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Abstract

We generalize the notion of Davenport constants to a ‘higher degree’ and ob-
tain various lower and upper bounds, which are sometimes exact as is the case for
certain finite commutative rings of prime power cardinality. Two simple examples
that capture the essence of these higher degree Davenport constants are the follow-
ing. 1) Suppose n = 2k, then every sequence of integers S of length 2n contains
a subsequence S′ of length at least two such that

∑

ai,aj∈S′ aiaj ≡ 0 (mod n) and

the bound is sharp. 2) Suppose n ≡ 1 (mod 2), then every sequence of integers
S of length 2n − 1 contains a subsequence S′ of length at least two such that
∑

ai,aj∈S′ aiaj ≡ 0 (mod n). These examples illustrate that if a sequence of ele-
ments from a finite commutative ring is long enough, certain symmetric expressions
have to vanish on the elements of a subsequence.

1. Introduction

Throughout this paper, let p denote a prime number and q = pα a prime power.

Let G be a finite abelian group. A finite sequence S = (g1, . . . , gℓ) of elements of

G is called a sequence over G, where order is disregarded and repetition is allowed.

Its length, denoted |S|, is the number of elements therein, counted with multiplicity.

A sequence of G is said to be zero-sum if the sum of its elements is zero in G. A

sequence S of G is said to be zero-sum free if every non-trivial subsequence of S

has sum different to zero. For a group G, the Davenport constant of G, which we
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denote by D(G), is the smallest positive integer t such that every sequence S over

G of length |S| ≥ t contains a non-empty zero-sum subsequence. That is, we seek

the smallest t for which there is a non-trivial solution of

ε1g1 + · · ·+ εtgt = 0,

where each εi is 0 or 1.

Study of this number intensified in the 1960s with K. Rogers [16] in 1963, and

later with H. Davenport in 1966 as explained by J.E. Olson in [14] and has continued

unabated since; see, for example, a useful survey by W. Gao and A. Geroldinger

[8].

The cyclic group with n elements will be denoted Zn. Further, it is well-known

that by the Fundamental Theorem of Finite Abelian Groups that for any finite

non-trivial abelian group G there exist integers n1, . . . , nr where 1 < n1 | . . . | nr

so that G can be written uniquely as

G ∼= Zn1 ⊕ · · · ⊕ Znr
.

The integer r is called the rank of G and denoted r(G). We use d
∗(G) to denote

the value
∑r

i=1(ni − 1).

The value of D(G) was determined independently by J.E. Olson [14] and D.

Kruyswijk [6] when G is a p-group, and by J.E. Olson [15] when G has rank at most

2.

Theorem 1.1. [J.E. Olson [14], [15], and D. Kruyswijk [6]] If G is a p-group or

r(G) ≤ 2, then D(G) = 1 + d
∗(G).

The value of D(G) is unknown in general. For a survey of results, see the work of

A. Geroldinger [9] and the work of A. Geroldinger and F. Halter-Koch [10]. Recently,

B. Girard [11] has shown that for all integers r ≥ 1, D(Zr
n) ∼ rn as n → ∞.

We now introduce our object of study. Let (A,+, ·) be a finite commutative ring.

For any positive integer m and any sequence S = (a1, . . . , aℓ) over A, we set

em(S) :=
∑

1≤i1<···<im≤ℓ

m∏

j=1

aij .

We say that S is an m-zero sequence whenever em(S) = 0, and that it is an m-zero

free sequence whenever, for every subsequence S′ of S such that |S′| ≥ m, one has

em(S′) 6= 0. We denote by D(A,m) the smallest positive integer t such that every

sequence S over A of length |S| ≥ t contains a subsequence S′ of length |S′| ≥ m

for which em(S′) = 0.

Notice that when m = 1 we recover the classical Davenport constant discussed

above. As a result, we may consider D(A,m) as the mth-degree Davenport constant.
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In this paper we examine this higher degree Davenport constant. This line of in-

vestigation that we follow is suggested by the work of A. Bialostocki and T.D. Luong

[4], [5], and T. Ahmed, A. Bialostocki, T. Pham and Le Anh Vinh [1].

We proceed as follows. In Section 2 we examine the higher degree Davenport

constant in the case that A = Zn. Of particular use is a result of R. Baker and

W. Schmidt [2] (and see also [3]). We obtain a precise result in the case that n is

a prime power and m is power of the same prime. In Section 3 we give an upper

bound for the higher degree Davenport constant in the case that A is of the form

Zpα1 ⊕ · · · ⊕ Zpαr and a lower bound for any A of the form Zn1 ⊕ · · · ⊕ Znb
from

which we deduce a sharp value of the higher Davenport constant for rings of the

form Zpα1 ⊕· · ·⊕Zpαr when m is also a power of p. In Section 4 we show how to use

the classical Girard-Newton formulae, which allow one to express the elementary

symmetric polynomial of degree k by a combination of power sum polynomials, to

obtain upper bounds. In Section 5 we present some open problems.

