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Abstract

Publish/subscribe is a communication paradigm used in distributed
applications to easily exchange messages. This paradigm usually has
a centralized architecture where a broker is responsible for transferring
all the messages, hence can be a source of trust issues. In a threat
model where the broker can be malicious, two honest entities cannot be
sure of the origin of a message. There exist propositions for distributed
publish/subscribe protocols replacing the broker by a blockchain [9, 13,
14]. Those propositions all have in common an extensive usage of the
blockchain, which makes them expensive over time, due to blockchain
fees, and not scalable.

In this paper, we introduce SUPRA, a distributed publish/subscribe
protocol. This protocol has the same security guarantees than other solu-
tions relying on blockchains, but where the vast majority of messages are
off-chain. The message exchanges are done mostly directly between pub-
lishers and subscribers and the blockchain is only used in case of network
issues, if a message is lost, or an entity is suspected to be malicious.

We have implemented a proof of concept of SUPRA to show experi-
mentally that we outperform the best known previous solution.

Keywords: blockchain, publish/subscribe protocol, missing messages detec-
tion, MQTT
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1 Introduction

Publish/Subscribe model is a paradigm for communication protocols. This com-
munication model is more scalable and resource efficient than the request-reply
model [6]. There are different kinds of publish/subscribe protocols and we will
focus on topic-based publish/subscribe protocols [6]. In such protocols, sub-
scribers declare their interest for data, associated with a given topic, from a
publisher, by sending a subscription. Then, when the publisher generates a
new data with this topic, it sends it to its subscribers. This paradigm allows a
unidirectional message flow from the publisher to its subscribers.

These lightweight protocols are well suited for Internet of Things (IoT) ap-
plications but have a major drawback: the central entity in the system, called
the broker. In most existing protocols, such as MQTT [3], the publisher never
sends directly the messages to its subscribers, but to the broker, which forwards
the data to the subscribers. The subscribers also send their requests to the bro-
ker and not directly to the publishers. This third-party between the publisher
and the subscribers can create trust issues. This lack of trust makes most of
the existing publish/subscribe protocols unable to be used for sensitive data.

Contributions

The contribution of this paper it twofold. First, we present general concepts
for distributed publish/subscribe architectures. The first concept, the Man-
ager/Worker model, is an abstraction that makes it easier to represent the
interactions between entities, especially when they involve connected devices
behind gateways. The second concept is the definition of a unidirectional chan-
nel that uses off-chain messages by default, and on-chain message as a fail-over.
The second contribution is a distributed publish/subscribe protocol that does
not use a central broker. In our protocol, the publisher and the subscriber are
always able to agree on a common state of communication, with the help of the
blockchain technology. We named our protocol SUPRA, for Secured Update
Protocol with Righteous Accusations.

2 Backgrounds and Related work

Centralized Publish/subscribe protocols

The most famous topic-based Publish/subscribe protocol is MQTT [3] (Mes-
sage Queuing Telemetry Transport). The purpose of this protocol is to be
easily implementable on the client’s side with the minimum resource consump-
tion possible when used. To do so, the protocol has a short message format
and the computation complexity is located on the broker. MQTT has a version
dedicated to the IoT, MQTT-SN (Sensor network). This version adds compat-
ibility for networks without TCP/IP support [4]. There exist implementations
for distributed, or load-balanced, MQTT broker [8], but the aim is to improve
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the scalability and allow more publishers and subscribers to be connected simul-
taneously. This is very important, especially for IoT applications, but it does
not leverage the security issues with having a single entity responsible for the
broker deployment.

A wide variety of publish/subscribe protocols exists, most of them can be
considered distributed, see for instance the survey by A. V. Uzunov [17], but
they do not solve the trust issues raised by having a single entity managing an
important part of the protocol, such as the list of subscriptions.

Blockchain

Blockchain is a distributed ledger technology that was first presented by Satoshi
Nakamoto in 2008 [15]. The purpose of this technology is to make a network
of nodes maintaining an immutable distributed ledger of transactions. These
transactions are grouped in blocks. Each block is linked to the previous block
using hash pointers, and then added to the ledger. It creates a chain of blocks,
hence the name blockchain.

The author of a transaction is identified with public/private key cryptog-
raphy. Each transaction is signed by its author using the private key and
blockchain nodes verify the signature using the author’s public key. The trans-
action is sent to a node of the blockchain and then broadcasted over the network.
Each node saves incoming transactions in a pool used to build the next blocks.
Once a new block is validated, transactions integrated in this block are removed
from the pool. The way blocks are appended is a result of a consensus algo-
rithm that depends on the blockchain technology (e.g., in Bitcoin a single node
is elected to append the next block).

Once a block is added on the chain, the transactions in it cannot be modified
(or at least the probability that a modification can be made decreases exponen-
tially fast over the time). That is why data on the blockchain is considered
immutable. This property remains true as long as a certain amount of nodes
follow the protocol honestly. The minimum amount of honest nodes depends
on the consensus algorithm and the blockchain implementation.

Blockchain allowing arbitrary data in transactions could by used as pub-
lish/subscribe architecture as is, without any subscription management, because
anyone connected to a blockchain has a read access to all the transactions. In
public blockchain like Bitcoin, this means everyone. But we present next a solu-
tion that helps the management of publish/subscribe protocols using blockchain.

