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HIGHER DEGREE DAVENPORT CONSTANTS OVER FINITE COMMUTATIVE RINGS

We generalize the notion of Davenport constants to a 'higher degree' and obtain various lower and upper bounds, which are sometimes exact as is the case for certain finite commutative rings of prime power cardinality. Two simple examples that capture the essence of these higher degree Davenport constants are the following. 1) Suppose n = 2 k , then every sequence of integers S of length 2n contains a subsequence S ′ of length at least two such that ai,aj ∈S ′ a i a j ≡ 0 (mod n) and the bound is sharp. 2) Suppose n ≡ 1 (mod 2), then every sequence of integers S of length 2n -1 contains a subsequence S ′ of length at least two such that ai,aj∈S ′ a i a j ≡ 0 (mod n). These examples illustrate that if a sequence of elements from a finite commutative ring is long enough, certain symmetric expressions have to vanish on the elements of a subsequence.

Introduction

Throughout this paper, let p denote a prime number and q = p α a prime power.

Let G be a finite abelian group. A finite sequence S = (g 1 , . . . , g ℓ ) of elements of G is called a sequence over G, where order is disregarded and repetition is allowed. Its length, denoted |S|, is the number of elements therein, counted with multiplicity. A sequence of G is said to be zero-sum if the sum of its elements is zero in G. A sequence S of G is said to be zero-sum free if every non-trivial subsequence of S has sum different to zero. For a group G, the Davenport constant of G, which we denote by D(G), is the smallest positive integer t such that every sequence S over G of length |S| ≥ t contains a non-empty zero-sum subsequence. That is, we seek the smallest t for which there is a non-trivial solution of

ε 1 g 1 + • • • + ε t g t = 0,
where each ε i is 0 or 1.

Study of this number intensified in the 1960s with K. Rogers [START_REF] Rogers | A combinatorial problem in Abelian groups[END_REF] in 1963, and later with H. Davenport in 1966 as explained by J.E. Olson in [START_REF] Olson | A combinatorial problem on finite Abelian groups I[END_REF] and has continued unabated since; see, for example, a useful survey by W. Gao and A. Geroldinger [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF].

The cyclic group with n elements will be denoted Z n . Further, it is well-known that by the Fundamental Theorem of Finite Abelian Groups that for any finite non-trivial abelian group G there exist integers n 1 , . . . , n r where 1 < n 1 | . . . | n r so that G can be written uniquely as

G ∼ = Z n1 ⊕ • • • ⊕ Z nr .
The integer r is called the rank of G and denoted r(G). We use d * (G) to denote the value r i=1 (n i -1). The value of D(G) was determined independently by J.E. Olson [START_REF] Olson | A combinatorial problem on finite Abelian groups I[END_REF] and D. Kruyswijk [START_REF] Van Emde Boas | A combinatorial problem on finite abelian groups I[END_REF] when G is a p-group, and by J.E. Olson [START_REF] Olson | A combinatorial problem on finite Abelian groups. II[END_REF] when G has rank at most 2.

Theorem 1.1. [J.E. Olson [START_REF] Olson | A combinatorial problem on finite Abelian groups I[END_REF], [START_REF] Olson | A combinatorial problem on finite Abelian groups. II[END_REF], and D. Kruyswijk [START_REF] Van Emde Boas | A combinatorial problem on finite abelian groups I[END_REF]] If G is a p-group or r(G) ≤ 2, then D(G) = 1 + d * (G).

The value of D(G) is unknown in general. For a survey of results, see the work of A. Geroldinger [START_REF] Geroldinger | Additive group theory and non-unique factorizations[END_REF] and the work of A. Geroldinger and F. Halter-Koch [START_REF] Geroldinger | Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF]. Recently, B. Girard [START_REF] Girard | An asymptotically tight bound for the Davenport constant[END_REF] has shown that for all integers r ≥ 1, D(Z r n ) ∼ rn as n → ∞. We now introduce our object of study. Let (A, +, •) be a finite commutative ring. For any positive integer m and any sequence S = (a 1 , . . . , a ℓ ) over A, we set

e m (S) := 1≤i1<•••<im≤ℓ m j=1 a ij .
We say that S is an m-zero sequence whenever e m (S) = 0, and that it is an m-zero free sequence whenever, for every subsequence S ′ of S such that |S ′ | ≥ m, one has e m (S ′ ) = 0. We denote by D(A, m) the smallest positive integer t such that every sequence S over A of length |S| ≥ t contains a subsequence S ′ of length |S ′ | ≥ m for which e m (S ′ ) = 0.

Notice that when m = 1 we recover the classical Davenport constant discussed above. As a result, we may consider D(A, m) as the m th -degree Davenport constant.

In this paper we examine this higher degree Davenport constant. This line of investigation that we follow is suggested by the work of A. Bialostocki and T.D. Luong [START_REF] Bialostocki | An analogue of the Erdős-Ginzburg-Ziv theorem for quadratic symmetric polynomials[END_REF], [START_REF] Bialostocki | Cubic symmetric polynomials yielding variations of the Erdős-Ginzburg-Ziv theorem[END_REF], and T. Ahmed, A. Bialostocki, T. Pham and Le Anh Vinh [START_REF] Ahmed | Power sum polynomials as relaxed EGZ polynomials[END_REF].

