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URN MODELS WITH RANDOM MULTIPLE DRAWING

AND RANDOM ADDITION

Abstract. We consider a two-color urn model with multiple drawing and random time-dependent
addition matrix. The model is very general with respect to previous literature: the number of
sampled balls at each time-step is random, the addition matrix is not balanced and it has general
random entries. For the proportion of balls of a given color, we prove almost sure convergence
results. In particular, in the case of equal reinforcement means, we prove fluctuation theorems
(through CLTs in the sense of stable convergence and of almost sure conditional convergence,
which are stronger than convergence in distribution) and we give asymptotic confidence intervals
for the limit proportion, whose distribution is generally unknown.
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1. Introduction

Reinforcement (see [34] for a review) means the tendency of a stochastic evolution to increase (or
sometimes decrease, so called, negative reinforcement) the occurrence of an event in relationship
with the number of time this event took place in the past. The Pólya urn stochastic process is the
fundamental and paradigmatic example. It led to several generalizations.

The original evolution rule of the Pólya urn is based on picking one ball in an urn filled with
colored balls and replacing that ball in the urn together with one or more balls, according to
some ”updating matrix”. More generalized samples have been considered, leading to multi-drawing
based updating rules. In these models, many balls are selected at each time and returned before
adding some new ones according to a reinforcement rule. Bi-color and multi-color models have
been considered, as well as models where the extraction of the balls is with or without replacement.
The number of sampled balls is always a fixed constant and the “replacement matrix” is in general
assumed to be balanced, that is, the number of added balls to the urn is constant along time (e.g.
[9,10,19,21,23,25,28,31]). In particular, in [20,28,31] the number of added balls is a deterministic
function of the composition of the extracted sample. Results deal with the asymptotic behavior,
evolution of moments, almost sure convergence and Central Limit Theorems (CLTs) for the fraction
of balls of a given color in the urn. In the model considered in [29], m balls are sampled at a
time, with replacement, and the distribution of the increment of one color follows, given the past,
a binomial distribution with parameters m and p, where p depends on weights associated to the
drawn colors. Results mainly deal with regimes where “fixation” happens, which is more interesting
for reinforced random walks applications. Moreover, different urn models with multi-drawing were
considered in relationship with some specific applications. See for instance [15,24,26,27].

Other urn models merge multi-drawing and random replacement matrix. The paper [2] is a
generalization of [1] and it deals with a constant sample size and a random replacement matrix.
This matrix can be of Pólya (diagonal) or Friedman (anti-diagonal, reinforcement of the non chosen
color) type and its entries have time-homogenous distribution. In particular, we point out that CLTs
are not proven for the Pólya type case. As we will see later on, we here fill in this gap.

The papers [3, 12] study a multi-drawing model (called HRRU, hypergeometric randomly rein-
forced urn model) with a random number Nn of sampled balls and a random replacement matrix of
rank 1 (bicolor case). The number of added balls of a given color is proportional to the number of
balls of the same color in the sample, but the random reinforcement factor is the same for both col-
ors. Note that this model generalizes the one recently given in [8]. The almost sure convergence of
the color proportions toward a non degenerate random variable is proven. Necessary and sufficient
conditions for no-atoms in the limiting distribution are given.

In this paper, we consider a two-color urn model, with multiple drawing and random time-
dependent addition matrix. The model is very general with respect to previous literature: the
number of sampled balls at each step is random, the addition matrix, defining the number of
additional balls, has general random entries. More precisely, for both colors, the random number
of added balls is proportional to the number of balls of the same color in the sample, with possibly
different random coefficients An, Bn (which may be correlated and their distribution may depend on
time n). The model studied in [3,12] corresponds to the particular case An = Bn. The reinforcement
rule we consider is not balanced (thus the long-run behavior of the total number Sn of balls in the
urn at time n needs to be studied). We prove almost sure convergence results for the proportion as
well as fluctuation results, through central limit theorems in the sense of stable convergence and of
almost sure conditional convergence, by suitably extending some approaches employed in the urn
model literature without multi-drawing (see [4, 5, 32]). Specifically, we consider two cases. If the
factors An and Bn have the same mean (equal reinforcement means case), the limit proportion Z is
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random without atoms. In the case of unequal limit reinforcement means, the proportion converges
almost surely to 1 (or 0). When the limit proportion Z is random, the proven central limit theorems
are employed in order to obtain asymptotic confidence intervals.

Some applications of the urn models with multi-drawing are described in [26]. Moreover, like
explained in [3,12], the present model may be applied in the context of technology adoption to model,
for example, the evolution of the choice between different operative systems by companies. Below
we illustrate other possible interpretations in the contexts of opinion dynamics and propagation of
contagious diseases (epidemic models).

Applications to opinion dynamics could be developed as follows. Assume to be before an election
between two candidates. People decide who they are going to vote for. People who have already
decided are represented as the colored balls already in the urn, the color meaning the choice for
one candidate. One assume this is a not evolving choice. At each iteration, a group (with random
size Nn) of people is sampled (without replacement) and each one is given the opportunity to
convince a group of other people. The new-comers will adopt the same choice as the person who
convinced them. The heterogeneity of this reproduction mechanism is modeled through the time-
dependent randomness of the factors An and Bn. The assumption of equal reinforcement means
would mean that in the long-run no advantage is given to any party. We can also consider the
evolution of the diffusion of a binary opinion through social networks, like Twitter. Each agent
inside a connected community has an un-changing opinion (for instance, a vote or a purchased
product). This community will grow dynamically through immigration of followers. At each step,
a subset (with random size Nn) of agents is chosen. Each agent of this committee is allowed to
call into the community of followers sharing their opinion. Once again, the heterogeneity of this
growth mechanism is modeled by allowing the multiplying factors An and Bn for each opinion to
be random. Correlation between these growth coefficients are possible. If one of these coefficients
is eventually larger in mean, then the associated opinion will dominate eventually (but may take
some time). If both coefficients are equal in mean then some random equilibrium takes place.

In the original paper [17], where the Pólya urn model was first defined, smallpox epidemy was
the context it was applied to (see for instance [22,30] and references therein). Therefore, a second
application of our model one could have in mind is the diffusion of genetic variants of viruses
(see for instance [33] for a review on epidemic models on networks). We do not pretend to do
any modeling study here but want to illustrate the potentialities of our model as a “toy model”.
Assume one want to model the propagation of a virus, existing in two forms. Assume to consider a
time scale such that there are infinitely many persons to be possibly contaminated and that once
a person is contaminated, he/she remains contagious “for ever” (no recovering, no dying). Balls in
the urn represent the contaminated persons by one of the two variants of the virus (corresponding
to the two possible colors of the balls). We do have in mind the initial exponential regime of the
propagation of two competing variants of one virus. Each discrete time-step of the urn’s evolution
means a contagion step. People that are contaminating are assimilated to the sample made without
replacement in the urn. This is a random number Nn and this randomness may depend on time
and on the total number of contaminated persons. One chosen contaminating person diffuse the
same variant. Each variant has its own amplifying factor An (resp. Bn): one assume that each
selected person, contaminated by a given variant, is contaminating the same number of people. This
somewhat unrealistic hypothesis is compensated by the fact that the number of individuals infected
by one person is random, with a time-dependent and variant-dependent randomness. Moreover,
An and Bn could be correlated. This model gives insights: if the limit means (time-asymptotic
reproduction means of each variant in this context) are unequal, one kind of virus will eventually
dominate. If they are equal, there is a limiting genuinely random proportion, for which we provide
confidence intervals.
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Finally, another application context could be population dynamics in case of competitive or
cooperative growth. As before, the flexibility of the model lies in the choice of Nn, An and Bn. The
joint distribution of [An, Bn] is important to model competition or cooperation. One may think to
bacterial populations and the evolution of their respective proportions in the microbial gut.

The paper is organized as follows. In Section 2 we formally define the model. In Section 3 we state
and prove the main results. In Subsection 3.1 we prove the almost sure convergence towards a limit
proportion Z. Different behaviors occur according to equality/unequality of the limit reinforcement
means. In particular, in the case of equal reinforcement means, we provide precise asymptotic rates:
indeed, in Subsection 3.2 we establish central limit theorems for the proportion Zn of the balls of
a given color in the urn and for the empirical mean Mn of the proportion of the balls of a given
color in the samples. Moreover, in the case of equal reinforcement means, in Subsection 3.3, we
prove that the distribution of the limit proportion Z has no atoms and, in Subsection 3.4, we
provide asymptotic confidence intervals for Z, centered in Zn and Mn. We then present in Section
4 more specific examples, illustrated with some numerical simulations. The paper is enriched with
an appendix in three parts which collects some more technical lemmas and general results, in
particular about stable convergence and its variants.

