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Abstract—We propose a learnable mel-frequency cepstral coef-
ficients (MFCCs) front-end architecture for deep neural network
(DNN) based automatic speaker verification. Our architecture
retains the simplicity and interpretability of MFCC-based fea-
tures while allowing the model to be adapted to data flexibly.
In practice, we formulate data-driven version of four linear
transforms in a standard MFCC extractor — windowing, discrete
Fourier transform (DFT), mel filterbank and discrete cosine
transform (DCT). Results reported reach up to 6.7% (VoxCeleb1)
and 9.7% (SITW) relative improvement in term of equal error
rate (EER) from static MFCCs, without additional tuning effort.

Index Terms—Speaker verification, feature extraction, mel-
frequency cesptral coefficients (MFCCs).

I. INTRODUCTION

Automatic speaker verification (ASV) [1] is used in forensic
voice comparison, personalization of voice-based services and,
more recently, smart home electronic devices. A typical ASV
system can be broken down into three elementary components:
(i) a frame-level feature extractor, (ii) a speaker embedding
extractor, and (iii) a speaker comparator. Their functions
are, respectively, to transform a waveform into a sequence
of feature vectors, to extract fixed-sized speaker embedding
vectors, and to compare two speaker embeddings (one from
an enrollment and the other one from a test utterance).

While previous generations of ASV technology relied
largely on statistical approaches such as i-vectors [2], state-of-
the-art ASV leverages from deep neural networks (DNNs) to
extract speaker embeddings. Representative examples include
d-vector [3] and x-vector [4]. Numbers of extensions from
them have been proposed as well [5], [6]. Common to most
of those speaker embedding extractors is using either mel-
frequency cepstral coefficients (MFCCs) [7] or raw spectrum
as frame-level features. Different from the speaker embedding
extractor, whose parameters are obtained through numerical
optimization, raw spectra and MFCCs are obtained with
fixed/static operations. In this work, our main goal is to
formulate a lightweight, data-driven version of a standard
MFCC extractor.

Related recent work includes so-called end-to-end [8] [9]
front-end solutions. Using DNN-based components that are
optimized jointly, such end-to-end solutions process the raw
waveform to produce either detection scores or intermediate
features to be used with other components. Despite promising
results, the end-to-end approaches tend to require substantial
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engineering efforts, making them potentially inflexible for
adaptation to new applications or data. Additionally, unless
some prior domain knowledge is used in designing the
DNN components, such models can be difficult to interpret.
Meanwhile, analysis and assessment of relative importance of
different signal processing components is important in speech-
related research. Interpretability is also demanded in high-
stake applications, such as forensic voice comparison.

For reasons above, we advocate a novel architecture whose
design is guided by one the most successful fixed feature
extractor, MFCCs. Even if an MFCC extractor is typically not
viewed as a neural network, it can be seen as a DNN consisting
of a number of linear layers (and some non-linearities). It
is therefore a natural idea to expand the speaker embedding
extractor to include MFCC-specific layers to be optimized
in a data-driven manner. This is enabled by defining a com-
putational graph and the associated automatic differentiation
procedures available in standard DNN toolboxes. Though we
draw inspiration from similar ideas in other tasks (e.g. [10],
[11]), our aim is an initial formulation and an experimental
feasibility study in the context of ASV.

II. LEARNABLE MFCC EXTRACTOR

A. Front-end MFCC extractor

A typical MFCC extractor consists of a cascade of linear
and non-linear transformations originally motivated [7] from
signal processing and human auditory system considerations.
Typical steps (after pre-processing) include windowing, power
spectrum computation using discrete Fourier transform (DFT),
smoothing by a bank of triangular-shaped filters, logarithmic
compression and discrete cosine transform (DCT).

MFCCs have been used across many different speech and
audio applications successfully, suggesting their generality as
an application-agnostic frame-level feature. Nonetheless, the
standard transformations in MFCC extractors may be im-
proved further. For instance, [12] uses low-variance multi-taper
spectrum estimation to replace Hamming-windowed DFT.
Other studies employ alternative time-frequency representa-
tions, such as constant-Q transform (CQT) [13] and wavelet-
based methods [14], [15]. Different frequency warping scales
are studied in [16]. Similarly, triangular filterbank can be
replaced with Gaussian and Gammatone filterbanks [17]. The
commonly used logarithmic compression is also substituted
with cube-root compression [18]. The suitability of block DCT
as an alternative of standard DCT (i.e, DCT-II) is explored in
[19].