We proceed as follows. In Section 2 we examine the higher degree Davenport constant in the case that A = Z n . Of particular use is a result of R. Baker and W. Schmidt [START_REF] Baker | Diophantine problems in variables restricted to the values 0 and 1[END_REF] (and see also [START_REF] Baker | Diophantine problems in variables restricted to the values 0 and 1[END_REF]). We obtain a precise result in the case that n is a prime power and m is power of the same prime. In Section 3 we give an upper bound for the higher degree Davenport constant in the case that A is of the form Z p α 1 ⊕ • • • ⊕ Z p αr and a lower bound for any A of the form Z n1 ⊕ • • • ⊕ Z n b from which we deduce a sharp value of the higher Davenport constant for rings of the form Z p α 1 ⊕ • • •⊕ Z p αr when m is also a power of p. In Section 4 we show how to use the classical Girard-Newton formulae, which allow one to express the elementary symmetric polynomial of degree k by a combination of power sum polynomials, to obtain upper bounds. In Section 5 we present some open problems.

Bounds for cyclic groups

First, we note an easy lower bound on D(Z n , m). Consider the sequence 1 := (1, . . . , 1) of length t. If t = m, then the only subsequence of length at least m is the given sequence itself and e m (1) = 1 ≡ 0 (mod n). Further, suppose that for each ℓ with t > ℓ ≥ m we have ℓ m ≡ 0 (mod n). Then there exists no subsequence of 1 of length at least m which evaluates to zero modulo n. Thus, we define L(n, m) to be the smallest integer t ≥ m + 1 such that t m ≡ 0 (mod n). We have

D(Z n , m) ≥ L(n, m). (1) 
Throughout the remainder of this section, let n = p r = q. An s-tuple (ε 1 , . . . , ε s ) with each ε i = 0 or 1 will be called idempotent. Whenever ε 1 + • • • + ε s is even (respectively, odd), an idempotent s-tuple will be called even (respectively, odd). Further, for a fixed m, an idempotent s-tuple will be called martificial (or just artificial when m is clear) whenever

ε 1 + • • • + ε s ≤ m -1, i.
e. the number of ε i that take on the value 1 is strictly less than m.

We will apply the following theorem of R.C. 

F 1 (ε) = 0, . . . , F ℓ (ε) = 0. If s > d 1 (D(G 1 ) -1) + • • • + d s (D(G ℓ ) -1), then A ≡ B (mod p).
To facilitate an application of Theorem 2.1 to our specific setting, we define for integers q = p r and m the function U (q, m) to be the smallest integer t ≥ m(q-1)+1 such that

0≤2j≤m-1 t 2j ≡ 1≤2j+1≤m-1 t 2j + 1 (mod p).
Furthermore, for integers n and m we denote the set of all m-artificial idempotent n-tuples with ε 1 + • • • + ε n equal to an even (odd) integer by E(n, m, even) (E(n, m, odd)). Clearly, we have

|E(n, m, even)| = 0≤2j≤m-1 t 2j and |E(n, m, odd)| = 1≤2j+1≤m-1 t 2j + 1 .
Theorem 2.2. Let r be a non-negative integer, p a prime, q = p r and m ≥ 1. We have L(q, m) ≤ D(Z q , m) ≤ U (q, m).

Proof. The lower bound was established above. We establish the upper bound. For a sequence S = (a 1 , . . . , a ℓ ) as opposed to seeking subsequences S ′ of length at least m such that e m (S ′ ) ≡ 0 (mod q), we may seek idempotent solutions that are not m-artificial to the following polynomial equation,

1≤i1<•••<im≤ℓ m j=1 a ij x ij ≡ 0 (mod q).
To prove the upper bound, consider this degree-m polynomial equation when the number of variables is U (q, m) ≥ m(q -1) + 1, i.e. ℓ ≥ m(q -1) + 1.

Clearly, all m-artificial idempotent U (q, m)-tuples are solutions to this equation since each monomial of the polynomial is a product of m variables (and so at least one variable in each monomial evaluates as 0 and so each monomial evaluates as 0). From these solutions, we know that the number of even idempotent solutions A is at least E(U (q, m), m, even) and the number of odd idempotent solutions B is at least E(U (q, m), m, odd). By the definition of U (q, m), we have that |E(U (q, m), m, even)| ≡ |E(U (q, m), m, odd)| (mod p). Thus, by Theorem 2.1, there exists an idempotent solution that is not m-artificial.

2.1. Properties of U (q, m) and L(q, m)

The lower bound L(q, m) and upper bound U (q, m) provided in Theorem 2.2 motivate us to a numerical understanding of these functions in order to make them effective.

We begin with an investigation of U (q, m). Using Pascal's Identity and induction, one may show that

0≤2j≤m-1 t 2j - 1≤2j+1≤m-1 t 2j + 1 = (-1) m-1 t -1 m -1 .
Thus, an alternate definition of U (q, m) is the smallest integer t ≥ m(q -1) + 1 such that t-1 m-1 ≡ 0 (mod p). The former definition naturally arises in the proof of Theorem 2.2 while the latter we use below.

We recall some classical results in number theory from the 19th-century.