2. The model

An urn contains a ∈ N \ {0} balls of color A and b ∈ N \ {0} balls of color B. At each discrete
time n ≥ 1, we simultaneously (i.e. without replacement) draw a random number Nn of balls. Let
Xn be the number of extracted balls of color A. Then we return the extracted balls in the urn
together with other AnXn balls of color A and Bn(Nn −Xn) balls of color B. More precisely, we
take a probability space (Ω,A, P ) and, on it, some random variables Nn, Xn, An, Bn such that,
for each n ≥ 1, we have:

(A1) The conditional distribution of the random variable Nn given

[N1, X1, A1, B1 . . . , Nn−1, Xn−1, An−1, Bn−1]

is concentrated on {1, . . . , Sn−1} where Sn−1 is the total number of balls in the urn at
time n− 1, that is

Sn−1 = a+ b+
n−1∑
j=1

AjXj +
n−1∑
j=1

Bj(Nj −Xj). (1)

(A2) The conditional distribution of the random variable Xn given

[N1, X1, A1, , B1 . . . , Nn−1, Xn−1, An−1, Bn−1, Nn]

is hypergeometric with parameters Nn, Sn−1 and Hn−1, where Hn−1 is the total number of
balls of color A at time n− 1, that is

Hn−1 = a+

n−1∑
j=1

AjXj . (2)

(A3) The random vector [An, Bn] takes values in N \ {0} × N \ {0} and it is independent of

[N1, X1, A1, B1, . . . , Nn−1, Xn−1, An−1, Bn−1, Nn, Xn] .

According to the above notation, the random variable Xn corresponds to the number of balls
having the color A in a random sample without replacement of size Nn from an urn with Hn−1 balls
of color A and Kn−1 = (Sn−1−Hn−1) balls of color B. The reinforcement rule is of the “multiplica-
tive” type: indeed, each time n, we add to the urn AnXn balls of color A and Bn(Nn −Xn) balls
of color B. Therefore, the total number of added balls to the urn, that is AnXn + Bn(Nn −Xn),
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is random and depends on n.

Note that we do not specify the conditional distribution of the random variable Nn (the sample
size) given the past

[N1, X1, A1, B1 . . . , Nn−1, Xn−1, An−1, Bn−1]

nor the distribution of [An, Bn] (the random reinforcement factors An and Bn may have different
distributions, they may be correlated and their joint and marginal distributions may vary with n).

It is worthwhile to remark that this model include the Hypergeometric Randomly Reinforced
Urn (HRRU) studied in [3, 12] (take An = Bn for all n), which in turn include the model recently
given in [8]. In particular, two special cases are the classical Pólya urn (the case with Nn = 1 and
An = Bn = k ∈ N \ {0} for each n) and the 2-colors randomly reinforced urn with the reinforce-
ments for the two colors equal or different in mean (the case with Nn = 1 for each n and [An, Bn]
arbitrarily random in N\{0}×N\{0}). Moreover, as told in Section 1, previous literature (we refer
to the quoted papers in Sec. 1) deals with the case when the sample size Nn is a fixed constant,
not depending on n, and/or the balanced case (constant number of added balls to the urn each time).

We set Zn equal to the proportion of balls of color A in the urn (immediately after the updating
of the urn at time n and immediately before the (n+ 1)-th extraction), that is Z0 = a/(a+ b) and

Zn =
Hn

Sn
for n ≥ 1.

Moreover we set

F0 = {∅,Ω}, Fn = σ
(
N1, X1, A1, B1, . . . , Nn, Xn, An, Bn

)
for n ≥ 1 ,

and
Gn = Fn ∨ σ(Nn+1), Hn = Gn ∨ σ(An+1, Bn+1) for n ≥ 0.

By the above assumptions and notation, we have

E[An+1 | Gn] = E[An+1] , E[Bn+1 | Gn] = E[Bn+1] (3)

and

E[Xn+1 |Hn] = E[Xn+1 | Gn] = Nn+1Zn ,

E[Nn+1 −Xn+1 |Hn] = E[Nn+1 −Xn+1 | Gn] = Nn+1(1− Zn) .
(4)

Finally, we set Xn = {0 ∨Nn − (Sn−1 −Hn−1), . . . , Nn ∧Hn−1} and, for each k ∈ Xn,

pn,k = pk(Nn, Sn−1, Hn−1) =

(Hn−1

k

)(Sn−1−Hn−1

Nn−k
)(Sn−1

Nn

) . (5)

3. Asymptotic results

In this section we prove some convergence results for the model described in Section 2 by
suitably extending some approaches employed in the urn model literature without multi-drawing
(see [4, 5, 32]).

Set E[An] = mA,n and E[Bn] = mB,n for all n. We will assume that the two sequences (mA,n)n
and (mB,n)n respectively converge to mA ∈ (0,+∞) and mB ∈ (0,+∞). Moreover, we will consider
the following cases:

1) mA > mB.
2) mA,n = mB,n = mn and so mA = mB = m ∈ (0,+∞).



6 MULTIPLE DRAWING AND RANDOM ADDITION

For simplicity, throughout the paper, we will assume

An ∨Bn ∨Nn ≤ C for some (integer) constant C.

We will signal when this assumption can be easily removed. Sometimes it may be replaced by an
assumption of uniformly integrability, but we will not focus on this fact.

We start with proving a result valid for both cases.

Lemma 3.1. We have

Hn
a.s.−→ +∞ and Kn = (Sn −Hn)

a.s.−→ +∞ .

As a consequence, we obviously have Sn
a.s.−→ +∞.

Proof. First suppose a ∧ b ≥ C so that Ni ≤ Hi−1 for each n. Let T = inf{n : Xn 6= Nn} = inf{n :
(Nn −Xn) > 0}. For each k ≥ 1, we have

tk = P{T > k} = P (Xi = Ni , i = 1, . . . , k) = E

[
k∏
i=1

Hi−1
Si−1

× · · · × Hi−1 − (Ni − 1)

Si−1 − (Ni − 1)

]

= E

 k∏
i=1

Ni−1∏
j=0

a− j +
∑i−1

h=1AhNh

a+ b− j +
∑i−1

h=1AhNh

 .
We recall that, given c1, c2, c3 > 0, we have

x ≤ c1 ⇔
c2 + x

c2 + c3 + x
≤ c1 + c2
c1 + c2 + c3

.

Therefore, applying the above inequality with x =
∑i−1

h=1AhNh ≤ (i−1)C2 = c1, c2 = a−j, c3 = b,
we get

tk ≤ E

 k∏
i=1

Ni−1∏
j=0

a− j + (i− 1)C2

a+ b− j + (i− 1)C2

 ≤ E [ k∏
i=1

(
a+ (i− 1)C2

a+ b−Ni + 1 + (i− 1)C2

)Ni]
≤

k∏
i=1

a+ (i− 1)C2

a+ b− C + 1 + (i− 1)C2
= exp

(
k∑
i=1

ln(1− (b− C)/(a+ b− C + 1 + (i− 1)C2))

)
−→ 0 as k → +∞ .

This fact means that P (T = +∞) = limk tk = 0, i.e. P (T < +∞) = 1. By the strong Markov’s
property, we can conclude that P (Nn −Xn > 0 i.o.) = 1, i.e.

∑
n(Nn −Xn) = +∞ almost surely.

Since Kn = Sn − Hn = b +
∑n

i=1Bi(Ni − Xi) ≥
∑n

i=1(Ni − Xi), we get Kn = Sn − Hn → +∞
almost surely. Similarly, we can obtain that Hn → +∞ almost surely.

In the general case, we have

tk = P (T > k) = P (Xi = Ni , i = 1, . . . , k)

= P (Xi = Ni , i = 1, . . . , k |Ni ≤ Hi−1 , i = 1, . . . , k)P (Ni ≤ Hi−1 , i = 1, . . . , k) ,

where P (Xi = Ni , i = 1, . . . , k |Ni ≤ Hi−1 , i = 1, . . . , k) is equal to the product studied before and
so it converges to 0.
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3.1. Almost sure convergence.

Theorem 3.2. Assume to be in case 1) (i.e. mA > mB). Then Zn
a.s.−→ Z = 1.

Proof. Let e ∈ (mB/mA, 1) and set Qn = Kn/H
e
n for all n. Then, using that (1− x)e ≤ 1− ex for

0 ≤ x ≤ 1, Hn ≤ Hn+1 ≤ Hn + C2 and (4), we have:

E[Qn+1/Qn − 1 |Hn] = E

[
Kn +Bn+1(Nn+1 −Xn+1)

Kn

(
Hn

Hn+1

)e
|Hn

]
− 1

= E

[(
Hn

Hn+1

)e
− 1 |Hn

]
+ E

[
Bn+1(Nn+1 −Xn+1)

Kn

(
Hn

Hn+1

)e
|Hn

]
≤ −eE

[
An+1Xn+1

Hn+1
|Hn

]
+ E

[
Bn+1(Nn+1 −Xn+1)

Kn
|Hn

]
≤ −eE

[
An+1Xn+1

Hn + C2
|Hn

]
+ E

[
Bn+1(Nn+1 −Xn+1)

Kn
|Hn

]
= −eAn+1Nn+1

Sn

Hn

Hn + C2
+
Bn+1Nn+1

Sn
.

