
HAL Id: hal-03139256
https://hal.science/hal-03139256v4

Preprint submitted on 6 May 2022 (v4), last revised 25 Sep 2022 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximate Bayesian computation with surrogate
posteriors

Florence Forbes, Hien Duy Nguyen, Trung Tin Nguyen, Julyan Arbel

To cite this version:
Florence Forbes, Hien Duy Nguyen, Trung Tin Nguyen, Julyan Arbel. Approximate Bayesian com-
putation with surrogate posteriors. 2021. �hal-03139256v4�

https://hal.science/hal-03139256v4
https://hal.archives-ouvertes.fr


001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Springer Nature 2021 LATEX template

Approximate Bayesian computation with
surrogate posteriors

Florence Forbes1*, Hien Duy Nguyen2, TrungTin Nguyen3

and Julyan Arbel1

1*Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Inria
Grenoble Rhone-Alpes, 655 av. de l’Europe, 38335 Montbonnot,

France.
2School of Engineering and Mathematical Sciences, La Trobe

University, Bundoora, Victoria, Australia.
3Normandie Univ, UNICAEN, CNRS, LMNO, Caen, 14000,

France.

*Corresponding author(s). E-mail(s): florence.forbes@inria.fr;
Contributing authors: H.Nguyen5@latrobe.edu.au;
trung-tin.nguyen@unicaen.fr; julyan.arbel@inria.fr;

Abstract
A key ingredient in approximate Bayesian computation (ABC) proce-
dures is the choice of a discrepancy that describes how different the
simulated and observed data are, often based on a set of summary statis-
tics when the data cannot be compared directly. Unless discrepancies
and summaries are available from experts or prior knowledge, which
seldom occurs, they have to be chosen, and thus their choice can af-
fect the quality of approximations. The choice between discrepancies is
an active research topic, which has mainly considered data discrepan-
cies requiring samples of observations or distances between summary
statistics. In this work, we introduce a preliminary learning step in
which surrogate posteriors are built from finite Gaussian mixtures us-
ing an inverse regression approach. These surrogate posteriors are then
used in place of summary statistics and compared using metrics be-
tween distributions in place of data discrepancies. Two such metrics
are investigated: a standard L2 distance and an optimal transport-
based distance. The whole procedure can be seen as an extension of
the semi-automatic ABC framework to a functional summary statistics
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2 Approximate Bayesian computation with surrogate posteriors

setting and can also be used as an alternative to sample-based ap-
proaches. The resulting ABC quasi-posterior distribution is shown to
converge to the true one, under standard conditions. Performance is il-
lustrated on both synthetic and real data sets, where it is shown that
our approach is particularly useful when the posterior is multimodal.

Keywords: Approximate Bayesian computation, summary statistics,
surrogate models, Gaussian mixtures, Wasserstein distance, multimodal
posterior distributions.

1 Introduction
Approximate Bayesian computation (ABC) (see, e.g., Sisson et al. 2019) ap-
pears as a natural candidate for addressing problems, where there is a lack of
availability or tractability of the likelihood. Such cases occur when the direct
model or data generating process is not available analytically, but is available
as a simulation procedure; e.g., when the data generating process is charac-
terized as a series of ordinary differential equations, as in Mesejo et al. (2016)
or Hovorka et al. (2004). In addition, typical features or constraints that can
occur in practice are that: 1) the observations y are high-dimensional, because
they represent signals in time or are spectral, as in Schmidt and Fernando
(2015); Bernard-Michel et al. (2009); Ma et al. (2013); and 2) the parameter θ,
to be estimated, is itself multi-dimensional with correlated dimensions so that
independently predicting its components is sub-optimal; e.g., when there are
known constraints such as when the parameter elements are concentrations or
probabilities that sum to one (Deleforge et al., 2015a; Lemasson et al., 2016;
Bernard-Michel et al., 2009).

The fundamental idea of ABC is to generate parameter proposals θ in a
parameter space Θ using a prior distribution π(θ) and accept a proposal if
the simulated data z for that proposal is similar to the observed data y, both
in an observation space Y. This similarity is usually measured using a dis-
tance or discriminative measure D and a simulated sample z is retained if
D(z,y) is smaller than a given threshold ε. In this simple form, the procedure
is generally referred to as rejection ABC. Other variants are possible and of-
ten recommended, for instance using MCMC or sequential procedures (e.g.,
Del Moral et al., 2012; Buchholz and Chopin, 2019). We will focus on the re-
jection version for the purpose of this paper as all developments in this setting
can be easily adapted to more sophisticated variants. Our analysis focuses on
the convergence of the ABC quasi-posterior, as ε vanishes, which has only been
studied in the context of rejection algorithms, to the best of our knowledge.
However, we also illustrate the use of sequential Monte Carlo (SMC)-ABC in
our numerical experiments.

In the case of a rejection algorithm, selected samples are drawn from the
so-called ABC quasi-posterior, which is an approximation to the true posterior
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Approximate Bayesian computation with surrogate posteriors 3

π(θ | y). Under conditions similar to that of Bernton et al. (2019), regarding
the existence of a probability density function (pdf) fθ(z) for the likelihood,
the ABC quasi-posterior depends on D and on a threshold ε, and can be
written as

πε(θ | y) ∝ π(θ)

∫
Y

1{D(y,z)≤ε} fθ(z) dz . (1)

More specifically, the similarity between z and y is generally evaluated based
on two components: the choice of summary statistics s(·) to account for the
data in a more robust manner, and the choice of a distance to compare
the summary statistics. That is, D(y, z) in (1) should then be replaced by
D(s(y), s(z)), whereupon we overload D to also denote the distance between
summary statistics s(·).

However, there is no general rule for constructing good summary statistics
for complex models and if a summary statistic does not capture important
characteristics of the data, the ABC algorithm is likely to yield samples from an
incorrect posterior (Blum et al., 2013; Fearnhead and Prangle, 2012; Gutmann
et al., 2018). Great insight has been gained through the work of Fearnhead
and Prangle (2012), who introduced the semi-automatic ABC framework and
showed that under a quadratic loss, the optimal choice for the summary statis-
tic of y was the true posterior mean of the parameter: s(y) = E[θ | y]. This
conditional expectation cannot be calculated analytically but can be estimated
by regression using a learning data set prior to the ABC procedure itself.

In Fearnhead and Prangle (2012), the authors suggested to use a linear
regression model to approximate E[θ | y]. This is very efficient in a number
of settings. However, it is easy to construct examples, as illustrated in Jiang
et al. (2017), Wiqvist et al. (2019) and Akesson et al. (2021), for which the
approximation requires a richer approximation class. Still focusing on posterior
means as summary statistics, the cited works use deep neural networks that
capture complex non-linear relationships and exhibit much better results than
standard regression approaches. However, deep neural networks remain very
computationally costly tools, both in terms of the required size of training data
and number of parameters and hyperparameters to be estimated and tuned.
In addition, as shown by Chen et al. (2021), the choice of s as the posterior
mean may lead to loss of information about the posterior distribution. Chen
et al. (2021) propose instead to target a near sufficient statistics using a mutual
information criterion.

Our first contribution is to investigate an alternative efficient way to con-
struct summary statistics, in the same vein as semi-automatic ABC, but based
on posterior moments, not restricted to the posterior means. Although this
natural extension was already proposed in Jiang et al. (2017), it requires the
availability of a flexible and tractable regression model, able to capture complex
non-linear relationships and to provide posterior moments, straightforwardly.
As such, Jiang et al. (2017) did not consider an implementation of the proce-
dure. For this purpose, the Gaussian Locally Linear Mapping (GLLiM) method
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4 Approximate Bayesian computation with surrogate posteriors

(Deleforge et al., 2015b), that we recall in Section 3, appears as a good can-
didate, with properties that balance between the computationally expensive
neural networks and the simple standard regression techniques. In contrast
to most regression methods that provide only pointwise predictions, GLLiM
provides, at low cost, a parametric estimation of the full true posterior distribu-
tion. Using a learning set of parameters and observations pairs, GLLiM learns
a family of finite Gaussian mixtures whose parameters depend analytically on
the observation to be inverted. For any observed data, the true posterior can
be approximated as a Gaussian mixture, whose moments are easily computed
and turned into summary statistics for subsequent ABC sample selection.

Our second contribution is to propose to compare directly the full surrogate
posterior distributions provided by GLLiM, without reducing them to their
moments. So doing, we use a notion of functional summary statistics, which
also requires a different notion of the usual distances or discrepancy measures
to compare them. Recent developments in optimal transport-based distances
designed for Gaussian mixtures (Delon and Desolneux, 2020; Chen et al., 2019)
match perfectly this need via the so-called Mixture-Wasserstein distance as
referred to by Delon and Desolneux (2020), and denoted throughout the text
as MW2. There exist other distances between mixtures that are tractable, and
among them, the L2 distance is also considered in this work.

A remarkable feature of our approach is that it can be equally applied to
settings where a sample of i.i.d. observations is available (e.g. Bernton et al.
(2019); Nguyen et al. (2020a)) and to settings where a single observation is
available, as a vector of measures, a time series realization or a data set reduced
to a vector of summary statistics (e.g. Fearnhead and Prangle (2012); Drovandi
and Pettitt (2011)).

The novelty of our approach and its comparison with existing work is em-
phasized in Section 2. The GLLiM output is briefly described in Section 3.
A first exploitation of GLLiM combined with the semi-automatic ABC prin-
ciple is presented in Section 4.1. Our extension, using functional summary
statistics, is then described in Section 4.2. The approach’s theoretical proper-
ties are investigated in Section 5 and the practical performance is illustrated
in Section 6, both on synthetic and real data. Then, Section 7 concludes
the paper and discusses perspectives. Detailed proofs and additional illustra-
tions are shown in a supplementary material file. The code can be found at
https://github.com/Trung-TinNguyenDS/GLLiM-ABC.