Let p be a prime number and n > 1 an integer. The p-adic valuation of n, denoted ν p (n), is the exponent of p in the canonical decomposition in prime numbers of n (and if p does not divide n, then ν p (n) = 0). The base-p expansion of n is written as Legendre, 1808 [13]). Let p be a prime and let n be a positive integer. Then

such, n = a k p k + a k-1 p k-1 + • • • + a 1 p + a 0 . Let s p (n) = a k + a k-1 + • • • + a 1 + a 0 . Theorem 2.3 (A.-M.
ν p (n!) = n -s p (n) p -1 .
Legendre's Theorem was used to establish the following.

Theorem 2.4 (E. Kummer, 1852 [START_REF] Kummer | Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen[END_REF]). The p-adic valuation of the binomial coefficient n m is equal to the number of 'carry-overs' when performing the addition in base p of n -m and m.

When one uses Legendre's Theorem to prove Kummer's Theorem, an intermediate step gives

ν p ( n m ) = ν p (n!) -ν p (m!) -ν p ((n -m)!) (2) = s p (m) + s p (n -m) -s p (n) p -1 . (3) 
We repeatedly use this identity in the proofs given below.

Proposition 2.5. For an integer m ≥ 1, a prime p and q a power of p, we have the following.

1. m(q -1) + 1 ≤ U (q, m) ≤ mq.

For

p ≥ 2m -1, U (q, m) = m(q -1) + 1. 3. For m ≤ p ≤ 2m -2, U (q, m) = mq + m -p. 4. For p ≥ m, the roots of t-1 m-1 ∈ Z p [t] are 1, 2, . . . , m -1.
Proof.

1. The lower bound is by the definition. Now assume that U (q, m) > m(q-1)+1. Consider the largest integer T ≥ m(q-1)+1 such that t-1 m-1 ≡ 0 (mod q) for all integers m(q -1) + 1 ≤ t ≤ T . The integer T is well-defined by assumption, and we have U (q, m) = T + 1. For the sake of contradiction, we assume that T ≥ mq. By definition, we have

T -1 m-1 ≡ . . . ≡ m(q-1) m-1 ≡ 0 (mod p). By Pascal's Rule, we obtain T -2 m-2 ≡ . . . ≡ m(q-1) m-2
≡ 0 (mod p). We may iterate the application of Pascal's Rule m -1 times to obtain 0 ≡ m(q-1) m-1

≡ m(q-1) m-2 ≡ . . . ≡ m(q-1) 1 ≡ m(q-1) 0 ≡ 1 (mod p), a contradic- tion.
2. By the definition of U (q, m), we must show that m(q-1)+1-1 m-1 ≡ 0 (mod p).

We use Equation 3 to show

ν p ( m(q-1) m-1 ) = 0. Note that the base-p expansion of mq -m is (m -1)p α + (p -1)p α-1 + • • • + (p -1)p + (p -m). The base-p expansion of m -1 is (m -1) since p ≥ 2m -1. Subtracting, we find the base-p expansion of m(q -1) -(m -1) is (m -1)p α + (p -1)p α-1 + • • • + (p -1)p + (p -2m + 1). By Equation 3 ν p ( m(q -1) m -1 ) = s p (m -1) + s p (m(q -1) -(m -1)) -s p (m(q -1)) p -1 = (m -1) + [(m -1) + (p -1)(α -1) + (p -2m + 1)] p -1 - [(m -1) + (p -1)(α -1) + (p -m)] p -1 = 0.
3. We begin by noting that the difference between the claimed value and the smallest U (q, m) allowed by the definition is 2m -p -1. Thus, by the definition of U (q, m), we must show that mq-p+m-1 m-1 ≡ 0 (mod p) and that

mq-p+m-1-j m-1 ≡ 0 (mod p) for 1 ≤ j ≤ 2m -p -1.
We use Equation 3 to first show ν p ( mq-p+m-1 m-1

) = 0. Note that the base-p expansion of mq -p+ m-1 is (m-1)p α + (p-1)p α-1 + • • •+ (p-1)p+ (m-1). The base-p expansion of m -1 is (m -1) since m ≤ p. Subtracting, the base-p expansion of mq -p + m -1 -(m -1) = mq -p is (m -1)p α + (p -1)p α-1 + • • • + (p -1)p + 0. By Equation 3 ν p ( mq -p + m -1 m -1 ) = s p (m -1) + s p (mq -p) -s p (mq -p + m -1) p -1 = (m -1) + [(m -1) + (p -1)(α -1)] -[2(m -1) + (p -1)(α -1)] p -1 = 0.
We now use Equation 3 to show ν p ( mq-p+m-1-j m-1

) = 0 for 1 ≤ j ≤ 2m-p-1.
First note that since m ≤ p, we have j ≤ m-1. Note that the base-p expansion of mq

-p + m -1 -j is (m -1)p α + (p -1)p α-1 + • • • + (p -1)p + (m -1) -j. The base-p expansion of m -1 is (m -1) since m ≤ p. Subtracting, the base-p expansion of mq -p + m -1 -j -(m -1) = mq -p -j is (m -1)p α + (p - 1)p α-1 + • • • + (p -2)p + (p -j). By Equation 3 ν p ( mq -p + m -1 -j m -1 ) = s p (m -1) + s p (mq -p -j) -s p (mq -p + m -1 -j) p -1 = (m -1) + [(m -1) + (p -1)(α -1) -1 + (p -j)] p -1 - [2(m -1) + (p -1)(α -1) -j] p -1 = 1. 4. Consider t-1 m-1 as a polynomial in Z p [t]. Since t -1 m -1 = (t -1)(t -2) . . . (t -(m -1)) (m -1)! ,
this polynomial clearly is of degree m -1 with roots 1, 2 . . . , m -1.