Trinity

Trinity [13,14] is to our knowledge the first proposition for a publish/subscribe
protocol which relies on a blockchain to work. In this solution, brokers use the
blockchain to replicate data and store them in an immutable way. When a client
publishes data by sending it to its broker, the broker forwards it to a blockchain
node. The data eventually appears in a block so that other brokers retrieve this
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information by reading the blockchain and forward the published data to their
local subscribers.

This interaction between a publish/subscribe protocol and a blockchain cre-
ates a secured system where we can trust the brokers, because each received
data can be linked to the entity that published it. However, this approach does
not scale for two reasons. First, writing on the blockchain is not free. Each new
transaction/data has a cost (transaction fees). With this price, the network is
able to stay alive by paying blockchain nodes for their work. Over time, if a
lot of data are published, this kind of solution could become expensive for the
brokers or the clients. Second, data in the blockchain is immutable, so each new
published data increases the size of the blockchain. The more data is sent on
the blockchain, the more storage is needed for nodes. It is based on this two
reasons that we design a distributed publish/subscribe protocol that use as few
blockchain transactions as possible.

After Trinity, other variants were presented [9], but keeping this extensive
use of blockchain for each new published data.

3 General Concepts

In this section, we present two general concepts used by SUPRA. The first one
is the Manager-Worker model. The second one is a communication model that
allows secure and verified message transmissions between two entities. We use
these new concepts in SUPRA but we believe it can be used in various contexts,
hence is of independent interest.

3.1 Managers and workers

Several distributed application architectures can be translated in a Manager-
Worker model architecture. In this model, workers are entities which are capable
of creating or computing data and they can only send messages to their manager.
Managers are in charge of the good behavior of a set of workers. They handle the
security between them and their workers and provides a gateway service to them.
Managers need to cooperate to make a common distributed application work.
To do so, their workers need data from workers handled by other managers.
This data dependencies can be translated in topics used by publish/subscribe
protocols. Managers can be publishers and subscribers.

In this model, managers are the only entities able to use directly the blockchain,
because workers can only send messages to their managers. Managers can be
blockchain users i.e., they send transactions to a blockchain full node, or they
can be blockchain full nodes themselves.

This abstraction layer allows us to map our protocol to several use cases, as
presented below. Workers can be IoT devices and managers are their gateways.
Workers can also be servers and a manager can be a cloud provider. The same
manager can have IoT devices and servers as workers.
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For instance, the supply chain use case presented in [13] can be translated
to a Manager-Worker model. Each food producer is a manager and sensors that
compute humidity and temperature are workers.

Access control architecture can be mapped to the Manager-Worker model.
See for instance the architecture presented in [10]. In this architecture, entities
called management hubs, are linked with IoT devices. These hubs, connected
to a blockchain node, use the blockchain to grant or deny access to theirs de-
vices. In this architecture, management hubs are managers and IoT devices are
workers.

LoRaWAN architecture can also be translated with this model. As an il-
lustration, Syed Muhammad et.al. [5] presented a blockchain-based two factors
authentication system in LoRaWAN. In this system, the gateways and the net-
work server are managers, and the application server, the join server, and the
end-devices are workers.

3.2 The use of Unidirectional Channels in Distributed Pub-
lish/Subscribe Architectures

We saw in the previous section, that the Manager-Worker model is an abstract
representation of Publish/Subscribe architecture. In this abstraction, only the
managers can be publishers and/or subscribers, and the communication between
workers and its manager are left at the discretion of the manager.

In a distributed Publish/Subscribe architecture, without a central server/broker,
each publisher manager sends its data directly to the subscriber managers. The
communication between one publisher and one subscriber is unidirectional, and
is totally independent with the other communications between the other man-
agers. Indeed, if there is a problem between a publisher A and a subscriber B
that breaks up their relationship, the communication between A and another
subscriber should not be impacted. Of course, one manager can be at the same
time publisher and subscriber. Since we are interested in having secure, reliable
and auditable communications, we have to make sure that each unidirectional
channel has those properties, independently from the other channels.

This observation implies that the design of a distributed Publish/Subscribe
architecture, and so of SUPRA, can be decomposed in two main parts. The
first part is to define a unidirectional channel protocol that allows one manager
to send messages to another manager, with strong guarantees. This protocol
is defined independently from our global architecture, but requires several as-
sumptions. The second part is to define a global protocol, that allows a set of
managers to setup unidirectional channels on-the-fly, allowing subscriber man-
agers to request data from publisher managers. Setting up a channel requires,
among other things, to verifies the condition of the unidirectional channel.

SUPRA is the combination of those two parts. We define in the following the
first part of our architecture, which is a unidirectional channel protocol. Then,
in Section 4, we define SUPRA, which dictates how managers should interact
to set up secure subscriptions and use our unidirectional channel for all data
communications.
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Figure 1: The two modes of communication of our unidirectional on/off chain
channel protocol

3.3 Unidirectional Channel with On-Off Chain Proof of
Delivery

We present now a new communication protocol, used by SUPRA, but can be of
independent interest. The purpose of this protocol is to allow one manager to
send messages to another, with delivery guarantees, and such that each manager
obtains proofs for each of those guarantees. The communication protocol is
a unidirectional channel, but uses similar principles and motivations as the
bidirectional channels defined in the Lightning network [11].

