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ABSTRACT

Building nonexpansive Convolutional Neural Networks
(CNNs) is a challenging problem that has recently gained
a lot of attention from the image processing community. In
particular, it appears to be the key to obtain convergent Plug-
and-Play algorithms. This problem, which relies on an accu-
rate control of the the Lipschitz constant of the convolutional
layers, has also been investigated for Generative Adversarial
Networks to improve robustness to adversarial perturbations.
However, to the best of our knowledge, no efficient method
has been developed yet to build nonexpansive CNNs. In
this paper, we develop an optimization algorithm that can
be incorporated in the training of a network to ensure the
nonexpansiveness of its convolutional layers. This is shown
to allow us to build firmly nonexpansive CNNs. We apply
the proposed approach to train a CNN for an image denoising
task and show its effectiveness through simulations.

Index Terms— Neural networks, optimization, mono-
tone operators, nonexpansive operator, image restoration.

1. INTRODUCTION

Plug-and-Play (PnP) methods have shown competitive re-
sults with state-of-the-art methods in image recovery [1-3].
These approaches consist in replacing the proximity oper-
ator in some optimization algorithms, such as ADMM [1]]
or forward-backward [4]], by a denoiser often being a neural
network (NN). Thus, these hybrid approaches take advantage
of both the good image approximation properties of NN,
and the robustness of optimization methods. In particular, it
is shown that a sufficient condition to get the convergence
of PnP iterates is to ensure the firm nonexpansiveness of the
denoiser [4]. Unfortunately, this assumption is generally not
met in practice [J5]].

As a first contribution, leveraging monotone operator
theory, we show that a firmly nonexpansive network can
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be obtained by building a nonexpansive network, i.e. a 1-
Lipschitz network. Nevertheless, building such network is
still a non trivial problem. This problem was investigated re-
cently for Generative Adversarial Networks (GANs), where
it was shown that controlling the Lipschitz constant improves
the robustness to adversarial perturbations. One of the first
dedicated study appeared with Parseval networks [6], where
the Lispchitz constant is limited by regularizing the weights
of the convolutional layers. This approach was further im-
proved in [[7]], where the authors propose to iterate a projection
on the Stiefel manifold, and in [8,9]], where the weight matri-
ces are normalized by their spectral norm. However, limiting
the spectral norm (or equivalently, the Lipschitz constant) of
the weight matrices does not allow to constrain accurately
the Lipschitz constant of the associated convolutional layer,
making the building of nonexpansive convolutional layers
difficult. Other approaches, developed in [10}(11], mention
conditions in the Fourier domain in order to compute the
singular values of convolutional layers.

The main contribution of this work is to develop a method
to build nonexpansive networks, by tightly constraining the
Lipschitz constant of feedforward CNNs to be smaller than 1.
The proposed approach is based on a proximal optimization
algorithm, namely the Douglas-Rachford (DR) algorithm [[12}
13]], which can directly be introduced as a projection step dur-
ing training. We showcase our method with the training of a
feedforward CNN as a denoiser. Unlike state-of-the-art nor-
malization techniques [6,8,[9], our Lipschitz constraint en-
sures the firm nonexpansiveness of the resulting denoiser.

The remainder of the paper is organised as follows: in
Section 2] we describe the necessary conditions to build a non-
expansive network. The proposed algorithm to impose the
nonexpansive condition is provided in Section [3] Simulation
results for a denoising problem are given in Section[d] Finally,
we draw our conclusions in Section

2. NONEXPANSIVE NETWORKS

Let (H;)o<j<m be non-zero real-valued Hilbert spaces.
Feedforward neural networks can be decomposed under the
form @ = T, o - - - o T} with (Tj)1<j<m being the layers of



Fig. 1: Architecture of a firmly nonexpansive network given a non-
expansive network Q).

the network defined, for every j € {1,...,m}, by

Tj Z/ijl —>Hji .’E*—)Rj(Wj.’L“Fbj), (D)
where R; is a non linear activation operator, W; is a linear
operator, and b; € H; [5,/14]. In the following we will focus
on the case when (W;)1< <, are convolutional operators de-
fined on suitable signal spaces.