We now give the value of L(q, m) in the case that q and m are powers of the same prime p. Proposition 2.6. For a prime p and integers r and s, we have L(p r , p s ) = p r+s .

Proof. By definition, we must show that the smallest integer t ≥ p s + 1 for which t p s ≡ 0 (mod p r ) is t = p r+s . We must show that ν p ( t p s ) < r for p s +1 ≤ t < p r+s and that ν p ( p r+s p s ) = r.

We first show that ν p ( p r+s p s ) = r. Note that the base-p expansion of p r+s is 1p r+s +0p r+s-1 +• • •+0p+0 and the base-p expansion of p s is 1p s +0p s-1 +• • •+0p+0. Subtracting, the base-p expansion of p r+s -p s is (p -1)p r+s-1

+ • • • + (p -1)p s + 0p s-1 + • • • + 0p + 0. By Equation 3, ν p ( p r+s p s ) = s p (p s ) + s p (p r+s -p s ) -s p (p r+s ) p -1 = 1 + r(p -1) -1 p -1 = r.
We now show that ν p ( t p s ) < r for p s + 1 ≤ t < p r+s . The base-p expansion of t is t r+s-1 p r+s-1

+ • • • + t 1 p + t 0 and for p s is 1p s + 0p s-1 + • • • + 0p + 0. Subtracting, the base-p expansion of t -p s is t ′ r+s-1 p r+s-1 + • • • + t ′ s+1 p s+1 + t ′ s p s + t s-1 p s-1 + • • • + t 1 p + t 0 . By Equation 3 ν p ( t p s ) = s p (p s ) + s p (t -p s ) -s p (t) p -1 = 1 + (t ′ r+s-1 + • • • + t ′ s + t s-1 + • • • + t 1 + t 0 ) -(t r+s-1 + • • • + t 0 ) p -1 .
After cancelling like terms, we obtain

ν p ( t p s ) = 1 + (t ′ r+s-1 -t r+s-1 ) + • • • + (t ′ s -t s ) p -1
.

By the rules of subtraction and as t ≥ p s + 1, there exists an index i with s ≤ i ≤ r + s -1 for which t ′ i -t i = -1. Thus,

ν p ( t p s ) ≤ 1 -1 + (r -1)(p -1) p -1 = r -1.
Theorem 2.7. For integers r and s, and a prime p, for q = p r we have D(Z q , p s ) = p r+s .

Proof. We apply Theorem 2.2. From Part 1 of Proposition 2.5, we have D(Z q , p s ) ≤ U (q, p s ) ≤ qp s = p r+s . From Proposition 2.6, we have D(Z q , p s ) ≥ L(q, p s ) = p r+s . Thus, equality holds.

More general lower and upper bounds

We now provide a generalization of Theorem 2.2 to products of the form Z p α 1 ⊕ • • • ⊕ Z p αr . We proceed in a similar way as in the set-up and proof of Theorem 2.2. Define U ((p α1 , . . . , p αr ), m) to be the smallest integer t ≥ m r i=1 (p αi -1) + 1 such that 0≤2j≤m-1

t 2j ≡ 1≤2j+1≤m-1 t 2j + 1 (mod p).
As before, an alternate definition of U ((p α1 , . . . , p αr ), m) is the smallest integer

t ≥ m r i=1 (p αi -1) + 1 such that t-1 m-1 ≡ 0 (mod p). Theorem 3.1. D(Z p α 1 ⊕ • • • ⊕ Z p αr , m) ≤ U ((p α1 , . . . , p αr ), m).
Proof. Let S = (a 1 , . . . , a ℓ ) be a sequence over Z p α 1 ⊕• • •⊕Z p αr . For each 1 ≤ i ≤ ℓ, we write a i = [a i,1 , . . . , a i,r ] where a i,k ∈ Z p α k for all 1 ≤ k ≤ r. As opposed to seeking subsequences S ′ of length at least m such that e m (S ′ ) = 0, we may seek idempotent solutions that are not m-artificial to the following system of r polynomial equations,

1≤i1<•••<im≤ℓ m j=1 a ij ,k x ij ≡ 0 (mod p α k ) ∀k where 1 ≤ k ≤ r.
To prove the upper bound, consider this system of polynomial equations, each of which is of degree m, when the number of variables is U ((p α1 , . . . , p αr ), m) ≥ m r i=1 (p αi -1) + 1. Clearly, all m-artificial idempotent U ((p α1 , . . . , p αr ), m)-tuples are solutions to this system of equations since each monomial of each polynomial is a product of m variables (and so at least one variable in each monomial evaluates as 0 and so each monomial evaluates as 0). From these solutions, we know that the number of even idempotent solutions A is at least E(U ((p α1 , . . . , p αr ), m), m, even) and the number of odd idempotent solutions B is at least E(U ((p α1 , . . . , p αr ), m), m, odd). By the definition of U ((p α1 , . . . , p αr ), m), we have that |E(U ((p α1 , . . . , p αr ), m), m, even)| ≡ |E(U ((p α1 , . . . , p αr ), m), m, odd)| (mod p). Thus, by Theorem 2.1, there exists an idempotent solution that is not m-artificial. Proof. This follows immediately from the definition of L(n, m).