Informally, the publisher manager sends its messages to the subscriber man-
ager using two methods, as illustrated by Figure 1. With the first method,
the messages are sent like any other messages on the internet, directly to the
subscriber manager, using its IP addresses, such messages are said to be sent
off-chain because the blockchain is not used by this method. With the second
method, the messages are sent on the blockchain, included in a block, and the
subscriber manager indirectly receives the message by reading the blockchain.
In this case the messages are said to be sent on-chain.

Choosing which method to use depends on several parameters. By default,
messages are sent off-chain, and if a manager tries to deviate from the protocol,
or if there is a connectivity issue, messages will go on-chain. We now present
what are the initial assumptions for our protocol to be used, how it works in
more details, and what guarantees it provides.

3.3.1 Assumptions

A Unidirectional Channel with On-Off Chain Proof of Delivery between a pub-
lisher manager A and a subscriber manager B requires the following assump-
tions. Those assumptions should be verified to consider the channel open, and
the way the two entities agree on those assumptions is not part of the protocol

6



(in our architecture, this is done by SUPRA).

• Each manager has a pair of private-public cryptographic keys. Each man-
ager is aware of the public key of the other manager. A manager can
update its pair of keys, but if it does, the other manager has to be aware
of it.

• Both entities have to be connected to the same blockchain, either by being
part of it (i.e., being a full node) or by being connected to another trusted
full node (or set of full nodes) in a reliable manner. In other words, we
assume that each manager can receive events from the blockchain, for
instance, every time a transaction associated with a specific ID or address
is included into a block.

• The maximum number of transactions the publisher manager can send
to the blockchain is known. So we assumed that the publisher manager
defined what it considers to be the maximum number of on-chain trans-
actions. Once all the available transactions are sent, the channel is con-
sidered closed. To reopen the channel, the two entities should agree again
on this maximum number of transactions.

• Each manager can receive messages, of any type, on the blockchain. Here,
we assume that each manager has a unique ID on the blockchain and there
is a specific kind of transaction that can contain data of any type and
is associated to a specific ID. So that when sending on-chain messages,
a sender can create a transaction with the data and the corresponding
subscriber manager ID. This message will be received by the subscriber
manager eventually as it is supposed to be connected to the blockchain.
In practice, this can also be implemented using a smart-contract.

• The size of the messages are smaller than the maximum transaction size
of the blockchain. This assumption can easily be removed by considering
that only a fingerprint of the message is included in the transactions on
the blockchain, and that a publicly available distributed cloud storage is
used to store the message. Doing so the messages are public and auditable,
exactly like they are if they were included in the blockchain.

• Messages are weakly timestamped. This means that messages includes the
timestamp of the sender but managers will ignore a received message if the
timestamp is in the future compared to its local clock or if the timestamps
of consecutive messages are not increasing.

• The managers agree on a value Tacknowledged , which represents the maxi-
mum acceptable duration between the first transmission of a message and
its acknowledgment.
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3.3.2 The Two Modes of Communication

Let m be the message manager A wants to send to manager B. The first
mode of communication used by A is the off-chain transmission. A signs
the concatenation of m with the signature of the previous message sprevious to
obtain s = signA(m||sprevious). Then, A sends the message and the signatures
m||sprevious||s directly to B. When B receives the message m||sprevious||s, it
signs an acknowledgment Ackm and sends it to A. The acknowledgment is ba-
sically, the signature from B of the signature of the received message signB(s).
Manager A is allowed to send a new message before receiving the acknowl-
edgment, but it has to store all the non-acknowledged messages in order to
re-transmit them if needed. Each new message from A follows the same proce-
dure.

From the way messages are linked by signature, an acknowledgment implic-
itly acknowledges all the previous messages. So if B receives several messages
from A that are correctly linked together (i.e., no message is missing), B can
send an acknowledgment only for the last received message.

If A does not receive the acknowledgment from B before a certain amount
of time has passed (due to a connectivity issue or because B does not send
it), A can send again the same message to ask B to send an acknowledgment
again. A is free to decide when it re-transmits the message, however, it needs
a proof of delivery before Tacknowledged after the first transmission. To ensure
B receives the message before Tacknowledged , A can use the second transmis-
sion mode: the on-chain method, described later. The second method may
take a time ∆on−chain before a message is confirmed. Hence, after a delay
Toff −ack = Tacknowledged −∆on−chain from the first transmission of a message,
if no acknowledgment is received, A uses the second method of transmission to
ensure the correct delivery before Tacknowledged .

For an on-chain transmission, A sends the message and its signature
m||sprevious||s to the blockchain associated with the ID of destination B. Doing
so, as soon as the message is included into a block in the blockchain, manager
A knows that B is aware of the message, by assumption.

Another thing that can happen, is that B does not receive a message from
A, and A does not send it on-chain. Then B has no way to know that it missed
a message until A sends another message. When B finally receives a message
m||sprevious||s from A, it can verifies whether the signature sprevious equals the
signature of the last received message. If it is not equal, B knows that a message
is missing. B knows that A is supposed to send the message again off-chain or
on-chain, so it just waits. If B does not receive the message after Tacknowledged ,
it knows that A did not, or could not, follow the protocol.