2. Bounds for cyclic groups

First, we note an easy lower bound on D(Zn,m). Consider the sequence 1 :=

(1, . . . , 1) of length t. If t = m, then the only subsequence of length at least m is

the given sequence itself and em(1) = 1 6≡ 0 (mod n). Further, suppose that for

each ℓ with t > ℓ ≥ m we have
(
ℓ
m

)
6≡ 0 (mod n). Then there exists no subsequence

of 1 of length at least m which evaluates to zero modulo n. Thus, we define L(n,m)

to be the smallest integer t ≥ m+ 1 such that
(
t
m

)
≡ 0 (mod n). We have

D(Zn,m) ≥ L(n,m). (1)

Throughout the remainder of this section, let n = pr = q.

An s-tuple (ε1, . . . , εs) with each εi = 0 or 1 will be called idempotent. Whenever

ε1 + · · · + εs is even (respectively, odd), an idempotent s-tuple will be called even

(respectively, odd). Further, for a fixed m, an idempotent s-tuple will be called

m − artificial (or just artificial when m is clear) whenever ε1 + · · · + εs ≤ m − 1,

i.e. the number of εi that take on the value 1 is strictly less than m.

We will apply the following theorem of R.C. Baker and W.M. Schmidt [2, 3].

Theorem 2.1. [R.C. Baker, W.M. Schmidt [2, 3]] Suppose that F1, . . . ,Fℓ are

polynomials in x = (x1, . . . , xs) with coefficients in respective p-groups G1, . . . , Gℓ,

and of respective degrees d1, . . . , dℓ. Write A or B, respectively, for the number of

even or the number of odd idempotent solutions of

F1(ε) = 0, . . . ,Fℓ(ε) = 0.
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If

s > d1(D(G1)− 1) + · · ·+ ds(D(Gℓ)− 1),

then

A ≡ B (mod p).

To facilitate an application of Theorem 2.1 to our specific setting, we define for

integers q = pr andm the function U(q,m) to be the smallest integer t ≥ m(q−1)+1

such that

∑

0≤2j≤m−1

(
t

2j

)

6≡
∑

1≤2j+1≤m−1

(
t

2j + 1

)

(mod p).

Furthermore, for integers n and m we denote the set of all m-artificial idempo-

tent n-tuples with ε1 + · · · + εn equal to an even (odd) integer by E(n,m, even)

(E(n,m, odd)). Clearly, we have

|E(n,m, even)| =
∑

0≤2j≤m−1

(
t

2j

)

and |E(n,m, odd)| =
∑

1≤2j+1≤m−1

(
t

2j + 1

)

.

Theorem 2.2. Let r be a non-negative integer, p a prime, q = pr and m ≥ 1. We

have

L(q,m) ≤ D(Zq ,m) ≤ U(q,m).

Proof. The lower bound was established above. We establish the upper bound.

For a sequence S = (a1, . . . , aℓ) as opposed to seeking subsequences S′ of length

at least m such that em(S′) ≡ 0 (mod q), we may seek idempotent solutions that

are not m-artificial to the following polynomial equation,

∑

1≤i1<···<im≤ℓ

m∏

j=1

aijxij ≡ 0 (mod q).

To prove the upper bound, consider this degree-m polynomial equation when the

number of variables is U(q,m) ≥ m(q − 1) + 1, i.e. ℓ ≥ m(q − 1) + 1.

Clearly, all m-artificial idempotent U(q,m)-tuples are solutions to this equa-

tion since each monomial of the polynomial is a product of m variables (and so

at least one variable in each monomial evaluates as 0 and so each monomial eval-

uates as 0). From these solutions, we know that the number of even idempotent

solutions A is at least E(U(q,m),m, even) and the number of odd idempotent so-

lutions B is at least E(U(q,m),m, odd). By the definition of U(q,m), we have

that |E(U(q,m),m, even)| 6≡ |E(U(q,m),m, odd)| (mod p). Thus, by Theorem 2.1,

there exists an idempotent solution that is not m-artificial.
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2.1. Properties of U(q,m) and L(q,m)

The lower bound L(q,m) and upper bound U(q,m) provided in Theorem 2.2 mo-

tivate us to a numerical understanding of these functions in order to make them

effective.

We begin with an investigation of U(q,m).

Using Pascal’s Identity and induction, one may show that

∑

0≤2j≤m−1

(
t

2j

)

−
∑

1≤2j+1≤m−1

(
t

2j + 1

)

= (−1)m−1

(
t− 1

m− 1

)

.

Thus, an alternate definition of U(q,m) is the smallest integer t ≥ m(q − 1) + 1

such that
(
t−1
m−1

)
6≡ 0 (mod p). The former definition naturally arises in the proof

of Theorem 2.2 while the latter we use below.

We recall some classical results in number theory from the 19th-century.

Let p be a prime number and n > 1 an integer. The p-adic valuation of n, denoted

νp(n), is the exponent of p in the canonical decomposition in prime numbers of n

(and if p does not divide n, then νp(n) = 0). The base-p expansion of n is written

as such, n = akp
k+ak−1p

k−1+ · · ·+a1p+a0. Let sp(n) = ak+ak−1+ · · ·+a1+a0.

Theorem 2.3 (A.-M. Legendre, 1808 [13]). Let p be a prime and let n be a positive

integer. Then

νp(n!) =
n− sp(n)

p− 1
.