2 Related work
As an alternative to semi-automatic ABC, in the works of Nguyen et al.
(2020a); Jiang et al. (2018); Bernton et al. (2019); Park et al. (2016); Gutmann
et al. (2018), the difficulties associated with finding efficient summary statistics
were bypassed by adopting, respectively, the Energy Distance, a Kullback–
Leibler divergence estimator, the Wasserstein distance, the Maximum Mean
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Discrepancy (MMD), and classification accuracy to provide a data discrep-
ancy measure. Such approaches compare simulated data and observed data by
looking at them as i.i.d. samples from distributions, respectively linked to the
simulated and true parameter, except for Bernton et al. (2019) and Gutmann
et al. (2018) who proposed solutions to also handle time series. These methods
require sufficiently large samples and cannot be applied if the sample related
to the parameter to be recovered is too small. This is a major difference with
the approach we propose, which can be applied in both cases. We refer to
these two cases as the one observation and i.i.d. observations settings. In the
one observation case, the observed data restricts to a single observation y of
dimension d assumed to be generated from a true parameter θ of dimension `.
This case is commonly encountered in inverse problems where it may be im-
possible to gather repeated observations from the same parameter values due
to technological reasons. Typically, in remote sensing applications, satellites
are limited to only a few degrees of freedom when observing a given site in
constant conditions. This is also the case when the observation is a time se-
ries or when a sample of observations is reduced to a single vector of summary
statistics. In the multiple i.i.d. observations case, the observed data is made
of a sample of R i.i.d. realizations {y1, . . . ,yR} coming from the same true θ.
The previous case is trivially recovered when R = 1.

ABC procedures using a regression step, as introduced by Fearnhead and
Prangle (2012), are adapted to one observation settings. They cannot be ap-
plied on large (e.g. R = 104) numbers of covariates and require that samples,
observed and simulated, are first reduced to a smaller number of statis-
tics, e.g. 100. In contrast, discrepancy-based approaches compare empirical
distributions constructed from the samples and require a relatively large R.

Our method is not limited to either one of these cases because we do not
compare samples from distributions, but directly the distributions through
their surrogates using distances between distributions. We can use the same
Wasserstein, Kullback–Leibler divergence, etc., but in their population versions
rather than in their empirical versions. A Wasserstein-based distance can be
computed between mixtures of Gaussians, thanks to the recent work of Delon
and Desolneux (2020) and Chen et al. (2019). Closed form expressions also
exist for the L2 distance, for the MMD with a Gaussian RBF kernel, or a
polynomial kernel (see Sriperumbudur et al., 2010; Muandet et al., 2012) and
for the Jensen–Rényi divergence of degree two (see Wang et al., 2009). Kristan
et al. (2011) also proposed an algorithm based on the so-called unscented
transform in order to compute the Hellinger distance between two Gaussian
mixtures, although it is unclear what the complexity of this algorithm is.

To emphasize the difference to more standard summaries, we refer to our
surrogate posteriors as functional summary statistics. The term has already
been used by Soubeyrand et al. (2013) in the ABC context in their attempts to
characterize spatial structures using statistics that are functions (e.g. correlo-
grams or variograms). They do not address the issue of choosing the summary
statistics. Given such functional statistics whose nature may change for each
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6 Approximate Bayesian computation with surrogate posteriors

considered model, their goal is to optimize the distances to compare them. In
our proposal, the functional statistics are probability distributions. They arise
as a way to bypass the summary statistics choice, but in this work, we make
use of existing metrics to compare them, without optimization. We make note
that the nomenclature: functional summary statistics, has also been used in a
similar way by Rodrigues et al. (2016), where ABC is used to estimate func-
tional, infinite dimensional, objects. Such objects are compared via simulated
samples which are themselves summarized using kernel density estimators.
Theses kernel densities are seen as functional summaries but they are not di-
rectly related to a surrogate of the posterior distribution. The approach by
Rodrigues et al. (2016) is closer to data discrepancy-based methods such as in
Nguyen et al. (2020a); Jiang et al. (2018); Bernton et al. (2019); Park et al.
(2016); Gutmann et al. (2018), that all require samples to compute meaningful
nonparametric summaries, e.g. histograms.

3 Parametric posterior approximation with
Gaussian mixtures

A learning set DN = {(θn,yn), n ∈ [N ]} is built from the joint distri-
bution that results from the prior π(θ) on θ and the likelihood fθ, where
[N ] = {1, . . . , N}. More specifically, each pair (θn,yn) in DN is obtained by
simulating θn from the prior π(θ) and yn from the likelihood fθn(y).The idea
is to capture the relationship between θ and y with a joint probabilistic model
for which computing conditional distributions and moments is straightforward.
For the choice of the model to fit to DN , we propose to use the so-called Gaus-
sian Locally Linear Mapping (GLLiM) model (Deleforge et al., 2015b) for its
ability to capture non-linear relationships in a tractable manner, based on
flexible mixtures of Gaussian distributions. GLLiM can be considered within
the class of inverse regression approaches, such as sliced inverse regression (Li,
1991), partial least squares (Cook and Forzani, 2019), mixtures of regressions
approaches of different variants, e.g. mixtures of experts (Nguyen et al., 2019),
cluster weighted models (Ingrassia et al., 2012), and kernel methods (Nataraj
et al., 2018). In contrast to most deep learning approaches (see Arridge et al.
2019, for a survey), GLLiM provides for each observed y, a full posterior proba-
bility distribution within a family of parametric models {pG(θ | y; φ),φ ∈ Φ}.
Notable exceptions include mixture density networks (MDN, Bishop (1994)),
which provide full posterior distributions as mixtures of Gaussians, and more
generally normalizing flows (Dinh et al., 2015). These approaches could be
considered instead of GLLiM with some adaptation (see the discussion in the
conclusion, Section 7). To model non-linear relationships, GLLiM uses a mix-
ture of K linear models. More specifically, the expression of pG(θ | y; φ) is
analytical and available for all y with φ being independent of y:

pG(θ | y; φ) =

K∑
k=1

ηk(y) N (θ; Aky + bk,Σk), (2)
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where N ( · ; µ,Σ) denotes the Gaussian pdf with mean µ and covariance ma-
trix Σ and ηk(y) = πkN (y; ck,Γk)/

∑K
j=1 πjN (y; cj ,Γj). This distribution

involves parameters: φ = {πk, ck,Γk,Ak, bk,Σk}Kk=1. One interesting prop-
erty of this model is that the mixture setting provides guarantees that, when
choosing K large enough, it is possible to approximate any reasonable relation-
ship (Nguyen et al., 2019, 2020b,c, 2021a). The parameter φ can be estimated
by fitting a GLLiM model to DN using an Expectation-Maximization (EM)
algorithm. Details are provided in supplementary material and in Deleforge
et al. (2015b). In terms of learning, the GLLiM model has a O(Kd`) number
of parameters to be estimated. The exact number of parameters depends on
the variant learned. A reasonable size for the training data set then depends
mainly on the number of parameters.

Fitting a GLLiM model to DN therefore results in a set of parametric
distributions {pG(θ | y; φ∗K,N ), y ∈ Y}, which are mixtures of Gaussian dis-
tributions and can be seen as a parametric mapping from y values to posterior
pdfs on θ. The parameter φ∗K,N is the same for all conditional distributions
and does not need to be re-estimated for each new instance of y. When re-
quired, it is straightforward to compute the expectation and covariance matrix
of pG(θ | y; φ∗K,N ) in (2):

EG[θ | y; φ∗K,N ] =

K∑
k=1

η∗k(y) (A∗ky + b∗k), (3)

VarG[θ | y; φ∗K,N ] =

K∑
k=1

η∗k(y)
[
Σ∗k + (A∗ky + b∗k)(A∗ky + b∗k)>

]
− EG[θ | y; φ∗K,N ] EG[θ | y; φ∗K,N ]>. (4)

Expression (3) then provides approximate posterior means and can be directly
used in a semi-automatic ABC procedure. In addition, summary statistics
extracted from the covariance matrix (4) can also be included and is likely to
improve the ABC procedure as illustrated in Section 6.

When R i.i.d. d-dimensional observations are available for each parameter
value, they can be stacked into a single large vector. However, as noted by
Fearnhead and Prangle (2012) and Jiang et al. (2017), the resulting number
of covariates, of dimension at least d×R, may become too large. Even if this
is computationally doable with the standard GLLiM procedure, it is likely
to be sub-optimal as it ignores the i.i.d. nature of the data. To handle this
case, we therefore propose an adaptation of the EM algorithm of Deleforge
et al. (2015b). This adaptation, referred to as GLLiM-iid, is detailed in the
supplementary material Section S1 and illustrated in the first three examples of
Section 6. It is shown by Deleforge et al. (2015b) that constraints on the model
parameterization can be assumed without oversimplifying mixture (2). These
constraints concern the covariance matrices used in the mixture modeling of
the likelihood (or the direct model) and are not directly visible on the Σk’s
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which remain full in general. In addition to model the i.i.d. case, the adaptation
we propose adds to the existing constraints, isotropic or diagonal matrices, the
possibility to assume block diagonal structures.

In addition to choosing the covariance structure, GLLiM requires the choice
of K the number of Gaussian components. Recent results by Nguyen et al.
(2019, 2021a) justify a somewhat arbitrary choice of K, provided that it is suf-
ficiently large. Intuitively, highly non-linear likelihoods may require a greater
K. Previous studies have shown that the exact value of K was not critical (e.g.
Boux et al. (2021). This is also what we observed in our experiments com-
paring different values of K (see Sections 6.3 and 6.4). A larger K provides
generally better predictions but marginally so above a certain value. Never-
theless, statistical selection procedures exist to choose K in a principled way.
For instance in the paper introducing GLLiM, Deleforge et al. (2015b), the
Bayesian Information Criterion (BIC) was used to select K and shows good re-
sults. The authors in Nguyen et al. (2021b) also illustrate that non asymptotic
approaches such as the slope heuristic, supported by non-asymptotic oracle
inequalities, can also work well for GLLiM on synthetic and real datasets. Al-
ternatively to standard information criteria, a Bayesian nonparametric version
of GLLiM could be implemented not to commit to an arbitrary K value. In
practical inverse problems, the choice of K can also be guided by the qual-
ity of the learned direct model, which only requires a learning data set to be
evaluated.

4 Extended semi-automatic ABC
Semi-automatic ABC refers to an approach introduced in Fearnhead and Pran-
gle (2012), which has since then led to various attempts and improvements,
see e.g. Jiang et al. (2017), Wiqvist et al. (2019) and Akesson et al. (2021),
without dramatic deviation from the original ideas.

