reformulation of the inference is essential to reach the low computation times (real elapsed time) with GPU (• in Figure 7). Indeed, using LBM on large networks would not be possible otherwise due to the very limited memory size available in common GPUs.

We verify that the solutions obtained by the different packages are of comparable accuracy by calculating their similarity with the true generated coclustering. To measure this similarity, we use the coclustering adjusted rand index scores (CoARI) [START_REF] Robert | Comparing high-dimensional partitions with the co-clustering adjusted rand index[END_REF], whose median values are reported in Table 1. The scores increase for bigger networks as the inference problems gets easier; the scores for SparseBM and Blockcluster are similar, and we suppose that the poorer performance of Blockmodels is mainly due to the lighter initialization procedure. 

Conclusion

SparseBM is a Python module for estimating Bernoulli block models in large and sparse networks, relying on the stochastic and latent block models. After a brief review of the mathematical foundations of these models, we present the details of the calculations that are used in this package to reduce the complexity of the original formulation of the variational inference. These computation tricks enable the modeling of large sparse networks for which computational and memory requirements prohibit the use of the original approach.

We present the command line interface and the Scikit-learn compatible Python API of the module through examples, and we conduct experiments on synthetic datasets showing that this inference is computationally efficient, enabling to analyze many more networks in a given computation time, and more importantly, much larger sparse networks than the ones that can be handled by current packages. In future releases of the SparseBM module, we plan to extend the models to other probability distributions that may result in sparse graphs, such as the zero-inflated Poisson.

Figure 1 :

 1 Figure1: A binary graph on the left and its adjacency matrix on the center. The matrix on the right is the adjacency matrix reorganized according to the node clustering infered by the stochastic block model.

Figure 2 :

 2 Figure 2: Summary of the standard stochastic block model (left) and latent block model (right) with binary data.

  sparse) or not (class numpy.array): >>> model.fit(graph) ----------START RANDOM INITIALIZATIONS ----------100 of 100 Initializations: [100% ] [ Elapsed Time: 0:00:03 ] ----------START TRAINING BEST INITIALIZATIONS ----------10 of 10 Runs: [100% ] [ Elapsed Time: 0:00:01 ]

Figure 3 :

 3 Figure 3: Adjacency matrix of a network with n 1 = 1000 nodes generated by a SBM. The size of black pixels representing edges is enlarged for visualization reasons: (a) original adjacency matrix, (b) adjacency matrix reordered according to the true classes, (c) adjacency matrix reordered according to the classes returned by inference. Note that the permutation of classes observed between (b) and (c) is irrelevant for clustering purposes.

  To learn from a sparse network, the class implements the fit method and returns the best model found.>>>sbm_selected = sbm_model_selection.fit(graph, symmetric=True) >>> number_of_clusters = dataset[ cluster_indicator ].shape[1] >>> print(f"Best ICL is {sbm_selected.get_ICL():.4f}") >>> print(f"The original number of classes was {number_of_clusters}") >>> print(f"The model selection picked {sbm_selected.n_clusters} classes") displayed during model selection with merge and split strategy for a SBM. Best ICL is -44162.1115 The original number of classes was 4 The model selection picked 4 classes Sckikit-learn integration: the SBM and LBM implemented in Sparsebm use the Scikit-learn interface style; models are thus compatible with the pipelines, model selection, and evaluation metrics.

Figure 6 :

 6 Figure6: Median computation times for inferring the parameters of a latent block model as a function of the graph size n 1 × n 2 (fixed sparsity rate of 98.76%); ▲ is for the algorithm optimized for sparse graph, ★ is for the original algorithm.

Experiments and discussion 5.1 Benefit of our inference optimized for sparse graphs.