3.3.3 Delivery Guarantees

Our protocol offers several delivery guarantees, and generates proofs that can
be shown publicly to prove to anyone that a manager did followed the protocol.

Proof of integrity and origin of data: In the case where an off-chain
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message is correctly received, the message
m||sprevious||s is a proof for B that A sent the message. If there is a connectivity
issue and B does not receive the message directly from A, then A sent the
message on-chain, so the proof is the same. Hence, our protocol verifies the
non-repudiation property.

Proof of delivery: In the case where an off-chain message and its ac-
knowledgment are correctly received, the acknowledgment from B is a proof,
for A, that B correctly received the message. If there is a connectivity issue
and A does not receive an acknowledgment from B, then the on-chain message
of A containing the data is a proof that B received correctly the message, by
assumption.

Proof of non-delivery: If B detects that a message is missing, and does not
receive it (off-chain or on-chain) before a delay Tacknowledged , then the signature
of the missing message can be used to prove that A did not delivered correctly
the message. Indeed, the signature proves that A sent a message, and if B did
not received this message, A cannot provide a proof of delivery.

Our protocol is used in our SUPRA architecture for almost all the com-
munications, and the proofs are used in our trial section where conflicts are
handled, making sure honest entities can prove they followed the protocol to
avoid penalties.

4 SUPRA

SUPRA is a distributed publish/subscribe protocol using the manager/worker
model and unidirectional channels with on-off chain proof of delivery. Managers
are publishers or subscribers and use topics as a filter for data, just like MQTT.
This protocol is focused on inter-manager communications as all communica-
tions are between managers. There is no restriction on which protocol managers
use between them and theirs workers.

We are using Universal Unique Identifiers (UUID) to retrieve transactions
from the blockchain. Each transaction is associated with a source and desti-
nation UUID, and each manager (being either connected to a blockchain node
or a blockchain node itself) can listen to given UUIDs and receive the associ-
ated transactions when they are included in a block. UUIDs are used in the
Katena [16] blockchain and could be replaced by a Smart-contract in other
blockchains where this is possible.

SUPRA is divided into fives modules. The first one is the public key module,
it manages the public identities of managers. The second one is the subscription
module that handles the subscriptions. The third one is the publishing module,
used to publish data with our previously defined communication channel. The
fourth one is the fail-over module, which retrieves communication state after a
crash from a manager. The last module is the trial module, it detects malicious
managers in the system.

We now explain SUPRA in more details. We assume that messages are
transferred in a partially synchronous model on unreliable links.
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4.1 Communication example

In Figure 2, we present a communication example between two managers. In
this example, A is a subscriber and B is a publisher. After declaring theirs
public keys on the blockchain, the manager A retrieves the public key of B and
sends a subscription demand to B. At the reception of the demand, B retrieves
A’s key on-chain and checks the signature of the message. Thereafter, signature
checking is performed by A and B at each message reception. In this example,
the first data published by B is received and acknowledged directly by A using
the off-chain channel. The message containing the second data publication is
lost but the message disappearance is detected only at the reception of the third
data publication, because A detects a missing signature in the message. This
missing message detection was explained in Section 3.3. Hence, A warns B of a
missing message, the message is resent, and A acknowledges it. Notice that A
acknowledges the third data and not the second one, because acknowledging a
message implicitly acknowledges all the previous messages. Another way to re-
trieve a missing message is shown with the fourth data publication. B resent the
fourth publication on-chain because it did not receive in time the acknowledge-
ment. A retrieves the message from the blockchain directly (either it receives
event from the blockchain node, or A requests periodically the blockchain for
new messages). Observe that A does not acknowledge the last message. Indeed,
an on-chain message is assumed to be always acknowledge (see Section 3.3). We
will now provide in the next sections further details for this exchange between
A and B.

4.2 Generic message format

All the messages of SUPRA are represented on Figure 3. They all have in
common the following specifications. They start with a two hexadecimal digits
code on one byte. The first digit is for the module, and the second digit for
the type of message inside the module. We will write the message codes with
this format: X − Y . Each code is associated with a specific action and format.
Next to it, there is a timestamp. We use the UNIX timestamp format which
is a 8 bytes long unsigned integer with milliseconds precision. This timestamp
adds unpredictability in messages. This property is important in a security
environment based on signature. Indeed, if you have every possible outputs
signed by someone, you can say everything you want on his behalf without his
consent (e.g., replay attacks). The timestamp prevents this type of behavior by
creating a chronology between messages. This property is explained in further
detail in Section 4.7. We will assume that two messages can not have the
same timestamp. Next to the timestamp, the message has the UUID of the
destination. The last part of the message is a signature to prove the identity of
the author. We use ED25519 as a signature protocol, where signatures are 64
bytes long and public keys are 32 bytes long.
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Figure 2: Message exchanges between two managers
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4.3 Public key module

In this part we explain how the public key module works and the message format
it uses. The purpose of this module is to begin the setup of a channel described
in Section 3.3 by sharing public keys between managers.

Messages in the public key modules are sent directly on the blockchain. The
first message has the code 0-0 and is used to declare the first public key of a
manager. This message is signed with the private key associated with the public
key inside the message. The manager can then broadcast the corresponding
UUID to the other managers, to make them aware of its identity. It is important
to notice that the identity of a manager corresponds to its UUID and not directly
its public key.