4.1 Extension to extra summary vectors
A natural idea is to use the approximate posterior expectation provided by
GLLiM in (3) as the summary statistic s of data y, s(y) = EG[θ | y; φ∗K,N ].
It provides a first attempt to combine GLLiM and ABC procedures and has
the advantage over neural networks of being easier to estimate without the
need for complex hyperparameter tuning. GLLiM requires only the setting of
an integer parameter K, while neural networks require the choice of a full
architecture, number of layers, number of nodes per layer, etc.

However, one advantage of GLLiM over most regression methods is not to
reduce to pointwise predictions and to provide full posteriors as output. The
posteriors can then be used to provide other posterior moments as summary
statistics. The same standard ABC procedure as before can be applied but now
with s1(y) = EG[θ | y; φ∗K,N ] and s2(y) = VarG[θ | y; φ∗K,N ], as given by (4).

As illustrated in Section 6, it is easy to construct examples where the
posterior expectations, even when well-approximated, do not perform well as
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summary statistics. See also Proposition 2 in Chen et al. (2021) for a more
theoretical justification. Providing a straightforward and tractable way to add
other posterior moments is then already an interesting contribution. However,
to really make the most of the GLLiM framework, we propose to further exploit
the fact that GLLiM provides more than moments.

4.2 Extension to functional summary statistics
Instead of comparing simulated z’s to the observed y, or equivalently their
summary statistics, we propose to compare the pG(θ | z; φ∗K,N )’s to pG(θ |
y; φ∗K,N ), as given by (2). As approximations of the true posteriors, these
quantities are likely to capture the main characteristics of θ without com-
mitting to the choice of a particular moment. The comparison requires an
appropriate distance that needs to be a mathematical distance between dis-
tributions. The equivalent functional distance to the L2 distance can still be
used, as can the Hellinger distance or any other divergence. A natural choice
is the Kullback–Leibler divergence, but computing it between mixtures is not
straightforward. Computing the Energy statistic (e.g., Nguyen et al., 2020a)
appears at first to be easier but in the end that would still resort to Monte
Carlo sums. Since model (2) is parametric, we could also compute distances
between the parameters of the mixtures that depend on y. That is for k ∈ [K],
between the mixing proportions η∗k(y) =

π∗kN (y; c∗k,Γ
∗
k)∑K

j=1 π
∗
jN (y; c∗j ,Γ

∗
j )

and conditional
means A∗ky + b∗k. But this may lead us back to the usual issue with distances
between summary statistics and also we may have to face the label switching
issue, not easily handled within ABC procedures.

Recently, developments regarding the Wasserstein distance have emerged
(Delon and Desolneux, 2020; Chen et al., 2019), introducing an optimal
transport-based distance between Gaussian mixtures, denoted by MW2. The
L2 distance between mixtures is also straightforward to compute. Both dis-
tances are recalled in supplementary Section S2. We then derive two procedures
respectively referred to as GLLiM-MW2-ABC and GLLiM-L2-ABC, writing
sometimes GLLiM-D-ABC to include both cases and for generic distances D.

The semi-automatic ABC extensions that we propose are summarized in
Algorithm 1. Algorithm 1 is presented with two simulated data sets, one for
training GLLiM and constructing the surrogate posteriors, and one for the
ABC procedure itself, but the same data set could be used. For rejection ABC,
the selection also requires to fix a threshold ε. It is common practice to set ε
to a quantile of the computed distances. GLLiM then requires the setting of
K, the number of Gaussians in the mixtures, which can be chosen using model
selection criteria (see Deleforge et al., 2015b). Its precise value is not critical,
all the more so if GLLiM is not used for prediction, directly. See details in
Section 6.
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Algorithm 1 GLLiM-ABC algorithms – Vector and functional variants
1: Inverse operator learning. Apply GLLiM on a training set DN =
{(θn,yn), n ∈ [N ]} to estimate, for any z ∈ Y, the K-Gaussian mixture
pG(θ | z; φ∗K,N ) in (2) as a first approximation of the true posterior π(θ | z),
where φ∗K,N does not depend on z.

2: Distances computation. Consider another set EM = {(θm, zm),m ∈ [M ]}.
For a given observed y, do one of the following for m ∈ [M ]:

Vector summary statistics. (Section 4.1)
GLLiM-E-ABC: Compute statistics s1(zm)=EG[θ | zm; φ∗K,N ] (3).
GLLiM-EV-ABC: Compute both s1(zm) and s2(zm) by considering also

posterior log-variances, i.e. the logarithms of the diagonal elements of (4).
In both cases, compute standard distances between summary statistics.

Functional summary statistics. (Section 4.2)
GLLiM-MW2-ABC: Compute MW2(pG(· | zm; φ∗K,N ), pG(· | y; φ∗K,N )).
GLLiM-L2-ABC: Compute L2(pG(· | zm; φ∗K,N ), pG(· | y; φ∗K,N )).

3: Sample selection. Select θm values that lead to distances under an ε threshold
(rejection ABC) or apply an ABC procedure that can handle distances, directly.

4: Sample use. For a given observed y, use the produced sample of θ values to
compute a closer approximation of π(θ | y).

5 Theoretical properties
Before illustrating the performance of GLLiM-D-ABC, we investigate the the-
oretical properties of our ABC quasi-posterior defined via surrogate posteriors.

Let X = Θ × Y and (X ,F) be a measurable space. Let λ be a σ-
finite measure on F . Whenever we mention below that a probability measure
Pr on F has a density, we will understand that it has a Radon–Nikodym
derivative with respect to λ (λ can typically be chosen as the Lebesgue
measure on a Euclidean space). For all p ∈ [1,∞) and f, g in appropriate
spaces, let Dp (f, g) =

(∫
|f(x)− g(x)|p dλ(x)

)1/p denote the Lp distance and
D2
H (f, g) =

∫
(
√
f(x)−

√
g(x))2dλ(x) be the squared Hellinger distance. When

not specified otherwise, let D be an arbitrary distance on Y or on densities,
depending on the context. We further denote the Lp norm for vectors by ‖ · ‖p.

In a GLLiM-D-ABC procedure, the ABC quasi-posterior is constructed
as follows: let pK,NG (θ | y) = pG(θ | y; φ∗K,N ) be the surrogate conditional
distribution of form (2), learned from a preliminary GLLiM model withK com-
ponents and using a learning set DN = {(θn,yn), n ∈ [N ]}. This conditional
distribution is a K-component mixture, which depends on a set of learned
parameters φ∗K,N , independent of y. The GLLIM-D-ABC quasi-posterior re-
sulting from the GLLiM-D-ABC procedure then depends both on K,N and
the tolerance level ε and can be written as

qK,NG,ε (θ | y) ∝ π(θ)

∫
Y

1{D(pK,NG ( · |y), pK,NG ( · |z))≤ε} fθ(z) dz , (5)
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where D is a distance on densities such as the MW2 and L2 metrics, which are
both proper distances (see supplementary Section S2).

We provide two types of results, below. In the first result (Theorem 1), the
true posterior is used to compare samples y and z. This result aims at provid-
ing insights on the proposed quasi-posterior formulation and to illustrate its
potential advantages. In the second result (Theorem 2), a surrogate posterior
is learned and used to compare samples. Conditions are specified under which
the resulting ABC quasi-posterior converges to the true posterior.

5.1 Convergence of the ABC quasi-posterior
In this section, we assume a fixed given observed y and the dependence on y
is omitted from the notation, when there is no confusion.

Let us first recall the standard form of the ABC quasi-posterior, omitting
summary statistics from the notation:

πε(θ | y) ∝ π(θ)

∫
Y

1{D(y,z)≤ε} fθ(z) dz . (6)

If D is a distance and D(y, z) is continuous in z, the ABC posterior in (6) can
be shown to have the desirable property of converging to the true posterior
when ε tends to 0 (see Prangle et al., 2018).

The proof is based on the fact that when ε tends to 0, due to the property
of the distance D, the set {z ∈ Y : D(y, z) ≤ ε} in (6) tends to the singleton
{y} so that consequently z in the likelihood can be replaced by the observed y,
which leads to an ABC quasi-posterior proportional to π(θ)fθ(y) and therefore
equal to the true posterior as desired (see also Rubio and Johansen, 2013;
Bernton et al., 2019). It is interesting to note that this proof is based on working
on the term under the integral only and uses the equality, at convergence, of
z to y, which is actually a stronger assumption than necessarily required for
the result to hold. Alternatively, if we first rewrite (6) using Bayes’ theorem,
it follows that

πε(θ | y) ∝
∫
Y

1{D(y,z)≤ε}π(θ) fθ(z) dz ∝
∫
Y

1{D(y,z)≤ε}π(θ | z) π(z) dz . (7)

That is, when accounting for the normalizing constant:

πε(θ | y) =

∫
Y 1{D(y,z)≤ε} π(θ | z) π(z) dz∫

Y 1{D(y,z)≤ε} π(z) dz
. (8)

Using this equivalent formulation, we can then replace D(y, z) by D(π(· |
y), π(· | z)), with D now denoting a distance on densities, and obtain the
same convergence result when ε tends to 0. More specifically, we can show the
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following general result. Let us define our ABC quasi-posterior as,

qε (θ | y) ∝ π(θ)

∫
Y

1{D(π(·|y),π(·|z))≤ε} fθ(z) dz,

which can be written as

qε (θ | y) =

∫
Y 1{D(π(·|y),π(·|z))≤ε}π (θ | z)π (z) dz∫

Y 1{D(π(·|y),π(·|z))≤ε}π (z) dz
. (9)

The following theorem shows that qε (· | y) converges to π (· | y) in total
variation, for fixed y. The proof is detailed in supplementary Section S3.1.

Theorem 1. For every ε > 0, let Aε = {z ∈ Y : D (π (· | y) , π (· | z)) ≤ ε}.
Assume the following:

(A1) π (θ | ·) is continuous for all θ ∈ Θ, and supθ∈Θ π (θ | y) <∞;
(A2) There exists a γ > 0 such that supθ∈Θ supz∈Aγ π (θ | z) <∞;
(A3) D (·, ·) :Π×Π→R+ is a metric on the functional class Π={π (· | y) : y ∈ Y};
(A4) D(π (· | y) , π (· | z)) is continuous, with respect to z.