  

		mandatory arguments: sparsebm modelselection --help
		ADJACENCY_MATRIX -k1 N_ROW_CLUSTERS, --n_row_clusters N_ROW_CLUSTERS List of edges in CSV format usage: sparsebm modelselection [-h] -t TYPE [-gpu USE_GPU] [-idgpu GPU_INDEX]
			number of row clusters [-s SYMMETRIC] [-p PLOT] [-o OUTPUT]
		-k2 N_COLUMN_CLUSTERS, --n_column_clusters N_COLUMN_CLUSTERS ADJACENCY_MATRIX
			number of row clusters
	Graph generation: sparsebm generate command line returns a JSON file that contains the
	output: partition and a CSV file that contains the adjacency list of the graph. A summary of the usage of
	-o OUTPUT, --output OUTPUT the command is given:
		sparsebm generate --help	File path for the json results.
		optional arguments: -sep SEP, --sep SEP positional arguments: {sbm,lbm} model to generate data with CSV delimiter to use. Default is , -niter MAX_ITER, --max_iter MAX_ITER sbm use the stochastic block model to generate data Maximum number of EM step -ninit N_INIT, --n_init N_INIT lbm use the latent block model to generate data
	Number of initializations that will be run Example: with the two following commands, a network is generated and trained with a SBM using -early N_ITER_EARLY_STOP, --n_iter_early_stop N_ITER_EARLY_STOP Number of EM steps to perform for each initialization. the model selection algorithm:
		-ninitt N_INIT_TOTAL_RUN, --n_init_total_run N_INIT_TOTAL_RUN sparsebm generate sbm Number of the best initializations that will be run until convergence. sparsebm modelselection edges.csv -t=sbm
		-t TOL, --tol TOL ----------START Graph Generation ----------Tolerance of likelihood to declare convergence. -v VERBOSITY, --verbosity VERBOSITY 25 of 25 Generating block: [100% ] Degree of verbosity. Scale from 0 (no message Groups and params saved in ./groups.json displayed) to 3. Edges saved in ./edges.csv -gpu USE_GPU, --use_gpu USE_GPU Spliting Specify if a GPU should be used. Explore models from 1 classes -idgpu GPU_INDEX, --gpu_index GPU_INDEX ... Specify the gpu index if needed. Merging
	Explore models from 5 classes Stochastic block model: sparsebm sbm command line returns a JSON file that contains the ... partition and the estimated parameters of the model. A summary of the usage of the command is Best icl is -53481.1475 given: Model has been trained successfully.
		Value of the Integrated Completed Loglikelihood is -53481.1475 sparsebm sbm --help The model selection picked 3 classes
		usage: sparsebm sbm [-h] [-sep SEP] [-o OUTPUT] [-k N_CLUSTERS] [-s SYMMETRIC] Results saved in results.json
		[-niter MAX_ITER] [-ninit N_INIT]
	5	ADJACENCY_MATRIX ADJACENCY_MATRIX [-early N_ITER_EARLY_STOP] [-ninitt N_INIT_TOTAL_RUN] GPU_INDEX] [-t TOL] [-v VERBOSITY] [-gpu USE_GPU] [-idgpu GPU_INDEX]
	Model selection: sparsebm modelselection sbm or sparsebm modelselection lbm command optional arguments: -h, --help line returns a JSON file that contains the partition (two if LBM is used) and the estimated parameters show this help message and exit of the best model found.

Table 1 :

 1 CoARI measured with packages Network size (n 1 ⋅ n 2 ) SparseBM Blockcluster Blockmodels 1.25 × 10 5 Median of the coclustering adjusted rand index (CoARI, a similarity measure between two coclusterings), using existing implementations, as a function of the graph size n 1 × n 2 with a fixed sparsity rate of 98.76%.

		0.05	0.05	0.05
	5.00 × 10 5	0.11	0.11	0.09
	1.13 × 10 6	0.18	0.18	0.12
	2.00 × 10 6	0.26	0.26	0.15
	3.13 × 10 6	0.33	0.32	0.18
	4.50 × 10 6	0.41	0.41	0.20
	1.25 × 10 7	0.68	0.68	0.25
	5.00 × 10 7	0.93	0.93	0.30
	1.13 × 10 8	0.98	0.98	OMM
	2.00 × 10 8	1.00	1.00	OMM