The first manager who declares a key is the owner of the UUID, and the
only manager allowed to update keys associated with this UUID.

The purpose of the second message of the module, with code 0-1, is to allow
a manager to update its private key, for instance when the integrity of its private
key is at risk. The message contains the new public key but is signed with the
old private key and must use the same UUID. Other managers listening to this
UUID are then notified. For a given UUID, anyone can have a history of every
public keys used by a manager at each point in time. It creates traceability
on the author’s identity and it is used by the trial module in Section 4.7. The
timeout attribute of message 0-1 allows managers to prepare the key switch.
The key switch takes effect immediately after reaching the timeout, which is a
timestamp on 4 bytes.

Messages exchanged in other modules are signed with the private key asso-
ciated with the last declared public key of the sender. For security purposes,
sensitive part of message, such as the data, is encrypted with the public key of
the receiver.

4.4 Subscription module

We now explain how the subscriptions are done by explaining the two parts of
a subscriptions, the subscription demand and the subscription stoppage.

4.4.1 Subscription demand

The subscription demand is the first part of a subscription. During this part,
a manager/subscriber is asking for the manager/publisher’s permission to get
messages associated with a topic. This is done by sending a message with code
1-0. This message contains a public and a private part. The public part is used
by the subscriber to declare an alias.

The private part of the message 1-0 is the topic name. A second signature
is used to link the topic name with the chosen alias. Using an alias has two
advantages. The first one is to identified each subscription by using less space
than a topic name. If a subscriber has several subscriptions to the same publisher
at the same time, it needs an information to know from which subscription a
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new data is. Adding the alias with the published data, allows the subscriber and
the publisher to identify a subscription by using a 2 bytes long value, instead
of a topic name, which can be 65 535 bytes long. This optimisation reduces the
size of the exchanged messages. Notice that the same optimization is done in
MQTT-SN [7].

The second advantage is to prevent information leaks. Topic names can
reveal private information on someone (Names, addresses) and to resolve issues
between managers we need to publicly reveal on-chain some messages. The
public part of the message, with only the alias, is enough to prove the existence
of a subscription, and it is better to reveal only a small random alias, instead
of the whole topic name. This revealing process is explained in Section 4.7.

At the reception of a subscription demand, a manager/publisher answers
to it favorably or not. The unfavorable answer begins with a code 1-2 and is
composed of the signature from the publisher of the public part of the demand,
and the signature of the private part. The favorable answer has a code 1-1 and
is used to declare the maximum amount of on-chain messages that the publisher
is ready to send (which is needed to use our unidirectional channel described in
Section 3.3). These two messages need to be acknowledged with a code 1-4 by
the subscriber.

When the subscription has a favorable answer from the publisher and is
acknowledged by the subscriber, then the unidirectional channel described in
Section 3.3 is ready to be used to transfer data from the publisher to the sub-
scriber.

4.4.2 Subscription stoppage

At any point in time, the subscriber or the publisher can end the subscription
by sending a message with code 1-3. The reason could be that the subscriber
is not interested anymore by the topic or, for the publisher, that the topic
is no longer available. The message includes the signature of the last data
publication message of the channel (message with code 2-0). The manager
that initiates the stoppage needs an ACK (message with code 1-4) from the
other manager, or it needs to send the subscription stoppage on-chain. The
subscription is considered ended at the reception of this acknowledgement or
when the subscription stoppage is added in a block, and the data-publication
messages sent after the stoppage can be ignored by both managers.

Another way to stop a subscription is to reach the limit of published messages
on the blockchain. It implicitly stops the subscription without the need to send
a stoppage message. Managers need to make a subscription again, if they want
to keep sharing data.

4.5 Publishing module

This module is in charge of the data transmission from the publisher to the
subscriber. This module uses the unidirectional channel with on-off chain proof
of delivery presented in Section 3.3.
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Figure 4: Example of communication between managers

The main message of this module is the data publication, with the code 2-0.
This message can only be sent by the publisher. Figure 4 represents a mes-
sage exchange between two managers with the dependencies between messages.
With these dependencies, called sequence signature, a manager can detect miss-
ing messages, like explained in Section 3.3, because each message includes the
signature of the previous message.

This module provides warnings for missing messages, with a code 2-1, and
missing acknowledgements, with a code 2-2. These two additional messages
can be used to quickly solve missing messages. Warnings don’t have sequence
signatures and are only sent off-chain, because the protocol can work without
them.

Since some messages are publicly revealed, either because they are on-chain
or because we are using the trial module defined in Section 4.7, to prevent
information leak, the published data inside the message 2-0 is encrypted with
the subscriber’s public key. Hence, the subscriber is the only manager capable
of decoding this data.

Messages with code 2-0 are acknowledged explicitly, by the receiver, with an
ACK (code 1-4) or, by assumption, by sending the message on-chain.

4.6 Network issue and fail-over

Network issues can be the result of a network congestion or of a malicious entity
who purposefully drops messages. These events have the same result: a message
is dropped and does not reach the destination. SUPRA uses the mechanism
describe in Section 3.3 to handle this events.