Under (A1)–(A4), qε (· | y) in (9) converges in total variation to π (· | y), for
fixed y, as ε→ 0.

It appears that what is important is not to select z’s that are close (and
at the limit equal) to the observed y but to choose z’s so that the posterior
π( · | z) (the term appearing in the integral in (7)) is close (and at the limit
equal) to π( · | y). And this last property is less demanding than z = y.
Potentially, there may be several z’s satisfying π( · | z) = π( · | y), but this
is not problematic when using (7), while it is problematic when following the
standard proof as in Bernton et al. (2019).

5.2 Convergence of the ABC quasi-posterior with
surrogate posteriors

In most ABC settings, based on data discrepancy or summary statistics, the
above consideration and result are not useful because the true posterior is
practically unknown and cannot be used to compare samples. However this
principle becomes useful in our setting, which is based on surrogate posteriors.
While the previous result can be seen as an oracle of sorts, it is more interesting
in practice to investigate whether a similar result holds when using surrogate
posteriors in the ABC likelihood. This is the goal of Theorem 2 below, which
we prove for a restricted class of target distribution and of surrogate posteriors
that are learned as mixtures.

We now assume that X = Θ×Y is a compact set and consider the following
class HX of distributions on X , HX = {gϕ : ϕ ∈ Ψ}, with constraints on
the parameters, Ψ being a bounded parameter set. In addition the densities
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in HX are assumed to satisfy the condition that for any ϕ,ϕ′ ∈ Ψ there exist
arbitrary positive scalars a, b and B such that

for all x ∈ X , a ≤ gϕ(x) ≤ b and sup
x∈X
| log gϕ(x)− log gϕ′(x)| ≤ B‖ϕ−ϕ′‖1 .

We denote by pK a K-component mixture of distributions from HX and
defined for all z ∈ Y, pK,N (· | z) as follows:

∀θ ∈ Θ, pK,N (θ | z) = pK
(
θ | z; φ∗K,N

)
,

with φ∗K,N the maximum likelihood estimate (MLE) for the data set DN =
{(θn,yn), n ∈ [N ]}, generated from the true joint distribution π(·, ·):

φ∗K,N = arg max
φ∈Φ

N∑
n=1

log
(
pK(θn,yn; φ)

)
.

For every ε > 0, let AK,Nε,y =
{
z ∈ Y : D

(
pK,N (· | y) , pK,N (· | z)

)
≤ ε
}

and
qK,Nε denote the ABC quasi-posterior defined with pK,N by

qK,Nε (θ | y) ∝ π(θ)

∫
Y

1AK,Nε,y
(z) fθ(z) dz . (10)

Theorem 2. Assume the following: X = Θ× Y is a compact set and

(B1) For joint density π, there exists Gπ a probability measure on Ψ such that,
with gϕ ∈ HX , π(x) =

∫
Ψ
gϕ(x) Gπ(dϕ);

(B2)The true posterior density π(· | ·) is continuous with respect to θ and y;
(B3)D (·, ·) : Π × Π → R+ ∪ {0} is a metric on a functional class Π, which

contains the class
{
pK,N (· | y) : y ∈ Y,K ∈ N∗, N ∈ N∗

}
. In particular,

D
(
pK,N (· | y) , pK,N (· | z)

)
= 0, if and only if pK,N (· | y) = pK,N (· | z);

(B4) For every y ∈ Y, z 7→ D
(
pK,N (· | y) , pK,N (· | z)

)
is a continuous function

on Y.

Then, under (B1)–(B4), the Hellinger distance DH
(
qK,Nε (· | y) , π (· | y)

)
con-

verges to 0 in some measure λ, with respect to y ∈ Y and in probability, with
respect to the sample {(θn,yn) , n ∈ [N ]}. That is, for any α > 0, β > 0, it
holds that

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H
(
qK,Nε (· | y) , π(· | y)

)
≥ β

})
≤ α

)
=1. (11)

Sketch of the proof of Theorem 2.
For all θ ∈ Θ,y ∈ Y, the quasi-posterior (10) can be written equivalently as

qK,Nε (θ | y) =

∫
Y
KK,N
ε (z; y)π (θ | z) dz,
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with KK,N
ε (z; y) =

1AK,Nε,y
(z) π (z)∫

Y 1AK,Nε,y
(z̃) π (z̃) dz̃

,

where KK,N
ε (·; y) is a pdf, with respect to z ∈ Y, with compact support

AK,Nε,y ⊂ Y, by definition of AK,Nε,y and (B4). Using the relationship between the
Hellinger and L1 distances (see details in supplementary Section S3.2 relations
(28) and (29)), it then holds that

D2
H
(
qK,Nε (· | y) , π (· | y)

)
≤ 2DH

(
π(· | zK,Nε,y ), π (· | y)

)
, (12)

where there exists zK,Nε,y ∈ BK,Nε,y with

BK,Nε,y = arg max
z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) .

The next step is to bound the right-hand side of (12) using the trian-
gle inequality with respect to the Hellinger distance DH. Consider the
limit point zK,N0,y defined as zK,N0,y = limε→0 zK,Nε,y . Since for each ε > 0,
zK,Nε,y ∈ AK,Nε,y it holds that zK,N0,y ∈ AK,N0,y , where AK,N0,y =

⋂
ε∈Q+

AK,Nε,y .
By continuity of D, AK,N0,y =

{
z ∈ Y : D

(
pK,N (· | z) , pK,N (· | y)

)
= 0
}

and
AK,N0,y =

{
z ∈ Y : pK,N (· | z) = pK,N (· | y)

}
, using (B3). The distance on the

right-hand side of (12) can then be decomposed in three parts,

DH
(
π
(
· | zK,Nε,y

)
, π (· | y)

)
≤ DH

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
+DH

(
π(· | zK,N0,y ), pK,N (· | y)

)
+DH

(
pK,N (· | y) , π (· | y)

)
. (13)

The first term in the right-hand side can be made close to 0 as ε goes to 0
independently of K and N . The two other terms are of the same nature, and
the definition of zK,N0,y yields pK,N (· | y) = pK,N (· | zK,N0,y ).

Using that π(· | ·) is a uniformly continuous function in (θ,y) on a compact
set X and taking the limit ε→ 0, yields limε→0D

2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
=

0 in measure λ, with respect to y ∈ Y. Since this result is true whatever the
data set DN , it also holds in probability with respect to DN . That is, given any
α1 > 0, β1 > 0, there exists ε (α1, β1) > 0 such that for any 0 < ε < ε (α1, β1),

Pr
(
λ
({

y ∈ Y : D2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
≥ β1

})
≥ α1

)
= 0.

Next, we prove that D2
H

(
π(· | zK,N0,y ), pK,N (· | y)

)
(which is equal to

D2
H

(
π(· | zK,N0,y ), pK,N (· | zK,N0,y )

)
) and D2

H

(
pK,N (· | y), π(· | y)

)
both converge

to 0 in measure λ, with respect to y and in probability, with respect to DN .
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Such convergence can be obtained via Rakhlin et al. (2005, Corollary 2.2), and
Lemma 2 in supplementary Section S3.3.2, which provides the guarantee that
we can choose a measurable function y 7→ zK,N0,y . Equation (11) in Theorem
2 follows from the triangle inequality (13). A detailed proof is provided in
supplementary Section S3.2.

Remark.
The GLLiM model involving multivariate unconstrained Gaussian distribu-
tions does not satisfy the conditions of Theorem 2 so that pK,N cannot be
replaced by pK,NG in the theorem. However as illustrated in Rakhlin et al.
(2005), truncated Gaussian distributions with constrained parameters can
meet the restrictions imposed in the theorem. We are not aware of any more
general result involving the MLE of Gaussian mixtures. The GLLiM model
could as well be replaced by another model satisfying the conditions of the
theorem but for practical applications, this model would need to have computa-
tional properties such as the tractability of the estimation of its parameters and
needs to be efficient in multivariate and potentially high-dimensional settings.

6 Numerical experiments
Let us recall that d is the observation dimension, ` the number of parameters
and R the number of i.i.d. d-dimensional observations that may be available
for each parameter value. We recall the notation [N ] = {1, . . . , N}. Our first
three examples are commonly used in the ABC literature and are there to
illustrate the flexibility of our method, with an i.i.d. observation setting in
Section 6.1 (R = 100, d = 2, ` = 2) and Section 6.2 (R = 100, d = 2,
` = 5), and a time series model (R = 1, d = 150, ` = 2) in Section 6.3.
For these examples, we compare with Wasserstein-ABC (WABC) of Bernton
et al. (2019) using the winference R package (Jacob et al., 2020). WABC
uses a SMC-ABC procedure instead of rejection ABC. When using SMC, we
thus adopt the setting recommended in Bernton et al. (2019). In particular,
the number of particles is set to 2048. In contrast, the other examples aim at
departing from the usual benchmark examples in ABC. That is, we choose to
consider settings that exhibit posterior distributions with characteristics such
as multimodality and heavy tails. We report a synthetic experiment where
the posterior distribution has mass on four 1D manifolds (Section 6.4). Other
synthetic examples are described in supplementary Section S4.4. All these
other examples are run for a single observation in d = 10 dimensions. This
choice of dimension is relatively low but corresponds to the dimensions met in
practice in some targeted real applications. In particular, we are interested in
a real remote sensing inverse problem in planetary science, which is illustrated
in Section 6.5.

To circumvent the choice of an arbitrary summary statistic, Fearnhead
and Prangle (2012) showed that the best summary statistic, in terms of the
minimal quadratic loss, was the posterior mean. This posterior mean is not
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known and needs to be approximated, e.g. by linear regression. In this section,
the transformations used for the regression part are (1, y, y2, y3, y4) following
the procedure suggested in the abctools package (Nunes and Prangle, 2015).
We refer to this procedure as semi-automatic ABC. This approach using the
posterior mean approach is further developed in Jiang et al. (2017), where a
multilayer perceptron deep neural network regression model is employed. The
deep neuronal network with multiple hidden layers considered by Jiang et al.
(2017) offers stronger representational power to approximate the posterior
mean and hence to learn an informative summary statistic, when compared to
linear regression models. Improved results were obtained by Jiang et al. (2017),
but we did not compare our approach to their method, except by reporting
some of their results when relevant. Discrepancy-based results from Nguyen
et al. (2020a) are also reported when available.