Legendre’s Theorem was used to establish the following.

Theorem 2.4 (E. Kummer, 1852 [12]). The p−adic valuation of the binomial

coefficient
(
n
m

)
is equal to the number of ‘carry-overs’ when performing the addition

in base p of n−m and m.

When one uses Legendre’s Theorem to prove Kummer’s Theorem, an intermedi-

ate step gives

νp(

(
n

m

)

) = νp(n!)− νp(m!)− νp((n−m)!) (2)

=
sp(m) + sp(n−m)− sp(n)

p− 1
. (3)

We repeatedly use this identity in the proofs given below.

Proposition 2.5. For an integer m ≥ 1, a prime p and q a power of p, we have the

following.
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1. m(q − 1) + 1 ≤ U(q,m) ≤ mq.

2. For p ≥ 2m− 1, U(q,m) = m(q − 1) + 1.

3. For m ≤ p ≤ 2m− 2, U(q,m) = mq +m− p.

4. For p ≥ m, the roots of
(
t−1
m−1

)
∈ Zp[t] are 1, 2, . . . ,m− 1.

Proof. 1. The lower bound is by the definition. Now assume that U(q,m) >

m(q−1)+1. Consider the largest integer T ≥ m(q−1)+1 such that
(
t−1
m−1

)
≡ 0

(mod q) for all integers m(q − 1) + 1 ≤ t ≤ T . The integer T is well-defined

by assumption, and we have U(q,m) = T + 1. For the sake of contradiction,

we assume that T ≥ mq. By definition, we have
(
T−1
m−1

)
≡ . . . ≡

(
m(q−1)
m−1

)
≡ 0

(mod p). By Pascal’s Rule, we obtain
(
T−2
m−2

)
≡ . . . ≡

(
m(q−1)
m−2

)
≡ 0 (mod p).

We may iterate the application of Pascal’s Rule m − 1 times to obtain 0 ≡
(
m(q−1)
m−1

)
≡
(
m(q−1)
m−2

)
≡ . . . ≡

(
m(q−1)

1

)
≡
(
m(q−1)

0

)
≡ 1 (mod p), a contradic-

tion.

2. By the definition of U(q,m), we must show that
(
m(q−1)+1−1

m−1

)
6≡ 0 (mod p).

We use Equation 3 to show νp(
(
m(q−1)
m−1

)
) = 0.

Note that the base-p expansion of mq − m is (m − 1)pα + (p − 1)pα−1 +

· · · + (p − 1)p + (p − m). The base-p expansion of m − 1 is (m − 1) since

p ≥ 2m− 1. Subtracting, we find the base-p expansion of m(q − 1)− (m− 1)

is (m− 1)pα + (p− 1)pα−1 + · · ·+ (p− 1)p+ (p− 2m+ 1). By Equation 3

νp(

(
m(q − 1)

m− 1

)

) =
sp(m− 1) + sp(m(q − 1)− (m− 1))− sp(m(q − 1))

p− 1

=
(m− 1) + [(m− 1) + (p− 1)(α− 1) + (p− 2m+ 1)]

p− 1

−
[(m− 1) + (p− 1)(α− 1) + (p−m)]

p− 1

= 0.

3. We begin by noting that the difference between the claimed value and the

smallest U(q,m) allowed by the definition is 2m − p − 1. Thus, by the def-

inition of U(q,m), we must show that
(
mq−p+m−1

m−1

)
6≡ 0 (mod p) and that

(
mq−p+m−1−j

m−1

)
≡ 0 (mod p) for 1 ≤ j ≤ 2m− p− 1.

We use Equation 3 to first show νp(
(
mq−p+m−1

m−1

)
) = 0. Note that the base-p

expansion of mq−p+m−1 is (m−1)pα+(p−1)pα−1+ · · ·+(p−1)p+(m−1).

The base-p expansion of m−1 is (m−1) since m ≤ p. Subtracting, the base-p

expansion of mq− p+m− 1− (m− 1) = mq− p is (m− 1)pα+(p− 1)pα−1+

· · ·+ (p− 1)p+ 0. By Equation 3
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νp(

(
mq − p+m− 1

m− 1

)

)

=
sp(m− 1) + sp(mq − p)− sp(mq − p+m− 1)

p− 1

=
(m− 1) + [(m− 1) + (p− 1)(α− 1)]− [2(m− 1) + (p− 1)(α− 1)]

p− 1

= 0.

We now use Equation 3 to show νp(
(
mq−p+m−1−j

m−1

)
) 6= 0 for 1 ≤ j ≤ 2m−p−1.

First note that sincem ≤ p, we have j ≤ m−1. Note that the base-p expansion

of mq− p+m− 1− j is (m− 1)pα+(p− 1)pα−1+ · · ·+(p− 1)p+(m− 1)− j.

The base-p expansion of m−1 is (m−1) since m ≤ p. Subtracting, the base-p

expansion of mq − p+m− 1− j − (m− 1) = mq − p− j is (m− 1)pα + (p−

1)pα−1 + · · ·+ (p− 2)p+ (p− j). By Equation 3

νp(

(
mq − p+m− 1− j

m− 1

)

)

=
sp(m− 1) + sp(mq − p− j)− sp(mq − p+m− 1− j)

p− 1

=
(m− 1) + [(m− 1) + (p− 1)(α− 1)− 1 + (p− j)]

p− 1

−
[2(m− 1) + (p− 1)(α− 1)− j]

p− 1

= 1.