Following the approach of [J5]], we see a network G as the
resolvent of a multivalued operator acting on H = Hy. Any
multivalued operator is fully characterized by its resolvent,
thatis for A: H = H, the resolvent of Ais J4 = (Id+A4)~1
the inverse being here defined in the sense of the inversion of
the graph of the operator. We refer the reader to [15] for a
background on monotone operators. A main property for our
purpose is the following one:

Proposition 2.1. Let A: H = H. A is a maximally mono-
tone operator if and only if its resolvent is firmly nonexpan-
sive, i.e. there exists a nonexpansive operator Q: H — H
such that

z+Q(z)

Ja:H—>H:z— 3

@)

Inturn, A = 2(1d+Q)~! — Id.

Equation (2) shows that given a nonexpansive operator
@, one can deduce a firmly nonexpansive one. The architec-
ture of our firmly nonexpansive neural network is depicted in
Fig.[Tll As a consequence of Proposition by training the
network G = (Id +Q))/2 while ensuring the nonexpansive-
ness of ), we end up with a firmly nonexpansive structure.
By doing so, we actually learn the resolvent J4 of a maxi-
mally monotone operator A, which has an interesting echo in
the literature [2|] where it is usual to replace the proximity op-
erator in some algorithm by a neural network. It is interesting
to highlight that the proximity operator is a special case of the
resolvent of a maximally monotone operator. Thus, our study
goes in the same direction, but in a more general setting.

A sufficient condition to ensure the nonexpansiveness of a
feedforward NN is to ensure that, for every layer j, the oper-
ator T); has a Lipschitz constant L; lower than 1. We empha-
size that we restrict our attention to feedforward networks,
which means that we do not use any other skip or residual
connections than the one already present in Fig. [T} In order
to constrain the Lipschitz constant of a network, classical ap-
proaches in the literature consist of adding some constraints
on the weight operators or the convolution kernels [619]]. This
however leads to Lipschitz constant estimates which are either

loose or difficult to compute, especially for 2D applications.
The following proposition, which follows from standard sig-
nal processing arguments, links the kernel and the Lipschitz
constant of a convolutional layer.

Proposition 2.2. Let H = (*(Z?) be the space of square
summable discrete 2D fields defined on Z2. Let T = R(W -
+b) where R: HE — H? is nonexpansive, b € H®, and W
is a 2D-convolutive operator with ¢ € N* input channels and
d € N* output channels, that is

W:H — Hd (l‘k 1<k<c — (Zhl k¥ [L‘k> <<d 3)

where (h 1)1<k<c,1<i<d are finite 2D kernels. At each fre-
quency v € [0,1[2, let H(v) € C¥*¢ denote the multi-input
multi-output (MIMO) frequency response associated with
these kernels. Then, T is nonexpansive if

(vve[0,1*) [[Hw)|s <1, @)

where || - ||s denotes the spectral norm.

In the following, we will focus on 2D convolutional layers
having a single input, i.e. ¢ = 1.

3. ALGORITHMS FOR IMPOSING THE
NONEXPANSIVE CONDITION

In this section we provide a method to constrain the convolu-
tive layer to be nonexpansive, relying on Proposition [2.2]

Let h = (h;)1<i<q be the kernels of a convolutive layer
with one input and d outputs. We will view these kernels as
elements of the space H = ¢2(Z?). We consider the following
constraint set:

SH

c={hen’|(we1p Z

OIESINE)

where F denotes the 2D-Fourier transform defined on . In
addition, each kernel is constrained to correspond to a finite
impulse response filter, that is to belong to

D:{he%\(vpg{o,...,
x{0,...,

81—1}
s2-1}) h(p) =0}, ©

where (s1,52) € (N*)? define the 2D support of the filters.
In order to constrain the convolutive layer to be nonex-
pansive, we propose to compute the projection of a kernel
h € H? onto CN'D?. This will enable to satisfy condition (@)
of Proposition The projection problem is equivalent to

d
h) + > up(h) +
=1

minimize ¢

1 _
_ h _ h 27 7)
h=(hi)1<i<a 2” H2 (



Algorithm 1: DR algorithm to solve

Initialization: Let ¢ €]0, 1] and ko € H%.

Iterations:
fort=20,1,...,do
ht = (PD(kt’l))ISZSd’
At € [6,2 — €],
Kevr = ki + A (Pe ((2he — ki +h)/2) — he).