Corollary 3.2. D(Z p α 1 ⊕ • • • ⊕ Z p αr , m) ≤ m( r i=1 (p αi -1) + 1) = mD(Z p α 1 ⊕ • • • ⊕ Z p αr ).
Theorem 3.4. Let A be the ring Z n1 ⊕ • • • ⊕ Z n b . We have D(A, m) ≥ b j=1 L(n j , m) -(b -1)m.
Proof. We show that the following sequence S is m-zero free over

Z n1 ⊕ • • • ⊕ Z n b .
Let S be a sequence over

Z n1 ⊕ • • • ⊕ Z n b with elements g 1 = [1, 1, . . . , 1] re- peated L(n 1 , m) -1 times, g 2 = [0, 1, . . . , 1] repeated L(n 2 , m) -m times, . . . , g b = [0, . . . , 0, 1] repeated L(n b , m) -m times. (Notice that the number of times that g 1 is repeated is different in format from that of the other g i s.) The sequence S has length |S| = (L(n 1 , m) -m) + . . . + (L(n b , m) -m) + m -1.
For the sake of contradiction, let S ′ be an m-zero subsequence of length at least m. For i = 1, . . . , b, let s i ≥ 0 be the number of times g i appears in S ′ . Since S ′ is a subsequence, we have

s 1 ≤ L(n 1 , m) -1, s 2 ≤ L(n 2 , m) -m, . . . , s b ≤ L(n b , m) -m.
Since S ′ is an m-zero sequence of length at least m, we have |S ′ | = s 1 +. . .+s b ≥ m. We also have

s 1 m ≡ 0 (mod n 1 ) s 1 + s 2 m ≡ 0 (mod n 2 ) . . . . . . s 1 + s 2 + . . . + s b m ≡ 0 (mod n b ).
We now prove by induction on i ∈ [0, b -1] that S ′ has the following property:

P (i) : s 1 + . . . + s b-i ≥ m.
We first establish the base case. When i = 0, we have that since S ′ is an m-zero sequence of length at least m, |S ′ | = s 1 +. . .+s b ≥ m. Now we establish the induction step and so we assume that P (i) holds for some i ∈ [0, b -2]. That is, assume that

s 1 + . . . + s b-i ≥ m for some i ∈ [0, b -2]. Since s1+...+s b-i m ≡ 0 (mod n b-i ), Lemma 3.3 implies that s 1 + . . . + s b-i ≥ L(n b-i , m). If s 1 + . . . + s b-(i+1) < m, then L(n b-i , m) ≤ s 1 + . . . + s b-i = (s 1 + . . . + s b-(i+1) ) + s b-i ≤ m -1 + (L(n b-i , m) -m) = L(n b-i , m) -1, a contradiction. Therefore, s 1 + . . . + s b-(i+1) ≥ m.
In particular, we have established that s 1 ≥ m. Since s1 m ≡ 0 (mod n 1 ), Lemma 3.3 yields s 1 ≥ L(n 1 , m), contradicting the fact that the number s 1 of copies of g 1 contained in S ′ is at most L(n 1 , m) -1.

Remark 3.5. When m = 1, Theorem 3.4 recovers the well-known lower bound for the Davenport constant. That is,

D(Z n1 ⊕ • • • ⊕ Z nr ) ≥ r i=1
(n i -1) + 1, which Theorem 1.1 shows to be sharp for p-groups and groups of rank at most 2. Theorem 3.4 shows that it is sharp whenever A is a product of the form Z p α 1 ⊕ • • • ⊕ Z p αr and m is a power of p. Remark 3.6. We wish to emphasize that Theorem 3.4 is for any direct product of cyclic groups. That is, say, for example, we consider Z 6 , which is isomorphic to Z 2 ⊕ Z 3 . The theorem applies to both representations and we may choose the one for which the theorem provides the best bound. Theorem 3.7. For a prime p and s ≥ 0, we have

D(Z p α 1 ⊕ • • • ⊕ Z p αr , p s ) = p s r i=1 (p αi -1) + 1 = p s D(Z p α 1 ⊕ • • • ⊕ Z p αr ).
Proof. By Corollary 3.2, we have

D(Z p α 1 ⊕ • • • ⊕ Z p αr , p s ) ≤ p s r i=1 (p αi -1) + 1 .
On the other hand, Theorem 3.4 gives

D(Z p α 1 ⊕ • • • ⊕ Z p αr , p s ) ≥ p s r i=1 (p αi -1) + 1 .
The last equality follows directly from Theorem 1.1.

4.

Improved bounds for D(Z n , m) using the Girard-Newton formulae

We now state a historical set of relations between the elementary symmetric polynomials and the power sum polynomials. These 17th-century relations are independently due to Albert Girard and Isaac Newton and known as the Girard-Newton formulae (or sometimes Newton's identities).