Taking the conditional expectation with respect to Gn and using (3), we get

E[Qn+1/Qn − 1 | Gn] ≤ Nn+1

Sn

(
mB,n+1 − emA,n+1

Hn

Hn + C2

)
.

Since Hn goes to +∞ (see Lemma 3.1), limnmA,n+1 = mA > mB = limnmB,n+1 and e ∈
(mB/mA, 1), we obtain that the above conditional expectation is smaller or equal than zero for n
large enough. It follows that, for large n, we have

E[Qn+1 −Qn | Gn] = QnE[Qn+1/Qn − 1 | Gn] ≤ 0

This means that (Qn)n is eventually a positive (i.e. non-negative) G-supermartingale and so it
converges almost surely to a finite random variable. In order to conclude, it is enough to observe

that, since Hn ≤ Sn, Sn
a.s.−→ +∞ and e < 1, we have

1− Zn =
Kn

Sn
= Qn

He
n

Sn
≤ QnS−(1−e)n

a.s.−→ 0 ,

that is Zn
a.s.−→ 1.

Theorem 3.3. Assume to be in case 2). Then, we have

|E[Zn+1|Gn]− Zn | ≤ E[(An+1 +Bn+1)
2]
N2
n+1

n2
(6)

and so the process (Zn) is a G-quasi-martingale and it almost surely converges to a random vari-
able Z taking values in [0, 1].

It is easy to see that, in order that (Zn) is G-quasi-martingale, it is enough to require the condition∑
n

E[(An+1 +Bn+1)
2]
E[N2

n+1]

n2
< +∞ , (7)

which is obviously satisfied when An ∨ Bn ∨ Nn ≤ C for some constant C. Moreover, as we will
see, for the proof of the above lemma it is sufficient to assume only mA,n = mB,n = mn for all n
(it is not necessary to have (mn) convergent).
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Proof. After some computations, we get

Zn+1 − Zn =
(1− Zn)An+1Xn+1 − ZnBn+1(Nn+1 −Xn+1)

Sn+1
. (8)

Therefore, by the model assumptions, the conditional expectation E[Zn+1 − Zn|Hn] is equal to∑
k∈Xn+1

[(1− Zn)
An+1k

Sn +An+1k +Bn+1(Nn+1 − k)
− Zn

Bn+1(Nn+1 − k)

Sn +An+1k +Bn+1(Nn+1 − k)
]pn+1,k ,

where Xn+1 = {0 ∨ Nn+1 − (Sn − Hn), . . . , Nn+1 ∧ Hn} and pn+1,k = pk(Nn+1, Sn, Hn) is given
by (5). We observe that Xn+1 and pn+1,k are Gn-measurable and so the conditional expectation
E[Zn+1 − Zn|Gn] is equal to∑
k∈Xn+1

{
(1− Zn)E

[
An+1k

Sn +An+1k +Bn+1(Nn+1 − k)
|Gn
]
− ZnE

[
Bn+1(Nn+1 − k)

Sn +An+1k +Bn+1(Nn+1 − k)
|Gn
]}

pn+1,k .

Now, we consider the above quantity and we add and subtract the quantity An+1k/Sn in the first
conditional expectation and the quantity Bn+1(Nn+1−k)/Sn in the second conditional expectation,
so that the two conditional expectations can be rewritten respectively as

E

[−A2
n+1k

2 −An+1Bn+1k(Nn+1 − k)

Sn[Sn +An+1k +Bn+1(Nn+1 − k)]
|Gn
]

+
mnk

Sn

E

[−B2
n+1(Nn+1 − k)2 −An+1Bn+1k(Nn+1 − k)

Sn[Sn +An+1k +Bn+1(Nn+1 − k)]
|Gn
]

+
mn(Nn+1 − k)

Sn
,

where we have used (3) and the fact that mA,n = mB,n = mn. Finally, we observe that∑
k∈Xn+1

(1− Zn)mnk − Znmn(Nn+1 − k)

Sn
pn+1,k =

mn

Sn

∑
k∈Xn+1

(k −Nn+1Zn)pn+1,k = 0,

because
∑

k∈Xn+1
kpn+1,k is the mean value of the hypergeometric distribution with parameters

Nn+1, Sn, Hn and so it is equal to Nn+1Hn/Sn = Nn+1Zn. Summing up, the conditional expecta-
tion E[Zn+1 − Zn|Gn] is equal to∑
k∈Xn+1

E

[
ZnB

2
n+1(Nn+1 − k)2 − (1− Zn)A2

n+1k
2 + (2Zn − 1)An+1Bn+1k(Nn+1 − k)

Sn[Sn +An+1k +Bn+1(Nn+1 − k)]
|Gn
]
pn+1,k .

Therefore, using assumption (A3), we have

|E[Zn+1|Gn]− Zn | ≤ E
[

(An+1 +Bn+1)
2N2

n+1

S2
n

|Gn
]

= E[(An+1 +Bn+1)
2]
N2
n+1

S2
n

and, since An ∧ Bn ∧Nn ≥ 1 by definition, we finally get (6). When condition (7) is satisfied (as
when An ∨Bn ∨Nn ≤ C for some constant C), the process (Zn) is a G-martingale taking values in
[0, 1] and, hence, it almost surely converges to some random variable Z taking values in [0, 1].

Remark 3.4. From (8), we immediately get that, if An = Bn for all n, then

Zn+1 − Zn =
An+1(Xn+1 − ZnNn+1)

Sn +An+1Nn+1

and so (Zn) is an H-martingale, because of assumptions (A1) and (A2). Therefore, for its almost
sure convergence, it is not necessary condition (7). This is the case considered in [3, 12].
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Remark 3.5. Lemma B.1 (with Yn = Xn/Nn) immediately implies that, in both cases 1) and 2),
the sequence

Mn =
1

n

n∑
j=1

Xj

Nj
, (9)

which is the empirical mean of the proportion, in the samples, of balls of color A, also converges
almost surely to Z.

Proposition 3.6. Assume to be in one of the previous two cases 1) and 2) and let Z
a.s.
= limn Zn.

Moreover, assume

E[Nn|Fn−1]
a.s.−→ N , (10)

where N is a (strictly positive finite) random variable.
Then

Hn

n

a.s.−→ mANZ ,
Kn

n
=
Sn −Hn

n

a.s.−→ mBN(1− Z).

and so
Sn
n

a.s.−→ mANZ +mBN(1− Z).

Proof. It is enough to apply Lemma B.1 with Yj = AjXj (resp. Yj = Bj(Nj − Xj). Indeed, we
have Yj ≤ AjNj (resp. Yj ≤ BjNj) for each j and so E[Y 2

j ] ≤ E[(Aj +Bj)
2]E[N2

j ]. Moreover

E[AjXj |Fj−1] = E [E[E[AjXj |Hj−1] |Gj−1] |Fj−1] = E [E[AjNjZj−1|Gj−1]|Fj−1]

= E[mA,jNjZj−1|Fj−1] = mA,jE[Nj |Fj−1]Zj−1
a.s.−→ mANZ

and

E[Bj(Nj −Xj)|Fj−1] = E [E[E[Bj(Nj −Xj)|Hj−1] |Gj−1] |Fj−1]
= E [E[BjNj(1− Zj−1)|Gj−1]|Fj−1]
= E[mB,jNj(1− Zj−1)|Fj−1]

= mB,jE[Nj |Fj−1](1− Zj−1)
a.s.−→ mBN(1− Z) .

Therefore, we have Hn/n
a.s.−→ mANZ and Kn/n

a.s.−→ mBN(1−Z) and so Sn/n = Hn/n+Kn/n
a.s.−→

mANZ +mBN(1− Z).

Remark 3.7. When we are in case 1), then Z = 1 almost surely and so we have Hn and Sn go to
+∞ with rate n. Moreover, we observe that, for each e ∈ (mB/mA, 1), we have

n1−e(1− Zn) = n1−e
Kn

Sn
=

(
n

Sn

)1−e(Hn

Sn

)e
Qn ,

where Qn is defined as in the proof of Theorem 3.2. Since n/Sn, Hn/Sn and Qn converge almost
surely to suitable finite random variables, we get that n1−e(1 − Zn) converges almost surely to a

finite random variable. Since e is arbitrary, we necessarily have n1−e(1− Zn)
a.s.−→ 0, that is, for all

e ∈ (mB/mA, 1), we have 1− Zn
a.s.
= o(n−(1−e)) and so Kn = Sn(1− Zn) = o(ne).

When we are in case 2), since mN > 0 almost surely, the above limit result implies that Sn goes
to +∞ with rate n; while it is not sufficient in order to get some information on the asymptotic
behavior of Hn and Kn, because Z may assume the value 0 or 1. In the sequel, we will prove that
both Hn and Kn go to +∞ at rate n.