The performances of the four proposed GLLiM-ABC schemes summarized
in Algorithm 1 are compared to that of semi-automatic ABC. When not spec-
ified otherwise, reported results are obtained with a simple rejection scheme
as per instances implemented in the abc R package (Csillery et al., 2012).
The other schemes available in the abc package have been tested but no no-
table performance differences were observed. In regards to the final sample
thresholding (i.e., choice of ε), following common practice, all methods retain
samples for which the distance to the observation is under a small (e.g. 0.1%)
quantile of all computed distances. Alternatively, we also report results with
a SMC-ABC scheme as implemented in the winference package.

The xLLiM R package (Perthame et al., 2017), available on the CRAN, is
used to learn a GLLiM model with K components from a set DN of N simula-
tions from the true model, meaning that each pair (θn,yn) in DN is obtained
by simulating θn from the prior π(θ) and yn from the likelihood fθn(y). The
selection of K using the Bayesian Information Criterion (BIC) is illustrated in
Sections 6.3 to 6.5. The GLLiM implementation uses an isotropic constraint
except for the first three examples as specified below. The isotropic GLLiM in-
volves less parameters than the fully-specified GLLiM and we observed that, in
the one observation settings, it yielded surrogate posteriors of sufficient qual-
ity for the ABC selection scheme. The exact meaning of this constraint can be
found in Deleforge et al. (2015b). Another set of simulated pairs (θ,y) of size
M is generally used for the ABC scheme unless otherwise specified.

To visualize posterior samples densities, we use a density estimation
procedure based on the ggplot2 R package with a Gaussian kernel.

Computing times for the various procedures and experiments are discussed
in Section 6.6 and shown in Table S3 in supplementary Section S5.

6.1 Normal Location model
Our first illustrations correspond to situations where, for each possible value
of the parameter, it is possible to simulate or observe many (R) i.i.d. realiza-
tions. The observations to be inverted are also made of R i.i.d realizations but
assuming a different number is not a problem.
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We first consider the normal location model described in Section 2.2 of
Bernton et al. (2019). This model is a particular case of the following model.
In the bivariate case, the parameter is a 2-dimensional vector θ, which is as-
signed a Gaussian prior N2( . ; c,Γ) with mean c and covariance matrix
Γ. The observed variable y is then assumed to follow a Gaussian distribu-
tion N2( . ; Aθ + b,Σ). The example of Bernton et al. (2019) corresponds
to c = 0, Γ = 25I, A = I, b = 0 and Σ is equal to 1 on the diagonal and
0.5 off the diagonal. For comparison with their WABC procedure, we use the
exact setting described in this paper. A sample {yr, r ∈ [R]} of R = 100
i.i.d. observations is generated from a bivariate normal distribution. The mean
components are drawn from a standard normal distribution, and the values
generated are approximately −0.71 and 0.09. For this model, the posterior is
available in closed form and is Gaussian. Details can be found in supplemen-
tary Section S4.1. This normal location model is exactly the GLLiM model for
K = 1 and is therefore a particularly favorable example for our procedures.
Although the example may be simplistic, the availability of the true posterior
distribution and closed-form expressions for the distances provides some in-
teresting insights into our proposed approach and how it differs and compares
to the WABC approach of Bernton et al. (2019). We report in supplementary
Section S4.1 results for an SMC-ABC algorithm using GLLiM successively
with the MW2 and L2 distance and the Wasserstein distance between samples
(WABC). Despite its simplicity, this example clearly shows the difference be-
tween the L2 and the Wasserstein distances. In this example, the MW2 and L2

distances are explicit functions of the difference between the sufficient sample
means while the Wasserstein distance of WABC measures the difference be-
tween sample histograms. However, we suspect the exponential form in the L2

distance generates a very specific behaviour compared to the other distances
(see supplementary Section S4.1 for details).

Overall, the GLLiM-based procedures are more efficient in terms of simu-
lations and time (See supplementary Figure S1 and Table S3) but note that
this can be very specific to this example, which simplifies the expresions of
our distances greatly, while the cost of computing a Wasserstein distance be-
tween samples (WABC) does not depend on the model under consideration
but only on the observations dimension and number. Also it appears that the
L2 distance requires more simulations to be as efficient as MW2.

6.2 Bivariate Beta model
In contrast to the previous example, the bivariate Beta model is a typical target
for ABC procedures as nor the likelihood neither the posterior distribution
are available in closed-form or obtained via another reference procedure. This
is problematic to assess the quality of the posterior approximations. We thus
follow the analysis done in most ABC papers (e.g Crackel and Flegal (2017);
Bernton et al. (2019); Nguyen et al. (2020a); Jiang et al. (2018), etc.), which
mainly report the concentration of the posterior approximations around the
data-generating parameters. Note that a number of potential metrics have been
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listed in Lueckmann et al. (2021) but they are not practical for comparing
samples produced by ABC schemes and are computationally costly.

The bivariate Beta model proposed by Crackel and Flegal (2017) and also
used by Nguyen et al. (2020a); Jiang et al. (2018) is defined with five positive
parameters θ1, . . . , θ5 by letting v1 = (u1 + u3)/(u5 + u4) and v2 = (u2 +
u4)/(u5 + u3), where ui ∼ Gamma(θi, 1), for i ∈ [5], and setting z1 = v1/(1 +
v1) and z2 = v2/(1 + v2). The likelihood for the bivariate random variable
z> = (z1, z2) is not available in closed form. The observed sample is generated
from the model with values (θ1, θ2, θ3, θ4, θ5) = (1, 1, 1, 1, 1). The prior on each
parameter is taken to be independent and uniform over interval [0, 5].

We fit a GLLiM model with K = 100 for i.i.d. data (see Section S2.1 in
supplementary material) to a set made of N = 105 5-dimensional vectors of
parameters, each associated to R = 100 i.i.d. bivariate observations.

6.2.1 Comparison of rejection ABC procedures

We first use this same set for a rejection ABC approach with a tolerance
threshold ε set to the 0.05% quantile leading to selected samples of size 50, in
order to match the experiments of Nguyen et al. (2020a); Jiang et al. (2018).

The marginal ABC posterior distributions of parameters θ1, θ2, θ3, θ4 and
θ5 are displayed in Figure S2 of the supplementary material. Results are qual-
itatively similar to that of Nguyen et al. (2020a); Jiang et al. (2018), which
use data discrepancies. Our GLLiM-ABC procedures can be seen as direct al-
ternatives to these latter methods. In contrast, to apply semi-automatic ABC
requires summary statistics. In absence of candidate summary statistics, it is
suggested by Fearnhead and Prangle (2012) to use evenly-spaced quantiles. For
comparison, following Jiang et al. (2018), we apply the semi-automatic proce-
dure on 7 quantiles from the first observed dimension and 7 quantiles from the
second. Each simulated data set of size 2×R is then reduced to 14 quantiles.

Although the use of somewhat arbitrary summary statistics is often prob-
lematic, we observe that using 14 quantiles in this case provides reasonable
results. Visually (see Figures S2 and S3 in the supplementary material), semi-
automatic ABC shows modes close to the data-generating parameter values.
The GLLiM mixture appears to provide slightly shifted modes that are closer
located after an ABC step is added, except for GLLiM-L2-ABC. In this exam-
ple, the L2 distance shows quite different posterior shapes. Overall the results
are qualitatively similar to that in Jiang et al. (2018).

For a more complete comparison, we also apply the other GLLiM-ABC
methods with the 14 quantiles summaries. The standard GLLiM implemen-
tation is used with K = 40 and no constraint. Our GLLiM-ABC procedures
easily apply in this new setting, while the discrepancy-based methods de-
scribed in Bernton et al. (2019); Jiang et al. (2017); Nguyen et al. (2020a)
are not designed for this situation. Supplementary Figure S3 shows marginal
posteriors for the 5 parameters and 5 procedures. GLLiM-MW2-ABC and
GLLiM-E-ABC perform similarly, while the addition of log-variances in
GLLiM-EV-ABC does not seem to effect the posterior shapes, significantly. In
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contrast, GLLiM-L2-ABC performs very differently with modes further away
from the data-generating values.

For a more quantitative comparison, we compute for each posterior samples
of size S, empirical means of the parameters, θ̄j = 1

S

∑S
i=1 θ

i
j , and empiri-

cal root mean square errors (RMSE) defined as R(θj) =
√

1
S

∑S
i=1(θij − θ0

j )
2

where j ∈ [5], S = 50 and θij is the sample i for θj and θ0
j is the true parameter

value. Table 1 shows these quantities averaged over 10 repetitions of the same
experiment. The RMSE reported in Table 1 confirm that semi-automatic ABC
when using quantiles as summary statistics and GLLiM-MW2-ABC method in
both cases, with or without summary statistics, provide posterior approxima-
tions more concentrated around the data-generating parameter values. Overall,
all methods have similar performance except for GLLiM-L2-ABC. Since our
setting is the same as in Nguyen et al. (2020a), we also show in Table 1 the
best results obtained for this example, adapted with only R = 100 i.i.d. ob-
servations instead of R = 500 originally in Nguyen et al. (2020a). Although a
different set of simulations has been used and the results are not strictly com-
parable, our results are qualitatively similar to that of Nguyen et al. (2020a).

6.2.2 SMC-ABC and comparison with WABC

We then consider SMC-ABC as an alternative to rejection ABC. To compare
with the WABC approach of Bernton et al. (2019), we use the SMC-ABC
implementation proposed in this paper. This SMC setting being quite different,
in terms of tuning requirements, the comparison is made on another set of
simulations, with a similar budget. Specifically, we consider a first budget of
M = 105 as before and a larger one of M = 106. The SMC-ABC is run
with these respective budgets following the recommendations of Bernton et al.
(2019). The number of particles is set to 2048, which is also the size of the
retained ABC samples. The resulting posterior approximations are shown in
supplementary Figure S4.