4. Consider
(
t−1
m−1

)
as a polynomial in Zp[t]. Since

(
t− 1

m− 1

)

=
(t− 1)(t− 2) . . . (t− (m− 1))

(m− 1)!
,

this polynomial clearly is of degree m− 1 with roots 1, 2 . . . ,m− 1.

We now give the value of L(q,m) in the case that q and m are powers of the

same prime p.

Proposition 2.6. For a prime p and integers r and s, we have L(pr, ps) = pr+s.

Proof. By definition, we must show that the smallest integer t ≥ ps + 1 for which
(
t
ps

)
≡ 0 (mod pr) is t = pr+s. We must show that νp(

(
t
ps

)
) < r for ps+1 ≤ t < pr+s

and that νp(
(
pr+s

ps

)
) = r.
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We first show that νp(
(
pr+s

ps

)
) = r. Note that the base-p expansion of pr+s is

1pr+s+0pr+s−1+· · ·+0p+0 and the base-p expansion of ps is 1ps+0ps−1+· · ·+0p+0.

Subtracting, the base-p expansion of pr+s − ps is (p− 1)pr+s−1 + · · ·+ (p− 1)ps +

0ps−1 + · · ·+ 0p+ 0. By Equation 3,

νp(

(
pr+s

ps

)

) =
sp(p

s) + sp(p
r+s − ps)− sp(p

r+s)

p− 1

=
1 + r(p − 1)− 1

p− 1
= r.

We now show that νp(
(
t
ps

)
) < r for ps +1 ≤ t < pr+s. The base-p expansion of t

is tr+s−1p
r+s−1+ · · ·+ t1p+ t0 and for ps is 1ps+0ps−1+ · · ·+0p+0. Subtracting,

the base-p expansion of t− ps is t′r+s−1p
r+s−1 + · · ·+ t′s+1p

s+1 + t′sp
s + ts−1p

s−1 +

· · ·+ t1p+ t0. By Equation 3

νp(

(
t

ps

)

) =
sp(p

s) + sp(t− ps)− sp(t)

p− 1

=
1 + (t′r+s−1 + · · ·+ t′s + ts−1 + · · ·+ t1 + t0)− (tr+s−1 + · · ·+ t0)

p− 1
.

After cancelling like terms, we obtain

νp(

(
t

ps

)

) =
1 + (t′r+s−1 − tr+s−1) + · · ·+ (t′s − ts)

p− 1
.

By the rules of subtraction and as t ≥ ps + 1, there exists an index i with

s ≤ i ≤ r + s− 1 for which t′i − ti = −1. Thus,

νp(

(
t

ps

)

) ≤
1− 1 + (r − 1)(p− 1)

p− 1
= r − 1.

Theorem 2.7. For integers r and s, and a prime p, for q = pr we have D(Zq , p
s) =

pr+s.

Proof. We apply Theorem 2.2. From Part 1 of Proposition 2.5, we have D(Zq , p
s) ≤

U(q, ps) ≤ qps = pr+s. From Proposition 2.6, we have D(Zq, p
s) ≥ L(q, ps) = pr+s.

Thus, equality holds.
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3. More general lower and upper bounds

We now provide a generalization of Theorem 2.2 to products of the form Zpα1 ⊕

· · · ⊕Zpαr . We proceed in a similar way as in the set-up and proof of Theorem 2.2.

Define U((pα1 , . . . , pαr),m) to be the smallest integer t ≥ m
∑r

i=1(p
αi − 1) + 1

such that

∑

0≤2j≤m−1

(
t

2j

)

6≡
∑

1≤2j+1≤m−1

(
t

2j + 1

)

(mod p).

As before, an alternate definition of U((pα1 , . . . , pαr),m) is the smallest integer

t ≥ m
∑r

i=1(p
αi − 1) + 1 such that

(
t−1
m−1

)
6≡ 0 (mod p).

Theorem 3.1. D(Zpα1 ⊕ · · · ⊕ Zpαr ,m) ≤ U((pα1 , . . . , pαr),m).

Proof. Let S = (a1, . . . , aℓ) be a sequence over Zpα1 ⊕· · ·⊕Zpαr . For each 1 ≤ i ≤ ℓ,

we write ai = [ai,1, . . . , ai,r] where ai,k ∈ Zpαk for all 1 ≤ k ≤ r. As opposed to

seeking subsequences S′ of length at least m such that em(S′) = 0, we may seek

idempotent solutions that are notm-artificial to the following system of r polynomial

equations,

∑

1≤i1<···<im≤ℓ

m∏

j=1

aij ,kxij ≡ 0 (mod pαk) ∀k where 1 ≤ k ≤ r.

To prove the upper bound, consider this system of polynomial equations, each

of which is of degree m, when the number of variables is U((pα1 , . . . , pαr),m) ≥

m
∑r

i=1(p
αi − 1) + 1.