The symmetric functions that will be of interest to us consist of the following. For k ≥ 0, the elementary symmetric polynomial of degree k is the sum of all distinct products of k distinct variables. Thus, e 0 (x 1 , . . . ,

x n ) = 1, e 1 (x 1 , . . . , x n ) = x 1 +• • •+
x n , e 2 (x 1 , . . . , x n ) = 1≤i<j≤n x i x j and, so on, until, e n (x 1 , . . . , x n ) = x 1 x 2 . . . x n . The k-th power sum polynomial is p k (x 1 , . . . , x n ) = n i=1 x k i .

Theorem 4.1 (Girard-Newton formulae). For all n ≥ 1 and 1 ≤ k ≤ n, we have

ke k (x 1 , . . . , x n ) = k i=1 (-1) i-1 e k-i (x 1 , . . . , x n )p i (x 1 , . . . , x n ). (4) 
We may rewrite Equations 4 in a manner that is independent of the number of variables, that is, we may rewrite Equations 4 in the ring of symmetric functions as

ke k = k i=1 (-1) i-1 e k-i p i . (5) 
One may use the Girard-Newton formulae to recursively express elementary symmetric polynomials in terms of power sums as follows.

e k = (-1) k k i=1 (-p i ) ji j i !i ji , (6) 
where the sum extends over all solutions to j 1 + 2j Notice that for Equation 6, each term in the sum of the right side is a product that contains at most k distinct power sum polynomials. For a fixed k we call a set T of power sum polynomials a dominating set for e k if each term in the sum contains at least one member of T . Let t(k) denote the size of the smallest dominating set. For k = 1, the only dominating set is {p 1 }, and so t(1) = 1. For k = 2, the only dominating set is {p 1 , p 2 }, and so t(2) = 2. For k = 3, any dominating set must contain both p 1 and p 3 and {p 1 , p 3 } is a dominating set, and so t(3) = 2. Lemma 4.2. We have t(k) = k+2 2 when k is even, t(k) = k+1 2 when k is odd.

Proof. We may determine the size of the smallest dominating set by examining the solutions to the equation j 1 + 2j 2 + • • • + kj k = k such that j 1 , . . . , j k ≥ 0. There are solutions of the form (where we only specify the non-zero terms): j i = j k-i = 1 for 1 ≤ i ≤ k/2 -1; j k/2 = 2; and, j k = 1. Thus selecting one element from each of the following sets {p 1 , p k-1 }, . . . , {p k/2-1 , p k/2+1 }, {p k/2 }, {p k } is necessary to form a dominating set. Thus, t(k) ≥ k/2 + 1. Also, whenever k/2 + 1 ≤ i ≤ k there is no solution with j i ≥ 2 and for any solution there is at most one index i,

where k/2 + 1 ≤ i ≤ k, so that j i = 1. This implies that for any solution where for k/2 + 1 ≤ i ≤ k -1 we have j i = 1, we also have 

j i ′ ≥ 1 for 1 ≤ i ′ ≤ k/2 -
:= ⌊ ν2(n)-1 2 ⌋. We have 1. D(Z n , 2) ≤ 2n -1 when ν 2 (n) = 0 (i.e.
when n is odd), and

2. D(Z n , 2) ≤ (2 + 1 2 b )n -1 when ν 2 (n) ≥ 1 (i.e.
when n is even).

Proof.

1. Let n be an odd integer, n ≥ 3. Let S be a sequence (a 1 , . . . , a 2n-1 ) in Z n . We may assume that all the elements in S are non-zero. Consider the following elements of Z n ⊕ Z n : [a 1 , a 2 1 ], . . . , [a 2n-1 , a 2 2n-1 ]. Recall Theorem 1.1, which gives here D(Z n ⊕ Z n ) = 2n -1. That is, there exists a non-empty subset J ⊆ {1, . . . , 2n -1} such that j∈J [a j , a 2 j ] = (0, 0), and necessarily |J| ≥ 2. As a result, we have that j∈J a j × j∈J a j ≡ 0 (mod n) and that j∈J a j × j∈J a j = j∈J a 2 j +2 i =j, i,j∈J a i a j = 2 i =j, i,j∈J a i a j . Thus, 2 i =j, i,j∈J a i a j ≡ 0 (mod n), and as n is odd we have i =j, i,j∈J a i a j ≡ 0 (mod n). Thus, D(Z n , 2) ≤ 2n -1.

2. Let n = 2 ν2(n) m be an integer such that ν 2 (n) ≥ 1, m ≥ 3, and, for convenience, let b := ⌊ ν2(n)-1 2 ⌋ ≥ 0. Let S be a sequence (a 1 , . . . , a (2+ 1 2 b )n-1 ) in Z n . We may assume that all the elements in S are non-zero.