Theorem 3.8. Assume to be in case 2) and assume condition (10). Then we have P (Z = 0) +
P (Z = 1) = 0. (Consequently the rate at which Hn and Kn go to +∞ is equal to n.)
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Proof. Set Yn = ln(Hn/Kn), ∆n = E[Yn+1 − Yn|Gn] and Qn = E[(Yn+1 − Yn)2]. If we prove∑
n ∆n < +∞ and

∑
nQn < +∞ almost surely, then Yn converges almost surely to a finite

random variable (see Lemma 3.2 in [35]). This fact implies that Hn/Kn converges to a random

variable Y with values in (0,+∞). It follows that Zn = Hn
Sn

= Hn/Kn
Hn/Kn+1 converges almost surely to

Y/(Y + 1), which is a random variable with values in (0, 1). Then P (Z = 0) + P (Z = 1) = 0.
The rest of the proof is devoted to verify that

∑
n ∆n < +∞ and

∑
nQn < +∞ almost surely.

To this regard, we recall that, by Lemma A.3, we have 1/Kn = O(1/nγ) and 1/Hn = O(1/nγ) with
γ > 0. Moreover, using the notation (5), we have

E[ln(Hn+1)− ln(Hn)|Hn]− E[ln(Kn+1)− ln(Kn)|Hn] =∑
k∈Xn+1

{(ln(Hn +An+1k)− ln(Hn))− (ln(Kn +Bn+1(Nn+1 − k))− ln(Kn))} pn+1,k =

∑
k∈Xn+1

{∫ An+1k

0

1

Hn + t
dt−

∫ Bn+1(Nn+1−k)

0

1

Kn + t
dt

}
pn+1,k

Since 1/(Hn + t) ≤ 1/Hn and 1/(Kn + t) ≥ 1/Kn − t/K2
n for each t ≥ 0 and each n, the last term

of the above equalities is eventually smaller or equal than∑
k∈Xn+1

{
An+1k

Hn
− Bn+1(Nn+1 − k)

Kn
+ c

B2
n+1(Nn+1 − k)2

2K2
n

}
pn+1,k .

Now, we observe that

E[
∑

k∈Xn+1

(
An+1k

Hn
− Bn+1(Nn+1 − k)

Kn

)
pn+1,k | Gn] =

mn+1Nn+1

Sn
− mn+1Nn+1

Sn
= 0 .

Therefore, we have for n large enough (using (1− Zn) = Kn/Sn)

∆n ≤
cC2

2K2
n

{
Zn(1− Zn)Nn+1

Sn −Nn+1

Sn − 1
+N2

n+1(1− Zn)2
}

= O(1/(KnSn)) = O(1/n1+γ) .

Similarly, we have

E[(ln(Hn+1)− ln(Hn)− ln(Kn+1) + ln(Kn))2|Hn] ≤
2
{
E[(ln(Hn+1)− ln(Hn))2|Hn] + E[(ln(Kn+1)− ln(Kn))2|Hn]

}
≤

2
∑

k∈Xn+1

(
A2
n+1k

2

H2
n

+
B2
n+1(Nn+1 − k)2

K2
n

)
pn+1,k = O(1/(HnSn)) +O(1/KnSn) = O(1/n1+γ) .

The last statement (into the brackets) immediately follows from Proposition 3.6.

3.2. Central limit theorems for the case of equal reinforcement means. Since in case 2),
the limit proportion is a random variable Z, in the sequel we provide results in order to get some
information on it.

Theorem 3.9. Assume to be in case 2) and assume condition (10). Moreover, suppose to have

E[N2
n|Fn−1]

a.s.−→ Q , (11)

where Q is a (strictly positive finite) random variable, and

qA,n = E[A2
n]→ qA , qB,n = E[B2

n]→ qB , qAB,n = E[AnBn]→ qAB , (12)
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where qA, qB and qAB are (strictly positive finite) constants.
Then

√
n(Zn−Z) converges in the sense of the almost sure conditional convergence with respect

to F = (Fn) to the Gaussian kernel N (0, V ), where

V = Z(1− Z)
(1− Z)qA[(1− Z)N + ZQ] + ZqB[ZN + (1− Z)Q]− 2Z(1− Z)qAB(Q−N)

(mN)2

= Z(1− Z)
N [(1− Z)2qA + Z2qB + 2Z(1− Z)qAB] + Z(1− Z)Q[qA + qB − 2qAB]

(mN)2
.

(13)

Before the proof, we premise some remarks.

Remark 3.10. Regarding formula (13), recall that N ≥ 1 a.s., Q ≥ 1 a.s., qA ≥ 1 qB ≥ 1, qAB ≥ 1
and qA + qB − 2qAB = limnE[(An−Bn)2] ≥ 0. Moreover, we have proven that P (Z = 0) = P (Z =
1) = 0 (see Theorem 3.8). Therefore, we have P (V > 0) = 1. In addition, we note that V is
not degenerate provided P (Z = z) < 1 for all z ∈ (0, 1). For this last fact, we refer to the next
Theorem 3.15, which states that we also have P (Z = z) = 0 for all z ∈ (0, 1).

Remark 3.11. When An = Bn for all n, we have qA = qB = qAB = q and so we get V =
Z(1−Z)q/(m2N), that does not depend on Q. Indeed, in this case the above assumption (11) can
be deleted (see [12]).

Remark 3.12. When Nn = k for each n, with k a fixed constant, we have

V = kZ(1− Z)
(1− Z)2qA + Z2qB + 2Z(1− Z)qAB + Z(1− Z)k(qA + qB − 2qAB)

(mk)2

= Z(1− Z)
(1− Z)2qA + Z2qB + Z(1− Z)[k(qA + qB)− 2qAB(k − 1)]

m2k
.

(14)

In particular, for k = 1, we observe that V does not depend on qAB.

Proof. Setting X ′n = Xn/Nn for each n, the sequence (X ′n) is G-adapted and bounded. Moreover,
we have

E[X ′n+1|Gn] = E[N−1n+1Xn+1|Gn] = N−1n+1E[Xn+1|Gn] = N−1n+1Nn+1Zn = Zn . (15)

We want to apply Theorem C.2 to Yn = X ′n. By Theorem 3.3, we have

n3E
[

(E[Zn+1|Gn]− Zn)2
]
−→ 0.

Therefore, in order to prove Theorem 3.9, it suffices to prove that the following conditions are
satisfied

c1) E[supj≥1
√
j|Zj−1 − Zj | ] < +∞;

c2) n
∑

j≥n(Zj−1 − Zj)2
a.s.−→ V .

In the following we verify the above conditions.
Condition c1). We observe that, by (8) and recalling that Aj ∧Bj ∧Nj ≥ 1 and Aj ∨Bj ∨Nj ≤ C,
we have

|Zj−1 − Zj | ≤
(Aj +Bj)Nj

j
≤ 2C2

j
. (16)

Therefore condition c1) is obviously verified.
Condition c2). We want to apply Lemma B.1 with Yj = j2(Zj−1 − Zj)2. By the assumptions and
inequality (16), we have

∑
j≥1 j

−2E[Y 2
j ] < +∞. Moreover, by equality (8), we have

(Zj−1−Zj)2 =
(1− Zj−1)2A2

jN
2
j (X ′j)

2

S2
j

+
Z2
j−1B

2
jN

2
j (1−X ′j)2

S2
j

−2
Zj−1(1− Zj−1)AjBjN2

jX
′
j(1−X ′j)

S2
j

.

Therefore, we study the convergence of the following three terms:



12 MULTIPLE DRAWING AND RANDOM ADDITION

• T1,j−1 = j2E

[
(1−Zj−1)

2A2
jN

2
j (X

′
j)

2

S2
j

|Fj−1
]
,

• T2,j−1 = j2E

[
Z2
j−1B

2
jN

2
j (1−X′j)2

S2
j

|Fj−1
]
,

• T3,j−1 = j2E

[
Zj−1(1−Zj−1)AjBjN

2
jX
′
j(1−X′j)

S2
j

|Fj−1
]
.

Consider the first term T1,j−1. By assumption (A3), we get the two inequalities:

T1,j−1 ≥
j2

(Sj−1 + C2)2
(1− Zj−1)2E[A2

j ]E[N2
j (X ′j)

2|Fj−1]

T1,j−1 ≤
j2

S2
j−1

(1− Zj−1)2E[A2
j ]E[N2

j (X ′j)
2|Fj−1].

Since Sn/n
a.s.−→ Nm > 0, Zj−1

a.s.−→ Z and E[A2
j ] → qA, it is enough to verify the almost sure

convergence of E[N2
j (X ′j)

2|Fj−1]. To this purpose, we observe that we can write

E[N2
j (X ′j)

2|Fj−1] = E
[
N2
j E[(X ′j)

2|Gj−1] | Fj−1
]

and, by (A2), the conditional expectation E[(X ′j)
2|Gj−1] coincides with

N−2j E[X2
j |Gj−1] = N−2j

[
Zj−1(1− Zj−1)(Sj−1 − 1)−1Nj(Sj−1 −Nj) + Z2

j−1N
2
j

]
= Zj−1(1− Zj−1)(Sj−1 − 1)−1N−1j (Sj−1 −Nj) + Z2

j−1.