Clearly, all m-artificial idempotent U((pα1 , . . . , pαr),m)-tuples are solutions to

this system of equations since each monomial of each polynomial is a product of m

variables (and so at least one variable in each monomial evaluates as 0 and so each

monomial evaluates as 0). From these solutions, we know that the number of even

idempotent solutions A is at least E(U((pα1 , . . . , pαr),m),m, even) and the number

of odd idempotent solutions B is at least E(U((pα1 , . . . , pαr ),m),m, odd). By the

definition of U((pα1 , . . . , pαr),m), we have that

|E(U((pα1 , . . . , pαr ),m),m, even)| 6≡ |E(U((pα1 , . . . , pαr),m),m, odd)| (mod p).

Thus, by Theorem 2.1, there exists an idempotent solution that is not m-artificial.

Corollary 3.2.

D(Zpα1 ⊕ · · · ⊕ Zpαr ,m) ≤ m(

r∑

i=1

(pαi − 1) + 1)

= mD(Zpα1 ⊕ · · · ⊕ Zpαr ).



10

Proof. The same argument as in the proof of Proposition 2.5.1 implies that

U((pα1 , . . . , pαr ),m) ≤ (m

r∑

i=1

(pαi − 1) + 1) +m− 1 = m(

r∑

i=1

(pαi − 1) + 1).

The result then follows from Theorems 1.1 and 3.1.

Lemma 3.3. For every integer z such that
(
z
m

)
≡ 0 (mod n), we have z < m or

z ≥ L(n,m).

Proof. This follows immediately from the definition of L(n,m).

Theorem 3.4. Let A be the ring Zn1 ⊕ · · · ⊕ Znb
. We have

D(A,m) ≥

b∑

j=1

L(nj ,m)− (b − 1)m.

Proof. We show that the following sequence S is m-zero free over Zn1 ⊕ · · · ⊕ Znb
.

Let S be a sequence over Zn1 ⊕ · · · ⊕ Znb
with elements g1 = [1, 1, . . . , 1] re-

peated L(n1,m)− 1 times, g2 = [0, 1, . . . , 1] repeated L(n2,m)−m times, . . . , gb =

[0, . . . , 0, 1] repeated L(nb,m)−m times. (Notice that the number of times that g1
is repeated is different in format from that of the other gis.) The sequence S has

length |S| = (L(n1,m)−m) + . . .+ (L(nb,m)−m) +m− 1.

For the sake of contradiction, let S′ be an m-zero subsequence of length at least

m. For i = 1, . . . , b, let si ≥ 0 be the number of times gi appears in S′. Since S′ is a

subsequence, we have s1 ≤ L(n1,m)− 1, s2 ≤ L(n2,m)−m, . . . , sb ≤ L(nb,m)−m.

Since S′ is an m-zero sequence of length at least m, we have |S′| = s1+ . . .+sb ≥ m.

We also have

(
s1
m

)

≡ 0 (mod n1)

(
s1 + s2

m

)

≡ 0 (mod n2)

. . .

. . .
(
s1 + s2 + . . .+ sb

m

)

≡ 0 (mod nb).

We now prove by induction on i ∈ [0, b − 1] that S′ has the following property:

P (i) : s1 + . . .+ sb−i ≥ m.

We first establish the base case. When i = 0, we have that since S′ is an m-zero

sequence of length at leastm, |S′| = s1+. . .+sb ≥ m.Now we establish the induction

step and so we assume that P (i) holds for some i ∈ [0, b− 2]. That is, assume that
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s1 + . . . + sb−i ≥ m for some i ∈ [0, b − 2]. Since
(
s1+...+sb−i

m

)
≡ 0 (mod nb−i),

Lemma 3.3 implies that s1 + . . . + sb−i ≥ L(nb−i,m). If s1 + . . . + sb−(i+1) < m,

then

L(nb−i,m) ≤ s1 + . . .+ sb−i

= (s1 + . . .+ sb−(i+1)) + sb−i

≤ m− 1 + (L(nb−i,m)−m)

= L(nb−i,m)− 1,

a contradiction. Therefore, s1 + . . .+ sb−(i+1) ≥ m.

In particular, we have established that s1 ≥ m. Since
(
s1
m

)
≡ 0 (mod n1), Lemma

3.3 yields s1 ≥ L(n1,m), contradicting the fact that the number s1 of copies of g1
contained in S′ is at most L(n1,m)− 1.

Remark 3.5. When m = 1, Theorem 3.4 recovers the well-known lower bound for

the Davenport constant. That is, D(Zn1 ⊕ · · · ⊕ Znr
) ≥

∑r
i=1(ni − 1) + 1, which

Theorem 1.1 shows to be sharp for p-groups and groups of rank at most 2. Theorem

3.4 shows that it is sharp whenever A is a product of the form Zpα1 ⊕ · · · ⊕ Zpαr

and m is a power of p.

Remark 3.6. We wish to emphasize that Theorem 3.4 is for any direct product

of cyclic groups. That is, say, for example, we consider Z6, which is isomorphic to

Z2 ⊕ Z3. The theorem applies to both representations and we may choose the one

for which the theorem provides the best bound.