As already mention, we cannot make conclusions regarding the proximity
to the true posterior distribution. However, it appears clearly that a higher
budget tends to concentrate the posterior approximations closer to the data-
generating values, and this more significantly so for GLLiM-MW2-SMC-ABC
and WABC while GLLiM-L2-SMC-ABC does not always concentrate at the
same location. We have not further investigated the reasons for this latter
different behaviour but it may be related to what we had already observed
in the simpler normal location model case (see supplementary Figure S1).
For the L2 distance, SMC-ABC shows more numerical difficulties, e.g. with
smaller acceptance ratios at each step (around 35%). Supplementary Table S1
summarizes the comparison.
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Table 1 Bivariate Beta model: Empirical parameter means, and RMSE for ABC
posterior samples averaged over 10 repetitions of the experiment with observed data
generated with θ = (1, 1, 1, 1, 1). The ABC posterior values are computed as empirical
values over samples of size 50. Average means closest to 1 and best (lowest) average RMSE
values are in boldface. The best results obtained by the approach of Nguyen et al. (2020a)
using various data discrepancies, in the same setting (R = 100) but with a different set of
simulations, are also provided for comparison.

Procedure θ̄1 θ̄2 θ̄3 θ̄4 θ̄5 R(θ1) R(θ2) R(θ3) R(θ4) R(θ5)
GLLiM mixture 2.510 2.546 2.714 2.630 2.591 2.145 2.291 2.201 2.277 2.056
GLLiM-E-ABC 1.439 1.051 0.914 1.095 1.264 0.952 0.791 0.483 0.629 0.510

GLLiM-EV-ABC 1.444 1.037 0.916 1.153 1.205 1.003 0.751 0.556 0.596 0.521
GLLiM-L2-ABC 1.860 2.301 2.430 2.136 2.620 1.268 1.859 2.008 1.536 1.966

GLLiM-MW2-ABC 1.330 1.000 0.8465 1.056 1.159 0.836 0.781 0.458 0.558 0.448
with 14 quantiles as summaries

Semi-auto ABC 1.235 1.173 0.948 1.000 1.145 0.7601 0.747 0.597 0.599 0.582
GLLiM mixture 0.922 1.139 1.002 0.917 1.040 1.869 1.802 1.286 1.231 0.993
GLLiM-E-ABC 1.209 1.438 1.146 1.071 1.302 0.699 0.880 0.632 0.597 0.659

GLLiM-EV-ABC 1.215 1.565 1.157 1.084 1.167 0.748 0.999 0.677 0.660 0.599
GLLiM-L2-ABC 3.339 2.989 3.420 3.315 2.601 2.711 2.462 2.655 2.715 1.958

GLLiM-MW2-ABC 1.159 1.460 1.146 1.079 1.264 0.687 0.877 0.607 0.593 0.634
Best results using data discrepancies as in Nguyen et al. (2020a)

R = 100 1.275 1.176 0.751 0.830 1.237 0.834 0.593 0.459 0.219 0.409

6.3 Moving average model
The moving average model is widely used in time series analysis. In particu-
lar the moving average model of order 2, MA(2), has often illustrated ABC
procedures (Marin et al., 2012; Jiang et al., 2018, 2017; Fearnhead and Pran-
gle, 2012; Nguyen et al., 2020a). Natural summary statistics are the empirical
auto-covariances of lag 1 and 2. This example is a way to illustrate our method
on time series in the same manner as Bernton et al. (2019). In contrast to
the previous example, we consider that we have a single observation which is
a time series of length d. However, we treat it as a set of i.i.d. observations
of smaller length. This corresponds to the approximation suggested in Section
4.2 of Bernton et al. (2019). Their Wasserstein-ABC proposal uses empirical
distributions and, like other data discrepancy based methods, is in principle
only valid for i.i.d. observations. However, they also investigate the use of the
method to time series where observations are not i.i.d.. We make a similar at-
tempt in this work and show how it can be interpreted in our framework. To
favor comparison with other results on the MA(2) model, we adopt a similar
setting as in most papers, i.e. that of Jiang et al. (2017), but a quantitative
comparison is not strictly possible as the simulated observations may vary
from one paper to another. The MA(2) process is a stochastic process (y′t)t∈N∗

defined by

y′t = zt + θ1zt−1 + θ2zt−2, (14)

where {zt} is an i.i.d. sequence, according to a standard normal distribution
and θ1 and θ2 are scalar parameters. A standard identifiability condition is
imposed on this model leading to a prior distribution on the triangle described
by the inequalities −2 < θ1 < 2, θ1 + θ2 > −1, θ1 − θ2 < 1 . The prior on
the two model parameters is taken uniform over the triangular domain. For
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each pair of parameters (θ1, θ2) in the triangular domain, a series of length 150
is simulated according to model (14). This is repeated N = 105 times. The
series to be inverted is simulated similarly with true parameters θ1 = 0.6 and
θ2 = 0.2. For ABC procedures, the tolerance threshold ε is set to the 0.1%
quantile leading to selected samples of size 100.

To learn a GLLiM model with d = 150, ` = 2, we propose to use the
i.i.d. adaptation of GLLiM (see supplementary material S1.2). In terms of
GLLiM, this is equivalent to assume block diagonal covariance matrices when
approximating the likelihood. There is some flexibility as regards the block
sizes. Larger blocks depart less from the true MA(2) model while requiring
more parameters to be estimated. Smaller blocks correspond to neglect some
of the dependencies between the blocks but may be acceptable if the remaining
dependencies carry enough information on the parameters. Two block decom-
positions are tested. All series of length 150 (y1, . . . , y150) are first cut into
R = 50 smaller series of length 3, (y1, y2, y3), (y4, y5, y6), . . ., which are consid-
ered as independent and identically distributed. GLLiM is applied with d = 3,
R = 50 and no constraint on the 3 × 3 blocks themselves. A second experi-
ment is made with R = 5 and d = 30 i.e. with 5 unconstrained blocks of size
30× 30. A better precision especially on θ2 is obtained with this later setting.
This confirms the sensitivity of the dependence over time information in the
MA(2) model. We thus choose this setting considering each time series as a
sample of 5 smaller series of length 30. To illustrate the possibility to select the
number of GLLiM components K in a more data-driven way, we compute the
Bayesian Information Criterion (BIC) for K = 2 to 30. The value of K leading
to the minimum BIC is then selected. The supplementary Figure S5 shows the
BIC values, which flattens after K = 15 and whose minimum is for K = 20.
We therefore use a GLLiM model learned with K = 20. For comparison pos-
terior samples obtained with K = 30 are also shown in supplementary Figure
S6. The results are similar for both values of K without a clear difference in fa-
vor of the selected K. Figure S6 also shows samples obtained with WABC and
GLLiM using SMC-ABC instead of Rejection ABC. WABC performs poorly
(Figure S6 (m)) due to the low R = 5 (see also Table S2).

We also compare with semi-automatic ABC applied directly to the time
series of length 150. Reducing the time series into smaller time series is not
possible as the approach is not designed to handle i.i.d. observations. Instead
we also consider the two empirical auto-covariances as summary statistics. Em-
pirical values for parameter means, standard deviations and correlation, when
applying the different ABC schemes for one observed time series, are compared
to the true ones computed numerically with importance sampling. The corre-
sponding ABC estimations and samples are shown in supplementary material
Table S2 and Figure S6. The results are qualitatively similar to that of Jiang
et al. (2017) with a poor estimation of the means for semi-automatic ABC
on the full time series. They also confirm results already observed in previous
works, namely that semi-automatic and auto-covariance-based procedures do
not well capture correlation information between θ1 and θ2.
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We then repeat the comparison for 100 different observed series, all simu-
lated from true parameters (0.6, 0.2). In each case, the true posterior means,
standard deviations of θ1 and θ2, and correlation are computed numerically.
The mean squared errors (MSE) to the true posterior values are then com-
puted and reported in Table 2. These values are computed using selected
samples of size 100 each. The first line in Table 2 shows the averages over
the 100 experiments of the posterior true quantities, numerically computed.
In particular, we see that the averaged posterior means get close to the true
values 0.6 and 0.2. Most results correspond to a rejection ABC procedure. For
comparison, we also give the MSE obtained with a SMC-ABC implementa-
tion for a GLLiM-MW2 distance (referred to as simply GLLiM-MW2-SMC
for a shorter name). As before SMC is run with 2048 particles but MSE are
computed by selecting the parameters values corresponding to the best 100
distances among the 2048. WABC is not further tested due to its poor perfor-
mance in this example. Two sets of results are given corresponding respectively
to K = 20 and K = 30. The K = 30 best results are slightly better. This
may be due to a better model fit, while selecting K using BIC also accounts
for model complexity. For K = 20, the best MSE are obtained with GLLiM-
MW2-SMC and GLLiM-MW2-ABC except for the correlation MSE which is
best for GLLiM-EV-ABC. Semi-automatic ABC applied directly on the time
series provides the largest errors. Semi-automatic ABC provides much lower
errors when applied on auto-covariances. The methods using auto-covariances
provide satisfying results for the θ1 mean but not for the other quantities. The
GLLiM mixture provides better estimates than semi-automatic ABC on the
full time series but remains far from the best performance. This illustrates
again that there is a clear gain in complementing GLLiM with an ABC step
and that the initial GLLiM mixture needs not to be very accurate. The second
best method is GLLiM-L2-ABC, which performs similarly as GLLiM-E-ABC,
while surprisingly adding the log-variances in GLLiM-EV-ABC seems to de-
grade the performance except for the correlation. This illustrates the fact that
in this unimodal posterior case, the posterior expectation is a good summary
statistic. Note however, that GLLiM-MW2-ABC still provides a performance
gain. To compare with another method that uses estimates of posterior expec-
tations as summary statistics, we report results given in Jiang et al. (2017).
Their deep neural network-based method (DNN) provides larger MSE than
our GLLiM-ABC methods.

6.4 Multiple hyperboloid example
Our main targets are posterior distributions with multiple modes for which our
method is more likely to provide significantly better performance than existing
approaches. It is straightforward to construct models that lead to multimodal
posteriors by considering likelihoods that are invariant by some transformation.
Such non-identifiable models include ill-posed inverse problems that can be
constructed as explained in Section S4.4 of the supplementary material. Three
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Table 2 MA(2) model: mean squared errors (MSE) over 100 simulated observations with
the same true parameters (0.6,0.2). MSE are computed for all methods, for the estimated
parameter means, standard deviations and correlations compared to their true
counterparts computed numerically. Three sets of results are shown, corresponding to
procedures that does not used GLLiM, procedures using GLLiM learned with K = 30 and
K = 20 components. The last line shows values as reported in Jiang et al. (2017) based on
a deep neural network learning (DNN). The "Exact" line reports the means of the 100 true
posterior values. Best (lowest) MSE values are in boldface with a * to indicate the overall
best values.