Therefore we obtain

E[N2
j (X ′j)

2|Fj−1] = Zj−1(1−Zj−1)(Sj−1−1)−1
(
Sj−1E[Nj |Fj−1]− E[N2

j |Fj−1]
)
+Z2

j−1E[N2
j |Fj−1],

which converges almost surely to Z(1 − Z)N + Z2Q (since E[N2
j |Fj−1] is bounded by C2 and

Sj−1
a.s.−→ +∞). Hence T1,j−1 converges almost surely to T1 = Z(1−Z)2qA(mN)−2[(1−Z)N+ZQ].

Similarly, we get

E[N2
j (1−X ′j)2|Fj−1] = E[N2

j |Fj−1] + E[N2
j (X ′j)

2|Fj−1]− 2E[N2
jX
′
j |Fj−1]

= E[N2
j |Fj−1] + E[N2

j (X ′j)
2|Fj−1]− 2ZjE[N2

j |Fj−1]
−→ Q+ Z(1− Z)N + Z2Q− 2ZQ = Z(1− Z)N + (1− Z)2Q.

and so T2,j−1 converges almost surely to T2 = Z2(1 − Z)qB(mN)−2[ZN + (1 − Z)Q]. Finally, we
have

E[N2
jX
′
j(1−X ′j)|Fj−1] = E[N2

jX
′
j |Fj−1]− E[N2

j (X ′j)
2|Fj−1]

= Zj−1E[N2
j |Fj−1]− E[N2

j (X ′j)
2|Fj−1]

−→ ZQ− Z(1− Z)N − Z2Q = Z(1− Z)(Q−N).

and so T3,j−1 converges almost surely to T3 = Z2(1 − Z)2qAB(mN)−2(Q − N). By Lemma B.1,
condition c2) is satisfied with V = T1 + T2 − 2T3. The proof is so concluded.

Theorem 3.13. Under the assumptions of Theorem 3.9, suppose also that

E[N−1n |Fn−1]
a.s.−→ L , (17)

where L is a (positive bounded) random variable.
Then

[
√
n(Mn − Zn),

√
n(Zn − Z)]

stably−→ N (0, U)⊗N (0, V ),

where Mn is defined in (9), V is defined in (13) and U = V + Z(1− Z)[L− 2N−1].
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In particular, we have that
√
n(Mn−Zn) converges stably to N (0, U) and

√
n(Mn−Z) converges

stably to N (0, U + V ), with U + V > 0 almost surely (see Remark 3.10).

Remark 3.14. Regarding the limit random variance U , we note that, by Jensen inequality, we
have (E[Nn|Fn−1])2 ≤ E[N2

n|Fn−1] and E[Nn|Fn−1]−1 ≤ E[N−1n |Fn−1] and so we have N2 ≤ Q
and 1/N ≤ L. Therefore, we get

V ≥ Z(1− Z)
N [(1− Z)2qA + Z2qB + 2Z(1− Z)qAB] + Z(1− Z)N2[qA + qB − 2qAB]

(mN)2
and

L− 2

N
≥ − 1

N
.

Moreover, since Nn ≥ 1 for each n, we have N ≥ 1 and so N2 ≥ N . It follows the relation
V ≥ Z(1− Z)[(1− Z)qA + ZqB]/(mN)2 and hence

U ≥ Z(1− Z)

N

[
(1− Z)qA + ZqB

m2
− 1

]
.

Since qA ≥ m2 and qB ≥ m2 and P (Z = 0) = P (Z = 1) = 0, the quantity in the right side of
the last inequality is always greater or equal than zero almost surely and it is equal to zero if and
only if qA = qB = m2. Summing up, the rate of convergence of (Mn − Zn) to zero is 1/2 whenever
qA > m2 or qB > m2 and, otherwise, it could be even greater.

Proof. Thanks to what we have already proven in the previous proof, it suffices to verify that the
following condition is satisfied (see Theorem C.2 applied to Yn = X ′n):

c3) n−1
∑n

j=1

[
X ′j − Zj−1 + j(Zj−1 − Zj)

]2 P−→ U .

To this purpose, we apply Lemma B.1 with

Yj =
[
X ′j − Zj−1 + j(Zj−1 − Zj)

]2
.

Indeed, by the assumptions, we have
∑

j≥1 j
−2E[Y 2

j ] < +∞. Moreover, from what we have already
seen in the previous proof, we can get

j2E[(Zj−1 − Zj)2|Fj−1]
a.s.−→ V .

Moreover, leveraging the above computations, we have

E[(X ′j − Zj−1)2|Fj−1] = E[(X ′j)
2|Fj−1]− Z2

j−1

= Zj−1(1− Zj−1)(Sj−1 − 1)−1
(
Sj−1E[N−1j |Fj−1]− 1

)
a.s.−→ Z(1− Z)L .

Finally, we observe that

j(X ′j − Zj−1)(Zj−1 − Zj) = −j(X ′j − Zj−1)
(1− Zj−1)AjNjX

′
j − Zj−1BjNj(1−X ′j)
Sj

=

−
j(1− Zj−1)AjNj(X

′
j)

2

Sj
+
jZj−1(1− Zj−1)AjNjX

′
j

Sj
+
jZj−1BjNjX

′
j(1−X ′j)

Sj
−
jZ2

j−1BjNj(1−X ′j)
Sj

=

− U1,j + U2,j + U3,j − U4,j .

With the same techniques adopted in the previous proof, we can get

T1,j−1 = E[U1,j |Fj−1]
a.s.−→ T1 = Z(1− Z)2/N + Z2(1− Z)

T2,j−1 = E[U2,j |Fj−1]
a.s.−→ T2 = Z2(1− Z)

T3,j−1 = E[U3,j |Fj−1]
a.s.−→ T3 = Z2 − Z2(1− Z)/N − Z3 = −Z2(1− Z)/N + Z2(1− Z)

T4,j−1 = E[U4,j |Fj−1]
a.s.−→ T4 = Z2(1− Z)
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Summing up, we obtain the almost sure convergence of E[Yj |Fj−1] to U = V +Z(1−Z)L+2(−T1+
T2 + T3 − T4) = V + Z(1− Z)(L− 2N−1).

3.3. Probability distribution of the limit proportion in the case of equal reinforcement
means. When we are in case 2), the distribution of the limit proportion Z is unknown except in a
few particular cases (see [3]). What we are able to prove in the general case is that it is diffuse (see
Theorem 3.15 below) and to leverage the above central limit theorems in order to get asymptotic
confidence intervals for Z (see Subsection 3.4 below).

Theorem 3.15. Assume the same assumptions as in Theorem 3.9, then P (Z = z) = 0 for all
z ∈ [0, 1].

Proof. We already know that P (Z = 0) = P (Z = 1) = 0 (see Theorem 3.8) In order to prove
that P (Z = z) = 0 for all z ∈ (0, 1), we can argue exactly as done in [12, Cor. 4.1] or in Th. 3.2
in [14]. Since the key issue on which the proof is based is the almost sure conditional convergence of√
n(Zn−Z) with respect to F = (Fn) to a Gaussian kernelN (0, V ), for some V > 0 on {Z ∈ (0, 1)}.

3.4. Asymptotic confidence intervals for the limit proportion in the case of equal re-
inforcement means. Suppose to be in case 2). By means of Theorem 3.9 and Theorem 3.13
(together with Theorem C.1), we can construct asymptotic confidence intervals for the limit pro-
portion Z. More precisely, assume An∨Bn∨Nn ≤ C for each n and conditions (10), (11), and (12).
Then, by Lemma B.1, the random variables

m̂n =

∑n
j=1Aj

n
, q̂A,n =

∑n
j=1A

2
j

n
, q̂B,n =

∑n
j=1B

2
j

n
, q̂AB,n =

∑n
j=1AjBj

n
(18)

are strongly consistent estimators of the constants m, qA, qB and qAB (supposed unknown), respec-
tively. By Lemma B.1 again, the random variables

µ̂n =

∑n
j=1Nj

n
, q̂N,n =

∑n
j=1N

2
j

n
, (19)

are strongly consistent estimators of the random variables N and Q. Hence, the random variable

Vn = Zn(1− Zn)×
(1− Zn)q̂A,n[(1− Zn)µ̂n + Znq̂N,n] + Znq̂B,n[Znµ̂n + (1− Zn)q̂N,n]− 2Zn(1− Zn)q̂AB,n(q̂N,n − µ̂n)

(m̂nµ̂n)2

results a strongly consistent estimator of the random variable V (defined in Theorem 3.9). Recalling
that V > 0 almost surely (see Remark 3.10), by Theorem 3.9, together with Theorem C.1, we obtain
that a confidence interval for Z is

Zn ± q1−α
2

√
Vn
n
, (20)

where q1−α
2

is the quantile of order 1− α
2 of the standard normal distribution.

When Nn = k, with k a known constant, for Vn we can employ the simpler formula (14) with
q̂A,n, q̂B,n and q̂AB,n instead of qA, qB and qAB.