All the above studies focus on developing other fixed
operation models by overcoming some of the limitations of
the existing one. Differently from those studies, we propose
to optimize the parameters of MFCC pipeline in a data-driven
manner. We consider making learnable components based on
static MFCCs only, as dynamic (delta) coefficients were not
found useful in our previous work [20].

B. Differentiable linear transforms for MFCCs

With the above motivations, we would like to start from
fixed MFCCs by making four highlighted differentiable linear
transforms learnable. Three of them are real-valued, namely,
windowing, mel filterbank and DCT. Therefore, when design-
ing their learnable counterparts, for each component we simply
create operators that have the same input and output as the
static one so that we retain the same exact computational flow.
The only difference from static feature extractor is that the
gradient can now be back-propagated to update the numerical
values of the linear transforms. DFT is an exception since
it is a complex-valued linear operator. Nonetheless, when
integrated as a step to produce a power spectrum, the operation
can be expressed as:

|X|2 = |Fx|2 = |(F real + jF imag)x|2

= g(F realx) + g(F imagx),
(1)

where g(Fx) = |Fx|2. Here, x is a windowed speech frame,
X is the complex-valued spectrum, F is the complex-valued
DFT matrix and |.|2 denotes element-wise modulus. Thus,
(1) can be implemented as two real-valued linear transforms,
followed by squared summation.

III. OPTIMIZATION OF LEARNABLE COMPONENTS

We describe below three techniques to optimize the selected
components. We refer to the corresponding matrices as kernels,
denoted by specific symbols: W for the window function, F
for DFT (as noted in Equation 1), M for the mel filterbank,
and D for DCT.

A. Kernelized initialization

Trainable component are often initialized using random
numbers from a normal distribution [21]. In this work, how-
ever, we assert that a standard MFCC extractor serves as a
reasonable starting point for further learning. Thus, our first
technique initializes each kernel with its corresponding static
counterpart. For windowing, we use the Hamming window
[22]. For mel filterbank and DCT static correspondents are
available and can be directly used in place. For DFT, we
generate kernels from the DFT matrix and separate the real
and imaginary parts F real and F imag in Eq. (1). After initial-
ization, training proceeds the same way as for any standard
DNN-based speaker embedding extractor.

The kernel initialization sets a starting point for further
adaptation. We consider two additions to the training pro-
cedure. The idea in both is to promote specific numerical
properties of each static component to regulate learning,
discouraging overly aggressive deviation from their respective

static counterparts. We detail the two ideas, loss regularization
and kernel update, in the following two subsections.

B. Loss regularization

We modify the training objective of the speaker embedding
extractor as Lnew = L+ λ ∗ gloss(K), where L is multi-class
cross-entropy loss, Lnew is regularized loss, K denotes the
kernel, and λ is regularization constant. For all experiments
addressed in this work, we set λ = 0.1. In Section V, systems
adapted with such method are marked as name + loss., where
name is the name of adapted component. We design separate
regularizer gloss(·) for each of the four linear components.

Windowing. Many window functions (e.g. Hamming and
Blackman) are generated using sinusoids [22]. Thus, our
regularizer measures distance from the learnable window to a
cosine function: gloss(W ) = ||W norm −C||, where C(n) =
− cos(2πn/M), n ∈ [0,M−1] is a cosine function, M being
equal to frame length (i.e. length of window vector), W norm is
a mean-normalized window, and ||.|| denotes Frobenius norm
[23]. Therefore, when the constraint equals zero, the window
equals a cosine function.

DFT. A DFT matrix is squared and symmetric. It can
be split into real and imaginary parts, both of which are
real-valued, squared and symmetric. We therefore introduce
such property when implementing regularization by computing
matrix-wise distance of the kernel to its symmetric version:
F dist. = F norm−F normF>norm, where F dist. is the difference
matrix and F norm is the normalized version of F . This applies
to both F real and F imag in Eq. 1. The Frobenius norm of
F dist. is then used for regularization: gloss(F ) = ||F dist.||.
Therefore, when the constraint is perfectly met (gloss(F ) = 0),
we see that F>norm = I , where I is an identity matrix.

Mel filterbank. Mel filterbank is a set of overlapped trian-
gular filters with scaled peak magnitude, which can be either
constant across all filters (our case) or varied via different
frequency bins [24]. Computationally, it is a matrix with non-
negative elements with high sparsity. In order to control the
level of sparsity of the kernel, we adopt L2 regularization [25]
on the filterbank kernel to avoid over-fitting, instead of L1,
which tends to have a more enhancing effect on sparsity of
model as a loss regularizer. Formally, gloss(M) = ||M ||2.