Theorem 3.7. For a prime p and s ≥ 0, we have

D(Zpα1 ⊕ · · · ⊕ Zpαr , ps) = ps

(
r∑

i=1

(pαi − 1) + 1

)

= psD(Zpα1 ⊕ · · · ⊕ Zpαr ).

Proof. By Corollary 3.2, we have

D(Zpα1 ⊕ · · · ⊕ Zpαr , ps) ≤ ps

(
r∑

i=1

(pαi − 1) + 1

)

.

On the other hand, Theorem 3.4 gives

D(Zpα1 ⊕ · · · ⊕ Zpαr , ps) ≥ ps

(
r∑

i=1

(pαi − 1) + 1

)

.

The last equality follows directly from Theorem 1.1.
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4. Improved bounds for D(Zn,m) using the Girard-Newton formulae

We now state a historical set of relations between the elementary symmetric poly-

nomials and the power sum polynomials. These 17th-century relations are indepen-

dently due to Albert Girard and Isaac Newton and known as the Girard-Newton

formulae (or sometimes Newton’s identities).

The symmetric functions that will be of interest to us consist of the following.

For k ≥ 0, the elementary symmetric polynomial of degree k is the sum of all distinct

products of k distinct variables. Thus, e0(x1, . . . , xn) = 1, e1(x1, . . . , xn) = x1+· · ·+

xn, e2(x1, . . . , xn) =
∑

1≤i<j≤n xixj and, so on, until, en(x1, . . . , xn) = x1x2 . . . xn.

The k-th power sum polynomial is pk(x1, . . . , xn) =
∑n

i=1 x
k
i .

Theorem 4.1 (Girard-Newton formulae). For all n ≥ 1 and 1 ≤ k ≤ n, we have

kek(x1, . . . , xn) =

k∑

i=1

(−1)i−1ek−i(x1, . . . , xn)pi(x1, . . . , xn). (4)

We may rewrite Equations 4 in a manner that is independent of the number of

variables, that is, we may rewrite Equations 4 in the ring of symmetric functions as

kek =

k∑

i=1

(−1)i−1ek−ipi. (5)

One may use the Girard-Newton formulae to recursively express elementary sym-

metric polynomials in terms of power sums as follows.

ek = (−1)k
∑ k∏

i=1

(−pi)
ji

ji!iji
, (6)

where the sum extends over all solutions to j1 + 2j2 + · · · + kjk = k such that

j1, . . . , jk ≥ 0. For example, we have e1 = p1, e2 = 1
2p

2
1 −

1
2p2, e3 = 1

6p
3
1 −

1
2p1p2 +

1
3p3, e4 = 1

24p
4
1 − 1

4p
2
1p2 + 1

8p
2
2 + 1

3p1p3 − 1
4p4. Upon multiplying both sides of

Equation 6 by k!, we obtain on the right side integer coefficients.

Notice that for Equation 6, each term in the sum of the right side is a product

that contains at most k distinct power sum polynomials. For a fixed k we call a set

T of power sum polynomials a dominating set for ek if each term in the sum contains

at least one member of T . Let t(k) denote the size of the smallest dominating set.

For k = 1, the only dominating set is {p1}, and so t(1) = 1. For k = 2, the only

dominating set is {p1, p2}, and so t(2) = 2. For k = 3, any dominating set must

contain both p1 and p3 and {p1, p3} is a dominating set, and so t(3) = 2.

Lemma 4.2. We have t(k) = k+2
2 when k is even, t(k) = k+1

2 when k is odd.
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Proof. We may determine the size of the smallest dominating set by examining the

solutions to the equation j1 + 2j2 + · · · + kjk = k such that j1, . . . , jk ≥ 0. There

are solutions of the form (where we only specify the non-zero terms): ji = jk−i = 1

for 1 ≤ i ≤ k/2 − 1; jk/2 = 2; and, jk = 1. Thus selecting one element from

each of the following sets {p1, pk−1}, . . . , {pk/2−1, pk/2+1}, {pk/2}, {pk} is necessary

to form a dominating set. Thus, t(k) ≥ k/2 + 1. Also, whenever k/2 + 1 ≤ i ≤ k

there is no solution with ji ≥ 2 and for any solution there is at most one index i,

where k/2 + 1 ≤ i ≤ k, so that ji = 1. This implies that for any solution where

for k/2 + 1 ≤ i ≤ k − 1 we have ji = 1, we also have ji′ ≥ 1 for 1 ≤ i′ ≤ k/2 − 1.

Thus, {p1, . . . , pk/2, pk} is a dominating set of size k/2 + 1. When k is odd a

similar argument allows us to claim that {p1, . . . , p(k−1)/2, pk} is a minimum-sized

dominating set.