If condition (17) is also satisfied, then, again by Lemma B.1, η̂n =
∑n
j=1N

−1
j

n is a strongly
consistent estimator of the random variable L (defined in Theorem 3.13) and so, setting

Wn = 2V ′n +Mn(1−Mn)[η̂n − 2(µ̂n)−1] ,
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where V ′n is equal to Vn but with Mn instead of Zn, is a strongly consistent estimator of the random
variable W = U + V . Since U + V > 0 almost surely, by Theorem 3.13, together with Theorem
C.1), we get that

Mn ± q1−α
2

√
Wn

n
(21)

is a confidence interval for Z. Note that this second interval does not depend on the initial com-
position of the urn, which could be unknown.

A remark useful for applications follows.

Remark 3.16. The estimators ofm, qA, qB and qAB defined in (18) presuppose that we can observe
both Aj and Bj for each j = 1, . . . , n. Actually, in applications, we can observe Aj (respectively,
Bj) only when Xj > 0 (respectively, Xj < Nj). Therefore, it makes more sense to use the following
estimators:

m̂n =

∑n
j=1

(
AjI{Xj>0} +BjI{Xj=0}

)
n

,

q̂A,n =

∑n
j=1A

2
jI{Xj>0}∑n

j=1 I{Xj>0}
, q̂B,n =

∑n
j=1B

2
j I{Xj<Nj}∑n

j=1 I{Xj<Nj}
,

q̂AB,n =

∑n
j=1AjBjI{0<Xj<Nj}∑n

j=1 I{0<Xj<Nj}
.

(22)

Note that m̂n
a.s.−→ m by Lemma B.1 (applied with Yj = AjI{Xj>0}+BjI{Xj=0} ≤ C and Fj = Gj).

Indeed, we have

E[AjI{Xj>0} +BjI{Xj=0}|Gj−1] = E
[
E[AjI{Xj>0} +BjI{Xj=0}|Hj−1] |Gj−1

]
= E[AjP (Xj > 0|Hj−1) +BjP (Xj = 0|Hj−1) |Gj−1] = mj ,

where the last equality is due to the fact that the conditional distribution of Xj given Hj−1 de-
pends on Nj , Sj−1 and Hj−1 (and so coincides with the one given Gj−1) and to relation (3). The

convergence q̂A,n
a.s.−→ qA also follows from by Lemma B.1. Indeed, we have

E[A2
jI{Xj>0}|Hj−1] = A2

j

1−

(Sj−1−Hj−1

Nj

)(Sj−1

Nj

)


Then, conditioning with respect to Gj−1 and using (3), we get E[A2
jI{Xj>0}|Gj−1] = qA,jϕ(Nj , Sj−1, Hj−1)

with ϕ(N,S,H) =

[
1− (S−HN )

(SN)

]
. Finally, conditioning with respect to Fj−1, we find

E[A2
jI{Xj>0}|Fj−1] = qA,j

C∑
k=1

ϕ(k, Sj−1, Hj−1)P (Nj = k|Fj−1) .

Assuming that P (Nj = k|Fj−1)
a.s.−→ ν(k) (with ν(k) possibly random), as a consequence of Propo-

sition 3.6 and the above equality, we have

E[A2
jI{Xj>0}|Fj−1]

a.s.∼ qA,j

C∑
k=1

[
1− (1− Hj−1

Sj−1
)k
]
P (Nj = k|Fj−1)

a.s.−→ qA

C∑
k=1

[
1− (1− Z)k

]
ν(k) .
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Similarly, we have E[I{Xj>0}|Fj−1]
a.s.−→

∑C
k=1

[
1− (1− Z)k

]
ν(k) and so, by Lemma B.1, we obtain

q̂A,n =

∑n
j=1A

2
jI{Xj>0}/n∑n

j=1 I{Xj>0}/n

a.s.−→
qA
∑C

k=1[1− (1− Z)k]ν(k)∑C
k=1[1− (1− Z)k]ν(k)

= qA .

Exactly with the same argument, we get q̂B,n
a.s.−→ qB. For the almost sure convergence of q̂AB,n

to qAB, we can argue in the similar way, but we need P (ν(1) < 1) = 1 in order to guarantee that∑C
k=1

[
1− (1− Z)k − Zk

]
ν(k) > 0 almost surely.

4. Examples and numerical illustrations

Before considering special cases as illustration through numerical simulations, let us formulate
some general remarks.

Remark 4.1. ([An, Bn] identically distributed) If all the random vectors [An, Bn] (that are inde-
pendent by assumption (A3)) are also identically distributed, then we simply have m = mn =
E[An] = E[Bn] and condition (12) is satisfied with qA = qA,n = E[A2

n], qB = qB,n = E[B2
n] and

qAB = qAB,n = E[AnBn]).

Remark 4.2. (Nn independent of the past)
If, for each n, the random variable Nn is independent of Fn−1, then we simply have E[Nn|Fn−1] =
E[Nn], E[N2

n|Fn−1] = E[N2
n] and E[N−1n |Fn−1] = E[N−1n ]. Therefore, conditions (10), (11)

and (17) are satisfied whenever the above sequences of mean values converge to suitably con-
stants N , Q and L. For instance, this happens when all the random variables Nn are identically
distributed. More precisely, in this last case, assuming Nn ≤ a + b (so that we are sure that
Nn ≤ Sn−1 for each n), with mean value µ and variance σ2, conditions (10), (11) and (17) are
satisfied with N = E[Nn] = µ, Q = E[N2

n] = qN = σ2 + µ2 and L = E[N−1n ] = η.

Remark 4.3. (Nn dependent on Zn−1) When Nn depends on the urn proportion at time n − 1,
i.e. Zn−1, in such a way that, for each n, we have

E[Nn+1|Fn] = f(Zn), E[N2
n+1|Fn] = g(Zn), E[N−1n+1|Fn] = h(Zn) ,

where f, g and h are continuous functions, then conditions (10), (11) and (17) are satisfied with
N = f(Z), Q = g(Z) and L = h(Z). Note that, if the functions f, g and h are known, we can
obtain asymptotic confidence intervals for Z replacing µ̂n and q̂N,n in the expression for Vn by f(Zn)
and g(Zn), respectively, and replacing µ̂n, q̂N,n and η̂n in the expression for Wn by f(Mn), g(Mn)
and h(Mn), respectively.

Remark 4.4. (Nn almost surely convergent)
If (Nn) is a sequence of integer-valued random variables with 1 ≤ Nn ≤ C and converging almost
surely to a random variable N , then (by Lemma B.2) conditions (10), (11) and (17) are satisfied
and Q = N2 and L = N−1. See, for instance, Example 4.2 in [12], where (Nn) is a symmetric
random walk with two absorbing barriers.

The following examples regard the case 2) (that is the case of equal reinforcement means) and
they deal with the different situations described in the above general remarks.
Example 1a
Take each Nn independent of Fn−1 and uniformly distributed on {1, . . . , 5}. Moreover, take An
and Bn satisfying assumption (A3), independent and uniformly distributed on {1, . . . , 5}. We set
a = b = 5. See Fig. 1 for samples.
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Figure 1. Case 1a. Time-horizon 1500. On each picture, one sample plot of (Zn)n
(black) and (Mn)n (red) with the corresponding confidence intervals for Z with
α = 0.05 (resp. grey and red).

Example 1b
Take each Nn independent of Fn−1 and uniformly distributed on {1, . . . , 5}. In particular, assump-
tion (i) in Section 3.4 is satisfied. Moreover, take [An, Bn] satisfying assumption (A3) and such
that

An
d
= 1 + Y1 and Bn

d
= 1 + Y2 ,

where Y1 and Y2 are, respectively, the first and the second component of a multinomial distribu-
tion associated to the parameters: size= 12, probabilities= (4/15, 4/15, 7/15). Thus the random
variables An and Bn are negatively correlated. We set a = b = 5. See Fig. 2 for samples.

Example 1c
Set (Nn)n be a sequence of random variables such that

Nn|Fn−1
d
= 1 + B(κ, Zn−1).

Moreover, take An and Bn satisfying assumption (A3), independent and uniformly distributed on
{1, . . . , 5}. In particular, we are in the situation described in Remark 4.3. Indeed, we have:

E[Nn+1|Fn] = 1 + κZn
a.s.−→ N = 1 + κZ

E[N2
n+1|Fn] = κZn(1− Zn) + (1 + κZn)2

a.s.−→ Q = κZ(1− Z) + (1 + κZ)2

E[N−1n+1|Fn] =
1− (1− Zn)κ+1

(κ+ 1)Zn

a.s.−→ 1− (1− Z)κ+1

(κ+ 1)Z

(recall that P (Z = 0) = 0 by Theorem 3.15). We set κ = 10 and a = b = 6. See Fig. 3 for samples.
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Figure 2. Case 1b. Time-horizon 1500. On each picture, one sample plot of (Zn)n
(black) and (Mn)n (red) with the corresponding confidence intervals for Z with
α = 0.05 (resp. grey and red).