Case: ν 2 (n) is odd In this case, we have ν 2 (n) = 2b + 1. Consider the following elements of Z m2 ν 2 (n)-b ⊕ Z m2 ν 2 (n)+1 = Z m2 b+1 ⊕ Z 2n = Z n 2 b ⊕ Z 2n : [a 1 , a 2 1 ], . . . , [a (2+ 1 2 b )n-1 , a 2 (2+ 1 2 b )n-1 ]. Recall Theorem 1.1, which gives here D(Z n 2 b ⊕ Z 2n ) = (2 + 1 2 b )n -1.
That is, there exists a non-empty subset J ⊆ {1, . . . , (2 + 1 2 b )n -1} such that j∈J [a j , a 2 j ] = (0, 0), and necessarily |J| ≥ 2. That is, we have j∈J a j ≡ 0 (mod 2 b+1 m) and j∈J a 2 j ≡ 0 (mod 2n). As a result, we have that Now, choose J such that |J| is largest. From Equation 6, we have that m!e m may be written as a sum of terms where each term is a product that contains at least one element from the above dominating set and each term has an integer coefficient. As a result, we may conclude that e m evaluates to zero modulo n over ). Therefore, there exists a non-empty subset J ′ ⊆ J c such that As a result, we may consider J ∪ J ′ which has size strictly larger than J and the same property as J, contradicting the choice made above. Case: m is odd. We proceed in a similar manner to the previous case, save that we have that {p 1 , . . . , p (m-1)/2 , p m } is a minimum dominating set for e m .

Concluding remarks and open problems

The most natural candidate for further research is the case of D(Z n , 2), which in our opinion preserves the same combinatorial and number-theoretic flavor of the m = 1 case. It is already known from Theorem 2.7 that D(Z 2 r , 2) = 2 r+1 . Further upper bounds are obtained in Theorem 4.3.

We have computed D(Z n , 2) for 2 ≤ n ≤ 16 and n = 18. The results are presented in the list of following pairs (n, D(Z n , 2)) : (2, 4), [START_REF] Baker | Diophantine problems in variables restricted to the values 0 and 1[END_REF][START_REF] Bialostocki | Cubic symmetric polynomials yielding variations of the Erdős-Ginzburg-Ziv theorem[END_REF], [START_REF] Bialostocki | An analogue of the Erdős-Ginzburg-Ziv theorem for quadratic symmetric polynomials[END_REF][START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF], [START_REF] Bialostocki | Cubic symmetric polynomials yielding variations of the Erdős-Ginzburg-Ziv theorem[END_REF][START_REF] Van Emde Boas | A combinatorial problem on finite abelian groups I[END_REF], (6, 7), [START_REF] Van Emde | A combinatorial problem on finite abelian groups II[END_REF][START_REF] Geroldinger | Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF], [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF][START_REF] Rogers | A combinatorial problem in Abelian groups[END_REF], [START_REF] Geroldinger | Additive group theory and non-unique factorizations[END_REF][START_REF] Geroldinger | Additive group theory and non-unique factorizations[END_REF], [START_REF] Geroldinger | Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF][START_REF] Geroldinger | Additive group theory and non-unique factorizations[END_REF], [START_REF] Girard | An asymptotically tight bound for the Davenport constant[END_REF][START_REF] Legendre | Essai sur la théorie des nombres, Second Edition[END_REF], [START_REF] Kummer | Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen[END_REF][START_REF] Kummer | Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen[END_REF], [START_REF] Legendre | Essai sur la théorie des nombres, Second Edition[END_REF][START_REF] Olson | A combinatorial problem on finite Abelian groups I[END_REF], [START_REF] Olson | A combinatorial problem on finite Abelian groups I[END_REF][START_REF] Legendre | Essai sur la théorie des nombres, Second Edition[END_REF], [START_REF] Olson | A combinatorial problem on finite Abelian groups. II[END_REF][START_REF] Kummer | Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen[END_REF], [START_REF] Rogers | A combinatorial problem in Abelian groups[END_REF]32) and (18,[START_REF] Legendre | Essai sur la théorie des nombres, Second Edition[END_REF].

We arrange this list as such:

1. (2, 4), [START_REF] Bialostocki | An analogue of the Erdős-Ginzburg-Ziv theorem for quadratic symmetric polynomials[END_REF][START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF], [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF][START_REF] Rogers | A combinatorial problem in Abelian groups[END_REF], [START_REF] Rogers | A combinatorial problem in Abelian groups[END_REF]32): this is the case that n is a power of 2 and is already known from Theorem 2.7 that D(Z 2 r , 2) = 2 r+1 ; 2. (9, 9), [START_REF] Kummer | Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen[END_REF][START_REF] Kummer | Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen[END_REF]: in this case we have D(Z n , 2) = n.

Problem 5.1. For which n does D(Z n , 2) = n hold?

3. (10, 9), [START_REF] Olson | A combinatorial problem on finite Abelian groups I[END_REF][START_REF] Legendre | Essai sur la théorie des nombres, Second Edition[END_REF], [START_REF] Olson | A combinatorial problem on finite Abelian groups. II[END_REF][START_REF] Kummer | Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen[END_REF], (18, 13): in this case we have D(Z n , 2) < n.

Problem 5.2. For which n does D(Z n , 2) < n hold?

4. [START_REF] Baker | Diophantine problems in variables restricted to the values 0 and 1[END_REF][START_REF] Bialostocki | Cubic symmetric polynomials yielding variations of the Erdős-Ginzburg-Ziv theorem[END_REF], [START_REF] Bialostocki | Cubic symmetric polynomials yielding variations of the Erdős-Ginzburg-Ziv theorem[END_REF][START_REF] Van Emde Boas | A combinatorial problem on finite abelian groups I[END_REF], [START_REF] Van Emde | A combinatorial problem on finite abelian groups II[END_REF][START_REF] Geroldinger | Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF], [START_REF] Girard | An asymptotically tight bound for the Davenport constant[END_REF][START_REF] Legendre | Essai sur la théorie des nombres, Second Edition[END_REF], [START_REF] Legendre | Essai sur la théorie des nombres, Second Edition[END_REF][START_REF] Olson | A combinatorial problem on finite Abelian groups I[END_REF]: this is the case when n is a prime.