DCT. A DCT matrix is orthonormal, i.e. DD> = D>D =
I . We employed a recently-proposed soft orthonormality loss
function [26], expressed as gloss(D) = ‖D>D−I‖2, where I
is the identity matrix. Optimizing such loss function minimizes
the distance between the Gram matrix of D and I to encourage
orthonormality.

C. Kernel update

Aside from loss regularization, the other optimization tech-
nique performs direct update on the kernel operators every
time after gradient update. Compared to loss regularization, it
is a more ‘brute-force’ approach. The updated kernel matrix
or vector is then directly used for next iteration: Knew =
gkernel(K), where, K is kernel matrix after gradient update
and Knew is the directly-updated one used for next iteration.



In Section V, systems adapted with this method are marked
as name + kernel., where name is the name of adapted
component. Design of updater gkernel(.) for each component
is as follows.

Windowing. Commonly-used window functions are non-
negative and symmetric. Inspired by such properties, our
kernel update is gkernel(W ) = |cat(W [:size/2],W flip)|, where
W [:size/2] denotes the half-size truncated version of window
vector W while W flip is its flipped (time-reversed) version.
Here cat. performs column-wise concatenation and |.| denotes
absolute values.

DFT. As noted above, DFT matrices are square and sym-
metric. To enhance such properties, we perform a simple
update on the kernel: gkernel(F ) = FF>, where F and F new

denote kernel at the end of the current iteration and the next
iteration, respectively. It is easy to see that F new is indeed
symmetric1. Similar to the loss regularization scheme, this
update is applied to both F real and F imag.

Mel filterbank. As mel filterbank is a set of overlapped
triangular filters with non-negative values, we force posi-
tivity by replacing negative elements with a small value:
∀i, j, gkernel(M i,j) = ε if M i,j ≤ 0, otherwise M i,j ,
where ε = 10−4, i and j denote row and column indices
of the filterbank M .

DCT. For DCT, we again capture its orthonormality re-
quirement from its static correspondent by performing QR
decomposition [23] on the learnt kernel matrix: gkernel(D) =
QR(D), where QR(.) decomposes D = QR and outputs
only the orthogonal matrix Q. Such an operation can be
performed because the kernel learnt corresponds to DCT is
set to be a square matrix, which means number of mel
filters is same as number of output cepstral coefficients. We
acquire such design choice because setting number of filters
same as final static feature dimension can bring competitive
performance, as shown in [20]. This applies to all experiments
in this work, including baseline.

IV. DATA AND EXPERIMENTAL PROTOCOL

A. Data
We trained baseline x-vector model on dev [27] partition

of VoxCeleb1, which consists of 1211 speakers. We used
the same dataset for additional training steps on learnable
linear components. For evaluation, we considered one matched
and another relatively mismatched condition. For the former,
we used the test partition of VoxCeleb1 that consists of 40
speakers, 18860 genuine trials and same number of impostor
trials [27]. The latter was composed of the development
part of speakers-in-the-wild [28] (SITW) corpus “core-core”
condition, containing 119 speakers. It contains 2597 genuine
and 335629 impostor trials. We refer to the two datasets as
Voxceleb1-E and SITW-DEV, respectively.

B. System configuration
For the baseline system, we used 30 static MFCCs as the

input features and replicated x-vector configuration from [4] as

1(FF>)> = (F>)>F> = FF>.

the speaker embedding extractor. We trained the model using
VoxCeleb1 without any data augmentation and Adam [29]
as optimizer. During test time, we extracted 512 dimensional
speaker embedding from the first fully-connected layer after
statistics pooling.

We adapted each of the four learnable front-end systems
at a time, using same data as for training. In order to
prevent distractions in terms of joint optimization from scratch
and meet the aim of providing light-weighted interface for
adaptation, the selected component was jointly optimized with
the pre-trained baseline x-vector. Speaker embeddings for all
systems with learnt front-end components were extracted in
same manner as baseline after adaptation.

For all systems, we applied energy-based speech activity
detection (SAD) before feature processor and cepstral mean
normalization (CMN). All embeddings extracted at inference
time were length-normalized and centered prior to being
transformed by a 200-dimensional linear discriminant analysis
(LDA). Scoring was implemented through probabilistic linear
discriminant analysis (PLDA) [30] classifier. We used Kaldi2

for data preparation and PLDA training and PyTorch [31] for
all DNN-related training and inference experiments.

C. Evaluation
Equal error rate (EER) and minimum detection cost function

(minDCF) were used to measure ASV performance. MinDCF
was computed with target speaker prior p = 0.001 and
detection costs CFA = Cmiss = 1.0. We used BOSARIS3 to
produce selected detection trade-off (DET) curves.