Theorem 4.3. Let n = 2ν2(n)m with m ≥ 3, and b := ⌊ ν2(n)−1
2 ⌋. We have

1. D(Zn, 2) ≤ 2n− 1 when ν2(n) = 0 (i.e. when n is odd), and

2. D(Zn, 2) ≤ (2 + 1
2b
)n− 1 when ν2(n) ≥ 1 (i.e. when n is even).

Proof. 1. Let n be an odd integer, n ≥ 3. Let S be a sequence (a1, . . . , a2n−1)

in Zn. We may assume that all the elements in S are non-zero. Consider the

following elements of Zn ⊕ Zn : [a1, a
2
1], . . . , [a2n−1, a

2
2n−1]. Recall Theorem

1.1, which gives here D(Zn ⊕Zn) = 2n− 1. That is, there exists a non-empty

subset J ⊆ {1, . . . , 2n − 1} such that
∑

j∈J [aj , a
2
j ] = (0, 0), and necessarily

|J | ≥ 2. As a result, we have that
∑

j∈J aj ×
∑

j∈J aj ≡ 0 (mod n) and that
∑

j∈J aj×
∑

j∈J aj =
∑

j∈J a2j+2
∑

i6=j, i,j∈J aiaj = 2
∑

i6=j, i,j∈J aiaj . Thus,

2
∑

i6=j, i,j∈J aiaj ≡ 0 (mod n), and as n is odd we have
∑

i6=j, i,j∈J aiaj ≡ 0

(mod n). Thus, D(Zn, 2) ≤ 2n− 1.

2. Let n = 2ν2(n)m be an integer such that ν2(n) ≥ 1,m ≥ 3, and, for conve-

nience, let b := ⌊ ν2(n)−1
2 ⌋ ≥ 0. Let S be a sequence (a1, . . . , a(2+ 1

2b
)n−1) in

Zn. We may assume that all the elements in S are non-zero.

Case: ν2(n) is odd

In this case, we have ν2(n) = 2b + 1. Consider the following elements of

Zm2ν2(n)−b ⊕ Zm2ν2(n)+1 = Zm2b+1 ⊕ Z2n = Z n

2b
⊕ Z2n :

[a1, a
2
1], . . . , [a(2+ 1

2b
)n−1, a

2
(2+ 1

2b
)n−1].

Recall Theorem 1.1, which gives here D(Z n

2b
⊕ Z2n) = (2 + 1

2b
)n − 1. That

is, there exists a non-empty subset J ⊆ {1, . . . , (2 + 1
2b
)n − 1} such that

∑

j∈J [aj , a
2
j ] = (0, 0), and necessarily |J | ≥ 2. That is, we have

∑

j∈J aj ≡

0 (mod 2b+1m) and
∑

j∈J a2j ≡ 0 (mod 2n). As a result, we have that
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∑

j∈J aj×
∑

j∈J aj ≡ 0 (mod 2b+1m)×0 (mod 2b+1m) ≡ 0 (mod 22b+2m2) ≡

0 (mod 2n) and that
∑

j∈J aj ×
∑

j∈J aj =
∑

j∈J a2j + 2
∑

i6=j, i,j∈J aiaj =

2
∑

i6=j, i,j∈J aiaj . Thus, 2
∑

i6=j, i,j∈J aiaj ≡ 0 (mod 2n), and so we have
∑

i6=j, i,j∈J aiaj ≡ 0 (mod n). Thus, D(Zn, 2) ≤ (2 + 1
2b )n− 1.

Case: ν2(n) is even

In this case, we have ν2(n) = 2b + 2. Consider the following elements of

Zm2ν2(n)−b ⊕ Zm2ν2(n)+1 = Zm2b+2 ⊕ Z2n = Z n

2b
⊕ Z2n :

[a1, a
2
1], . . . , [a(2+ 1

2b
)n−1, a

2
(2+ 1

2b
)n−1].

Recall Theorem 1.1, which gives here D(Z n

2b
⊕ Z2n) = (2 + 1

2b
)n − 1. That

is, there exists a non-empty subset J ⊆ {1, . . . , (2 + 1
2b )n − 1} such that

∑

j∈J [aj , a
2
j ] = (0, 0), and necessarily |J | ≥ 2. That is, we have

∑

j∈J aj ≡

0 (mod 2b+2m) and
∑

j∈J a2j ≡ 0 (mod 2n). As a result, we have that
∑

j∈J aj×
∑

j∈J aj ≡ 0 (mod 2b+2m)×0 (mod 2b+2m) ≡ 0 (mod 22b+4m2) ≡

0 (mod 4n) ≡ 0 (mod 2n) and that

∑

j∈J

aj ×
∑

j∈J

aj =
∑

j∈J

a2j + 2
∑

i6=j, i,j∈J

aiaj = 2
∑

i6=j, i,j∈J

aiaj .

Thus, 2
∑

i6=j, i,j∈J aiaj ≡ 0 (mod 2n), and so we have
∑

i6=j, i,j∈J aiaj ≡ 0

(mod n). Thus, D(Zn, 2) ≤ (2 + 1
2b
)n− 1.

Remark 4.4. Notice that Theorem 4.3 provides an upper bound on D(Zn, 2) for

any n ≥ 3, whereas Theorem 2.2 and Proposition 2.5 only provide upper bounds in

the case that n is a prime power.

Theorem 4.5. Let n ≥ 2 and gcd (n,m!) = 1. We have D(Zn,m) ≤ D(Z
t(m)
n ) +

m− 1.

Proof. Let n ≥ 2 be an integer such that gcd (n,m!) = 1, and let M = D(Z
t(m)
n ) +

m− 1. Let S be a sequence (a1, . . . , aM ) over Zn.