Figure 3. Case 1c. Time-horizon 1500. On each picture, one sample plot of
(Zn)n (black) and (Mn)n (red) with the corresponding confidence intervals for Z
with α = 0.05 (resp. grey and red). The confidence intervals are the ones given
in Remark 4.3, taking parameter κ known (that is with the functions f, g and h
known).
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Figure 4. Case 1d. Time-horizon 1500. On each picture, one sample plot of (Zn)n
and (Mn)n with the corresponding confidence intervals for Z with α = 0.05 (resp.
grey and red).

Example 1d
Take each Nn independent of Fn−1 and such that

Nn
d
= 2 + B(κ, pn),

with κ = 10 and pn = 1/
√
n. Moreover, take An and Bn satisfying assumption (A3), independent

and such that

An
d
= Bn

d
= 1 + B(κ′, qn),

with κ′ = 5 and qn = min(1, 12 + 1√
n

). We take a = b = 6. See Fig. 4 for samples.

Example 1e
This example is associated to Remark 4.4. Following Example 4.2 in [12], take (Nn)n be a sequence
of random variables defined through a symmetric nearest neighbors random walk with absorbing

barriers. Given h ∈ N, with 3 ≤ h ≤ a + b, let Ñ1 be a random variable with distribution
concentrated on {2, . . . , h− 1} and set

Ñn = Ñ1 +

n∑
j=2

Yj for n ≥ 2 ,

T1 = inf{n : Ñn = 1}, Th = inf{n : Ñn = h}
and

Nn = ÑT∧n for n ≥ 1, with T = T1 ∧ Th ,
where each Yj is independent of [Ñ1, X1, A1, B1, Y1, X2, A2, B2, . . . , Yj−1, Xj−1, Aj−1, Bj−1] and such

that P (Yj = −1) = P (Yj = 1) = p ∈ (0, 12 ] and P (Yj = 0) = 1− 2p. Then Nn
a.s.−→ N = ÑT where
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Figure 5. Case 1e. Time-horizon 1500. On each picture, one sample plot of (Zn)n
and (Mn)n with the corresponding confidence intervals for Z with α = 0.05 (resp.
grey and red).

N = 1{T=T1} + h1{T=Th}. We take An and Bn satisfying assumption (A3), independent and such
that

An
d
= Bn

d
= 1 + B(κ′, qn).

We consider specifically a = b = 30, h = 50, Ñ1 uniformly distributed on {2, . . . , h − 1}, p = 1/4,
κ′ = 5 and qn = min(1, 12 + 1√

n
). Note that also in this case it is possible to contruct confidence

intervals for Z (see Remark 4.3). See Fig. 5 for samples.

In the following example, the random variables Nn, An and Bn are not bounded, but condition (7)
is satisfied.

Example 2

For each n ≥ 1, take Ñn independent of [Ñ1, X1, A1, B1, . . . , Ñn−1, Xn−1, An−1, Bn−1] and such that

Ñn
d
= 1 + B(κ+

⌈
n

1
3

⌉
, p)

with κ = 3 and p = 1/10. Set Nn = Ñn ∧ Sn−1 for each n ≥ 1. Take An and Bn satisfying
assumption (A3), independent and such that

An
d
= Bn

d
= 1 + negB(r, pn) ,

where negB(r, pn) means the negative binomial distribution with parameters r = 3 and pn =
1/
√
n+ 1, that is with mean value equal to rpn/(1 − pn) and variance equal to rpn/(1 − pn)2.

Condition (7) is satisfied because

E[(An +Bn)2] = O(1) and E[N2
n] ≤ E[Ñ2

n] = O(n2/3).
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Figure 6. Case 2. Time-horizon 1500. On each picture, one sample plot of (Zn)n
and (Mn)n (resp. black and red).

We set a = b = 5. See Fig. 6 for samples.

The last two examples below are related to the case mA > mB. Note that the time of the almost
sure convergence to 1, proven above, depends on the difference mA − mB. Thus, when this dif-
ference is small, it may be difficult to guess the right asymptotic behavior only through simulations.

Example 3a
Take each Nn independent of Fn−1 and uniformly distributed on {1, . . . , 5}. Take [An, Bn] sat-
isfying assumption (A3) and taking values (1, 1), (3, 1), (1, 3), (3, 3) with respective probabilities
3
16 ,

1
4 ,

1
16 ,

1
2 . It holds mA = 2.5 and mB = 2.125. We set a = b = 5. See Fig. 7 for samples.

Example 3b
Take each Nn independent of Fn−1 and uniformly distributed on {1, . . . , 5}. Take [An, Bn] satis-
fying assumption (A3) and taking values (1, 1), (10, 1), (1, 3), (10, 3) with respective probabilities
1
5 ,

2
5 ,

1
5 ,

1
5 . It holds mA = 6.4 and mB = 1.8. We set a = b = 5. See Fig. 8 for samples.
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Figure 7. Case 3a. Time-horizon 5.000 (left), 20.000 (right). On each picture, one
sample plot of (Zn)n and (Mn)n (resp. black and red).

Figure 8. Case 3b. Time-horizon 5.000. On each picture, one sample plot of (Zn)n
and (Mn)n (resp. black and red).
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Appendix A. Technical results

Consider the model and the assumptions described in Section 2.

Lemma A.1. Suppose An∨Bn∨Nn ≤ C for some (integer) constant C. Let pn+1,k = pk(Nn+1, Sn, Hn)
be the values of the hypergeometric distribution with parameters Nn+1, Sn and Hn (see (5)). Then,
we have

1− pn+1,Nn+1 =
Kn

Sn
(1 +O(1)) = O(Kn/Sn) .

Proof. If Nn+1 = 1, we simply have 1− pn+1,Nn+1 = Kn/Sn. By Lemma 3.1, we have Hn ≥ C for
n large enough (and so Hn ≥ Nn+1 for n large enough). Therefore, for n large enough, we have

1− pn+1,Nn+1 = 1−
Nn+1∏
j=1

Hn − j + 1

Sn − j + 1
=
Hn +Kn

Sn
−
Nn+1∏
j=1

Hn − j + 1

Sn − j + 1

=
Kn

Sn
+
Hn

Sn

1−
Nn+1∏
j=2

Hn − j + 1

Sn − j + 1


=
Kn

Sn
+
Hn

Sn

∏Nn+1−1
j=1 (Sn − j)−

∏Nn+1−1
j=1 (Hn − j)∏Nn+1−1

j=1 (Sn − j)

=
Kn

Sn
+
Hn

Sn

(Sn −Hn)f(Sn, Hn)∏Nn+1−1
j=1 (Sn − j)

=
Kn

Sn

(
1 +

Hnf(Sn, Hn)∏Nn+1−1
j=1 (Sn − j)

)
,

where f(x, y) = 1 when Nn+1 = 2 and f(x, y) =
∑Nn+1−2

j=1 ajx
j+bjy

j+c when Nn+1 ≥ 3. Therefore,

since Hn ≤ Sn and Sn → +∞ almost surely (by Lemma 3.1), we have Hnf(Sn, Hn)/
∏Nn+1−1
j=1 (Sn−

j) = O(1).

Lemma A.2. Suppose to be in case 2). For e > 1, Hn/K
e
n and Kn/H

e
n are eventually (positive)

supermartingales and so they converge almost surely to a finite random variable.

Proof. The proof used in order to prove that Qn = Kn/H
e
n is eventually a positive supermartingale

in the proof of Theorem 3.2 does not work now, because we have e > 1 and the inequality (1−x)e ≤
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1− ex is not true. Therefore we need a different proof. We observe that

E

[
Hn+1

Ke
n+1

− Hn

Ke
n

|Hn
]

= E

[
Hn+1

Ke
n

− Hn

Ke
n

+
Hn+1

Ke
n+1

− Hn+1

Ke
n

|Hn
]

=

∑
k∈Xn+1

pn+1,k

(
Hn +An+1k

Ke
n

− Hn

Ke
n

)
+ pn+1,k(Hn +An+1k)

(
1

(Kn +Bn+1(Nn+1 − k))e
− 1

Ke
n

)
=

∑
k∈Xn+1

pn+1,k
An+1k

Ke
n

+
∑

k∈Xn+1\{Nn+1}

pn+1,k(Hn +An+1k)

(
1

(Kn +Bn+1(Nn+1 − k))e
− 1

Ke
n

)
.

Using the Taylor expansion of the function f(x) = 1/(c+x)e with c = Kn and x = Bn+1(Nn+1−k),
we can choose a constant θ such that eventually(

1

(Kn +Bn+1(Nn+1 − k))
− 1

Ke
n

)
≤ − e

Ke+1
n

(
Bn+1(Nn+1 − k)− θ

Kn

)
.

Therefore the last term of the above equalities is eventually smaller or equal than

Hn

Ke
n

 ∑
k∈Xn+1

(
An+1k

Hn
− eBn+1(Nn+1 − k)

Kn

)
pn+1,k + eθ

∑
k∈Xn+1\{Nn+1}

(1 +An+1k/Hn)

K2
n

pn+1,k

 .