We claim that D(Z p , 2) ≥ p + 1. For p = 2, this is established by Theorem 2.7.

For p ≥ 3 consider the following sequence of length p: S = (1, . . . , 1, p+1 2 ).

Proof. 1 . 3 . 3 .

 133 The same argument as in the proof of Proposition 2.5.1 implies that U ((p α1 , . . . , p αr ), m) ≤ (m r i=1 (p αi -1) + 1) + m -1 = m( r i=1 (p αi -1) + 1).The result then follows from Theorems 1.1 and 3.Lemma For every integer z such that z m ≡ 0 (mod n), we have z < m or z ≥ L(n, m).

  J. If |J| ≥ m, we are done. So, assume |J| ≤ m -1, and consider the complement of J, J c = {1, . . . , M } \ J. By the assumptions, |J c | ≥ D(Z t(m) n

  . . . , 0] .

  2 + • • • + kj k = k such that j 1 , . . . , j k ≥ 0. For example, we have e 1 = p 1 , e 2 = 1 . Upon multiplying both sides of Equation 6 by k!, we obtain on the right side integer coefficients.

	1 3 p 3 , e 4 = 1 24 p 4 1 -1 4 p 2 1 p 2 + 1 8 p 2 2 + 1 3 p 1 p 3 -1 4 p 4	2 p 2 1 -1 2 p 2 , e 3 = 1 6 p 3 1 -1 2 p 1 p 2 +

  1. Thus, {p 1 , . . . , p k/2 , p k } is a dominating set of size k/2 + 1. When k is odd a similar argument allows us to claim that {p 1 , . . . , p (k-1)/2 , p k } is a minimum-sized dominating set.

Theorem 4.3. Let n = 2 ν2(n) m with m ≥ 3, and b
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j∈J a j × j∈J a j ≡ 0 (mod 2 b+1 m)×0 (mod 2 b+1 m) ≡ 0 (mod 2 2b+2 m 2 ) ≡ 0 (mod 2n) and that j∈J a j × j∈J a j = j∈J a 2 j + 2 i =j, i,j∈J a i a j = 2 i =j, i,j∈J a i a j . Thus, 2 i =j, i,j∈J a i a j ≡ 0 (mod 2n), and so we have i =j, i,j∈J a i a j ≡ 0 (mod n). Thus, D(Z n , 2)

That is, there exists a non-empty subset J ⊆ {1, . . . , (2 + 1 2 b )n -1} such that j∈J [a j , a 2 j ] = (0, 0), and necessarily |J| ≥ 2. That is, we have j∈J a j ≡ 0 (mod 2 b+2 m) and j∈J a 2 j ≡ 0 (mod 2n). As a result, we have that j∈J a j × j∈J a j ≡ 0 (mod 2 b+2 m)×0 (mod 2 b+2 m) ≡ 0 (mod 2 2b+4 m 2 ) ≡ 0 (mod 4n) ≡ 0 (mod 2n) and that

Thus, 2 i =j, i,j∈J a i a j ≡ 0 (mod 2n), and so we have i =j, i,j∈J a i a j ≡ 0 (mod n). Thus, ) + m -1. Let S be a sequence (a 1 , . . . , a M ) over Z n . Case: m is even. Recall that for m even, we have that {p 1 , . . . , p m/2 , p m } is a minimum size dominating set for e m . Consider the following M elements of Z

). That is, there exists a non-empty subset J ⊆ {1, . . . , M } such that

Any 2-zero subsequence must contain at least two elements. For a subsequence S ′ we have e 2 (S ′ ) = j(j-1)

2

+ j p+1 2 ≡ j 2 (j + p) ≡ 0 (mod p) where j counts the number of 1's in S ′ for 1 ≤ j ≤ p -1. Thus, no 2-zero subsequence exists. Problem 5.3. For a prime p with p ≡ 1 (mod 4), does D(Z p , 2) = p+ 1 hold?

We claim that D(Z p , 2) ≥ p + 2 for p ≡ 3 (mod 4). For p ≥ 3, consider the following sequence of length p + 1: S = (1, . . . , 1, p+1 2 , p+1 2 ). From the above, the only case that we need to consider is when S ′ contains two copies of p+1 2 . For any such subsequence S ′ we have

where j counts the number of 1's in S ′ and 1 ≤ j ≤ p -1. Note that j 2 + (j + 1) 2 + p(4j + p + 2) ≡ j 2 + (j + 1) 2 (mod p).

However, a prime is expressible as the sum of two squares if and only if congruent to 1 (mod 4), a fact first observed by A. Girard in 1625 (and later by P. de Fermat).

Problem 5.4. Given a prime p, let q = p r and m = p s be two powers of p. Is it true that every m-zero free sequence S of length D(Z q , m) -1 = mq -1 over Z q has the form S = (a, . . . , a), where a generates the additive group of Z q ?