Case: m is even. Recall that for m even, we have that {p1, . . . , pm/2, pm} is a

minimum size dominating set for em. Consider the following M elements of Z
t(m)
n :

[a11, a
2
1, . . . , a

m/2
1 , am1 ], [a12, a

2
2, . . . , a

m/2
2 , am2 ], . . . , [a1M , a2M , . . . , a

m/2
M , amM ].

Obviously, M = D(Z
t(m)
n ) +m − 1 ≥ D(Z

t(m)
n ). That is, there exists a non-empty

subset J ⊆ {1, . . . ,M} such that

∑

j∈J

[aj , . . . , a
m/2
j , amj ] =

t(m)
︷ ︸︸ ︷

[0, . . . , 0] .
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Now, choose J such that |J | is largest. From Equation 6, we have that m!em
may be written as a sum of terms where each term is a product that contains at

least one element from the above dominating set and each term has an integer

coefficient. As a result, we may conclude that em evaluates to zero modulo n over

J . If |J | ≥ m, we are done. So, assume |J | ≤ m− 1, and consider the complement

of J , Jc = {1, . . . ,M} \ J . By the assumptions, |Jc| ≥ D(Z
t(m)
n ). Therefore, there

exists a non-empty subset J ′ ⊆ Jc such that

∑

j∈J′

[aj , . . . , a
m/2
j , amj ] =

t(m)
︷ ︸︸ ︷

[0, . . . , 0] .

As a result, we may consider J ∪ J ′ which has size strictly larger than J and the

same property as J , contradicting the choice made above.

Case: m is odd. We proceed in a similar manner to the previous case, save that

we have that {p1, . . . , p(m−1)/2, pm} is a minimum dominating set for em.

5. Concluding remarks and open problems

The most natural candidate for further research is the case of D(Zn, 2), which in

our opinion preserves the same combinatorial and number-theoretic flavor of the

m = 1 case.

It is already known from Theorem 2.7 that D(Z2r , 2) = 2r+1. Further upper

bounds are obtained in Theorem 4.3.

We have computed D(Zn, 2) for 2 ≤ n ≤ 16 and n = 18. The results are presented

in the list of following pairs (n,D(Zn, 2)) : (2, 4), (3, 5), (4, 8), (5, 6), (6, 7), (7, 10),

(8, 16), (9, 9), (10, 9), (11, 13), (12, 12), (13, 14), (14, 13), (15, 12), (16, 32) and (18, 13).

We arrange this list as such:

1. (2, 4), (4, 8), (8, 16), (16, 32): this is the case that n is a power of 2 and is

already known from Theorem 2.7 that D(Z2r , 2) = 2r+1;

2. (9, 9), (12, 12): in this case we have D(Zn, 2) = n.

Problem 5.1. For which n does D(Zn, 2) = n hold?

3. (10, 9), (14, 13), (15, 12), (18, 13): in this case we have D(Zn, 2) < n.

Problem 5.2. For which n does D(Zn, 2) < n hold?

4. (3, 5), (5, 6), (7, 10), (11, 13), (13, 14): this is the case when n is a prime.

We claim that D(Zp, 2) ≥ p+1. For p = 2, this is established by Theorem 2.7.

For p ≥ 3 consider the following sequence of length p: S = (1, . . . , 1, p+1
2 ).
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Any 2-zero subsequence must contain at least two elements. For a subsequence

S′ we have e2(S
′) = j(j−1)

2 + j p+1
2 ≡ j

2 (j + p) 6≡ 0 (mod p) where j counts

the number of 1’s in S′ for 1 ≤ j ≤ p− 1. Thus, no 2-zero subsequence exists.

Problem 5.3. For a prime p with p ≡ 1 (mod 4), does D(Zp, 2) = p+1 hold?

We claim that D(Zp, 2) ≥ p + 2 for p ≡ 3 (mod 4). For p ≥ 3, consider the

following sequence of length p + 1: S = (1, . . . , 1, p+1
2 , p+1

2 ). From the above, the

only case that we need to consider is when S′ contains two copies of p+1
2 . For any

such subsequence S′ we have

e2(S
′) =

j(j − 1)

2
+ 2j

p+ 1

2
+

(p+ 1)2

4
=

j2 + (j + 1)2 + p(4j + p+ 2)

4
,

where j counts the number of 1’s in S′ and 1 ≤ j ≤ p− 1. Note that

j2 + (j + 1)2 + p(4j + p+ 2) ≡ j2 + (j + 1)2 (mod p).

However, a prime is expressible as the sum of two squares if and only if congruent to

1 (mod 4), a fact first observed by A. Girard in 1625 (and later by P. de Fermat).

Problem 5.4. Given a prime p, let q = pr and m = ps be two powers of p. Is it

true that every m-zero free sequence S of length D(Zq,m) − 1 = mq − 1 over Zq

has the form S = (a, . . . , a), where a generates the additive group of Zq?

Problem 5.5. Determine an upper bound for D(Zn1 ⊕ · · · ⊕ Znb
,m).

Problem 5.6. In light of Theorem 4.5: determine an upper bound for D(Zn,m)

when gcd (n,m!) > 1.
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