Now, we observe that

E

 ∑
k∈Xn+1

(
An+1k

Hn
− eBn+1(Nn+1 − k)

Kn

)
pn+1,k | Gn

 = mn+1
Nn+1

Sn
(1− e)

and (using limnmn = m > 0, Nn+1 ≥ 1 and Lemma A.1)

E

 ∑
k∈Xn+1\{Nn+1}

(1 +An+1k/Hn)

K2
n

pn+1,k | Gn

 ≤ (1− pn+1,Nn+1)

K2
n

+
mn+1Nn+1

SnK2
n

= O(1/(SnKn)) .

Therefore, we have

E

[
Hn+1

Ke
n+1

− Hn

Ke
n

| Gn
]
≤ mn+1

Hn

Ke
n

Nn+1

Sn
[−(e− 1) +O(1/Kn)]

and so, since e > 1 and Kn ↑ +∞ (by Lemma 3.1), we can conclude that the above conditional
expectation is definitely negative.

Lemma A.3. Under the assumptions of Theorem 3.8, we have 1/Kn = O(1/nγ) and 1/Hn =
O(1/nγ) for some γ > 0.

Proof. This proof is essentially the same as the one of Lemma A.1(iv) in [32]. However, for
the reader’s convenience, we here rewrite it with all the details. Since Sn/n = (Hn + Kn)/n
converges almost surely to mN , we have that eventually Sn = (Hn + Kn) > nmN3/4 almost
surely. Let FH = {Hn > nmN/4 eventually} and FK = {Kn > nmN/4 eventually}. Since
(Zn) converges almost surely to Z with values in [0, 1], then Hn/Kn = Zn/(1 − Zn) converges
almost surely to a random variable with values in [0,+∞]. It follows that P (FH ∪ FK) = 1. In-
deed, on (FH ∪ FK)c = F cH ∩ F cK , we have lim inf Hn/n ≤ mN/4, lim infnKn/n ≤ mN/4 and
Hn + Kn > nmN3/4 almost surely and so, since we can write Kn/Hn = (Hn + Kn)/Hn − 1 and
Hn/Kn = (Hn +Kn)/Kn − 1, we have lim infnHn/Kn ≤ 1/2 < 2 ≤ lim supnHn/Kn. This means
that on (FH ∪FK)c, Hn/Kn does not converge and hence P ((FH ∩FK)c) = 0. In order to conclude,
it is enough to prove that on FH (resp. FK), Kn (resp. Hn) is eventually greater than nγ for γ > 0
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(up to a multiplicative constant).
Now, by Lemma A.2, Hn/K

e
n is bounded and we know that Kn ↑ +∞ (see Lemma 3.1). There-

fore, for each ε > 0, we have Hn/K
e+ε
n → 0 almost surely and so Hn/K

e+ε
n < 1 eventually. Therefore

on FH , we eventually have Ke+ε
n = (Hn/K

e+ε
n )−1Hn > nmN/4 ≥ nm/4, i.e. Kn > nγ eventually

(up to a multiplicative constant) with γ = 1/(e + ε) > 0. Similarly, on FK , we have Hn > nγ

eventually (up to a multiplicative constant) with γ = 1/(e+ ε) > 0.

Appendix B. Some auxiliary results

For reader’s convenience, we state here some general results:

Lemma B.1. (Lemma 2 in [5])
Let (Yn) be a sequence of real random variables, adapted to a filtration F . If

∑
j≥1 j

−2E[Y 2
j ] < +∞

and E[Yj |Fj−1]
a.s.−→ Y for some real random variable Y , then

n
∑
j≥n

Yj
j2

a.s.−→ Y,
1

n

n∑
j=1

Yj
a.s.−→ Y.

Lemma B.2. (Th. 2 in [7] or a special case of Lemma A.2 in [11])
Let F be a filtration and set F∞ =

∨
nFn. Then, for each sequence (Yn) of integrable complex

random variables, which is dominated in L1 and which converges almost surely to a complex ran-
dom variable Y , the conditional expectation E[Yn|Fn] converges almost surely to the conditional
expectation E[Y |F∞].

Appendix C. Stable convergence and its variants

This brief appendix contains some basic definitions and results concerning stable convergence
and its variants. For more details, we refer the reader to [11,13,16,18] and the references therein.

Let (Ω,A, P ) be a probability space, and let S be a Polish space, endowed with its Borel σ-field.
A kernel on S, or a random probability measure on S, is a collection K = {K(ω) : ω ∈ Ω} of
probability measures on the Borel σ-field of S such that, for each bounded Borel real function f
on S, the map

ω 7→ Kf(ω) =

∫
f(x)K(ω)(dx)

is A-measurable. Given a sub-σ-field H of A, a kernel K is said H-measurable if all the above
random variables Kf are H-measurable.

On (Ω,A, P ), let (Yn)n be a sequence of S-valued random variables, let H be a sub-σ-field of A,
and let K be a H-measurable kernel on S. Then we say that Yn converges H-stably to K, and we
write Yn −→ K H-stably, if

P (Yn ∈ · |H)
weakly−→ E [K(·) |H] for all H ∈ H with P (H) > 0,

where K(·) denotes the random variable defined, for each Borel set B of S, as ω 7→ KIB(ω) =
K(ω)(B). In the case when H = A, we simply say that Yn converges stably to K and we write
Yn −→ K stably. Clearly, if Yn −→ K H-stably, then Yn converges in distribution to the probability
distribution E[K(·)]. Moreover, the H-stable convergence of Yn to K can be stated in terms of the
following convergence of conditional expectations:

E[f(Yn) |H]
σ(L1, L∞)−→ Kf (23)
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for each bounded continuous real function f on S.

in [16] the notion of H-stable convergence is firstly generalized in a natural way replacing in ( 23)
the single sub-σ-field H by a collection G = (Gn)n (called conditioning system) of sub-σ-fields of A
and then it is strengthened by substituting the convergence in σ(L1, L∞) by the one in probability
(i.e. in L1, since f is bounded). Hence, according to [16], we say that Yn converges to K stably in
the strong sense, with respect to G = (Gn)n, if

E [f(Yn) | Gn]
P−→ Kf (24)

for each bounded continuous real function f on S.

Finally, a strengthening of the stable convergence in the strong sense can be naturally obtained
if in (24) we replace the convergence in probability by the almost sure convergence (see [11]): given
a conditioning system G = (Gn)n, we say that Yn converges to K in the sense of the almost sure
conditional convergence, with respect to G, if

E [f(Yn) | Gn]
a.s.−→ Kf

for each bounded continuous real function f on S.

We conclude recalling two results. In particular, for the second one, we denote by N (µ, σ2) the
Gaussian probability distribution with mean µ and variance σ2 ≥ 0 (where N (µ, 0) means the Dirac
distribution δµ concentrated in µ). Therefore, when U is a positive random variable, the symbol
N (0, U) denotes the Gaussian kernel {N (0, U(ω)) : ω ∈ Ω}}.

Theorem C.1. (Lemma 1 in [5])
Suppose that Cn and Dn are S-valued random variables, that M and N are kernels on S, and that
G = (Gn)n is a filtration satisfying σ(Cn)⊂Gn and σ(Dn)⊂σ(∪nGn) for all n. If Cn stably converges
to M and Dn converges to N stably in the strong sense, with respect to G, then [Cn, Dn] −→M⊗N
stably. (Here, M ⊗N is the kernel on S × S such that (M ⊗N)(ω) = M(ω)⊗N(ω) for all ω.)

This last result contains as a special case the fact that stable convergence and convergence in
probability combine well: that is, if Cn stably converges to M and Dn converges in probability to a
random variable D, then (Cn, Dn) stably converges to M ⊗ δD, where δD denotes the Dirac kernel
concentrated inD. In particular, ifM is the Gaussian kernelN (0, D), we have Cn/

√
Dn −→ N (0, 1)

stably.

Theorem C.2. (See Th. 1 together with Prop. 1 in [5] and Th. 10 in [6])
Let (Yn) be a bounded sequence of real random variables, adapted to a filtration G = (Gn). Set

Zn = E[Yn+1|Gn] and Mn =
1

n

n∑
j=1

Yj .

Suppose that n3E
[

(E[Zn+1|Gn]− Zn)2
]
→ 0.

Then, Zn
a.s.−→ Z and Mn

a.s.−→ Z for some real random variable Z. Moreover,
√
n(Zn − Z)

converges in the sense of the almost sure conditional convergence with respect to G toward the
Gaussian kernel N (0, V ) for some real random variable V , provided

c1) E
[
supj≥1

√
j |Zj−1 − Zj |

]
< +∞,

c2) n
∑

j≥n(Zj−1 − Zj)2
a.s.−→ V .

If condition

c3) n−1
∑n

j=1

[
Yj − Zj−1 + j(Zj−1 − Zj)

]2 P−→ U
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is also satisfied for some real random variable U , then[√
n
(
Mn − Zn

)
,
√
n(Zn − Z)

] stably−→ N
(
0, U

)
⊗N (0, V ).

In particular, we have
√
n
(
Mn − Zn

)
−→ N (0, U) stably and

√
n
(
Mn − Z

)
−→ N (0, U + V )

stably.
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