Fig. 1. Loss propagation for baseline and adapted MFCC components. Best
viewed in color.

V. RESULTS

Before presenting ASV results, we demonstrate validation
loss (on dev set) propagation of our baseline and adapted
systems in Fig. 1. The baseline x-vector system (with fixed
MFCC components) was pre-trained with 1000 iterations,
followed up by another 1000 iterations to adapt the MFCC
components. The adaptation, especially for window function
and DFT, results in a notable decrease of validation loss. This
indicates potential to make components of an MFCC extractor
learnable. The ASV results are reported in Table I.

2https://github.com/kaldi-asr/kaldi
3https://sites.google.com/site/bosaristoolkit/
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Fig. 2. DET plots for SITW-DEV. Best viewed in color.

TABLE I
RESULTS ON Voxceleb1-E AND SITW-DEV. ALL SYSTEMS ASIDE FROM

BASELINE ARE WITH KERNEL INITIALIZATION.
Voxceleb1-E SITW-DEV

Operator (+optimal.) EER(%) minDCF EER(%) minDCF
Baseline MFCC 4.64 0.6071 6.72 0.8243

Window 4.51 0.5544 6.09 0.7698
Window + loss. 4.40 0.5508 6.66 0.7915

Window + kernel. 4.42 0.5459 6.09 0.7819
DFT 4.33 0.5933 6.35 0.7698

DFT + loss. 4.71 0.6156 6.62 0.8041
DFT + kernel. 5.42 0.6182 7.04 0.7903

Melbank 4.83 0.5767 6.52 0.8253
Melbank + loss. 4.63 0.6162 6.39 0.8011

Melbank + kernel. 4.45 0.5768 6.31 0.7689
DCT 4.36 0.5572 6.27 0.7950

DCT + loss. 4.46 0.4971 6.54 0.7982
DCT + kernel. 4.41 0.5501 6.54 0.7925

A. ASV results on Voxceleb1-E

Concerning windowing, all the three adapted variants out-
perform the baseline. Loss regularization and kernel update
are particularly more effective. The results indicate usefulness
to retain symmetricity and positivity of the window.

Concerning DFT, simply letting it to be data-driven (without
added regularization or kernel update) yields lowest EER
among all systems, with a relative improvement of 6.7% over
the baseline. In fact, the additional regularization and direct
update are detrimental. This indicates potential weakness of
our symmetricity constraint.

Concerning the mel filterbank, Melbank + kernel. yields
the best performance among the three adapted variants, with
best minDCF of all systems, improving baseline by relatively
6.7%. This indicates the importance of enforcing positivity of
the learnt filters.

Concerning DCT, similar to windowing all the learning
schemes improve upon the baseline. While QR decomposition
does not bring notable positive impact, the orthonormality-
enhancing loss regularization results in slightly worse EER,
but improved minDCF. In fact, DCT + loss. results in lowest
minDCF among all systems.

B. ASV results on SITW-DEV

We now move on to discuss ASV results on the more
challenging SITW-DEV data. Overall, the data-driven com-

ponents yield now more competitive performance boost over
the baseline. Adapting the window function is most effective,
with a relative improvement of 9.7% in EER over the baseline.
Concerning DFT, DFT + loss. slightly outperforms baseline
in both metrics while DFT + kernel. is the only variant that
does not reach baseline in EER. This finding is in line with
VoxCeleb1-E results. Concerning mel filterbank, all the three
systems outperform baseline. Overall, it achieves competitive
performance compared with learnable DCT. It reflects its po-
tential on being made adaptable to improve system robustness.

DET curves for single systems including baseline on SITW-
DEV have been shown in Fig. 2. The curves agree with
observations from Table I in general. Systems with window
function adapted produce largest improvement gap with base-
line compared with other three, which can be reflected from
EER. Considering systems that are less strict on false alarms,
we can see that ones like DCT + kernel. and window + loss.
are exceptional and thus can be taken into concern.

VI. CONCLUSION

We conducted an initial study on a lightweight learnable
MFCC feature extractor as a compromise between complex
end-to-end architectures and fixed, hand-crafted feature ex-
tractors. Our initial results on SITW-DEV are promising: the
proposed scheme improved upon baseline MFCC extractor.
Results for optimized window and mel filterbank are particu-
larly promising. Due to our domain-specific optimization con-
straints, the learnt representations bear close resemblance to
fixed MFCC operations. For interpretability and computational
reasons, we restricted the focus on optimization of individual
MFCC extractor components; joint optimization of all the
four linear componentswas left as a future work. Similarly,
the work can be extended with other deep models such as
extended TDNN and ResNet using larger datasets and data
augmentation.
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