When off-chain warnings are not enough to retrieve missing messages, man-
agers need to send messages on the blockchain. With this method, managers
are sure that the messages will reach the destination, because the managers are
supposed to remain reliably connected to the blockchain.

SUPRA has a fail-over module to allow managers to retrieve the aliases and
the last sequence signatures for theirs current subscriptions when they crash.
After a manager has crashed (when it is back online), it needs first to declare
the event on-chain. This is done by sending to itself a message with a code 3-0
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on-chain. This message is called a fail-over announcement. Then, it can join the
other managers with a history request, code 3-1. This request contains the block
where the fail-over announcement is on the blockchain. Managers can accept or
refuse the request. If the request is refused, all the active subscriptions between
the two managers are stopped, because one manager is not able to verify the
signatures anymore, since it has lost the current states of the subscriptions. If
the request is accepted, the manager resends off-chain all the stored previous
messages intended to the crashed manager. The crashed manager has to ac-
knowledge each message. When all the messages are received, then the other
manager sends a message with a code 3-4 to warn the crashed manager that it
has all the messages. We explain in Section 4.7.2 how managers need to store
messages.

The same fail-over announcement can be used to join several managers. So
a manager can contact all its known managers (subscribed to or from) and
retrieve all its subscription states. On the other hand, the same fail-over an-
nouncement cannot be used for two different crashes. If a manager tries to do
so, it will be easily detected, because the other manager already have received
a history request with this fail-over announcement or because the timestamps
do not match. For instance, subscriptions created after the on-chain fail-over
announcement message cannot be used to recover the sate of this subscription.

Declaring errors on-chain makes manager behaviors publicly auditable. Those
behaviors can be used by other managers to measure manager’s reliability. Man-
agers want to spend as less money as possible in on-chain transactions, so they
prefer to cooperate with managers who force the least number of on-chain mes-
sages but also who are reliable and do not crash.

4.7 Trial module

In this section, we describe how the trial module works by explaining the concept
of proof in SUPRA and the different proofs available.

4.7.1 Proofs, accusations and the judge

The purpose of this module is to detect malicious managers i.e., managers that
do not follow the protocol, by using the judge. The judge is a program with
a trusted execution. To do so, the judge can be a smart-contract inside the
blockchain, because the execution of a smart-contract can be verified by every
users. Detecting malicious managers allows to reduce the risk of paying fees,
avoiding honest manager to send on-chain messages.

The trial works as follow, the accuser manager sends his accusation to the
judge and the defendant manager has an amount of time to present counter-
arguments. The judge then decides which manager is malicious. An interesting
property for the trial is that an honest manager will always be able to defend
himself from a false accusation and will always win when accusing a malicious
manager. Also, if every managers are honest, this module should never be used.
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The messages sent by managers to the judge are called proofs. They are
generated by managers while using SUPRA. These proofs are composed of pre-
viously exchanged messages between managers. This generation is due to the
dependencies in SUPRA’s messages and the properties of the unidirectional
channel with on-off chain proof of delivery. The proofs have two important
properties. First, they are verifiable by everyone outside the system. Second,
they do not reveal sensitive information from managers. We assume that ev-
ery managers know the judge’s UUID. To prevent a certain amount of false
accusations, at the detection of a missing message, a manager needs to wait
Tacknowledged before accusing a manager of an error. This delay allows managers
to resend missing messages. There is also a limitation period for the accusation
called Tlimit. It is used to prevent the storage of every exchanged messages by
the managers. Tacknowledged and Tlimit need to be known by every manager, and
they could be declared in the judge, as variables in the smart-contract.

4.7.2 Message conservation

The trial is based on comparisons between exchanged messages, so managers
need to retain messages for a certain amount of time. Not storing messages
removes the chance for a manager to defend itself in case of a false accusation.

Messages from the subscription and fail-over modules should be kept during
the whole lifetime of the subscription because a manager needs to show them if
there is an error.

Messages from the publishing module that required an acknowledgement
need to be stored until the acknowledgment is received. Then, managers only
need to store, for each subscription, the last off-chain acknowledged message,
and its ack. Keeping these messages allows managers to reveal the sequence
signature reached before the last network issue.

After a subscription stoppage, every messages can be deleted after reaching
Tlimit from the last sent message of the subscription.

4.7.3 Accuser’s proofs

The accuser needs to show three mandatory messages to generate a valid accu-
sation. These messages are: the proof of identity, the proof of subscription, and
an accusation or a proof of fork.

The proof of identity is the managers’ UUID. This UUID is in every ex-
changed messages and managers can use this UUID to retrieve the key history
of a specific manager. With the timestamp inside the messages and the key
history, the judge can check which key should have been used at each moment
in time and verify the signatures.

The proof of subscription is composed of every exchanged messages during
the subscription process. In this messages, we removed a sensitive part, the
topic’s name, because it can leak information on a manager. These messages
show that both managers agreed on a subscription with a certain alias, but it
do not reveal the topic name.
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The last mandatory message is the accusation with the code 4-3. This mes-
sage presents a proof of missing message i.e., a message with a sequence sig-
nature that, according to the accuser, do not match the previously received
message. This accusation message can be a data publication or a missing ac-
knowledgment request, and cannot be forged because it is signed with the sus-
pected manager’s private key. The meaning of this accusation is to declare that
a manager has not followed the protocol and a message was not delivered before
Tacknowledged . To be valid, the accusation message must not be older than Tlimit.