Procedure mean(θ1) mean(θ2) std(θ1) std(θ2) cor(θ1, θ2)
Average

Exact 0.5807 0.1960 0.0810 0.0813 0.4483
MSE

Semi-auto ABC 0.3402 0.0199 0.1521 0.1255 0.2235
Auto-cov Semi-auto 0.0048 0.0147 0.0012 0.0070 0.1212

Auto-cov Rejection ABC 0.0047 0.0145 0.0010 0.0070 0.1196
K = 30

GLLiM mixture 0.0142 0.0046 0.1652 0.0399 0.1734
GLLiM-E-ABC 0.0040 0.0039 0.0005 0.0003 0.0446
GLLiM-EV-ABC 0.0060 0.0040 0.0035 0.0014 0.0632
GLLiM-L2-ABC 0.0037 0.0041 0.0005 0.0005 0.0501

GLLiM-MW2-ABC 0.0027* 0.0021* 0.0002* 0.0003* 0.0356*
K = 20

GLLiM mixture 0.0340 0.0060 0.1223 0.0367 0.1691
GLLiM-E-ABC 0.0103 0.0066 0.0020 0.0037 0.0440
GLLiM-EV-ABC 0.0256 0.0065 0.0052 0.0035 0.0375
GLLiM-L2-ABC 0.0095 0.0057 0.0016 0.0031 0.0470

GLLiM-MW2-ABC 0.0038 0.0041 0.0005 0.0013 0.0509
GLLiM-MW2-SMC 0.0032 0.0035 0.0003 0.0010 0.0513

ABC-DNN Jiang et al. (2017) 0.0096 0.0089 0.0025 0.0026 0.0517

synthetic examples therein show that the expectation as a summary statis-
tic suffers from the presence of two equivalent modes, while GLLiM-D-ABC
procedures well capture multimodality.

In this sub-section, we consider a more complex non-identifiable example
constructed from a real sound source localization problem in audio processing.
This example is artificial. The link to audio processing is only illustrative and
further detail is provided in supplementary Section S4.5.

The object of interest is an unknown parameter θ = (x, y) that can be
interpreted as a source location in a 2D scene. To create a multimodal posterior,
we consider the following likelihood that depends on two pairsm1 = (m1

1,m
1
2)

andm2 = (m2
1,m

2
2) of 2-dimensional parameters. We assume a d dimensional

observation y = (y1, . . . , yd) with

fθ(y) =
1

2
Sd(y; Fm1(θ)1Id, σ2Id, ν) +

1

2
Sd(y; Fm2(θ)1Id, σ2Id, ν), (15)

where Fm(θ) = (‖θ −m1‖2 − ‖θ −m2‖2), if m = (m1,m2). (16)

The above likelihood corresponds to a mixture with equal weight of two d-
variate Student t-distributions with a d-dimensional location parameter with
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all dimensions equal to Fm1(θ) (resp. Fm2(θ)), diagonal isotropic scale matrix
equal to σ2 Id and degree-of-freedom (dof) parameter ν.

The parameter space is assumed to be Θ = [−2, 2] × [−2, 2] and the
prior on θ is assumed to be uniform on Θ. The pair positions are m1 =
((−0.5, 0), (0.5, 0)) and m2 = ((0,−0.5), (0, 0.5)). We assume ν = 3 and
σ2 = 0.01. The true θ is set to θ = (1.5, 1) and we simulate a 10-dimensional y
following model (15). Depending on whether this observation is coming from
the first pair or second pair component, it results a true posterior as shown
in Figure 1 (d) or one with non-intersecting hyperbolas. The contour plot
indicates that the observation corresponds to the ((0,−0.5), (0, 0.5)) pair. Mul-
timodality of the posterior is coming from that each isosurface defined by (16)
is represented by a two-sheet hyperboloid in 2D.

The four ABC methods using GLLiM and semi-automatic ABC are com-
pared. The first GLLiM model used consists of K = 20 Gaussian components
with an isotropic constraint. A selected sample of 1000 values is retained
by thresholding the distances under the 0.1% quantile. In a first test, semi-
automatic ABC and GLLiM use the same data set of size M = 106, which
is also used for the rejection ABC part. Selected samples are shown in sup-
plementary Section S4.5.2, Figure S10. The mixture provided by GLLiM as
an approximation of the true posterior (Figure 10 (d)) well captures the main
posterior parts. This GLLiM posterior is a 20-component Gaussian mixture of
form (2). The true posterior expectations are all zero and are thus not informa-
tive about the location parameters. However, a correct structure can be seen in
the GLLiM-E-ABC sample, in contrast to the semi-automatic one that shows
no structure as expected. Adding the posterior log-variance estimations has a
good impact on the selected sample, which is only marginally different from
the GLLiM-D-ABC samples. This suggests that the posterior log-variances are
very informative on the location parameters.

When GLLiM is first learned with a smaller data set of size N = 105 and
different from the rejection ABC data set, results slightly degrade, but not
significantly so (Supplementary Figure S11). More badly localized estimations
can be seen in the samples of Figure S11 (g,h), but the GLLiM-D-ABC samples
are well localized and are not really impacted by this difference in the GLLiM
learning step. In this case the improvement of GLLiM-D-ABC over GLLiM-
EV-ABC is clearer.

When BIC is used to select K, we observe a minimum at K = 38 when
the criterion is computed for K = 2 to K = 40 (see supplementary Figure
S12). Figure 1 below shows then the results with GLLiM learned with K =
38 and N = 105. A clear improvement is visible especially on the GLLiM-
mixture and GLLiM-EV-ABC plots. In contrast to the MA(2) example where
manually choosing K too large led to similar results, choosing it too small
has here more impact. We also use the better GLLiM approximation to show
that the number of ABC simulations can be reduced without much changing
the selected posterior samples. Plots (c) and (g) in Figure 1 are obtained by
selecting amongM = 105 simulations the best 1% distances instead of the best



1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

Springer Nature 2021 LATEX template

Approximate Bayesian computation with surrogate posteriors 25

0.1% in supplementary Figure S11. At last, all previously mentioned samples
are obtained using a rejection ABC scheme while Figure 1 (h) is a sample
obtained using the MW2 distance and SMC-ABC. Results are very similar
with a slightly better sampling with SMC at the hyperboloids intersection.
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(e) GLLiM mixture (f) Semi-automatic ABC (g) GLLiM-L2-ABC (h) GLLiM-MW2-SMC

Figure 1 Multiple hyperboloid example. GLLiM is learned with K = 38 on a data set of
size N = 105 while ABC is run using a data set of size M = 106 for (a,b,f,h) and M = 105

for (c,g). Rejection ABC is used except for (h) which uses SMC-ABC. Selected samples using
(a) GLLiM posterior expectations, (b) GLLiM posterior expectations and log variances, (c)
MW2 distances, (d) contours of the true posterior distribution, (e) approximate GLLiM
posterior for the observed data, (f) semi-automatic ABC, (g) L2 distances and (h) MW2

distances with SMC-ABC. Black points on the dotted line are the pairs positions. The fifth
black point is the true parameter values.

6.5 A physical model inversion in planetary science
As a real-world example, we consider a remote sensing application coming from
the study of planetary environment; in particular, the morphological, compo-
sitional, photometrical and textural characterization of sites on the surface of
a planet. The composition of the surface materials is generally established on
the basis of spectral mixing and physical modelling techniques using images
produced by hyperspectral cameras, from different angles during a site flyover.
An example for the planet Mars is described by Murchie et al. (2009); Fer-
nando et al. (2016). Such observations can also be measured in the laboratory,
on known materials to validate a model. In both cases, the interpretation of the
surface Bidirectional Reflectance Distribution Factor (BRDF) extracted from
these observations is based on the inversion of a model of radiative transfer,
linking physical and observable parameters in a non-linear way.

The Hapke model is a semi-empirical photometric model that relates physi-
cally meaningful parameters to the reflectivity of a granular material for a given
geometry of illumination and viewing. Formally, it links a set of parameters
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θ ∈ R4 to a theoretical BRDF denoted by y = FHapke(θ) ∈ Rd. A given exper-
iment defines d geometries of measurement, each parameterized by a triplet
(θ0, θ, φ) of incidence, emergence and azimuth angles. Moreover, θ = (ω, θ, b, c)
are the sensitive parameters, respectively single scattering albedo, macroscopic
roughness, asymmetry parameter and backscattering fraction. More details on
these quantities and their photometric meanings may be found in Schmidt and
Fernando (2015); Labarre (2017). Although available, the expression of FHapke
is very complex and tedious to handle analytically, with a number of approxi-
mations required (see the description of the function in more than 15 pages in
Labarre 2017). In practice, it is therefore mainly used via a numerical code, al-
lowing simulations from the model. In addition, previous studies (Kugler et al.
2021; Schmidt and Fernando 2015) have shown evidence for the existence of
multiple solutions or for the possibility to obtain very similar observations from
different sets of parameters, which makes this setting appropriate for testing
the ability of our procedures to recover multimodal posterior distributions.

In the following experiments, all parameters are transformed to be in [0, 1]4,
which amounts to keep b and c unchanged, divide θ by 30 and operate the
following change of variable for ω, γ = 1 −

√
1− ω. This last transformation

also has the advantage of avoiding the non-linearity of FHapke, when ω tends to
1. The experimental setting defines geometries at which the measurements are
made, which in turn define FHapke. The number of geometries thus corresponds
to the size d, of each observation. The measurement geometries used to define
FHapke are borrowed from a real laboratory experiment presented below. The
number of parameters is therefore ` = 4 with d = 10 observed geometries.
The sets to learn GLLiM and generate ABC samples are both set to size
N = M = 105. For each pair (θ,y) in the simulated data sets, the 4 parameters
(θ) are simulated uniformly in [0, 1]4. Besides these learning sets, the Hapke
similator is not available to us so that we cannot run SMC-ABC for this specific
example. Following a previous study (Kugler et al., 2021), the corresponding
reflectance curves are generated as y = FHapke(θ) + ε, where ε is a centered
Gaussian variable with isotropic covariance σ2 Id. In this section σ = 0.05.
The GLLiM model is learned with K = 40 to be consistent with a previous
study (Kugler et al., 2021). We check that this value is reasonable and in
particular that it cannot be significantly reduced. BIC is computed fromK = 2
to K = 40. The BIC values are shown in supplementary Figure S13. The
minimum is reached for K = 39 but K = 40 provides almost the same BIC.