[ 20 iterations | |
100 iterations

20 b

10 - B
ol d%nn mmonng |
|

Il Il Il Il
0.999  0.9995 1 1.0005 1.001
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Fig. 2: Histogram of the Lipschitz constant of a convolution opera-
tor considering randomly sampled kernels of support size s1 X s2 =
3% 3, with (¢, d) = (1,64) (i.e. Conv2d (1, 64, 3) using PyTorch
implementation) after a normalization with Algorithm

where ts denotes the indicator function of a set S (equal to
0 when its argument belongs to S, and +oo otherwise). This
problem can be efficiently solved by the DR algorithm [12],
described in Algorithm [} Since C and D are non-empty,
closed, convex sets, the sequence (h,,),cn generated by this
algorithm is guaranteed to converge to a solution to (7)) [|13].

In the practical implementation of this method, it is im-
portant to note that the support of the kernels (h,)nen is of
size L1 X Lo while a 2D Fast Fourier Transform (FFT) is used
to approximate J on a fine enough spectral grid. The projec-
tion onto D is then performed by truncating the result of an
inverse FFT and the projection onto C reduces to a finite set
of projections onto unit balls in the frequency domain.

In Fig. 2] we show the histogram of the Lipschitz con-
stants of one layer of a convolutional network (), obtained
after performing 20 and 100 iterations of Algorithm|l} This
algorithm can be included as an additional projection step in
a standard Stochastic Gradient Descent (SGD) algorithm to
build a nonexpansive network Q).

4. AN APPLICATION TO DENOISING

We use the methodology described in the previous sections to
develop a firmly nonexpansive network in the context of im-
age denoising. To this aim, we use the facts that a firmly non-
expansive network corresponds to a resolvent operator (see
Proposition and that proximal operators are particular
cases of resolvent operators. From a signal processing view-
point, proximity operators can be interpreted as denoisers. We
hence propose to train our CNN as a denoiser.

VAR 7SN Oy 0/ e, [ @ /)

Wy
5, Convolution

©: P
—5-— Transposed
/ —+ convolution
0, Id

Fig. 3: Architecture of our convolutional neural network Q. The
notation Qq indicates the (ordered) number d = {d1, ..., dp, 2} of
output channels for each convolution; in this example we have d; =
de =4.q= Z;ﬂ:/f d;j —m/2 + 1 is the total number of channels.

Y1
z ReLU(z — a;) GroupSort o
min(z‘+gé_]_ zﬁ»g%_]) >~ 9;(z)

©
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—ReLU(z — b;) v ’ '

Fig. 4: Structure of a ©; nonlinearity; a;, b;, g1 ;,97.;,93,; and
95 ; are learnable parameters.

4.1. Architecture of the nonexpansive network

We consider images of dimension nq X ns, and we aim to
build a nonexpansive convolutional network ). The proposed
network architecture consists of a succession of operators
(¥},0;,®;)1<j<m/2 as depicted in Fig. |3l where m is even.
For every j € {1,...,m/2}, ¥;: Rmnz — (Rmn2)di js a
Single Input Multiple Output (SIMO) convolutive layer with
d; outputs, whereas ®;: (R™1"2)% — R™"2 jg a Multi-
ple Input Single Output (MISO) convolutive layer with d;
inputs. The whole structure is an instance of the general
model introduced in Section 2] To ensure the nonexpan-
siveness of (), we build each ©;, ¥; and ®; as nonexpan-
sive operators. Concerning (6;)1<j<,/2, We propose the
structure described in Fig. [ relying on both ReLU and
GroupSort operations [[7,|16]. According to Proposition
the resulting firmly nonexpansive network is then given by
G = (1d4+Q)/2.

Note that denoising operators resulting from soft thesh-
olding of the coefficients of the decomposition on a tight
frame are particular case of G as defined by Fig.[3] Then, for
every j € {1,...,m/2}, ¥; = <I>;»'—. In the case of wavelet
frames, m /2 represents the number of resolution levels.

Dropping the indices j for clarity, by choosing the param-
eters in Fig.flas a = —b = —g} = ¢? = X\ > 0, g = 2]\,
and g2 = 0, the operator © boils down to perform a soft
thresholding operator, i.e. © = 2soft;_ ) — Id.

4.2, Training strategy

We train our network on the ILSVRC2012 ImageNet dataset
[17]], containing N = 5 x 10* images. The training set is
built as follows. We first convert each image in grayscale and
randomly crop and resize it in patches of size 158 x 158. Sec-
ondly, for every image x;, with i« € {1,..., N}, we build



(a) | (b)
Fig. 5: (a) Original image Lena of size 512 x 512, (b) noisy image (PSNR = 28.1 dB), and reconstructions by (c) the proximal denoiser
(PSNR = 32.9 dB, SSIM = 0.75), (d) our method (PSNR = 33.9 dB, SSIM = 0.90) and (e) BM3D (PSNR = 35.1 dB, SSIM = 0.91).