Another possible issue with messages is a fork on the sequence signature.
As presented in Section 4.5, dependencies between messages create a chain of
signatures. If a manager detects a fork in sequence signature with two messages
from the same manager, it means that this manager sent two different messages
with the same previous one, which is an error that the manager can only do on
purpose.

By revealing these messages, the accuser proves the identity of the suspected
manager, proves a subscription, and proves the existence of an incorrect signa-
ture sequence.

4.7.4 Defendant’s proofs

In this part, we assume that the judge has checked the accusation’s proofs and
has considered them as valid. It means that every messages are signed with the
right keys and that no on-chain message denies a proof. For instance, the judge
could easily check if the missing messages are included in the blockchain, in a
block older than the block containing the accusation, if it does find them, the
accusation is invalid.

A defendant that is victim of a false accusation, and that followed the pro-
tocol, is always able to present one of the proof below, because it has at least
one message that denies a proof from the accuser.

If the accusation is false, but no on-chain message proves it, there are two
possibilities. First, the accusation message is from an older subscription with
the same alias between the same managers. Second, the accusation message is
an old message, correctly acknowledged, from the current subscription. Both
possibilities can be denied with off-chain messages stored by the defendant.

If the accusation message is from an old subscription, then it was stopped
recently (because the accusation message is not older than Tlimit and was gener-
ated by the publisher) so the defendant should not have deleted the subscription
stoppage. Showing the subscription stoppage to the judge proves that the ac-
cusation is false.

If the accusation message was correctly acknowledged, then the defendant
should have an acknowledgement for this message, or a more recent message
of the same subscription. The defendant can reveal the last sent message and
its acknowledgment to the judge. This message’s timestamp and the accuser’s
acknowledgment prove that the accusation is invalid.
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5 Comparison with existing solutions

In this section, we compare SUPRA with two solutions: MQTT and Trinity,
which is the first combination of MQTT and blockchain to our knowledge.

MQTT

We will compare MQTT and SUPRA to verify that SUPRA removes the issues
linked with central broker.

The two common ways to add security in MQTT is to use SSL/TSL en-
cryption and to use an authentication system on the broker. It is enough to
remove overhearing by a third-party but not enough to remove the star topology
with the central broker. This broker can be the source of trust issues, if it is
malicious. In SUPRA, managers communicate directly between each other, to
create subscription and send data. It removes the central authority from the
system.

MQTT runs over the L4 protocol TCP [1]. TCP gives guaranties on message
delivery: messages are ordered and they reach the destination, if it is available.
The cost of these guaranties are a longer message header and a lower throughput
than other L4 protocol, like UDP [12]. SUPRA also guaranty messages order,
with the sequence signature, and messages delivery. So SUPRA can work on a
L4 protocol that does not provide this guarantees, such as UDP. The on-chain
and off-chain communications allow SUPRA to have the level 2 in MQTT’s QoS
classes i.e., messages are delivered exactly once, because managers will ignore
re-transmissions of an previously received message.

These differences between MQTT and SUPRA make SUPRA more secured
and also increase its number of use-cases. SUPRA can be used when traceability
is needed in data exchanges or if the central broker is not trusted.

Trinity

To compare Trinity [14] and SUPRA, we use the 19 distributed publish/subscribe
protocol threats presented in [17]. These threats were used in [17] to compare
several security solutions in publish/subscribe protocols. Each threat is pre-
sented by its ID in the survey, TX where X ∈ {1, 2, ..., 19}.

Trinity and SUPRA are alike against several threats, because these protocols
share similar properties. Messages are signed, which prevent attacks based on
data alterations or spoofing (T4, T5, T6, T7, T10) and there is a mechanisms to
prevent malformed messages (T9). In Trinity, it is the API used by the brokers,
and, in SUPRA, it is the judge. Malformed proofs are ignored by the judge.
The blockchain also allows these protocols to handle crashed manager/broker,
because messages lost during a crash are available on-chain after the crash re-
covery (T18).

In Trinity, all the data published on a blockchain is only accessible by the
brokers. In SUPRA, we use a new communication paradigm to send data off-
chain as much as possible. The blockchain is used to create trust in managers’
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identities and as a backup communication link for data. Despite this difference
between Trinity and SUPRA, both protocols are protected against unautho-
rized actors (T11) and data repudiation (T17, T19). However, there is a risk of
eavesdropping (T1, T2) in Trinity.

Trinity’s blockchain network is only available for brokers, it supposes a min-
imal amount of trust between brokers, because of this trust, data are not en-
crypted on-chain. Thus, brokers have access to every published data, even data
from a topic for which they have no subscribers. In SUPRA, on-chain data
are encrypted and only the receiver can read it, which removes eavesdropping.
Managers trust the blockchain as a whole, but they do not trust other managers.

Both protocols don’t implement tools against flooding and deny of service-
based attacks (T14, T15, T16, T17). SUPRA and Trinity also share a risk of
subscription leak (T12), if a manager, or a broker, is hacked. These leaks will
only concern the local subscribers, in Trinity’s case, or the manager’s subscrip-
tion, in SUPRA’s case, but not every subscriptions in the network. Trinity
implements a QoS system on published data in [13], this feature is not present
in SUPRA but can be added in a future work.