Prior to real data inversion, performance is assessed by considering an ob-
servation simulated from the Hapke model, as explained in the supplementary
Section S4.6.2. In this experiment, ε is varying to observe the behavior of the
different methods (Figure S14). GLLiM-L2-ABC seems less robust, than the
other procedures, to these variations and even degrades in performance when
ε is too high. The two procedures based on expectations show satisfying per-
formance with globally less sharp posteriors. The addition of the posterior
log-variances does not seem to significantly change the selected samples.
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Reflectance measurements made in the laboratory are also generally con-
sidered by experts (see e.g. Pilorget et al. 2016). We focus on one observation
coming from a mineral called Nontronite (see Kugler et al. 2021 for a descrip-
tion). The experiment consists of taking measures at 100 wavelengths in the
spectral range 400–2800 nm. Each of these 100 measures is an observation to
be inverted. We focus on one of them, at 2310 nm. This observation has been
chosen from previous study (Kugler et al., 2021) as likely to exhibit multiple
solutions. The size d of each observation is d = 10 and the corresponding an-
gles are such that the incidence and azimuth angles are fixed to θ0 = 45 and
φ = 0. This number d of geometries is typical of real observations for which
the number of possible measurements during a planet flyover is limited.

Figure 2 provides the posterior marginals for the Nontronite, obtained by
setting ε to the 0.1% quantile of the distances. Two solutions can be deduced.
Parameters ω and c show unimodal posterior distributions, while θ distribu-
tion exhibits two modes. For b, the GLLiM-MW2-ABC sample shows a second
smaller mode around 0.5 but this mode is not maintained when ε is set to a
lower quantile (see Figure S15 in supplementary Section S4.6.3). We therefore
consider that the multiplicity comes mainly from θ. In the absence of ground
truth, it is difficult to fully validate the estimations. However a simple in-
spection consists of checking the reconstructed signals. The top-right plot in
Figure 2 compares the inverted signal to the reconstructed signals obtained
by applying the Hapke model to the two sets of estimated parameters, namely
(0.59, 0.15, 0.14, 0.06) and (0.59, 0.42, 0.14, 0.06), which differ only in θ. The
proximity of the reconstructions confirms the existence of multiple solutions
and thus the relevance of a multimodal posterior. One solution can be se-
lected by choosing the parameters that provides the best reconstruction. The
set (0.59, 0.42, 0.14, 0.06) is selected as its MSE is slightly lower (2.6× 10−4 vs
3.3× 10−4). This is satisfactory, as the lower value of θ in the other solution is
less physically interpretable. Note that for simplicity, we have used a uniform
prior on θ but for a more meaningful study in planetary science, information
on the parameters plausible values could be incorporated directly in the prior.

6.6 Computation times
The simulations ran on a laptop with 8 cores at 2.4 Ghz. Supplementary Table
S3 recalls the settings and shows the computation times for the main experi-
ments. For each experiment, the time is divided into several parts depending
on the procedure. When GLLiM is used, we report the time to compute BIC
from K = 2 to some Kmax value, the time for learning GLLiM with the se-
lected K value, the time to compute distances and the time for the ABC
procedure per se, which consists either of rejection ABC or SMC-ABC. In the
latter case, the distances computation is included in the ABC time. The com-
pared procedures use different R packages. The computing times are therefore
not fully comparable. However the overall conclusions are quite clear. The
semi-automatic approach as implemented in the abctools package is much
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Figure 2 Real observation inversion using the Hapke model. Posterior margins for
ω, θ̄, b and c with GLLiM-E-ABC (red), GLLiM-EV-ABC (dotted red), semi-automatic
ABC (green), GLLiM-L2-ABC (blue) and GLLiM-MW2-ABC (black). The threshold ε
is set to the 0.1% quantile (100 selected values). The vertical lines indicate the values
(ω, θ, b, c) = (0.59, 0.15, 0.14, 0.06) and (0.59, 0.42, 0.14, 0.06). The corresponding signal re-
constructions (black lines) are shown in the top-right plot with the observed signal in red.
The dashed lines correspond to the addition/substraction of a standard deviation of 0.05
around the reconstructions.

faster than any other tested procedures. When dimensions of both observa-
tions and parameters are moderate and posterior distributions are likely to
be unimodal, semi-automatic ABC is the most efficient choice. In contrast,
GLLiM-based approaches are much more costly, especially if we include the
time spent in selecting K via BIC. SMC-ABC is in general more efficient than
rejection ABC even when the number of simulations is similar (see the MA(2)
case). We suspect this is due to a better implementation and memory usage
in the winference package compared to our code. The GLLiM implementa-
tion could certainly be improved but would remain based on an EM algorithm
intrinsically slower. When EM is not used, as in the very special case of the
normal location model, GLLiM-D-SMC procedures are actually much faster
(1 to 2 minutes) vs. 50 minutes for WABC, which is blind to the paramet-
ric structure of the model. GLLiM-based procedures also show quite different
timings depending on the experiments, ranging from a few minutes to several
hours. This is due to the different GLLiM implementations (e.g. GLLiM-iid
vs standard GLLiM) and learning sets sizes and dimensions. The number of
components K has also an impact on the cost of each GLLiM iteration and
reflect the model complexity. For example, the Bivariate Beta model is learned
with K = 100 in about 11 hours, which is an extreme case. We suspect this
is due to the difficulty in fitting such a model. More iterations are needed for
EM to converge and each iteration has a higher cost. For comparison learning
GLLiM on the 14 quantiles summaries and K = 40 takes about 10 minutes.
Reversely, the cost of computing L2 or MW2 distances may vary surprisingly
for models of similar dimensions. The Wasserstein distance cost increases with
the dimension and the number of components in the mixture. In practice, we
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propose to accelerate this computation by neglecting components with too low
weights. This can be quite efficient in the unimodal posterior case (1 minute 3
seconds for the MW2 distances in the MA(2) example), while in the multiple
hyperboloid example (4 hours 18 minutes for the MW2 distances), most mix-
tures contain 8 components, one for each "branch", and cannot be reduced.
We refer to supplementary Section S5 for more detailed comments.

7 Conclusion and perspectives
In this work, the issue of choosing summary statistics was revisited. We built
on the seminal work of Fearnhead and Prangle (2012) and their semi-automatic
ABC by replacing the approximate posterior expectations with functional
statistics; namely approximations of the posterior distributions. These surro-
gate posterior distributions were obtained in a preliminary learning step, based
on an inverse regression principle. This is original with respect to most stan-
dard regression procedures, which usually provide only point-wise predictions,
i.e. first order moments. So doing, we not only could compute approximate
posterior moments of higher orders as summary statistics but, more generally,
approximate full posterior distributions. This learning step was based on the
so-called GLLiM model, which provides surrogate posteriors in the parametric
family of Gaussian mixtures. Preliminary experiments showed that although
the posterior moments provided by GLLiM were not always leading to better
results than that provided by semi-automatic ABC, the use of the full sur-
rogate posteriors was always an improvement. Consequently, an interesting
feature of our approach is that, with our adaptation of the original GLLiM
model to i.i.d. data, it can be seen as an alternative to both summary-based
and discrepancy-based procedures.

To handle distributions as functional summary statistics, our procedure
required appropriate distances. We investigated an L2 and a Wassertein-based
distance (MW2). The two distances often performed similarly but poor results
have been observed with L2 that would require further investigations. The
MW2 distance appeared to be more robust. As illustrated in our remote sensing
example, it may also allow for the ability to set the tolerance level at a higher
value without overly degrading the quality of the posterior sample.

Among aspects that have not been thoroughly investigated in this work,
we could refine the way to choose this tolerance level ε or combine GLLiM
with more sophisticated ABC schemes than the simple rejection scheme.

Another interesting perspective would be to investigate the use of GLLiM in
the context of synthetic likelihood (SL) approaches. When used in a Bayesian
framework, SL techniques can be viewed as alternatives to ABC in which the
intractable likelihood is replaced by an estimator of the likelihood (Price et al.,
2018). Since the seminal work of Wood (2010), several estimators have been
proposed (e.g. Ong et al., 2018; An et al., 2019, 2020; Frazier and Drovandi,
2021), often derived from auxiliary models (Drovandi et al., 2015). In the ABC
framework of this paper, GLLiM was used to provide approximate posteriors
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but these posteriors are themselves coming from approximate likelihoods that
could lead to new SL procedures.

Lastly, in principle, any other method that is able to provide approximate
surrogate posteriors could be used in place of GLLiM to produce the functional
summaries. Besides the family of mixture of experts models which are similar
to GLLiM, mixture density networks (Bishop, 1994) or normalizing flows (Dinh
et al., 2015; Kobyzev et al., 2020; Kruse et al., 2021) are potential candidates.
These neural networks have already been used in likelihood-free inference to
directly approximate likelihoods or posteriors. The corresponding approaches
are related to Sequential Neural Posterior Estimation (SNPE) and are different
from our approach in that the approximate posteriors are not used to compute
distances in a subsequent ABC scheme. SNPE is a strategy for reducing the
number of simulations needed by conditional neural density estimation and is
closer in spirit to SMC-ABC. These methods include SNPE-A (Papamakar-
ios and Murray, 2016), SNPE-B (Lueckmann et al., 2017), SNPE-C or AFT
(Greenberg et al., 2019). However, these methods do not all scale well with the
dimension. Examples of Papamakarios and Murray (2016) are of dimension at
most 10, while SNPE-C is used successfully on Lokta-Volterra time series of
length 150. Overall, it is not clear whether the gain/compromise in flexibili-
ty/tractability would be so much higher than with Gaussian mixtures learned
with GLLiM, all the more so as GLLiM estimation could also be refined in a
similar sequential learning way. A full and fair comparison would require much
more work as these methods have all their own features. To the best of our
knowledge, other common neural networks, like most regression techniques,
would not be appropriate as they only focus on point-wise predictions.
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