Algorithm 2: Algorithm to solve (8)

Initialization: Set hg and up.

Iterations:
fort=20,1,...,do
Randomly select Z, C {1,..., N},

hes1 = Perpe (he = e Y Vi (b, u)
1€Ly
+pue(hy — ht—l)),
Ui41 = Ut — Yu,t Z Vu¢i(ht7 llt)~

i€T:

a noisy version y; by adding to x; a realization of an i.i.d.
zero-mean Gaussian noise with variance o2 = 0.04 (PSNR
= 28.1 dB). Eventually, to avoid border effects, the network
output is cropped and its final size is ny X no = 128 x 128.
Only 49 x 103 images of the dataset are used for training while
the 102 remaining images are used for testing. The same pro-
cess as described above is applied to the testing set.

In our experiments, we choose @@ with m = 12 and
d = {64,64,16,16,4,4} (see Fig. [3| and the descrip-
tion in Section fI). The firmly nonexpansive network
Gy u;)1<jem = (1d+Q)/2 is parametrized by (h;)1<j<m
and (u;)q<j<m /2, Where, for every j € {1,...,m}, h; are
the kernels of the convolutional layers (W, ®;)1<;j<y,/2 in
the nonexpansive network (), and forevery j € {1,...,m/2},
u; = (a;,bj, g},j, g%,j, g%,j, gg,j) are the nonlinearity param-
eters of (©;)1<;<m/2 defined in Fig.lé—_ll We train the network
as a denoiser, i.e. we

N
minimize ZO ¢i(h, u) (8)
with  ¢;(h, 1) = [|2; — Guu(yi)|l3- ©

In a manner akin to [[I8]19]], we use a heuristic projected SGD
algorithm described in Algorithm[2} involving positive learn-
ing rates (7¢)teny and momentum parameters (u¢):en. The
projection is computed with Algorithm[I] In practice, we ob-
serve that 20 iterations of Algorithm|T]are sufficient to ensure
the Lipschitz condition during training.

For SIMO (resp. MISO) convolutional layers with d; out-
put (resp. input) channels, we set the kernel size to s x s with
s = /d;j+1. Convolutions are initialized with Hadamard fil-
ters, ensuring good denoising properties of G at initialization.
We train the network for 20 epochs and decrease the learning
rate every 3 epochs. Training plots are shown in Fig.[6]

() (e)

PSNR (dB) SSIM Firmly nonexpansive
Proximal method 31.4 0.86 yes
Proposed 32.6 0.90 yes
BM3D 33.3 0.91 no

Table 1: Results of the various methods over the BSDS300 dataset.
5 1.02
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Fig. 6: Training loss (red), minimum (blue) and maximum (green)
Lipschitz constant values of the convolutional layers during training.

4.3. Results

The average PSNR of the reconstructed images is 34.3 dB
(resp. 34.2 dB) on the training (resp. testing) dataset. In
addition, we compare our network with both a proximal
method and the BM3D denoiser on the BSDS300 image
dataset [21]]. For the proximal denoiser, we propose to com-
pute ¥ = prox,(y) where g = ¢[g 1jn1n2 + 7||[AL - [|1,7 >0
is a regularization parameter, A a positive weight matrix, and
L a wavelet basis decomposition. This proximity operator
does not admit a closed form solution but can be efficiently
computed using a dual forward-backward algorithm [22],
yielding a slower reconstruction time than with our method.

Table[T] shows that our firmly nonexpansive network pro-
vides better reconstruction results than the classical proximal
denoiser and compares with BM3D in terms of SSIM. Visual
results on the Lena test image are provided in Fig.

5. CONCLUSION

In this paper, we developed a method to build firmly nonex-
pansive CNNSs. Precisely, a proximal optimization algorithm
is leveraged to perform the projection of the convolution ker-
nels onto the underlying constraint set. In the context of an
image denoising example, we plugged the proposed approach
into the training of a feedforward CNN, to build a firmly non-
expansive denoiser. Future works include generalization to
MIMO convolutions, in order to extend our method to any
feedforward CNN architecture.
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