SUPRA and Trinity do not implement routing protocols (layer 3) in their
specifications, so we think that it is not meaningful to compare them against
route poisoning attacks (T7).

6 Proof of concept and experimentation

We developed a proof of concept of SUPRA [2] compatible with Transchain’s
blockchain with the purpose of compare message delivery delay between SUPRA
and Trinity. We did not implement the judge and the fail-over system, and
published data have a fixed size of 64 bytes.

With SUPRA, we simulate a 10% error rate for the off-chain channel, and
a message is resend once off-chain before being sent on-chain. This is a very
pessimistic scenario for SUPRA as in practice, transmission over the Internet is
more reliable.

We chose a fixed data publication rate and the delay between message re-
transmissions (for SUPRA) is equal to the delay between two consecutive data
publication. We have two publication rates, one of 10 data per second and the
other of 100. To make measurements with Trinity, we reuse our code for SUPRA
but we forced the usage of the on-chain channel, and we remove the error rate.

We did 15 experimentations with each publication rate where we measured
the delay, for each message, between the first transmission by the publisher and
its delivery by the subscriber. A message is delivered by the subscriber when
every messages before it has been delivered, i.e.there is no missing signatures.
Each experimentation has 2000 data publications, which makes 30 000 data
data publications in total. Our results are shown in Figures 5 and 6.

We observe two things. First, that SUPRA looks faster than Trinity, re-
gardless of the data publication rate. This is logical because most of SUPRA
messages are sent directly to the subscriber, and we do not need to wait for the
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message availability on-chain. Second, we see that the publication rate has an
impact in message delay for SUPRA and Trinity.

Indeed, at a rate of 10 publications per second, Trinity’s messages are de-
livered between 0.10 and 1.3 seconds after the first sending and at a rate of
100 the delivery takes between 0.5 and 2.4s. This difference is linked with the
blockchain’s workload. Every message in Trinity go through the blockchain, it
means that increasing Trinity’s message rate will increase the work needed to
generate a new block because there is more transaction to check. Remark that
the use of the Traschain Blockchain is actually an advantage for Trinity as it can
handle an important workload, whereas the same experiment using Ethereum
for instance would have been much worse for Trinity.

For SUPRA, we set the error rate at 10% which means that 10% of the
data will be re-transmitted off-chain and 10% of this 10% will be sent on-chain,
which correspond to around 1% of the total amount of data. This means that
around 90% of the messages should be received almost instantly, because the
UDP delay is negligible, 9% should be slightly delayed because of the off-chain
re-transmission, and 1% should be greatly delayed because of the on-chain trans-
mission. This distribution is visible on figure 5. On this figure, we can observe
that around 25 000 messages where received between 0.0 and 0.1s and around
2 500 messages are received between 0.1 and 0.2s. At 10 messages per seconds,
a messages is resent off-chain after 0.1 seconds, if not acknowledged. Messages
received between 0.0 and 0.1s are the messages received with the first sending
and messages received between 0.1 and 0.2s are the messages received after the
off-chain re-transmission.

We can also observe a tail in SUPRA’s messages distribution. In figure 5, it
starts at 0.2s and ends at 0.8s. In figure 6, it is more visible because it starts
at 0.1s and ends at 2s. These tails are the result of the data publication rate
and message’s on-chain sending. While a subscriber is waiting for a missing
message to be available on-chain, it keeps receiving new publications (that ar-
rives faster because they are sent off-chain) and put them in stand-by because
they can be delivered only after the on-chain message is retrieved. The tails on
Figures 5 and 6 corresponds to those messages. Increasing the publication rate
will increase the amount of messages received by the subscriber before finding
the missing message on-chain.

7 Conclusion and future works

Blockchain data immutability has the potential to solve trust issues in dis-
tributed system. Blockchain can work as a trusted environment where everyone
can check the information. This idea is the base idea for several blockchain-based
communication protocols [9,13,14]. The main issue with these solutions is that
they are over centered on the blockchain: every communication go trough the
blockchain and this is not scalable. In this article, we presented SUPRA, which
is a blockchain-based publish/subscribe protocol. It relies on the blockchain only
to build trust between managers and resolve message delivery issues. This scal-
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able protocol is used between managers to exchange data in a secured, traceable
and autitable way using the publish/subscribe paradigm.

SUPRA can still be improved and we have two ideas on how to do it. The
first idea is to add QoS rules. QoS rules are a feature presents in Trinity [13],
with the help of smart-contracts. To add this feature, publishers could present
a list of rules for the data during the subscription. When the subscriber detects
an issue, it could use the Judge and the trial module to resolve it. The main
issue for the moment with this system is that you need to reveal a decrypted
version of the data to prove the error, if the error is about the value of the
data itself. Otherwise, the judge cannot check the issue because the data is
encrypted.

The second idea is to export our communication paradigm in other commu-
nication protocols. For instance, TCP [1] is a protocol that allows bidirectional
communications, a property publish/subscribe protocols are not designed for.
By merging SUPRA and TCP’s message formats, we could create a bidirec-
tional, secured, and auditable communication protocol.
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